]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/include/asm/system.h
Merge branch 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[net-next-2.6.git] / arch / x86 / include / asm / system.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_SYSTEM_H
2#define _ASM_X86_SYSTEM_H
d8954222
GOC
3
4#include <asm/asm.h>
d46d7d75
GOC
5#include <asm/segment.h>
6#include <asm/cpufeature.h>
7#include <asm/cmpxchg.h>
fde1b3fa 8#include <asm/nops.h>
d8954222 9
d3ca901f 10#include <linux/kernel.h>
d46d7d75 11#include <linux/irqflags.h>
d3ca901f 12
ded9aa0d 13/* entries in ARCH_DLINFO: */
cf9db6c4 14#if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64)
ded9aa0d 15# define AT_VECTOR_SIZE_ARCH 2
cf9db6c4 16#else /* else it's non-compat x86-64 */
ded9aa0d
JB
17# define AT_VECTOR_SIZE_ARCH 1
18#endif
19
0a3b4d15 20struct task_struct; /* one of the stranger aspects of C forward declarations */
599db4fe
HH
21struct task_struct *__switch_to(struct task_struct *prev,
22 struct task_struct *next);
2fb6b2a0 23struct tss_struct;
389d1fb1
JF
24void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
25 struct tss_struct *tss);
814e2c84 26extern void show_regs_common(void);
0a3b4d15 27
aab02f0a
JS
28#ifdef CONFIG_X86_32
29
60a5317f
TH
30#ifdef CONFIG_CC_STACKPROTECTOR
31#define __switch_canary \
5c79d2a5
TH
32 "movl %P[task_canary](%[next]), %%ebx\n\t" \
33 "movl %%ebx, "__percpu_arg([stack_canary])"\n\t"
60a5317f 34#define __switch_canary_oparam \
dd17c8f7 35 , [stack_canary] "=m" (stack_canary.canary)
60a5317f 36#define __switch_canary_iparam \
60a5317f
TH
37 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
38#else /* CC_STACKPROTECTOR */
39#define __switch_canary
40#define __switch_canary_oparam
41#define __switch_canary_iparam
42#endif /* CC_STACKPROTECTOR */
43
0a3b4d15
GOC
44/*
45 * Saving eflags is important. It switches not only IOPL between tasks,
46 * it also protects other tasks from NT leaking through sysenter etc.
47 */
23b55bd9
IM
48#define switch_to(prev, next, last) \
49do { \
8b6451fe
IM
50 /* \
51 * Context-switching clobbers all registers, so we clobber \
52 * them explicitly, via unused output variables. \
53 * (EAX and EBP is not listed because EBP is saved/restored \
54 * explicitly for wchan access and EAX is the return value of \
55 * __switch_to()) \
56 */ \
57 unsigned long ebx, ecx, edx, esi, edi; \
23b55bd9 58 \
c5386c20
JP
59 asm volatile("pushfl\n\t" /* save flags */ \
60 "pushl %%ebp\n\t" /* save EBP */ \
61 "movl %%esp,%[prev_sp]\n\t" /* save ESP */ \
62 "movl %[next_sp],%%esp\n\t" /* restore ESP */ \
63 "movl $1f,%[prev_ip]\n\t" /* save EIP */ \
64 "pushl %[next_ip]\n\t" /* restore EIP */ \
5c79d2a5 65 __switch_canary \
c5386c20
JP
66 "jmp __switch_to\n" /* regparm call */ \
67 "1:\t" \
68 "popl %%ebp\n\t" /* restore EBP */ \
69 "popfl\n" /* restore flags */ \
23b55bd9 70 \
c5386c20
JP
71 /* output parameters */ \
72 : [prev_sp] "=m" (prev->thread.sp), \
73 [prev_ip] "=m" (prev->thread.ip), \
74 "=a" (last), \
23b55bd9 75 \
c5386c20
JP
76 /* clobbered output registers: */ \
77 "=b" (ebx), "=c" (ecx), "=d" (edx), \
78 "=S" (esi), "=D" (edi) \
79 \
60a5317f
TH
80 __switch_canary_oparam \
81 \
c5386c20
JP
82 /* input parameters: */ \
83 : [next_sp] "m" (next->thread.sp), \
84 [next_ip] "m" (next->thread.ip), \
85 \
86 /* regparm parameters for __switch_to(): */ \
87 [prev] "a" (prev), \
33f8c40a
VN
88 [next] "d" (next) \
89 \
60a5317f
TH
90 __switch_canary_iparam \
91 \
33f8c40a
VN
92 : /* reloaded segment registers */ \
93 "memory"); \
0a3b4d15
GOC
94} while (0)
95
d46d7d75
GOC
96/*
97 * disable hlt during certain critical i/o operations
98 */
99#define HAVE_DISABLE_HLT
96a388de 100#else
0a3b4d15
GOC
101#define __SAVE(reg, offset) "movq %%" #reg ",(14-" #offset ")*8(%%rsp)\n\t"
102#define __RESTORE(reg, offset) "movq (14-" #offset ")*8(%%rsp),%%" #reg "\n\t"
103
104/* frame pointer must be last for get_wchan */
105#define SAVE_CONTEXT "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t"
106#define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t"
107
108#define __EXTRA_CLOBBER \
109 , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \
110 "r12", "r13", "r14", "r15"
111
b4a8f7a2
TH
112#ifdef CONFIG_CC_STACKPROTECTOR
113#define __switch_canary \
114 "movq %P[task_canary](%%rsi),%%r8\n\t" \
67e68bde
TH
115 "movq %%r8,"__percpu_arg([gs_canary])"\n\t"
116#define __switch_canary_oparam \
dd17c8f7 117 , [gs_canary] "=m" (irq_stack_union.stack_canary)
67e68bde
TH
118#define __switch_canary_iparam \
119 , [task_canary] "i" (offsetof(struct task_struct, stack_canary))
b4a8f7a2
TH
120#else /* CC_STACKPROTECTOR */
121#define __switch_canary
67e68bde
TH
122#define __switch_canary_oparam
123#define __switch_canary_iparam
b4a8f7a2
TH
124#endif /* CC_STACKPROTECTOR */
125
0a3b4d15
GOC
126/* Save restore flags to clear handle leaking NT */
127#define switch_to(prev, next, last) \
b4a8f7a2 128 asm volatile(SAVE_CONTEXT \
0a3b4d15
GOC
129 "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */ \
130 "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */ \
131 "call __switch_to\n\t" \
87b26406 132 "movq "__percpu_arg([current_task])",%%rsi\n\t" \
b4a8f7a2 133 __switch_canary \
0a3b4d15 134 "movq %P[thread_info](%%rsi),%%r8\n\t" \
0a3b4d15 135 "movq %%rax,%%rdi\n\t" \
dd17c8f7 136 "testl %[_tif_fork],%P[ti_flags](%%r8)\n\t" \
7106a5ab 137 "jnz ret_from_fork\n\t" \
0a3b4d15
GOC
138 RESTORE_CONTEXT \
139 : "=a" (last) \
67e68bde 140 __switch_canary_oparam \
0a3b4d15
GOC
141 : [next] "S" (next), [prev] "D" (prev), \
142 [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \
143 [ti_flags] "i" (offsetof(struct thread_info, flags)), \
7106a5ab 144 [_tif_fork] "i" (_TIF_FORK), \
0a3b4d15 145 [thread_info] "i" (offsetof(struct task_struct, stack)), \
dd17c8f7 146 [current_task] "m" (current_task) \
67e68bde 147 __switch_canary_iparam \
0a3b4d15 148 : "memory", "cc" __EXTRA_CLOBBER)
96a388de 149#endif
d8954222
GOC
150
151#ifdef __KERNEL__
d8954222 152
9f9d489a 153extern void native_load_gs_index(unsigned);
d3ca901f 154
a6b46552
GOC
155/*
156 * Load a segment. Fall back on loading the zero
157 * segment if something goes wrong..
158 */
64b028b2
IM
159#define loadsegment(seg, value) \
160do { \
161 unsigned short __val = (value); \
162 \
163 asm volatile(" \n" \
164 "1: movl %k0,%%" #seg " \n" \
165 \
166 ".section .fixup,\"ax\" \n" \
167 "2: xorl %k0,%k0 \n" \
168 " jmp 1b \n" \
169 ".previous \n" \
170 \
171 _ASM_EXTABLE(1b, 2b) \
172 \
173 : "+r" (__val) : : "memory"); \
79b0379c 174} while (0)
a6b46552 175
d8954222
GOC
176/*
177 * Save a segment register away
178 */
c5386c20 179#define savesegment(seg, value) \
d9fc3fd3 180 asm("mov %%" #seg ",%0":"=r" (value) : : "memory")
d8954222 181
d9a89a26
TH
182/*
183 * x86_32 user gs accessors.
184 */
185#ifdef CONFIG_X86_32
ccbeed3a 186#ifdef CONFIG_X86_32_LAZY_GS
d9a89a26
TH
187#define get_user_gs(regs) (u16)({unsigned long v; savesegment(gs, v); v;})
188#define set_user_gs(regs, v) loadsegment(gs, (unsigned long)(v))
189#define task_user_gs(tsk) ((tsk)->thread.gs)
ccbeed3a
TH
190#define lazy_save_gs(v) savesegment(gs, (v))
191#define lazy_load_gs(v) loadsegment(gs, (v))
192#else /* X86_32_LAZY_GS */
193#define get_user_gs(regs) (u16)((regs)->gs)
194#define set_user_gs(regs, v) do { (regs)->gs = (v); } while (0)
195#define task_user_gs(tsk) (task_pt_regs(tsk)->gs)
196#define lazy_save_gs(v) do { } while (0)
197#define lazy_load_gs(v) do { } while (0)
198#endif /* X86_32_LAZY_GS */
199#endif /* X86_32 */
d9a89a26 200
d8954222
GOC
201static inline unsigned long get_limit(unsigned long segment)
202{
203 unsigned long __limit;
c5386c20
JP
204 asm("lsll %1,%0" : "=r" (__limit) : "r" (segment));
205 return __limit + 1;
d8954222 206}
d3ca901f
GOC
207
208static inline void native_clts(void)
209{
c5386c20 210 asm volatile("clts");
d3ca901f
GOC
211}
212
213/*
214 * Volatile isn't enough to prevent the compiler from reordering the
215 * read/write functions for the control registers and messing everything up.
216 * A memory clobber would solve the problem, but would prevent reordering of
217 * all loads stores around it, which can hurt performance. Solution is to
218 * use a variable and mimic reads and writes to it to enforce serialization
219 */
220static unsigned long __force_order;
221
222static inline unsigned long native_read_cr0(void)
223{
224 unsigned long val;
c5386c20 225 asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order));
d3ca901f
GOC
226 return val;
227}
228
229static inline void native_write_cr0(unsigned long val)
230{
c5386c20 231 asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order));
d3ca901f
GOC
232}
233
234static inline unsigned long native_read_cr2(void)
235{
236 unsigned long val;
c5386c20 237 asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order));
d3ca901f
GOC
238 return val;
239}
240
241static inline void native_write_cr2(unsigned long val)
242{
c5386c20 243 asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order));
d3ca901f
GOC
244}
245
246static inline unsigned long native_read_cr3(void)
247{
248 unsigned long val;
c5386c20 249 asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order));
d3ca901f
GOC
250 return val;
251}
252
253static inline void native_write_cr3(unsigned long val)
254{
c5386c20 255 asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order));
d3ca901f
GOC
256}
257
258static inline unsigned long native_read_cr4(void)
259{
260 unsigned long val;
c5386c20 261 asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order));
d3ca901f
GOC
262 return val;
263}
264
265static inline unsigned long native_read_cr4_safe(void)
266{
267 unsigned long val;
268 /* This could fault if %cr4 does not exist. In x86_64, a cr4 always
269 * exists, so it will never fail. */
270#ifdef CONFIG_X86_32
88976ee1
PA
271 asm volatile("1: mov %%cr4, %0\n"
272 "2:\n"
c5386c20 273 _ASM_EXTABLE(1b, 2b)
88976ee1 274 : "=r" (val), "=m" (__force_order) : "0" (0));
d3ca901f
GOC
275#else
276 val = native_read_cr4();
277#endif
278 return val;
279}
280
281static inline void native_write_cr4(unsigned long val)
282{
c5386c20 283 asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order));
d3ca901f
GOC
284}
285
94ea03cd
GOC
286#ifdef CONFIG_X86_64
287static inline unsigned long native_read_cr8(void)
288{
289 unsigned long cr8;
290 asm volatile("movq %%cr8,%0" : "=r" (cr8));
291 return cr8;
292}
293
294static inline void native_write_cr8(unsigned long val)
295{
296 asm volatile("movq %0,%%cr8" :: "r" (val) : "memory");
297}
298#endif
299
d3ca901f
GOC
300static inline void native_wbinvd(void)
301{
302 asm volatile("wbinvd": : :"memory");
303}
c5386c20 304
d3ca901f
GOC
305#ifdef CONFIG_PARAVIRT
306#include <asm/paravirt.h>
307#else
308#define read_cr0() (native_read_cr0())
309#define write_cr0(x) (native_write_cr0(x))
310#define read_cr2() (native_read_cr2())
311#define write_cr2(x) (native_write_cr2(x))
312#define read_cr3() (native_read_cr3())
313#define write_cr3(x) (native_write_cr3(x))
314#define read_cr4() (native_read_cr4())
315#define read_cr4_safe() (native_read_cr4_safe())
316#define write_cr4(x) (native_write_cr4(x))
317#define wbinvd() (native_wbinvd())
d46d7d75 318#ifdef CONFIG_X86_64
94ea03cd
GOC
319#define read_cr8() (native_read_cr8())
320#define write_cr8(x) (native_write_cr8(x))
9f9d489a 321#define load_gs_index native_load_gs_index
d46d7d75
GOC
322#endif
323
d3ca901f
GOC
324/* Clear the 'TS' bit */
325#define clts() (native_clts())
326
327#endif/* CONFIG_PARAVIRT */
328
4e09e21c 329#define stts() write_cr0(read_cr0() | X86_CR0_TS)
d3ca901f 330
d8954222
GOC
331#endif /* __KERNEL__ */
332
84fb144b 333static inline void clflush(volatile void *__p)
d8954222 334{
84fb144b 335 asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p));
d8954222
GOC
336}
337
c5386c20 338#define nop() asm volatile ("nop")
d8954222
GOC
339
340void disable_hlt(void);
341void enable_hlt(void);
342
d8954222
GOC
343void cpu_idle_wait(void);
344
345extern unsigned long arch_align_stack(unsigned long sp);
346extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
347
348void default_idle(void);
349
d3ec5cae
IV
350void stop_this_cpu(void *dummy);
351
833d8469
GOC
352/*
353 * Force strict CPU ordering.
354 * And yes, this is required on UP too when we're talking
355 * to devices.
356 */
357#ifdef CONFIG_X86_32
358/*
0d7a1819 359 * Some non-Intel clones support out of order store. wmb() ceases to be a
833d8469
GOC
360 * nop for these.
361 */
362#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
363#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
364#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
365#else
366#define mb() asm volatile("mfence":::"memory")
367#define rmb() asm volatile("lfence":::"memory")
368#define wmb() asm volatile("sfence" ::: "memory")
369#endif
370
371/**
372 * read_barrier_depends - Flush all pending reads that subsequents reads
373 * depend on.
374 *
375 * No data-dependent reads from memory-like regions are ever reordered
376 * over this barrier. All reads preceding this primitive are guaranteed
377 * to access memory (but not necessarily other CPUs' caches) before any
378 * reads following this primitive that depend on the data return by
379 * any of the preceding reads. This primitive is much lighter weight than
380 * rmb() on most CPUs, and is never heavier weight than is
381 * rmb().
382 *
383 * These ordering constraints are respected by both the local CPU
384 * and the compiler.
385 *
386 * Ordering is not guaranteed by anything other than these primitives,
387 * not even by data dependencies. See the documentation for
388 * memory_barrier() for examples and URLs to more information.
389 *
390 * For example, the following code would force ordering (the initial
391 * value of "a" is zero, "b" is one, and "p" is "&a"):
392 *
393 * <programlisting>
394 * CPU 0 CPU 1
395 *
396 * b = 2;
397 * memory_barrier();
398 * p = &b; q = p;
399 * read_barrier_depends();
400 * d = *q;
401 * </programlisting>
402 *
403 * because the read of "*q" depends on the read of "p" and these
404 * two reads are separated by a read_barrier_depends(). However,
405 * the following code, with the same initial values for "a" and "b":
406 *
407 * <programlisting>
408 * CPU 0 CPU 1
409 *
410 * a = 2;
411 * memory_barrier();
412 * b = 3; y = b;
413 * read_barrier_depends();
414 * x = a;
415 * </programlisting>
416 *
417 * does not enforce ordering, since there is no data dependency between
418 * the read of "a" and the read of "b". Therefore, on some CPUs, such
419 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
420 * in cases like this where there are no data dependencies.
421 **/
422
423#define read_barrier_depends() do { } while (0)
424
425#ifdef CONFIG_SMP
426#define smp_mb() mb()
427#ifdef CONFIG_X86_PPRO_FENCE
428# define smp_rmb() rmb()
429#else
430# define smp_rmb() barrier()
431#endif
432#ifdef CONFIG_X86_OOSTORE
433# define smp_wmb() wmb()
434#else
435# define smp_wmb() barrier()
436#endif
437#define smp_read_barrier_depends() read_barrier_depends()
c5386c20 438#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
833d8469
GOC
439#else
440#define smp_mb() barrier()
441#define smp_rmb() barrier()
442#define smp_wmb() barrier()
443#define smp_read_barrier_depends() do { } while (0)
444#define set_mb(var, value) do { var = value; barrier(); } while (0)
445#endif
446
fde1b3fa
AK
447/*
448 * Stop RDTSC speculation. This is needed when you need to use RDTSC
449 * (or get_cycles or vread that possibly accesses the TSC) in a defined
450 * code region.
451 *
452 * (Could use an alternative three way for this if there was one.)
453 */
12448293 454static __always_inline void rdtsc_barrier(void)
fde1b3fa
AK
455{
456 alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
457 alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
458}
833d8469 459
1965aae3 460#endif /* _ASM_X86_SYSTEM_H */