]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/tile/kernel/setup.c
Merge branches 'sh/pio-death', 'sh/nommu', 'sh/clkfwk', 'sh/core' and 'sh/intc-extens...
[net-next-2.6.git] / arch / tile / kernel / setup.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/mmzone.h>
18#include <linux/bootmem.h>
19#include <linux/module.h>
20#include <linux/node.h>
21#include <linux/cpu.h>
22#include <linux/ioport.h>
0707ad30 23#include <linux/irq.h>
867e359b
CM
24#include <linux/kexec.h>
25#include <linux/pci.h>
26#include <linux/initrd.h>
27#include <linux/io.h>
28#include <linux/highmem.h>
29#include <linux/smp.h>
30#include <linux/timex.h>
31#include <asm/setup.h>
32#include <asm/sections.h>
867e359b
CM
33#include <asm/cacheflush.h>
34#include <asm/pgalloc.h>
35#include <asm/mmu_context.h>
36#include <hv/hypervisor.h>
37#include <arch/interrupts.h>
38
39/* <linux/smp.h> doesn't provide this definition. */
40#ifndef CONFIG_SMP
41#define setup_max_cpus 1
42#endif
43
44static inline int ABS(int x) { return x >= 0 ? x : -x; }
45
46/* Chip information */
47char chip_model[64] __write_once;
48
49struct pglist_data node_data[MAX_NUMNODES] __read_mostly;
50EXPORT_SYMBOL(node_data);
51
52/* We only create bootmem data on node 0. */
53static bootmem_data_t __initdata node0_bdata;
54
55/* Information on the NUMA nodes that we compute early */
56unsigned long __cpuinitdata node_start_pfn[MAX_NUMNODES];
57unsigned long __cpuinitdata node_end_pfn[MAX_NUMNODES];
58unsigned long __initdata node_memmap_pfn[MAX_NUMNODES];
59unsigned long __initdata node_percpu_pfn[MAX_NUMNODES];
60unsigned long __initdata node_free_pfn[MAX_NUMNODES];
61
62#ifdef CONFIG_HIGHMEM
63/* Page frame index of end of lowmem on each controller. */
64unsigned long __cpuinitdata node_lowmem_end_pfn[MAX_NUMNODES];
65
66/* Number of pages that can be mapped into lowmem. */
67static unsigned long __initdata mappable_physpages;
68#endif
69
70/* Data on which physical memory controller corresponds to which NUMA node */
71int node_controller[MAX_NUMNODES] = { [0 ... MAX_NUMNODES-1] = -1 };
72
73#ifdef CONFIG_HIGHMEM
74/* Map information from VAs to PAs */
75unsigned long pbase_map[1 << (32 - HPAGE_SHIFT)]
76 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
77EXPORT_SYMBOL(pbase_map);
78
79/* Map information from PAs to VAs */
80void *vbase_map[NR_PA_HIGHBIT_VALUES]
81 __write_once __attribute__((aligned(L2_CACHE_BYTES)));
82EXPORT_SYMBOL(vbase_map);
83#endif
84
85/* Node number as a function of the high PA bits */
86int highbits_to_node[NR_PA_HIGHBIT_VALUES] __write_once;
87EXPORT_SYMBOL(highbits_to_node);
88
89static unsigned int __initdata maxmem_pfn = -1U;
90static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
91 [0 ... MAX_NUMNODES-1] = -1U
92};
93static nodemask_t __initdata isolnodes;
94
95#ifdef CONFIG_PCI
96enum { DEFAULT_PCI_RESERVE_MB = 64 };
97static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
98unsigned long __initdata pci_reserve_start_pfn = -1U;
99unsigned long __initdata pci_reserve_end_pfn = -1U;
100#endif
101
102static int __init setup_maxmem(char *str)
103{
104 long maxmem_mb;
105 if (str == NULL || strict_strtol(str, 0, &maxmem_mb) != 0 ||
106 maxmem_mb == 0)
107 return -EINVAL;
108
109 maxmem_pfn = (maxmem_mb >> (HPAGE_SHIFT - 20)) <<
110 (HPAGE_SHIFT - PAGE_SHIFT);
0707ad30 111 pr_info("Forcing RAM used to no more than %dMB\n",
867e359b
CM
112 maxmem_pfn >> (20 - PAGE_SHIFT));
113 return 0;
114}
115early_param("maxmem", setup_maxmem);
116
117static int __init setup_maxnodemem(char *str)
118{
119 char *endp;
120 long maxnodemem_mb, node;
121
122 node = str ? simple_strtoul(str, &endp, 0) : INT_MAX;
123 if (node >= MAX_NUMNODES || *endp != ':' ||
124 strict_strtol(endp+1, 0, &maxnodemem_mb) != 0)
125 return -EINVAL;
126
127 maxnodemem_pfn[node] = (maxnodemem_mb >> (HPAGE_SHIFT - 20)) <<
128 (HPAGE_SHIFT - PAGE_SHIFT);
0707ad30 129 pr_info("Forcing RAM used on node %ld to no more than %dMB\n",
867e359b
CM
130 node, maxnodemem_pfn[node] >> (20 - PAGE_SHIFT));
131 return 0;
132}
133early_param("maxnodemem", setup_maxnodemem);
134
135static int __init setup_isolnodes(char *str)
136{
137 char buf[MAX_NUMNODES * 5];
138 if (str == NULL || nodelist_parse(str, isolnodes) != 0)
139 return -EINVAL;
140
141 nodelist_scnprintf(buf, sizeof(buf), isolnodes);
0707ad30 142 pr_info("Set isolnodes value to '%s'\n", buf);
867e359b
CM
143 return 0;
144}
145early_param("isolnodes", setup_isolnodes);
146
147#ifdef CONFIG_PCI
148static int __init setup_pci_reserve(char* str)
149{
150 unsigned long mb;
151
152 if (str == NULL || strict_strtoul(str, 0, &mb) != 0 ||
153 mb > 3 * 1024)
154 return -EINVAL;
155
156 pci_reserve_mb = mb;
0707ad30 157 pr_info("Reserving %dMB for PCIE root complex mappings\n",
867e359b
CM
158 pci_reserve_mb);
159 return 0;
160}
161early_param("pci_reserve", setup_pci_reserve);
162#endif
163
164#ifndef __tilegx__
165/*
166 * vmalloc=size forces the vmalloc area to be exactly 'size' bytes.
167 * This can be used to increase (or decrease) the vmalloc area.
168 */
169static int __init parse_vmalloc(char *arg)
170{
171 if (!arg)
172 return -EINVAL;
173
174 VMALLOC_RESERVE = (memparse(arg, &arg) + PGDIR_SIZE - 1) & PGDIR_MASK;
175
176 /* See validate_va() for more on this test. */
177 if ((long)_VMALLOC_START >= 0)
178 early_panic("\"vmalloc=%#lx\" value too large: maximum %#lx\n",
179 VMALLOC_RESERVE, _VMALLOC_END - 0x80000000UL);
180
181 return 0;
182}
183early_param("vmalloc", parse_vmalloc);
184#endif
185
186#ifdef CONFIG_HIGHMEM
187/*
a78c942d
CM
188 * Determine for each controller where its lowmem is mapped and how much of
189 * it is mapped there. On controller zero, the first few megabytes are
190 * already mapped in as code at MEM_SV_INTRPT, so in principle we could
191 * start our data mappings higher up, but for now we don't bother, to avoid
192 * additional confusion.
867e359b
CM
193 *
194 * One question is whether, on systems with more than 768 Mb and
195 * controllers of different sizes, to map in a proportionate amount of
196 * each one, or to try to map the same amount from each controller.
197 * (E.g. if we have three controllers with 256MB, 1GB, and 256MB
198 * respectively, do we map 256MB from each, or do we map 128 MB, 512
199 * MB, and 128 MB respectively?) For now we use a proportionate
200 * solution like the latter.
201 *
202 * The VA/PA mapping demands that we align our decisions at 16 MB
203 * boundaries so that we can rapidly convert VA to PA.
204 */
205static void *__init setup_pa_va_mapping(void)
206{
207 unsigned long curr_pages = 0;
208 unsigned long vaddr = PAGE_OFFSET;
209 nodemask_t highonlynodes = isolnodes;
210 int i, j;
211
212 memset(pbase_map, -1, sizeof(pbase_map));
213 memset(vbase_map, -1, sizeof(vbase_map));
214
215 /* Node zero cannot be isolated for LOWMEM purposes. */
216 node_clear(0, highonlynodes);
217
218 /* Count up the number of pages on non-highonlynodes controllers. */
219 mappable_physpages = 0;
220 for_each_online_node(i) {
221 if (!node_isset(i, highonlynodes))
222 mappable_physpages +=
223 node_end_pfn[i] - node_start_pfn[i];
224 }
225
226 for_each_online_node(i) {
227 unsigned long start = node_start_pfn[i];
228 unsigned long end = node_end_pfn[i];
229 unsigned long size = end - start;
230 unsigned long vaddr_end;
231
232 if (node_isset(i, highonlynodes)) {
233 /* Mark this controller as having no lowmem. */
234 node_lowmem_end_pfn[i] = start;
235 continue;
236 }
237
238 curr_pages += size;
239 if (mappable_physpages > MAXMEM_PFN) {
240 vaddr_end = PAGE_OFFSET +
241 (((u64)curr_pages * MAXMEM_PFN /
242 mappable_physpages)
243 << PAGE_SHIFT);
244 } else {
245 vaddr_end = PAGE_OFFSET + (curr_pages << PAGE_SHIFT);
246 }
247 for (j = 0; vaddr < vaddr_end; vaddr += HPAGE_SIZE, ++j) {
248 unsigned long this_pfn =
249 start + (j << HUGETLB_PAGE_ORDER);
250 pbase_map[vaddr >> HPAGE_SHIFT] = this_pfn;
251 if (vbase_map[__pfn_to_highbits(this_pfn)] ==
252 (void *)-1)
253 vbase_map[__pfn_to_highbits(this_pfn)] =
254 (void *)(vaddr & HPAGE_MASK);
255 }
256 node_lowmem_end_pfn[i] = start + (j << HUGETLB_PAGE_ORDER);
257 BUG_ON(node_lowmem_end_pfn[i] > end);
258 }
259
260 /* Return highest address of any mapped memory. */
261 return (void *)vaddr;
262}
263#endif /* CONFIG_HIGHMEM */
264
265/*
266 * Register our most important memory mappings with the debug stub.
267 *
268 * This is up to 4 mappings for lowmem, one mapping per memory
269 * controller, plus one for our text segment.
270 */
0707ad30 271static void __cpuinit store_permanent_mappings(void)
867e359b
CM
272{
273 int i;
274
275 for_each_online_node(i) {
276 HV_PhysAddr pa = ((HV_PhysAddr)node_start_pfn[i]) << PAGE_SHIFT;
277#ifdef CONFIG_HIGHMEM
278 HV_PhysAddr high_mapped_pa = node_lowmem_end_pfn[i];
279#else
280 HV_PhysAddr high_mapped_pa = node_end_pfn[i];
281#endif
282
283 unsigned long pages = high_mapped_pa - node_start_pfn[i];
284 HV_VirtAddr addr = (HV_VirtAddr) __va(pa);
285 hv_store_mapping(addr, pages << PAGE_SHIFT, pa);
286 }
287
288 hv_store_mapping((HV_VirtAddr)_stext,
289 (uint32_t)(_einittext - _stext), 0);
290}
291
292/*
293 * Use hv_inquire_physical() to populate node_{start,end}_pfn[]
294 * and node_online_map, doing suitable sanity-checking.
295 * Also set min_low_pfn, max_low_pfn, and max_pfn.
296 */
297static void __init setup_memory(void)
298{
299 int i, j;
300 int highbits_seen[NR_PA_HIGHBIT_VALUES] = { 0 };
301#ifdef CONFIG_HIGHMEM
302 long highmem_pages;
303#endif
304#ifndef __tilegx__
305 int cap;
306#endif
307#if defined(CONFIG_HIGHMEM) || defined(__tilegx__)
308 long lowmem_pages;
309#endif
310
311 /* We are using a char to hold the cpu_2_node[] mapping */
e18105c1 312 BUILD_BUG_ON(MAX_NUMNODES > 127);
867e359b
CM
313
314 /* Discover the ranges of memory available to us */
315 for (i = 0; ; ++i) {
316 unsigned long start, size, end, highbits;
317 HV_PhysAddrRange range = hv_inquire_physical(i);
318 if (range.size == 0)
319 break;
320#ifdef CONFIG_FLATMEM
321 if (i > 0) {
0707ad30 322 pr_err("Can't use discontiguous PAs: %#llx..%#llx\n",
867e359b
CM
323 range.size, range.start + range.size);
324 continue;
325 }
326#endif
327#ifndef __tilegx__
328 if ((unsigned long)range.start) {
0707ad30 329 pr_err("Range not at 4GB multiple: %#llx..%#llx\n",
867e359b
CM
330 range.start, range.start + range.size);
331 continue;
332 }
333#endif
334 if ((range.start & (HPAGE_SIZE-1)) != 0 ||
335 (range.size & (HPAGE_SIZE-1)) != 0) {
336 unsigned long long start_pa = range.start;
0707ad30 337 unsigned long long orig_size = range.size;
867e359b
CM
338 range.start = (start_pa + HPAGE_SIZE - 1) & HPAGE_MASK;
339 range.size -= (range.start - start_pa);
340 range.size &= HPAGE_MASK;
0707ad30 341 pr_err("Range not hugepage-aligned: %#llx..%#llx:"
867e359b 342 " now %#llx-%#llx\n",
0707ad30 343 start_pa, start_pa + orig_size,
867e359b
CM
344 range.start, range.start + range.size);
345 }
346 highbits = __pa_to_highbits(range.start);
347 if (highbits >= NR_PA_HIGHBIT_VALUES) {
0707ad30 348 pr_err("PA high bits too high: %#llx..%#llx\n",
867e359b
CM
349 range.start, range.start + range.size);
350 continue;
351 }
352 if (highbits_seen[highbits]) {
0707ad30 353 pr_err("Range overlaps in high bits: %#llx..%#llx\n",
867e359b
CM
354 range.start, range.start + range.size);
355 continue;
356 }
357 highbits_seen[highbits] = 1;
358 if (PFN_DOWN(range.size) > maxnodemem_pfn[i]) {
0707ad30
CM
359 int max_size = maxnodemem_pfn[i];
360 if (max_size > 0) {
361 pr_err("Maxnodemem reduced node %d to"
362 " %d pages\n", i, max_size);
363 range.size = PFN_PHYS(max_size);
867e359b 364 } else {
0707ad30 365 pr_err("Maxnodemem disabled node %d\n", i);
867e359b
CM
366 continue;
367 }
368 }
369 if (num_physpages + PFN_DOWN(range.size) > maxmem_pfn) {
0707ad30
CM
370 int max_size = maxmem_pfn - num_physpages;
371 if (max_size > 0) {
372 pr_err("Maxmem reduced node %d to %d pages\n",
373 i, max_size);
374 range.size = PFN_PHYS(max_size);
867e359b 375 } else {
0707ad30 376 pr_err("Maxmem disabled node %d\n", i);
867e359b
CM
377 continue;
378 }
379 }
380 if (i >= MAX_NUMNODES) {
0707ad30 381 pr_err("Too many PA nodes (#%d): %#llx...%#llx\n",
867e359b
CM
382 i, range.size, range.size + range.start);
383 continue;
384 }
385
386 start = range.start >> PAGE_SHIFT;
387 size = range.size >> PAGE_SHIFT;
388 end = start + size;
389
390#ifndef __tilegx__
391 if (((HV_PhysAddr)end << PAGE_SHIFT) !=
392 (range.start + range.size)) {
0707ad30 393 pr_err("PAs too high to represent: %#llx..%#llx\n",
867e359b
CM
394 range.start, range.start + range.size);
395 continue;
396 }
397#endif
398#ifdef CONFIG_PCI
399 /*
400 * Blocks that overlap the pci reserved region must
401 * have enough space to hold the maximum percpu data
402 * region at the top of the range. If there isn't
403 * enough space above the reserved region, just
404 * truncate the node.
405 */
406 if (start <= pci_reserve_start_pfn &&
407 end > pci_reserve_start_pfn) {
408 unsigned int per_cpu_size =
409 __per_cpu_end - __per_cpu_start;
410 unsigned int percpu_pages =
411 NR_CPUS * (PFN_UP(per_cpu_size) >> PAGE_SHIFT);
412 if (end < pci_reserve_end_pfn + percpu_pages) {
413 end = pci_reserve_start_pfn;
0707ad30 414 pr_err("PCI mapping region reduced node %d to"
867e359b
CM
415 " %ld pages\n", i, end - start);
416 }
417 }
418#endif
419
420 for (j = __pfn_to_highbits(start);
421 j <= __pfn_to_highbits(end - 1); j++)
422 highbits_to_node[j] = i;
423
424 node_start_pfn[i] = start;
425 node_end_pfn[i] = end;
426 node_controller[i] = range.controller;
427 num_physpages += size;
428 max_pfn = end;
429
430 /* Mark node as online */
431 node_set(i, node_online_map);
432 node_set(i, node_possible_map);
433 }
434
435#ifndef __tilegx__
436 /*
437 * For 4KB pages, mem_map "struct page" data is 1% of the size
438 * of the physical memory, so can be quite big (640 MB for
439 * four 16G zones). These structures must be mapped in
440 * lowmem, and since we currently cap out at about 768 MB,
441 * it's impractical to try to use this much address space.
442 * For now, arbitrarily cap the amount of physical memory
443 * we're willing to use at 8 million pages (32GB of 4KB pages).
444 */
445 cap = 8 * 1024 * 1024; /* 8 million pages */
446 if (num_physpages > cap) {
447 int num_nodes = num_online_nodes();
448 int cap_each = cap / num_nodes;
449 unsigned long dropped_pages = 0;
450 for (i = 0; i < num_nodes; ++i) {
451 int size = node_end_pfn[i] - node_start_pfn[i];
452 if (size > cap_each) {
453 dropped_pages += (size - cap_each);
454 node_end_pfn[i] = node_start_pfn[i] + cap_each;
455 }
456 }
457 num_physpages -= dropped_pages;
0707ad30 458 pr_warning("Only using %ldMB memory;"
867e359b
CM
459 " ignoring %ldMB.\n",
460 num_physpages >> (20 - PAGE_SHIFT),
461 dropped_pages >> (20 - PAGE_SHIFT));
0707ad30 462 pr_warning("Consider using a larger page size.\n");
867e359b
CM
463 }
464#endif
465
466 /* Heap starts just above the last loaded address. */
467 min_low_pfn = PFN_UP((unsigned long)_end - PAGE_OFFSET);
468
469#ifdef CONFIG_HIGHMEM
470 /* Find where we map lowmem from each controller. */
471 high_memory = setup_pa_va_mapping();
472
473 /* Set max_low_pfn based on what node 0 can directly address. */
474 max_low_pfn = node_lowmem_end_pfn[0];
475
476 lowmem_pages = (mappable_physpages > MAXMEM_PFN) ?
477 MAXMEM_PFN : mappable_physpages;
478 highmem_pages = (long) (num_physpages - lowmem_pages);
479
0707ad30 480 pr_notice("%ldMB HIGHMEM available.\n",
867e359b 481 pages_to_mb(highmem_pages > 0 ? highmem_pages : 0));
0707ad30 482 pr_notice("%ldMB LOWMEM available.\n",
867e359b
CM
483 pages_to_mb(lowmem_pages));
484#else
485 /* Set max_low_pfn based on what node 0 can directly address. */
486 max_low_pfn = node_end_pfn[0];
487
488#ifndef __tilegx__
489 if (node_end_pfn[0] > MAXMEM_PFN) {
0707ad30 490 pr_warning("Only using %ldMB LOWMEM.\n",
867e359b 491 MAXMEM>>20);
0707ad30 492 pr_warning("Use a HIGHMEM enabled kernel.\n");
867e359b
CM
493 max_low_pfn = MAXMEM_PFN;
494 max_pfn = MAXMEM_PFN;
495 num_physpages = MAXMEM_PFN;
496 node_end_pfn[0] = MAXMEM_PFN;
497 } else {
0707ad30 498 pr_notice("%ldMB memory available.\n",
867e359b
CM
499 pages_to_mb(node_end_pfn[0]));
500 }
501 for (i = 1; i < MAX_NUMNODES; ++i) {
502 node_start_pfn[i] = 0;
503 node_end_pfn[i] = 0;
504 }
505 high_memory = __va(node_end_pfn[0]);
506#else
507 lowmem_pages = 0;
508 for (i = 0; i < MAX_NUMNODES; ++i) {
509 int pages = node_end_pfn[i] - node_start_pfn[i];
510 lowmem_pages += pages;
511 if (pages)
512 high_memory = pfn_to_kaddr(node_end_pfn[i]);
513 }
0707ad30 514 pr_notice("%ldMB memory available.\n",
867e359b
CM
515 pages_to_mb(lowmem_pages));
516#endif
517#endif
518}
519
520static void __init setup_bootmem_allocator(void)
521{
522 unsigned long bootmap_size, first_alloc_pfn, last_alloc_pfn;
523
524 /* Provide a node 0 bdata. */
525 NODE_DATA(0)->bdata = &node0_bdata;
526
527#ifdef CONFIG_PCI
528 /* Don't let boot memory alias the PCI region. */
529 last_alloc_pfn = min(max_low_pfn, pci_reserve_start_pfn);
530#else
531 last_alloc_pfn = max_low_pfn;
532#endif
533
534 /*
535 * Initialize the boot-time allocator (with low memory only):
536 * The first argument says where to put the bitmap, and the
537 * second says where the end of allocatable memory is.
538 */
539 bootmap_size = init_bootmem(min_low_pfn, last_alloc_pfn);
540
541 /*
542 * Let the bootmem allocator use all the space we've given it
543 * except for its own bitmap.
544 */
545 first_alloc_pfn = min_low_pfn + PFN_UP(bootmap_size);
546 if (first_alloc_pfn >= last_alloc_pfn)
547 early_panic("Not enough memory on controller 0 for bootmem\n");
548
549 free_bootmem(PFN_PHYS(first_alloc_pfn),
550 PFN_PHYS(last_alloc_pfn - first_alloc_pfn));
551
552#ifdef CONFIG_KEXEC
553 if (crashk_res.start != crashk_res.end)
554 reserve_bootmem(crashk_res.start,
555 crashk_res.end - crashk_res.start + 1, 0);
556#endif
557
558}
559
560void *__init alloc_remap(int nid, unsigned long size)
561{
562 int pages = node_end_pfn[nid] - node_start_pfn[nid];
563 void *map = pfn_to_kaddr(node_memmap_pfn[nid]);
564 BUG_ON(size != pages * sizeof(struct page));
565 memset(map, 0, size);
566 return map;
567}
568
569static int __init percpu_size(void)
570{
571 int size = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
572#ifdef CONFIG_MODULES
573 if (size < PERCPU_ENOUGH_ROOM)
574 size = PERCPU_ENOUGH_ROOM;
575#endif
576 /* In several places we assume the per-cpu data fits on a huge page. */
577 BUG_ON(kdata_huge && size > HPAGE_SIZE);
578 return size;
579}
580
581static inline unsigned long alloc_bootmem_pfn(int size, unsigned long goal)
582{
583 void *kva = __alloc_bootmem(size, PAGE_SIZE, goal);
584 unsigned long pfn = kaddr_to_pfn(kva);
585 BUG_ON(goal && PFN_PHYS(pfn) != goal);
586 return pfn;
587}
588
589static void __init zone_sizes_init(void)
590{
591 unsigned long zones_size[MAX_NR_ZONES] = { 0 };
592 unsigned long node_percpu[MAX_NUMNODES] = { 0 };
593 int size = percpu_size();
594 int num_cpus = smp_height * smp_width;
595 int i;
596
597 for (i = 0; i < num_cpus; ++i)
598 node_percpu[cpu_to_node(i)] += size;
599
600 for_each_online_node(i) {
601 unsigned long start = node_start_pfn[i];
602 unsigned long end = node_end_pfn[i];
603#ifdef CONFIG_HIGHMEM
604 unsigned long lowmem_end = node_lowmem_end_pfn[i];
605#else
606 unsigned long lowmem_end = end;
607#endif
608 int memmap_size = (end - start) * sizeof(struct page);
609 node_free_pfn[i] = start;
610
611 /*
612 * Set aside pages for per-cpu data and the mem_map array.
613 *
614 * Since the per-cpu data requires special homecaching,
615 * if we are in kdata_huge mode, we put it at the end of
616 * the lowmem region. If we're not in kdata_huge mode,
617 * we take the per-cpu pages from the bottom of the
618 * controller, since that avoids fragmenting a huge page
619 * that users might want. We always take the memmap
620 * from the bottom of the controller, since with
621 * kdata_huge that lets it be under a huge TLB entry.
622 *
623 * If the user has requested isolnodes for a controller,
624 * though, there'll be no lowmem, so we just alloc_bootmem
625 * the memmap. There will be no percpu memory either.
626 */
627 if (__pfn_to_highbits(start) == 0) {
628 /* In low PAs, allocate via bootmem. */
629 unsigned long goal = 0;
630 node_memmap_pfn[i] =
631 alloc_bootmem_pfn(memmap_size, goal);
632 if (kdata_huge)
633 goal = PFN_PHYS(lowmem_end) - node_percpu[i];
634 if (node_percpu[i])
635 node_percpu_pfn[i] =
636 alloc_bootmem_pfn(node_percpu[i], goal);
637 } else if (cpu_isset(i, isolnodes)) {
638 node_memmap_pfn[i] = alloc_bootmem_pfn(memmap_size, 0);
639 BUG_ON(node_percpu[i] != 0);
640 } else {
641 /* In high PAs, just reserve some pages. */
642 node_memmap_pfn[i] = node_free_pfn[i];
643 node_free_pfn[i] += PFN_UP(memmap_size);
644 if (!kdata_huge) {
645 node_percpu_pfn[i] = node_free_pfn[i];
646 node_free_pfn[i] += PFN_UP(node_percpu[i]);
647 } else {
648 node_percpu_pfn[i] =
649 lowmem_end - PFN_UP(node_percpu[i]);
650 }
651 }
652
653#ifdef CONFIG_HIGHMEM
654 if (start > lowmem_end) {
655 zones_size[ZONE_NORMAL] = 0;
656 zones_size[ZONE_HIGHMEM] = end - start;
657 } else {
658 zones_size[ZONE_NORMAL] = lowmem_end - start;
659 zones_size[ZONE_HIGHMEM] = end - lowmem_end;
660 }
661#else
662 zones_size[ZONE_NORMAL] = end - start;
663#endif
664
665 /*
666 * Everyone shares node 0's bootmem allocator, but
667 * we use alloc_remap(), above, to put the actual
668 * struct page array on the individual controllers,
669 * which is most of the data that we actually care about.
670 * We can't place bootmem allocators on the other
671 * controllers since the bootmem allocator can only
672 * operate on 32-bit physical addresses.
673 */
674 NODE_DATA(i)->bdata = NODE_DATA(0)->bdata;
675
676 free_area_init_node(i, zones_size, start, NULL);
677 printk(KERN_DEBUG " DMA zone: %ld per-cpu pages\n",
678 PFN_UP(node_percpu[i]));
679
680 /* Track the type of memory on each node */
681 if (zones_size[ZONE_NORMAL])
682 node_set_state(i, N_NORMAL_MEMORY);
683#ifdef CONFIG_HIGHMEM
684 if (end != start)
685 node_set_state(i, N_HIGH_MEMORY);
686#endif
687
688 node_set_online(i);
689 }
690}
691
692#ifdef CONFIG_NUMA
693
694/* which logical CPUs are on which nodes */
695struct cpumask node_2_cpu_mask[MAX_NUMNODES] __write_once;
696EXPORT_SYMBOL(node_2_cpu_mask);
697
698/* which node each logical CPU is on */
699char cpu_2_node[NR_CPUS] __write_once __attribute__((aligned(L2_CACHE_BYTES)));
700EXPORT_SYMBOL(cpu_2_node);
701
702/* Return cpu_to_node() except for cpus not yet assigned, which return -1 */
703static int __init cpu_to_bound_node(int cpu, struct cpumask* unbound_cpus)
704{
705 if (!cpu_possible(cpu) || cpumask_test_cpu(cpu, unbound_cpus))
706 return -1;
707 else
708 return cpu_to_node(cpu);
709}
710
711/* Return number of immediately-adjacent tiles sharing the same NUMA node. */
712static int __init node_neighbors(int node, int cpu,
713 struct cpumask *unbound_cpus)
714{
715 int neighbors = 0;
716 int w = smp_width;
717 int h = smp_height;
718 int x = cpu % w;
719 int y = cpu / w;
720 if (x > 0 && cpu_to_bound_node(cpu-1, unbound_cpus) == node)
721 ++neighbors;
722 if (x < w-1 && cpu_to_bound_node(cpu+1, unbound_cpus) == node)
723 ++neighbors;
724 if (y > 0 && cpu_to_bound_node(cpu-w, unbound_cpus) == node)
725 ++neighbors;
726 if (y < h-1 && cpu_to_bound_node(cpu+w, unbound_cpus) == node)
727 ++neighbors;
728 return neighbors;
729}
730
731static void __init setup_numa_mapping(void)
732{
733 int distance[MAX_NUMNODES][NR_CPUS];
734 HV_Coord coord;
735 int cpu, node, cpus, i, x, y;
736 int num_nodes = num_online_nodes();
737 struct cpumask unbound_cpus;
738 nodemask_t default_nodes;
739
740 cpumask_clear(&unbound_cpus);
741
742 /* Get set of nodes we will use for defaults */
743 nodes_andnot(default_nodes, node_online_map, isolnodes);
744 if (nodes_empty(default_nodes)) {
745 BUG_ON(!node_isset(0, node_online_map));
0707ad30 746 pr_err("Forcing NUMA node zero available as a default node\n");
867e359b
CM
747 node_set(0, default_nodes);
748 }
749
750 /* Populate the distance[] array */
751 memset(distance, -1, sizeof(distance));
752 cpu = 0;
753 for (coord.y = 0; coord.y < smp_height; ++coord.y) {
754 for (coord.x = 0; coord.x < smp_width;
755 ++coord.x, ++cpu) {
756 BUG_ON(cpu >= nr_cpu_ids);
757 if (!cpu_possible(cpu)) {
758 cpu_2_node[cpu] = -1;
759 continue;
760 }
761 for_each_node_mask(node, default_nodes) {
762 HV_MemoryControllerInfo info =
763 hv_inquire_memory_controller(
764 coord, node_controller[node]);
765 distance[node][cpu] =
766 ABS(info.coord.x) + ABS(info.coord.y);
767 }
768 cpumask_set_cpu(cpu, &unbound_cpus);
769 }
770 }
771 cpus = cpu;
772
773 /*
774 * Round-robin through the NUMA nodes until all the cpus are
775 * assigned. We could be more clever here (e.g. create four
776 * sorted linked lists on the same set of cpu nodes, and pull
777 * off them in round-robin sequence, removing from all four
778 * lists each time) but given the relatively small numbers
779 * involved, O(n^2) seem OK for a one-time cost.
780 */
781 node = first_node(default_nodes);
782 while (!cpumask_empty(&unbound_cpus)) {
783 int best_cpu = -1;
784 int best_distance = INT_MAX;
785 for (cpu = 0; cpu < cpus; ++cpu) {
786 if (cpumask_test_cpu(cpu, &unbound_cpus)) {
787 /*
788 * Compute metric, which is how much
789 * closer the cpu is to this memory
790 * controller than the others, shifted
791 * up, and then the number of
792 * neighbors already in the node as an
793 * epsilon adjustment to try to keep
794 * the nodes compact.
795 */
796 int d = distance[node][cpu] * num_nodes;
797 for_each_node_mask(i, default_nodes) {
798 if (i != node)
799 d -= distance[i][cpu];
800 }
801 d *= 8; /* allow space for epsilon */
802 d -= node_neighbors(node, cpu, &unbound_cpus);
803 if (d < best_distance) {
804 best_cpu = cpu;
805 best_distance = d;
806 }
807 }
808 }
809 BUG_ON(best_cpu < 0);
810 cpumask_set_cpu(best_cpu, &node_2_cpu_mask[node]);
811 cpu_2_node[best_cpu] = node;
812 cpumask_clear_cpu(best_cpu, &unbound_cpus);
813 node = next_node(node, default_nodes);
814 if (node == MAX_NUMNODES)
815 node = first_node(default_nodes);
816 }
817
818 /* Print out node assignments and set defaults for disabled cpus */
819 cpu = 0;
820 for (y = 0; y < smp_height; ++y) {
821 printk(KERN_DEBUG "NUMA cpu-to-node row %d:", y);
822 for (x = 0; x < smp_width; ++x, ++cpu) {
823 if (cpu_to_node(cpu) < 0) {
0707ad30 824 pr_cont(" -");
867e359b
CM
825 cpu_2_node[cpu] = first_node(default_nodes);
826 } else {
0707ad30 827 pr_cont(" %d", cpu_to_node(cpu));
867e359b
CM
828 }
829 }
0707ad30 830 pr_cont("\n");
867e359b
CM
831 }
832}
833
834static struct cpu cpu_devices[NR_CPUS];
835
836static int __init topology_init(void)
837{
838 int i;
839
840 for_each_online_node(i)
841 register_one_node(i);
842
843 for_each_present_cpu(i)
844 register_cpu(&cpu_devices[i], i);
845
846 return 0;
847}
848
849subsys_initcall(topology_init);
850
851#else /* !CONFIG_NUMA */
852
853#define setup_numa_mapping() do { } while (0)
854
855#endif /* CONFIG_NUMA */
856
857/**
0707ad30
CM
858 * setup_cpu() - Do all necessary per-cpu, tile-specific initialization.
859 * @boot: Is this the boot cpu?
867e359b 860 *
0707ad30 861 * Called from setup_arch() on the boot cpu, or online_secondary().
867e359b 862 */
0707ad30 863void __cpuinit setup_cpu(int boot)
867e359b 864{
0707ad30
CM
865 /* The boot cpu sets up its permanent mappings much earlier. */
866 if (!boot)
867 store_permanent_mappings();
868
867e359b
CM
869 /* Allow asynchronous TLB interrupts. */
870#if CHIP_HAS_TILE_DMA()
5d966115
CM
871 arch_local_irq_unmask(INT_DMATLB_MISS);
872 arch_local_irq_unmask(INT_DMATLB_ACCESS);
867e359b
CM
873#endif
874#if CHIP_HAS_SN_PROC()
5d966115 875 arch_local_irq_unmask(INT_SNITLB_MISS);
867e359b 876#endif
a78c942d 877#ifdef __tilegx__
5d966115 878 arch_local_irq_unmask(INT_SINGLE_STEP_K);
a78c942d 879#endif
867e359b
CM
880
881 /*
882 * Allow user access to many generic SPRs, like the cycle
883 * counter, PASS/FAIL/DONE, INTERRUPT_CRITICAL_SECTION, etc.
884 */
885 __insn_mtspr(SPR_MPL_WORLD_ACCESS_SET_0, 1);
886
887#if CHIP_HAS_SN()
888 /* Static network is not restricted. */
889 __insn_mtspr(SPR_MPL_SN_ACCESS_SET_0, 1);
890#endif
891#if CHIP_HAS_SN_PROC()
892 __insn_mtspr(SPR_MPL_SN_NOTIFY_SET_0, 1);
893 __insn_mtspr(SPR_MPL_SN_CPL_SET_0, 1);
894#endif
895
896 /*
a78c942d
CM
897 * Set the MPL for interrupt control 0 & 1 to the corresponding
898 * values. This includes access to the SYSTEM_SAVE and EX_CONTEXT
899 * SPRs, as well as the interrupt mask.
867e359b
CM
900 */
901 __insn_mtspr(SPR_MPL_INTCTRL_0_SET_0, 1);
a78c942d 902 __insn_mtspr(SPR_MPL_INTCTRL_1_SET_1, 1);
0707ad30
CM
903
904 /* Initialize IRQ support for this cpu. */
905 setup_irq_regs();
906
907#ifdef CONFIG_HARDWALL
908 /* Reset the network state on this cpu. */
909 reset_network_state();
910#endif
867e359b
CM
911}
912
913static int __initdata set_initramfs_file;
914static char __initdata initramfs_file[128] = "initramfs.cpio.gz";
915
916static int __init setup_initramfs_file(char *str)
917{
918 if (str == NULL)
919 return -EINVAL;
920 strncpy(initramfs_file, str, sizeof(initramfs_file) - 1);
921 set_initramfs_file = 1;
922
923 return 0;
924}
925early_param("initramfs_file", setup_initramfs_file);
926
927/*
928 * We look for an additional "initramfs.cpio.gz" file in the hvfs.
929 * If there is one, we allocate some memory for it and it will be
930 * unpacked to the initramfs after any built-in initramfs_data.
931 */
932static void __init load_hv_initrd(void)
933{
934 HV_FS_StatInfo stat;
935 int fd, rc;
936 void *initrd;
937
938 fd = hv_fs_findfile((HV_VirtAddr) initramfs_file);
939 if (fd == HV_ENOENT) {
940 if (set_initramfs_file)
0707ad30
CM
941 pr_warning("No such hvfs initramfs file '%s'\n",
942 initramfs_file);
867e359b
CM
943 return;
944 }
945 BUG_ON(fd < 0);
946 stat = hv_fs_fstat(fd);
947 BUG_ON(stat.size < 0);
948 if (stat.flags & HV_FS_ISDIR) {
0707ad30
CM
949 pr_warning("Ignoring hvfs file '%s': it's a directory.\n",
950 initramfs_file);
867e359b
CM
951 return;
952 }
953 initrd = alloc_bootmem_pages(stat.size);
954 rc = hv_fs_pread(fd, (HV_VirtAddr) initrd, stat.size, 0);
955 if (rc != stat.size) {
0707ad30 956 pr_err("Error reading %d bytes from hvfs file '%s': %d\n",
867e359b 957 stat.size, initramfs_file, rc);
bc63de7c 958 free_initrd_mem((unsigned long) initrd, stat.size);
867e359b
CM
959 return;
960 }
961 initrd_start = (unsigned long) initrd;
962 initrd_end = initrd_start + stat.size;
963}
964
965void __init free_initrd_mem(unsigned long begin, unsigned long end)
966{
bc63de7c 967 free_bootmem(__pa(begin), end - begin);
867e359b
CM
968}
969
970static void __init validate_hv(void)
971{
972 /*
973 * It may already be too late, but let's check our built-in
974 * configuration against what the hypervisor is providing.
975 */
976 unsigned long glue_size = hv_sysconf(HV_SYSCONF_GLUE_SIZE);
977 int hv_page_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_SMALL);
978 int hv_hpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_LARGE);
979 HV_ASIDRange asid_range;
980
981#ifndef CONFIG_SMP
982 HV_Topology topology = hv_inquire_topology();
983 BUG_ON(topology.coord.x != 0 || topology.coord.y != 0);
984 if (topology.width != 1 || topology.height != 1) {
0707ad30
CM
985 pr_warning("Warning: booting UP kernel on %dx%d grid;"
986 " will ignore all but first tile.\n",
987 topology.width, topology.height);
867e359b
CM
988 }
989#endif
990
991 if (PAGE_OFFSET + HV_GLUE_START_CPA + glue_size > (unsigned long)_text)
992 early_panic("Hypervisor glue size %ld is too big!\n",
993 glue_size);
994 if (hv_page_size != PAGE_SIZE)
995 early_panic("Hypervisor page size %#x != our %#lx\n",
996 hv_page_size, PAGE_SIZE);
997 if (hv_hpage_size != HPAGE_SIZE)
998 early_panic("Hypervisor huge page size %#x != our %#lx\n",
999 hv_hpage_size, HPAGE_SIZE);
1000
1001#ifdef CONFIG_SMP
1002 /*
1003 * Some hypervisor APIs take a pointer to a bitmap array
1004 * whose size is at least the number of cpus on the chip.
1005 * We use a struct cpumask for this, so it must be big enough.
1006 */
1007 if ((smp_height * smp_width) > nr_cpu_ids)
1008 early_panic("Hypervisor %d x %d grid too big for Linux"
1009 " NR_CPUS %d\n", smp_height, smp_width,
1010 nr_cpu_ids);
1011#endif
1012
1013 /*
1014 * Check that we're using allowed ASIDs, and initialize the
1015 * various asid variables to their appropriate initial states.
1016 */
1017 asid_range = hv_inquire_asid(0);
1018 __get_cpu_var(current_asid) = min_asid = asid_range.start;
1019 max_asid = asid_range.start + asid_range.size - 1;
1020
1021 if (hv_confstr(HV_CONFSTR_CHIP_MODEL, (HV_VirtAddr)chip_model,
1022 sizeof(chip_model)) < 0) {
0707ad30 1023 pr_err("Warning: HV_CONFSTR_CHIP_MODEL not available\n");
867e359b
CM
1024 strlcpy(chip_model, "unknown", sizeof(chip_model));
1025 }
1026}
1027
1028static void __init validate_va(void)
1029{
1030#ifndef __tilegx__ /* FIXME: GX: probably some validation relevant here */
1031 /*
1032 * Similarly, make sure we're only using allowed VAs.
1033 * We assume we can contiguously use MEM_USER_INTRPT .. MEM_HV_INTRPT,
1034 * and 0 .. KERNEL_HIGH_VADDR.
1035 * In addition, make sure we CAN'T use the end of memory, since
1036 * we use the last chunk of each pgd for the pgd_list.
1037 */
a78c942d 1038 int i, user_kernel_ok = 0;
867e359b
CM
1039 unsigned long max_va = 0;
1040 unsigned long list_va =
1041 ((PGD_LIST_OFFSET / sizeof(pgd_t)) << PGDIR_SHIFT);
1042
1043 for (i = 0; ; ++i) {
1044 HV_VirtAddrRange range = hv_inquire_virtual(i);
1045 if (range.size == 0)
1046 break;
1047 if (range.start <= MEM_USER_INTRPT &&
1048 range.start + range.size >= MEM_HV_INTRPT)
a78c942d 1049 user_kernel_ok = 1;
867e359b
CM
1050 if (range.start == 0)
1051 max_va = range.size;
1052 BUG_ON(range.start + range.size > list_va);
1053 }
a78c942d
CM
1054 if (!user_kernel_ok)
1055 early_panic("Hypervisor not configured for user/kernel VAs\n");
867e359b
CM
1056 if (max_va == 0)
1057 early_panic("Hypervisor not configured for low VAs\n");
1058 if (max_va < KERNEL_HIGH_VADDR)
1059 early_panic("Hypervisor max VA %#lx smaller than %#lx\n",
1060 max_va, KERNEL_HIGH_VADDR);
1061
1062 /* Kernel PCs must have their high bit set; see intvec.S. */
1063 if ((long)VMALLOC_START >= 0)
1064 early_panic(
1065 "Linux VMALLOC region below the 2GB line (%#lx)!\n"
1066 "Reconfigure the kernel with fewer NR_HUGE_VMAPS\n"
1067 "or smaller VMALLOC_RESERVE.\n",
1068 VMALLOC_START);
1069#endif
1070}
1071
1072/*
1073 * cpu_lotar_map lists all the cpus that are valid for the supervisor
1074 * to cache data on at a page level, i.e. what cpus can be placed in
1075 * the LOTAR field of a PTE. It is equivalent to the set of possible
1076 * cpus plus any other cpus that are willing to share their cache.
1077 * It is set by hv_inquire_tiles(HV_INQ_TILES_LOTAR).
1078 */
1079struct cpumask __write_once cpu_lotar_map;
1080EXPORT_SYMBOL(cpu_lotar_map);
1081
1082#if CHIP_HAS_CBOX_HOME_MAP()
1083/*
1084 * hash_for_home_map lists all the tiles that hash-for-home data
1085 * will be cached on. Note that this may includes tiles that are not
1086 * valid for this supervisor to use otherwise (e.g. if a hypervisor
1087 * device is being shared between multiple supervisors).
1088 * It is set by hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE).
1089 */
1090struct cpumask hash_for_home_map;
1091EXPORT_SYMBOL(hash_for_home_map);
1092#endif
1093
1094/*
1095 * cpu_cacheable_map lists all the cpus whose caches the hypervisor can
1096 * flush on our behalf. It is set to cpu_possible_map OR'ed with
1097 * hash_for_home_map, and it is what should be passed to
1098 * hv_flush_remote() to flush all caches. Note that if there are
1099 * dedicated hypervisor driver tiles that have authorized use of their
1100 * cache, those tiles will only appear in cpu_lotar_map, NOT in
1101 * cpu_cacheable_map, as they are a special case.
1102 */
1103struct cpumask __write_once cpu_cacheable_map;
1104EXPORT_SYMBOL(cpu_cacheable_map);
1105
1106static __initdata struct cpumask disabled_map;
1107
1108static int __init disabled_cpus(char *str)
1109{
1110 int boot_cpu = smp_processor_id();
1111
1112 if (str == NULL || cpulist_parse_crop(str, &disabled_map) != 0)
1113 return -EINVAL;
1114 if (cpumask_test_cpu(boot_cpu, &disabled_map)) {
0707ad30 1115 pr_err("disabled_cpus: can't disable boot cpu %d\n", boot_cpu);
867e359b
CM
1116 cpumask_clear_cpu(boot_cpu, &disabled_map);
1117 }
1118 return 0;
1119}
1120
1121early_param("disabled_cpus", disabled_cpus);
1122
0707ad30 1123void __init print_disabled_cpus(void)
867e359b
CM
1124{
1125 if (!cpumask_empty(&disabled_map)) {
1126 char buf[100];
1127 cpulist_scnprintf(buf, sizeof(buf), &disabled_map);
0707ad30 1128 pr_info("CPUs not available for Linux: %s\n", buf);
867e359b
CM
1129 }
1130}
1131
1132static void __init setup_cpu_maps(void)
1133{
1134 struct cpumask hv_disabled_map, cpu_possible_init;
1135 int boot_cpu = smp_processor_id();
1136 int cpus, i, rc;
1137
1138 /* Learn which cpus are allowed by the hypervisor. */
1139 rc = hv_inquire_tiles(HV_INQ_TILES_AVAIL,
1140 (HV_VirtAddr) cpumask_bits(&cpu_possible_init),
1141 sizeof(cpu_cacheable_map));
1142 if (rc < 0)
1143 early_panic("hv_inquire_tiles(AVAIL) failed: rc %d\n", rc);
1144 if (!cpumask_test_cpu(boot_cpu, &cpu_possible_init))
1145 early_panic("Boot CPU %d disabled by hypervisor!\n", boot_cpu);
1146
1147 /* Compute the cpus disabled by the hvconfig file. */
1148 cpumask_complement(&hv_disabled_map, &cpu_possible_init);
1149
1150 /* Include them with the cpus disabled by "disabled_cpus". */
1151 cpumask_or(&disabled_map, &disabled_map, &hv_disabled_map);
1152
1153 /*
1154 * Disable every cpu after "setup_max_cpus". But don't mark
1155 * as disabled the cpus that are outside of our initial rectangle,
1156 * since that turns out to be confusing.
1157 */
1158 cpus = 1; /* this cpu */
1159 cpumask_set_cpu(boot_cpu, &disabled_map); /* ignore this cpu */
1160 for (i = 0; cpus < setup_max_cpus; ++i)
1161 if (!cpumask_test_cpu(i, &disabled_map))
1162 ++cpus;
1163 for (; i < smp_height * smp_width; ++i)
1164 cpumask_set_cpu(i, &disabled_map);
1165 cpumask_clear_cpu(boot_cpu, &disabled_map); /* reset this cpu */
1166 for (i = smp_height * smp_width; i < NR_CPUS; ++i)
1167 cpumask_clear_cpu(i, &disabled_map);
1168
1169 /*
1170 * Setup cpu_possible map as every cpu allocated to us, minus
1171 * the results of any "disabled_cpus" settings.
1172 */
1173 cpumask_andnot(&cpu_possible_init, &cpu_possible_init, &disabled_map);
1174 init_cpu_possible(&cpu_possible_init);
1175
1176 /* Learn which cpus are valid for LOTAR caching. */
1177 rc = hv_inquire_tiles(HV_INQ_TILES_LOTAR,
1178 (HV_VirtAddr) cpumask_bits(&cpu_lotar_map),
1179 sizeof(cpu_lotar_map));
1180 if (rc < 0) {
0707ad30 1181 pr_err("warning: no HV_INQ_TILES_LOTAR; using AVAIL\n");
867e359b
CM
1182 cpu_lotar_map = cpu_possible_map;
1183 }
1184
1185#if CHIP_HAS_CBOX_HOME_MAP()
1186 /* Retrieve set of CPUs used for hash-for-home caching */
1187 rc = hv_inquire_tiles(HV_INQ_TILES_HFH_CACHE,
1188 (HV_VirtAddr) hash_for_home_map.bits,
1189 sizeof(hash_for_home_map));
1190 if (rc < 0)
1191 early_panic("hv_inquire_tiles(HFH_CACHE) failed: rc %d\n", rc);
1192 cpumask_or(&cpu_cacheable_map, &cpu_possible_map, &hash_for_home_map);
1193#else
1194 cpu_cacheable_map = cpu_possible_map;
1195#endif
1196}
1197
1198
1199static int __init dataplane(char *str)
1200{
0707ad30 1201 pr_warning("WARNING: dataplane support disabled in this kernel\n");
867e359b
CM
1202 return 0;
1203}
1204
1205early_param("dataplane", dataplane);
1206
1207#ifdef CONFIG_CMDLINE_BOOL
1208static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
1209#endif
1210
1211void __init setup_arch(char **cmdline_p)
1212{
1213 int len;
1214
1215#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
1216 len = hv_get_command_line((HV_VirtAddr) boot_command_line,
1217 COMMAND_LINE_SIZE);
1218 if (boot_command_line[0])
0707ad30
CM
1219 pr_warning("WARNING: ignoring dynamic command line \"%s\"\n",
1220 boot_command_line);
867e359b
CM
1221 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1222#else
1223 char *hv_cmdline;
1224#if defined(CONFIG_CMDLINE_BOOL)
1225 if (builtin_cmdline[0]) {
1226 int builtin_len = strlcpy(boot_command_line, builtin_cmdline,
1227 COMMAND_LINE_SIZE);
1228 if (builtin_len < COMMAND_LINE_SIZE-1)
1229 boot_command_line[builtin_len++] = ' ';
1230 hv_cmdline = &boot_command_line[builtin_len];
1231 len = COMMAND_LINE_SIZE - builtin_len;
1232 } else
1233#endif
1234 {
1235 hv_cmdline = boot_command_line;
1236 len = COMMAND_LINE_SIZE;
1237 }
1238 len = hv_get_command_line((HV_VirtAddr) hv_cmdline, len);
1239 if (len < 0 || len > COMMAND_LINE_SIZE)
1240 early_panic("hv_get_command_line failed: %d\n", len);
1241#endif
1242
1243 *cmdline_p = boot_command_line;
1244
1245 /* Set disabled_map and setup_max_cpus very early */
1246 parse_early_param();
1247
1248 /* Make sure the kernel is compatible with the hypervisor. */
1249 validate_hv();
1250 validate_va();
1251
1252 setup_cpu_maps();
1253
1254
1255#ifdef CONFIG_PCI
1256 /*
1257 * Initialize the PCI structures. This is done before memory
1258 * setup so that we know whether or not a pci_reserve region
1259 * is necessary.
1260 */
1261 if (tile_pci_init() == 0)
1262 pci_reserve_mb = 0;
1263
1264 /* PCI systems reserve a region just below 4GB for mapping iomem. */
1265 pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
1266 pci_reserve_start_pfn = pci_reserve_end_pfn -
1267 (pci_reserve_mb << (20 - PAGE_SHIFT));
1268#endif
1269
1270 init_mm.start_code = (unsigned long) _text;
1271 init_mm.end_code = (unsigned long) _etext;
1272 init_mm.end_data = (unsigned long) _edata;
1273 init_mm.brk = (unsigned long) _end;
1274
1275 setup_memory();
1276 store_permanent_mappings();
1277 setup_bootmem_allocator();
1278
1279 /*
1280 * NOTE: before this point _nobody_ is allowed to allocate
1281 * any memory using the bootmem allocator.
1282 */
1283
1284 paging_init();
1285 setup_numa_mapping();
1286 zone_sizes_init();
1287 set_page_homes();
0707ad30 1288 setup_cpu(1);
867e359b
CM
1289 setup_clock();
1290 load_hv_initrd();
1291}
1292
1293
1294/*
1295 * Set up per-cpu memory.
1296 */
1297
1298unsigned long __per_cpu_offset[NR_CPUS] __write_once;
1299EXPORT_SYMBOL(__per_cpu_offset);
1300
1301static size_t __initdata pfn_offset[MAX_NUMNODES] = { 0 };
1302static unsigned long __initdata percpu_pfn[NR_CPUS] = { 0 };
1303
1304/*
1305 * As the percpu code allocates pages, we return the pages from the
1306 * end of the node for the specified cpu.
1307 */
1308static void *__init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
1309{
1310 int nid = cpu_to_node(cpu);
1311 unsigned long pfn = node_percpu_pfn[nid] + pfn_offset[nid];
1312
1313 BUG_ON(size % PAGE_SIZE != 0);
1314 pfn_offset[nid] += size / PAGE_SIZE;
1315 if (percpu_pfn[cpu] == 0)
1316 percpu_pfn[cpu] = pfn;
1317 return pfn_to_kaddr(pfn);
1318}
1319
1320/*
1321 * Pages reserved for percpu memory are not freeable, and in any case we are
1322 * on a short path to panic() in setup_per_cpu_area() at this point anyway.
1323 */
1324static void __init pcpu_fc_free(void *ptr, size_t size)
1325{
1326}
1327
1328/*
1329 * Set up vmalloc page tables using bootmem for the percpu code.
1330 */
1331static void __init pcpu_fc_populate_pte(unsigned long addr)
1332{
1333 pgd_t *pgd;
1334 pud_t *pud;
1335 pmd_t *pmd;
1336 pte_t *pte;
1337
1338 BUG_ON(pgd_addr_invalid(addr));
77d23303
CM
1339 if (addr < VMALLOC_START || addr >= VMALLOC_END)
1340 panic("PCPU addr %#lx outside vmalloc range %#lx..%#lx;"
1341 " try increasing CONFIG_VMALLOC_RESERVE\n",
1342 addr, VMALLOC_START, VMALLOC_END);
867e359b
CM
1343
1344 pgd = swapper_pg_dir + pgd_index(addr);
1345 pud = pud_offset(pgd, addr);
1346 BUG_ON(!pud_present(*pud));
1347 pmd = pmd_offset(pud, addr);
1348 if (pmd_present(*pmd)) {
1349 BUG_ON(pmd_huge_page(*pmd));
1350 } else {
1351 pte = __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE,
1352 HV_PAGE_TABLE_ALIGN, 0);
1353 pmd_populate_kernel(&init_mm, pmd, pte);
1354 }
1355}
1356
1357void __init setup_per_cpu_areas(void)
1358{
1359 struct page *pg;
1360 unsigned long delta, pfn, lowmem_va;
1361 unsigned long size = percpu_size();
1362 char *ptr;
1363 int rc, cpu, i;
1364
1365 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, pcpu_fc_alloc,
1366 pcpu_fc_free, pcpu_fc_populate_pte);
1367 if (rc < 0)
1368 panic("Cannot initialize percpu area (err=%d)", rc);
1369
1370 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1371 for_each_possible_cpu(cpu) {
1372 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1373
1374 /* finv the copy out of cache so we can change homecache */
1375 ptr = pcpu_base_addr + pcpu_unit_offsets[cpu];
1376 __finv_buffer(ptr, size);
1377 pfn = percpu_pfn[cpu];
1378
1379 /* Rewrite the page tables to cache on that cpu */
1380 pg = pfn_to_page(pfn);
1381 for (i = 0; i < size; i += PAGE_SIZE, ++pfn, ++pg) {
1382
1383 /* Update the vmalloc mapping and page home. */
1384 pte_t *ptep =
1385 virt_to_pte(NULL, (unsigned long)ptr + i);
1386 pte_t pte = *ptep;
1387 BUG_ON(pfn != pte_pfn(pte));
1388 pte = hv_pte_set_mode(pte, HV_PTE_MODE_CACHE_TILE_L3);
1389 pte = set_remote_cache_cpu(pte, cpu);
1390 set_pte(ptep, pte);
1391
1392 /* Update the lowmem mapping for consistency. */
1393 lowmem_va = (unsigned long)pfn_to_kaddr(pfn);
1394 ptep = virt_to_pte(NULL, lowmem_va);
1395 if (pte_huge(*ptep)) {
1396 printk(KERN_DEBUG "early shatter of huge page"
1397 " at %#lx\n", lowmem_va);
1398 shatter_pmd((pmd_t *)ptep);
1399 ptep = virt_to_pte(NULL, lowmem_va);
1400 BUG_ON(pte_huge(*ptep));
1401 }
1402 BUG_ON(pfn != pte_pfn(*ptep));
1403 set_pte(ptep, pte);
1404 }
1405 }
1406
1407 /* Set our thread pointer appropriately. */
1408 set_my_cpu_offset(__per_cpu_offset[smp_processor_id()]);
1409
1410 /* Make sure the finv's have completed. */
1411 mb_incoherent();
1412
1413 /* Flush the TLB so we reference it properly from here on out. */
1414 local_flush_tlb_all();
1415}
1416
1417static struct resource data_resource = {
1418 .name = "Kernel data",
1419 .start = 0,
1420 .end = 0,
1421 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1422};
1423
1424static struct resource code_resource = {
1425 .name = "Kernel code",
1426 .start = 0,
1427 .end = 0,
1428 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1429};
1430
1431/*
1432 * We reserve all resources above 4GB so that PCI won't try to put
1433 * mappings above 4GB; the standard allows that for some devices but
1434 * the probing code trunates values to 32 bits.
1435 */
1436#ifdef CONFIG_PCI
1437static struct resource* __init
1438insert_non_bus_resource(void)
1439{
1440 struct resource *res =
1441 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1442 res->name = "Non-Bus Physical Address Space";
1443 res->start = (1ULL << 32);
1444 res->end = -1LL;
1445 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1446 if (insert_resource(&iomem_resource, res)) {
1447 kfree(res);
1448 return NULL;
1449 }
1450 return res;
1451}
1452#endif
1453
1454static struct resource* __init
1455insert_ram_resource(u64 start_pfn, u64 end_pfn)
1456{
1457 struct resource *res =
1458 kzalloc(sizeof(struct resource), GFP_ATOMIC);
1459 res->name = "System RAM";
1460 res->start = start_pfn << PAGE_SHIFT;
1461 res->end = (end_pfn << PAGE_SHIFT) - 1;
1462 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1463 if (insert_resource(&iomem_resource, res)) {
1464 kfree(res);
1465 return NULL;
1466 }
1467 return res;
1468}
1469
1470/*
1471 * Request address space for all standard resources
1472 *
1473 * If the system includes PCI root complex drivers, we need to create
1474 * a window just below 4GB where PCI BARs can be mapped.
1475 */
1476static int __init request_standard_resources(void)
1477{
1478 int i;
1479 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
1480
1481 iomem_resource.end = -1LL;
1482#ifdef CONFIG_PCI
1483 insert_non_bus_resource();
1484#endif
1485
1486 for_each_online_node(i) {
1487 u64 start_pfn = node_start_pfn[i];
1488 u64 end_pfn = node_end_pfn[i];
1489
1490#ifdef CONFIG_PCI
1491 if (start_pfn <= pci_reserve_start_pfn &&
1492 end_pfn > pci_reserve_start_pfn) {
1493 if (end_pfn > pci_reserve_end_pfn)
1494 insert_ram_resource(pci_reserve_end_pfn,
1495 end_pfn);
1496 end_pfn = pci_reserve_start_pfn;
1497 }
1498#endif
1499 insert_ram_resource(start_pfn, end_pfn);
1500 }
1501
1502 code_resource.start = __pa(_text - CODE_DELTA);
1503 code_resource.end = __pa(_etext - CODE_DELTA)-1;
1504 data_resource.start = __pa(_sdata);
1505 data_resource.end = __pa(_end)-1;
1506
1507 insert_resource(&iomem_resource, &code_resource);
1508 insert_resource(&iomem_resource, &data_resource);
1509
1510#ifdef CONFIG_KEXEC
1511 insert_resource(&iomem_resource, &crashk_res);
1512#endif
1513
1514 return 0;
1515}
1516
1517subsys_initcall(request_standard_resources);