]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/tile/kernel/intvec_32.S
Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[net-next-2.6.git] / arch / tile / kernel / intvec_32.S
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17#include <linux/linkage.h>
18#include <linux/errno.h>
19#include <linux/init.h>
9f9c0382 20#include <linux/unistd.h>
867e359b
CM
21#include <asm/ptrace.h>
22#include <asm/thread_info.h>
867e359b
CM
23#include <asm/irqflags.h>
24#include <asm/atomic.h>
25#include <asm/asm-offsets.h>
26#include <hv/hypervisor.h>
27#include <arch/abi.h>
28#include <arch/interrupts.h>
29#include <arch/spr_def.h>
30
31#ifdef CONFIG_PREEMPT
32# error "No support for kernel preemption currently"
33#endif
34
9f9c0382 35#if INT_INTCTRL_1 < 32 || INT_INTCTRL_1 >= 48
867e359b
CM
36# error INT_INTCTRL_1 coded to set high interrupt mask
37#endif
38
39#define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
40
41#define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
42
43#if !CHIP_HAS_WH64()
44 /* By making this an empty macro, we can use wh64 in the code. */
45 .macro wh64 reg
46 .endm
47#endif
48
49 .macro push_reg reg, ptr=sp, delta=-4
50 {
51 sw \ptr, \reg
52 addli \ptr, \ptr, \delta
53 }
54 .endm
55
56 .macro pop_reg reg, ptr=sp, delta=4
57 {
58 lw \reg, \ptr
59 addli \ptr, \ptr, \delta
60 }
61 .endm
62
63 .macro pop_reg_zero reg, zreg, ptr=sp, delta=4
64 {
65 move \zreg, zero
66 lw \reg, \ptr
67 addi \ptr, \ptr, \delta
68 }
69 .endm
70
71 .macro push_extra_callee_saves reg
72 PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
73 push_reg r51, \reg
74 push_reg r50, \reg
75 push_reg r49, \reg
76 push_reg r48, \reg
77 push_reg r47, \reg
78 push_reg r46, \reg
79 push_reg r45, \reg
80 push_reg r44, \reg
81 push_reg r43, \reg
82 push_reg r42, \reg
83 push_reg r41, \reg
84 push_reg r40, \reg
85 push_reg r39, \reg
86 push_reg r38, \reg
87 push_reg r37, \reg
88 push_reg r36, \reg
89 push_reg r35, \reg
90 push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
91 .endm
92
93 .macro panic str
94 .pushsection .rodata, "a"
951:
96 .asciz "\str"
97 .popsection
98 {
99 moveli r0, lo16(1b)
100 }
101 {
102 auli r0, r0, ha16(1b)
103 jal panic
104 }
105 .endm
106
107#ifdef __COLLECT_LINKER_FEEDBACK__
108 .pushsection .text.intvec_feedback,"ax"
109intvec_feedback:
110 .popsection
111#endif
112
113 /*
114 * Default interrupt handler.
115 *
116 * vecnum is where we'll put this code.
117 * c_routine is the C routine we'll call.
118 *
119 * The C routine is passed two arguments:
120 * - A pointer to the pt_regs state.
121 * - The interrupt vector number.
122 *
123 * The "processing" argument specifies the code for processing
124 * the interrupt. Defaults to "handle_interrupt".
125 */
126 .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
127 .org (\vecnum << 8)
128intvec_\vecname:
129 .ifc \vecnum, INT_SWINT_1
130 blz TREG_SYSCALL_NR_NAME, sys_cmpxchg
131 .endif
132
133 /* Temporarily save a register so we have somewhere to work. */
134
135 mtspr SYSTEM_SAVE_1_1, r0
136 mfspr r0, EX_CONTEXT_1_1
137
138 /* The cmpxchg code clears sp to force us to reset it here on fault. */
139 {
140 bz sp, 2f
141 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
142 }
143
144 .ifc \vecnum, INT_DOUBLE_FAULT
145 /*
146 * For double-faults from user-space, fall through to the normal
147 * register save and stack setup path. Otherwise, it's the
148 * hypervisor giving us one last chance to dump diagnostics, and we
149 * branch to the kernel_double_fault routine to do so.
150 */
151 bz r0, 1f
152 j _kernel_double_fault
1531:
154 .else
155 /*
156 * If we're coming from user-space, then set sp to the top of
157 * the kernel stack. Otherwise, assume sp is already valid.
158 */
159 {
160 bnz r0, 0f
161 move r0, sp
162 }
163 .endif
164
165 .ifc \c_routine, do_page_fault
166 /*
167 * The page_fault handler may be downcalled directly by the
168 * hypervisor even when Linux is running and has ICS set.
169 *
170 * In this case the contents of EX_CONTEXT_1_1 reflect the
171 * previous fault and can't be relied on to choose whether or
172 * not to reinitialize the stack pointer. So we add a test
173 * to see whether SYSTEM_SAVE_1_2 has the high bit set,
174 * and if so we don't reinitialize sp, since we must be coming
175 * from Linux. (In fact the precise case is !(val & ~1),
176 * but any Linux PC has to have the high bit set.)
177 *
178 * Note that the hypervisor *always* sets SYSTEM_SAVE_1_2 for
179 * any path that turns into a downcall to one of our TLB handlers.
180 */
181 mfspr r0, SYSTEM_SAVE_1_2
182 {
183 blz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
184 move r0, sp
185 }
186 .endif
187
1882:
189 /*
190 * SYSTEM_SAVE_1_0 holds the cpu number in the low bits, and
191 * the current stack top in the higher bits. So we recover
192 * our stack top by just masking off the low bits, then
193 * point sp at the top aligned address on the actual stack page.
194 */
195 mfspr r0, SYSTEM_SAVE_1_0
196 mm r0, r0, zero, LOG2_THREAD_SIZE, 31
197
1980:
199 /*
200 * Align the stack mod 64 so we can properly predict what
201 * cache lines we need to write-hint to reduce memory fetch
202 * latency as we enter the kernel. The layout of memory is
203 * as follows, with cache line 0 at the lowest VA, and cache
204 * line 4 just below the r0 value this "andi" computes.
205 * Note that we never write to cache line 4, and we skip
206 * cache line 1 for syscalls.
207 *
208 * cache line 4: ptregs padding (two words)
209 * cache line 3: r46...lr, pc, ex1, faultnum, orig_r0, flags, pad
210 * cache line 2: r30...r45
211 * cache line 1: r14...r29
212 * cache line 0: 2 x frame, r0..r13
213 */
214 andi r0, r0, -64
215
216 /*
217 * Push the first four registers on the stack, so that we can set
218 * them to vector-unique values before we jump to the common code.
219 *
220 * Registers are pushed on the stack as a struct pt_regs,
221 * with the sp initially just above the struct, and when we're
222 * done, sp points to the base of the struct, minus
223 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
224 *
225 * This routine saves just the first four registers, plus the
226 * stack context so we can do proper backtracing right away,
227 * and defers to handle_interrupt to save the rest.
228 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum.
229 */
230 addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
231 wh64 r0 /* cache line 3 */
232 {
233 sw r0, lr
234 addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
235 }
236 {
237 sw r0, sp
238 addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
239 }
240 {
241 sw sp, r52
242 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
243 }
244 wh64 sp /* cache line 0 */
245 {
246 sw sp, r1
247 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
248 }
249 {
250 sw sp, r2
251 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
252 }
253 {
254 sw sp, r3
255 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
256 }
257 mfspr r0, EX_CONTEXT_1_0
258 .ifc \processing,handle_syscall
259 /*
260 * Bump the saved PC by one bundle so that when we return, we won't
261 * execute the same swint instruction again. We need to do this while
262 * we're in the critical section.
263 */
264 addi r0, r0, 8
265 .endif
266 {
267 sw sp, r0
268 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
269 }
270 mfspr r0, EX_CONTEXT_1_1
271 {
272 sw sp, r0
273 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
274 /*
275 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
276 * so that it gets passed through unchanged to the handler routine.
277 * Note that the .if conditional confusingly spans bundles.
278 */
279 .ifc \processing,handle_syscall
280 movei r0, \vecnum
281 }
282 {
283 sw sp, r0
284 .else
285 movei r1, \vecnum
286 }
287 {
288 sw sp, r1
289 .endif
290 addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
291 }
292 mfspr r0, SYSTEM_SAVE_1_1 /* Original r0 */
293 {
294 sw sp, r0
295 addi sp, sp, -PTREGS_OFFSET_REG(0) - 4
296 }
297 {
298 sw sp, zero /* write zero into "Next SP" frame pointer */
299 addi sp, sp, -4 /* leave SP pointing at bottom of frame */
300 }
301 .ifc \processing,handle_syscall
302 j handle_syscall
303 .else
304 /*
305 * Capture per-interrupt SPR context to registers.
306 * We overload the meaning of r3 on this path such that if its bit 31
307 * is set, we have to mask all interrupts including NMIs before
308 * clearing the interrupt critical section bit.
309 * See discussion below at "finish_interrupt_save".
310 */
311 .ifc \c_routine, do_page_fault
312 mfspr r2, SYSTEM_SAVE_1_3 /* address of page fault */
313 mfspr r3, SYSTEM_SAVE_1_2 /* info about page fault */
314 .else
315 .ifc \vecnum, INT_DOUBLE_FAULT
316 {
317 mfspr r2, SYSTEM_SAVE_1_2 /* double fault info from HV */
318 movei r3, 0
319 }
320 .else
321 .ifc \c_routine, do_trap
322 {
323 mfspr r2, GPV_REASON
324 movei r3, 0
325 }
326 .else
327 .ifc \c_routine, op_handle_perf_interrupt
328 {
329 mfspr r2, PERF_COUNT_STS
330 movei r3, -1 /* not used, but set for consistency */
331 }
332 .else
333#if CHIP_HAS_AUX_PERF_COUNTERS()
334 .ifc \c_routine, op_handle_aux_perf_interrupt
335 {
336 mfspr r2, AUX_PERF_COUNT_STS
337 movei r3, -1 /* not used, but set for consistency */
338 }
339 .else
340#endif
341 movei r3, 0
342#if CHIP_HAS_AUX_PERF_COUNTERS()
343 .endif
344#endif
345 .endif
346 .endif
347 .endif
348 .endif
349 /* Put function pointer in r0 */
350 moveli r0, lo16(\c_routine)
351 {
352 auli r0, r0, ha16(\c_routine)
353 j \processing
354 }
355 .endif
356 ENDPROC(intvec_\vecname)
357
358#ifdef __COLLECT_LINKER_FEEDBACK__
359 .pushsection .text.intvec_feedback,"ax"
360 .org (\vecnum << 5)
361 FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt1, 1 << 8)
362 jrp lr
363 .popsection
364#endif
365
366 .endm
367
368
369 /*
370 * Save the rest of the registers that we didn't save in the actual
371 * vector itself. We can't use r0-r10 inclusive here.
372 */
373 .macro finish_interrupt_save, function
374
375 /* If it's a syscall, save a proper orig_r0, otherwise just zero. */
376 PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
377 {
378 .ifc \function,handle_syscall
379 sw r52, r0
380 .else
381 sw r52, zero
382 .endif
383 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
384 }
385
386 /*
387 * For ordinary syscalls, we save neither caller- nor callee-
388 * save registers, since the syscall invoker doesn't expect the
389 * caller-saves to be saved, and the called kernel functions will
390 * take care of saving the callee-saves for us.
391 *
392 * For interrupts we save just the caller-save registers. Saving
393 * them is required (since the "caller" can't save them). Again,
394 * the called kernel functions will restore the callee-save
395 * registers for us appropriately.
396 *
397 * On return, we normally restore nothing special for syscalls,
398 * and just the caller-save registers for interrupts.
399 *
400 * However, there are some important caveats to all this:
401 *
402 * - We always save a few callee-save registers to give us
403 * some scratchpad registers to carry across function calls.
404 *
405 * - fork/vfork/etc require us to save all the callee-save
406 * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
407 *
408 * - We always save r0..r5 and r10 for syscalls, since we need
409 * to reload them a bit later for the actual kernel call, and
410 * since we might need them for -ERESTARTNOINTR, etc.
411 *
412 * - Before invoking a signal handler, we save the unsaved
413 * callee-save registers so they are visible to the
414 * signal handler or any ptracer.
415 *
416 * - If the unsaved callee-save registers are modified, we set
417 * a bit in pt_regs so we know to reload them from pt_regs
418 * and not just rely on the kernel function unwinding.
419 * (Done for ptrace register writes and SA_SIGINFO handler.)
420 */
421 {
422 sw r52, tp
423 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
424 }
425 wh64 r52 /* cache line 2 */
426 push_reg r33, r52
427 push_reg r32, r52
428 push_reg r31, r52
429 .ifc \function,handle_syscall
430 push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
431 push_reg TREG_SYSCALL_NR_NAME, r52, \
432 PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
433 .else
434
435 push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
436 wh64 r52 /* cache line 1 */
437 push_reg r29, r52
438 push_reg r28, r52
439 push_reg r27, r52
440 push_reg r26, r52
441 push_reg r25, r52
442 push_reg r24, r52
443 push_reg r23, r52
444 push_reg r22, r52
445 push_reg r21, r52
446 push_reg r20, r52
447 push_reg r19, r52
448 push_reg r18, r52
449 push_reg r17, r52
450 push_reg r16, r52
451 push_reg r15, r52
452 push_reg r14, r52
453 push_reg r13, r52
454 push_reg r12, r52
455 push_reg r11, r52
456 push_reg r10, r52
457 push_reg r9, r52
458 push_reg r8, r52
459 push_reg r7, r52
460 push_reg r6, r52
461
462 .endif
463
464 push_reg r5, r52
465 sw r52, r4
466
467 /* Load tp with our per-cpu offset. */
468#ifdef CONFIG_SMP
469 {
470 mfspr r20, SYSTEM_SAVE_1_0
471 moveli r21, lo16(__per_cpu_offset)
472 }
473 {
474 auli r21, r21, ha16(__per_cpu_offset)
475 mm r20, r20, zero, 0, LOG2_THREAD_SIZE-1
476 }
477 s2a r20, r20, r21
478 lw tp, r20
479#else
480 move tp, zero
481#endif
482
483 /*
484 * If we will be returning to the kernel, we will need to
485 * reset the interrupt masks to the state they had before.
486 * Set DISABLE_IRQ in flags iff we came from PL1 with irqs disabled.
487 * We load flags in r32 here so we can jump to .Lrestore_regs
488 * directly after do_page_fault_ics() if necessary.
489 */
490 mfspr r32, EX_CONTEXT_1_1
491 {
492 andi r32, r32, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
493 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
494 }
495 bzt r32, 1f /* zero if from user space */
496 IRQS_DISABLED(r32) /* zero if irqs enabled */
497#if PT_FLAGS_DISABLE_IRQ != 1
498# error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
499#endif
5001:
501 .ifnc \function,handle_syscall
502 /* Record the fact that we saved the caller-save registers above. */
503 ori r32, r32, PT_FLAGS_CALLER_SAVES
504 .endif
505 sw r21, r32
506
507#ifdef __COLLECT_LINKER_FEEDBACK__
508 /*
509 * Notify the feedback routines that we were in the
510 * appropriate fixed interrupt vector area. Note that we
511 * still have ICS set at this point, so we can't invoke any
512 * atomic operations or we will panic. The feedback
513 * routines internally preserve r0..r10 and r30 up.
514 */
515 .ifnc \function,handle_syscall
516 shli r20, r1, 5
517 .else
518 moveli r20, INT_SWINT_1 << 5
519 .endif
520 addli r20, r20, lo16(intvec_feedback)
521 auli r20, r20, ha16(intvec_feedback)
522 jalr r20
523
524 /* And now notify the feedback routines that we are here. */
525 FEEDBACK_ENTER(\function)
526#endif
527
528 /*
529 * we've captured enough state to the stack (including in
530 * particular our EX_CONTEXT state) that we can now release
531 * the interrupt critical section and replace it with our
532 * standard "interrupts disabled" mask value. This allows
533 * synchronous interrupts (and profile interrupts) to punch
534 * through from this point onwards.
535 *
536 * If bit 31 of r3 is set during a non-NMI interrupt, we know we
537 * are on the path where the hypervisor has punched through our
538 * ICS with a page fault, so we call out to do_page_fault_ics()
539 * to figure out what to do with it. If the fault was in
540 * an atomic op, we unlock the atomic lock, adjust the
541 * saved register state a little, and return "zero" in r4,
542 * falling through into the normal page-fault interrupt code.
543 * If the fault was in a kernel-space atomic operation, then
544 * do_page_fault_ics() resolves it itself, returns "one" in r4,
545 * and as a result goes directly to restoring registers and iret,
546 * without trying to adjust the interrupt masks at all.
547 * The do_page_fault_ics() API involves passing and returning
548 * a five-word struct (in registers) to avoid writing the
549 * save and restore code here.
550 */
551 .ifc \function,handle_nmi
552 IRQ_DISABLE_ALL(r20)
553 .else
554 .ifnc \function,handle_syscall
555 bgezt r3, 1f
556 {
557 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
558 jal do_page_fault_ics
559 }
560 FEEDBACK_REENTER(\function)
561 bzt r4, 1f
562 j .Lrestore_regs
5631:
564 .endif
565 IRQ_DISABLE(r20, r21)
566 .endif
567 mtspr INTERRUPT_CRITICAL_SECTION, zero
568
569#if CHIP_HAS_WH64()
570 /*
571 * Prepare the first 256 stack bytes to be rapidly accessible
572 * without having to fetch the background data. We don't really
573 * know how far to write-hint, but kernel stacks generally
574 * aren't that big, and write-hinting here does take some time.
575 */
576 addi r52, sp, -64
577 {
578 wh64 r52
579 addi r52, r52, -64
580 }
581 {
582 wh64 r52
583 addi r52, r52, -64
584 }
585 {
586 wh64 r52
587 addi r52, r52, -64
588 }
589 wh64 r52
590#endif
591
592#ifdef CONFIG_TRACE_IRQFLAGS
593 .ifnc \function,handle_nmi
594 /*
595 * We finally have enough state set up to notify the irq
596 * tracing code that irqs were disabled on entry to the handler.
597 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
598 * For syscalls, we already have the register state saved away
599 * on the stack, so we don't bother to do any register saves here,
600 * and later we pop the registers back off the kernel stack.
601 * For interrupt handlers, save r0-r3 in callee-saved registers.
602 */
603 .ifnc \function,handle_syscall
604 { move r30, r0; move r31, r1 }
605 { move r32, r2; move r33, r3 }
606 .endif
607 TRACE_IRQS_OFF
608 .ifnc \function,handle_syscall
609 { move r0, r30; move r1, r31 }
610 { move r2, r32; move r3, r33 }
611 .endif
612 .endif
613#endif
614
615 .endm
616
617 .macro check_single_stepping, kind, not_single_stepping
618 /*
619 * Check for single stepping in user-level priv
620 * kind can be "normal", "ill", or "syscall"
621 * At end, if fall-thru
622 * r29: thread_info->step_state
623 * r28: &pt_regs->pc
624 * r27: pt_regs->pc
625 * r26: thread_info->step_state->buffer
626 */
627
628 /* Check for single stepping */
629 GET_THREAD_INFO(r29)
630 {
631 /* Get pointer to field holding step state */
632 addi r29, r29, THREAD_INFO_STEP_STATE_OFFSET
633
634 /* Get pointer to EX1 in register state */
635 PTREGS_PTR(r27, PTREGS_OFFSET_EX1)
636 }
637 {
638 /* Get pointer to field holding PC */
639 PTREGS_PTR(r28, PTREGS_OFFSET_PC)
640
641 /* Load the pointer to the step state */
642 lw r29, r29
643 }
644 /* Load EX1 */
645 lw r27, r27
646 {
647 /* Points to flags */
648 addi r23, r29, SINGLESTEP_STATE_FLAGS_OFFSET
649
650 /* No single stepping if there is no step state structure */
651 bzt r29, \not_single_stepping
652 }
653 {
654 /* mask off ICS and any other high bits */
655 andi r27, r27, SPR_EX_CONTEXT_1_1__PL_MASK
656
657 /* Load pointer to single step instruction buffer */
658 lw r26, r29
659 }
660 /* Check priv state */
661 bnz r27, \not_single_stepping
662
663 /* Get flags */
664 lw r22, r23
665 {
666 /* Branch if single-step mode not enabled */
667 bbnst r22, \not_single_stepping
668
669 /* Clear enabled flag */
670 andi r22, r22, ~SINGLESTEP_STATE_MASK_IS_ENABLED
671 }
672 .ifc \kind,normal
673 {
674 /* Load PC */
675 lw r27, r28
676
677 /* Point to the entry containing the original PC */
678 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
679 }
680 {
681 /* Disable single stepping flag */
682 sw r23, r22
683 }
684 {
685 /* Get the original pc */
686 lw r24, r24
687
688 /* See if the PC is at the start of the single step buffer */
689 seq r25, r26, r27
690 }
691 /*
692 * NOTE: it is really expected that the PC be in the single step buffer
693 * at this point
694 */
695 bzt r25, \not_single_stepping
696
697 /* Restore the original PC */
698 sw r28, r24
699 .else
700 .ifc \kind,syscall
701 {
702 /* Load PC */
703 lw r27, r28
704
705 /* Point to the entry containing the next PC */
706 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
707 }
708 {
709 /* Increment the stopped PC by the bundle size */
710 addi r26, r26, 8
711
712 /* Disable single stepping flag */
713 sw r23, r22
714 }
715 {
716 /* Get the next pc */
717 lw r24, r24
718
719 /*
720 * See if the PC is one bundle past the start of the
721 * single step buffer
722 */
723 seq r25, r26, r27
724 }
725 {
726 /*
727 * NOTE: it is really expected that the PC be in the
728 * single step buffer at this point
729 */
730 bzt r25, \not_single_stepping
731 }
732 /* Set to the next PC */
733 sw r28, r24
734 .else
735 {
736 /* Point to 3rd bundle in buffer */
737 addi r25, r26, 16
738
739 /* Load PC */
740 lw r27, r28
741 }
742 {
743 /* Disable single stepping flag */
744 sw r23, r22
745
746 /* See if the PC is in the single step buffer */
747 slte_u r24, r26, r27
748 }
749 {
750 slte_u r25, r27, r25
751
752 /*
753 * NOTE: it is really expected that the PC be in the
754 * single step buffer at this point
755 */
756 bzt r24, \not_single_stepping
757 }
758 bzt r25, \not_single_stepping
759 .endif
760 .endif
761 .endm
762
763 /*
764 * Redispatch a downcall.
765 */
766 .macro dc_dispatch vecnum, vecname
767 .org (\vecnum << 8)
768intvec_\vecname:
769 j hv_downcall_dispatch
770 ENDPROC(intvec_\vecname)
771 .endm
772
773 /*
774 * Common code for most interrupts. The C function we're eventually
775 * going to is in r0, and the faultnum is in r1; the original
776 * values for those registers are on the stack.
777 */
778 .pushsection .text.handle_interrupt,"ax"
779handle_interrupt:
780 finish_interrupt_save handle_interrupt
781
782 /*
783 * Check for if we are single stepping in user level. If so, then
784 * we need to restore the PC.
785 */
786
787 check_single_stepping normal, .Ldispatch_interrupt
788.Ldispatch_interrupt:
789
790 /* Jump to the C routine; it should enable irqs as soon as possible. */
791 {
792 jalr r0
793 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
794 }
795 FEEDBACK_REENTER(handle_interrupt)
796 {
797 movei r30, 0 /* not an NMI */
798 j interrupt_return
799 }
800 STD_ENDPROC(handle_interrupt)
801
802/*
803 * This routine takes a boolean in r30 indicating if this is an NMI.
804 * If so, we also expect a boolean in r31 indicating whether to
805 * re-enable the oprofile interrupts.
806 */
807STD_ENTRY(interrupt_return)
808 /* If we're resuming to kernel space, don't check thread flags. */
809 {
810 bnz r30, .Lrestore_all /* NMIs don't special-case user-space */
811 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
812 }
813 lw r29, r29
814 andi r29, r29, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
815 {
816 bzt r29, .Lresume_userspace
817 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
818 }
819
820 /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
821 {
822 lw r28, r29
823 moveli r27, lo16(_cpu_idle_nap)
824 }
825 {
826 auli r27, r27, ha16(_cpu_idle_nap)
827 }
828 {
829 seq r27, r27, r28
830 }
831 {
832 bbns r27, .Lrestore_all
833 addi r28, r28, 8
834 }
835 sw r29, r28
836 j .Lrestore_all
837
838.Lresume_userspace:
839 FEEDBACK_REENTER(interrupt_return)
840
841 /*
842 * Disable interrupts so as to make sure we don't
843 * miss an interrupt that sets any of the thread flags (like
844 * need_resched or sigpending) between sampling and the iret.
845 * Routines like schedule() or do_signal() may re-enable
846 * interrupts before returning.
847 */
848 IRQ_DISABLE(r20, r21)
849 TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
850
851 /* Get base of stack in r32; note r30/31 are used as arguments here. */
852 GET_THREAD_INFO(r32)
853
854
855 /* Check to see if there is any work to do before returning to user. */
856 {
857 addi r29, r32, THREAD_INFO_FLAGS_OFFSET
858 moveli r28, lo16(_TIF_ALLWORK_MASK)
859 }
860 {
861 lw r29, r29
862 auli r28, r28, ha16(_TIF_ALLWORK_MASK)
863 }
864 and r28, r29, r28
865 bnz r28, .Lwork_pending
866
867 /*
868 * In the NMI case we
869 * omit the call to single_process_check_nohz, which normally checks
870 * to see if we should start or stop the scheduler tick, because
871 * we can't call arbitrary Linux code from an NMI context.
872 * We always call the homecache TLB deferral code to re-trigger
873 * the deferral mechanism.
874 *
875 * The other chunk of responsibility this code has is to reset the
876 * interrupt masks appropriately to reset irqs and NMIs. We have
877 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
878 * lockdep-type stuff, but we can't set ICS until afterwards, since
879 * ICS can only be used in very tight chunks of code to avoid
880 * tripping over various assertions that it is off.
881 *
882 * (There is what looks like a window of vulnerability here since
883 * we might take a profile interrupt between the two SPR writes
884 * that set the mask, but since we write the low SPR word first,
885 * and our interrupt entry code checks the low SPR word, any
886 * profile interrupt will actually disable interrupts in both SPRs
887 * before returning, which is OK.)
888 */
889.Lrestore_all:
890 PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
891 {
892 lw r0, r0
893 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
894 }
895 {
896 andi r0, r0, SPR_EX_CONTEXT_1_1__PL_MASK
897 lw r32, r32
898 }
899 bnz r0, 1f
900 j 2f
901#if PT_FLAGS_DISABLE_IRQ != 1
902# error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use bbnst below
903#endif
9041: bbnst r32, 2f
905 IRQ_DISABLE(r20,r21)
906 TRACE_IRQS_OFF
907 movei r0, 1
908 mtspr INTERRUPT_CRITICAL_SECTION, r0
909 bzt r30, .Lrestore_regs
910 j 3f
9112: TRACE_IRQS_ON
912 movei r0, 1
913 mtspr INTERRUPT_CRITICAL_SECTION, r0
914 IRQ_ENABLE(r20, r21)
915 bzt r30, .Lrestore_regs
9163:
917
918
919 /*
920 * We now commit to returning from this interrupt, since we will be
921 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
922 * frame. No calls should be made to any other code after this point.
923 * This code should only be entered with ICS set.
924 * r32 must still be set to ptregs.flags.
925 * We launch loads to each cache line separately first, so we can
926 * get some parallelism out of the memory subsystem.
927 * We start zeroing caller-saved registers throughout, since
928 * that will save some cycles if this turns out to be a syscall.
929 */
930.Lrestore_regs:
931 FEEDBACK_REENTER(interrupt_return) /* called from elsewhere */
932
933 /*
934 * Rotate so we have one high bit and one low bit to test.
935 * - low bit says whether to restore all the callee-saved registers,
936 * or just r30-r33, and r52 up.
937 * - high bit (i.e. sign bit) says whether to restore all the
938 * caller-saved registers, or just r0.
939 */
940#if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
941# error Rotate trick does not work :-)
942#endif
943 {
944 rli r20, r32, 30
945 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
946 }
947
948 /*
949 * Load cache lines 0, 2, and 3 in that order, then use
950 * the last loaded value, which makes it likely that the other
951 * cache lines have also loaded, at which point we should be
952 * able to safely read all the remaining words on those cache
953 * lines without waiting for the memory subsystem.
954 */
ba00376b 955 pop_reg_zero r0, r28, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
867e359b
CM
956 pop_reg_zero r30, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(30)
957 pop_reg_zero r21, r3, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
958 pop_reg_zero lr, r4, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_EX1
959 {
960 mtspr EX_CONTEXT_1_0, r21
961 move r5, zero
962 }
963 {
964 mtspr EX_CONTEXT_1_1, lr
965 andi lr, lr, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
966 }
967
968 /* Restore callee-saveds that we actually use. */
969 pop_reg_zero r52, r6, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_REG(52)
970 pop_reg_zero r31, r7
971 pop_reg_zero r32, r8
972 pop_reg_zero r33, r9, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
973
974 /*
975 * If we modified other callee-saveds, restore them now.
976 * This is rare, but could be via ptrace or signal handler.
977 */
978 {
979 move r10, zero
980 bbs r20, .Lrestore_callees
981 }
982.Lcontinue_restore_regs:
983
984 /* Check if we're returning from a syscall. */
985 {
986 move r11, zero
987 blzt r20, 1f /* no, so go restore callee-save registers */
988 }
989
990 /*
991 * Check if we're returning to userspace.
992 * Note that if we're not, we don't worry about zeroing everything.
993 */
994 {
995 addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
996 bnz lr, .Lkernel_return
997 }
998
999 /*
1000 * On return from syscall, we've restored r0 from pt_regs, but we
1001 * clear the remainder of the caller-saved registers. We could
1002 * restore the syscall arguments, but there's not much point,
1003 * and it ensures user programs aren't trying to use the
1004 * caller-saves if we clear them, as well as avoiding leaking
1005 * kernel pointers into userspace.
1006 */
1007 pop_reg_zero lr, r12, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1008 pop_reg_zero tp, r13, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1009 {
1010 lw sp, sp
1011 move r14, zero
1012 move r15, zero
1013 }
1014 { move r16, zero; move r17, zero }
1015 { move r18, zero; move r19, zero }
1016 { move r20, zero; move r21, zero }
1017 { move r22, zero; move r23, zero }
1018 { move r24, zero; move r25, zero }
1019 { move r26, zero; move r27, zero }
ba00376b
CM
1020
1021 /* Set r1 to errno if we are returning an error, otherwise zero. */
1022 {
1023 moveli r29, 1024
1024 sub r1, zero, r0
1025 }
1026 slt_u r29, r1, r29
1027 {
1028 mnz r1, r29, r1
1029 move r29, zero
1030 }
867e359b
CM
1031 iret
1032
1033 /*
1034 * Not a syscall, so restore caller-saved registers.
1035 * First kick off a load for cache line 1, which we're touching
1036 * for the first time here.
1037 */
1038 .align 64
10391: pop_reg r29, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(29)
1040 pop_reg r1
1041 pop_reg r2
1042 pop_reg r3
1043 pop_reg r4
1044 pop_reg r5
1045 pop_reg r6
1046 pop_reg r7
1047 pop_reg r8
1048 pop_reg r9
1049 pop_reg r10
1050 pop_reg r11
1051 pop_reg r12
1052 pop_reg r13
1053 pop_reg r14
1054 pop_reg r15
1055 pop_reg r16
1056 pop_reg r17
1057 pop_reg r18
1058 pop_reg r19
1059 pop_reg r20
1060 pop_reg r21
1061 pop_reg r22
1062 pop_reg r23
1063 pop_reg r24
1064 pop_reg r25
1065 pop_reg r26
1066 pop_reg r27
1067 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1068 /* r29 already restored above */
1069 bnz lr, .Lkernel_return
1070 pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1071 pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1072 lw sp, sp
1073 iret
1074
1075 /*
1076 * We can't restore tp when in kernel mode, since a thread might
1077 * have migrated from another cpu and brought a stale tp value.
1078 */
1079.Lkernel_return:
1080 pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1081 lw sp, sp
1082 iret
1083
1084 /* Restore callee-saved registers from r34 to r51. */
1085.Lrestore_callees:
1086 addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1087 pop_reg r34
1088 pop_reg r35
1089 pop_reg r36
1090 pop_reg r37
1091 pop_reg r38
1092 pop_reg r39
1093 pop_reg r40
1094 pop_reg r41
1095 pop_reg r42
1096 pop_reg r43
1097 pop_reg r44
1098 pop_reg r45
1099 pop_reg r46
1100 pop_reg r47
1101 pop_reg r48
1102 pop_reg r49
1103 pop_reg r50
1104 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1105 j .Lcontinue_restore_regs
1106
1107.Lwork_pending:
1108 /* Mask the reschedule flag */
1109 andi r28, r29, _TIF_NEED_RESCHED
1110
1111 {
1112 /*
1113 * If the NEED_RESCHED flag is called, we call schedule(), which
1114 * may drop this context right here and go do something else.
1115 * On return, jump back to .Lresume_userspace and recheck.
1116 */
1117 bz r28, .Lasync_tlb
1118
1119 /* Mask the async-tlb flag */
1120 andi r28, r29, _TIF_ASYNC_TLB
1121 }
1122
1123 jal schedule
1124 FEEDBACK_REENTER(interrupt_return)
1125
1126 /* Reload the flags and check again */
1127 j .Lresume_userspace
1128
1129.Lasync_tlb:
1130 {
1131 bz r28, .Lneed_sigpending
1132
1133 /* Mask the sigpending flag */
1134 andi r28, r29, _TIF_SIGPENDING
1135 }
1136
1137 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1138 jal do_async_page_fault
1139 FEEDBACK_REENTER(interrupt_return)
1140
1141 /*
1142 * Go restart the "resume userspace" process. We may have
1143 * fired a signal, and we need to disable interrupts again.
1144 */
1145 j .Lresume_userspace
1146
1147.Lneed_sigpending:
1148 /*
1149 * At this point we are either doing signal handling or single-step,
1150 * so either way make sure we have all the registers saved.
1151 */
1152 push_extra_callee_saves r0
1153
1154 {
1155 /* If no signal pending, skip to singlestep check */
1156 bz r28, .Lneed_singlestep
1157
1158 /* Mask the singlestep flag */
1159 andi r28, r29, _TIF_SINGLESTEP
1160 }
1161
1162 jal do_signal
1163 FEEDBACK_REENTER(interrupt_return)
1164
1165 /* Reload the flags and check again */
1166 j .Lresume_userspace
1167
1168.Lneed_singlestep:
1169 {
1170 /* Get a pointer to the EX1 field */
1171 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
1172
1173 /* If we get here, our bit must be set. */
1174 bz r28, .Lwork_confusion
1175 }
1176 /* If we are in priv mode, don't single step */
1177 lw r28, r29
1178 andi r28, r28, SPR_EX_CONTEXT_1_1__PL_MASK /* mask off ICS */
1179 bnz r28, .Lrestore_all
1180
1181 /* Allow interrupts within the single step code */
1182 TRACE_IRQS_ON /* Note: clobbers registers r0-r29 */
1183 IRQ_ENABLE(r20, r21)
1184
1185 /* try to single-step the current instruction */
1186 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1187 jal single_step_once
1188 FEEDBACK_REENTER(interrupt_return)
1189
1190 /* Re-disable interrupts. TRACE_IRQS_OFF in .Lrestore_all. */
1191 IRQ_DISABLE(r20,r21)
1192
1193 j .Lrestore_all
1194
1195.Lwork_confusion:
1196 move r0, r28
1197 panic "thread_info allwork flags unhandled on userspace resume: %#x"
1198
1199 STD_ENDPROC(interrupt_return)
1200
1201 /*
1202 * This interrupt variant clears the INT_INTCTRL_1 interrupt mask bit
1203 * before returning, so we can properly get more downcalls.
1204 */
1205 .pushsection .text.handle_interrupt_downcall,"ax"
1206handle_interrupt_downcall:
1207 finish_interrupt_save handle_interrupt_downcall
1208 check_single_stepping normal, .Ldispatch_downcall
1209.Ldispatch_downcall:
1210
1211 /* Clear INTCTRL_1 from the set of interrupts we ever enable. */
1212 GET_INTERRUPTS_ENABLED_MASK_PTR(r30)
1213 {
1214 addi r30, r30, 4
1215 movei r31, INT_MASK(INT_INTCTRL_1)
1216 }
1217 {
1218 lw r20, r30
1219 nor r21, r31, zero
1220 }
1221 and r20, r20, r21
1222 sw r30, r20
1223
1224 {
1225 jalr r0
1226 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1227 }
1228 FEEDBACK_REENTER(handle_interrupt_downcall)
1229
1230 /* Allow INTCTRL_1 to be enabled next time we enable interrupts. */
1231 lw r20, r30
1232 or r20, r20, r31
1233 sw r30, r20
1234
1235 {
1236 movei r30, 0 /* not an NMI */
1237 j interrupt_return
1238 }
1239 STD_ENDPROC(handle_interrupt_downcall)
1240
1241 /*
1242 * Some interrupts don't check for single stepping
1243 */
1244 .pushsection .text.handle_interrupt_no_single_step,"ax"
1245handle_interrupt_no_single_step:
1246 finish_interrupt_save handle_interrupt_no_single_step
1247 {
1248 jalr r0
1249 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1250 }
1251 FEEDBACK_REENTER(handle_interrupt_no_single_step)
1252 {
1253 movei r30, 0 /* not an NMI */
1254 j interrupt_return
1255 }
1256 STD_ENDPROC(handle_interrupt_no_single_step)
1257
1258 /*
1259 * "NMI" interrupts mask ALL interrupts before calling the
1260 * handler, and don't check thread flags, etc., on the way
1261 * back out. In general, the only things we do here for NMIs
1262 * are the register save/restore, fixing the PC if we were
1263 * doing single step, and the dataplane kernel-TLB management.
1264 * We don't (for example) deal with start/stop of the sched tick.
1265 */
1266 .pushsection .text.handle_nmi,"ax"
1267handle_nmi:
1268 finish_interrupt_save handle_nmi
1269 check_single_stepping normal, .Ldispatch_nmi
1270.Ldispatch_nmi:
1271 {
1272 jalr r0
1273 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1274 }
1275 FEEDBACK_REENTER(handle_nmi)
1276 j interrupt_return
1277 STD_ENDPROC(handle_nmi)
1278
1279 /*
1280 * Parallel code for syscalls to handle_interrupt.
1281 */
1282 .pushsection .text.handle_syscall,"ax"
1283handle_syscall:
1284 finish_interrupt_save handle_syscall
1285
1286 /*
1287 * Check for if we are single stepping in user level. If so, then
1288 * we need to restore the PC.
1289 */
1290 check_single_stepping syscall, .Ldispatch_syscall
1291.Ldispatch_syscall:
1292
1293 /* Enable irqs. */
1294 TRACE_IRQS_ON
1295 IRQ_ENABLE(r20, r21)
1296
1297 /* Bump the counter for syscalls made on this tile. */
1298 moveli r20, lo16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1299 auli r20, r20, ha16(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1300 add r20, r20, tp
1301 lw r21, r20
1302 addi r21, r21, 1
1303 sw r20, r21
1304
1305 /* Trace syscalls, if requested. */
1306 GET_THREAD_INFO(r31)
1307 addi r31, r31, THREAD_INFO_FLAGS_OFFSET
1308 lw r30, r31
1309 andi r30, r30, _TIF_SYSCALL_TRACE
1310 bzt r30, .Lrestore_syscall_regs
1311 jal do_syscall_trace
1312 FEEDBACK_REENTER(handle_syscall)
1313
1314 /*
1315 * We always reload our registers from the stack at this
1316 * point. They might be valid, if we didn't build with
1317 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1318 * doing syscall tracing, but there are enough cases now that it
1319 * seems simplest just to do the reload unconditionally.
1320 */
1321.Lrestore_syscall_regs:
1322 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1323 pop_reg r0, r11
1324 pop_reg r1, r11
1325 pop_reg r2, r11
1326 pop_reg r3, r11
1327 pop_reg r4, r11
1328 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1329 pop_reg TREG_SYSCALL_NR_NAME, r11
1330
1331 /* Ensure that the syscall number is within the legal range. */
1332 moveli r21, __NR_syscalls
1333 {
1334 slt_u r21, TREG_SYSCALL_NR_NAME, r21
1335 moveli r20, lo16(sys_call_table)
1336 }
1337 {
1338 bbns r21, .Linvalid_syscall
1339 auli r20, r20, ha16(sys_call_table)
1340 }
1341 s2a r20, TREG_SYSCALL_NR_NAME, r20
1342 lw r20, r20
1343
1344 /* Jump to syscall handler. */
1345 jalr r20; .Lhandle_syscall_link:
1346 FEEDBACK_REENTER(handle_syscall)
1347
1348 /*
1349 * Write our r0 onto the stack so it gets restored instead
1350 * of whatever the user had there before.
1351 */
1352 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1353 sw r29, r0
1354
1355 /* Do syscall trace again, if requested. */
1356 lw r30, r31
1357 andi r30, r30, _TIF_SYSCALL_TRACE
1358 bzt r30, 1f
1359 jal do_syscall_trace
1360 FEEDBACK_REENTER(handle_syscall)
13611: j .Lresume_userspace /* jump into middle of interrupt_return */
1362
1363.Linvalid_syscall:
1364 /* Report an invalid syscall back to the user program */
1365 {
1366 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1367 movei r28, -ENOSYS
1368 }
1369 sw r29, r28
1370 j .Lresume_userspace /* jump into middle of interrupt_return */
1371 STD_ENDPROC(handle_syscall)
1372
1373 /* Return the address for oprofile to suppress in backtraces. */
1374STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1375 lnk r0
1376 {
1377 addli r0, r0, .Lhandle_syscall_link - .
1378 jrp lr
1379 }
1380 STD_ENDPROC(handle_syscall_link_address)
1381
1382STD_ENTRY(ret_from_fork)
1383 jal sim_notify_fork
1384 jal schedule_tail
1385 FEEDBACK_REENTER(ret_from_fork)
1386 j .Lresume_userspace /* jump into middle of interrupt_return */
1387 STD_ENDPROC(ret_from_fork)
1388
1389 /*
1390 * Code for ill interrupt.
1391 */
1392 .pushsection .text.handle_ill,"ax"
1393handle_ill:
1394 finish_interrupt_save handle_ill
1395
1396 /*
1397 * Check for if we are single stepping in user level. If so, then
1398 * we need to restore the PC.
1399 */
1400 check_single_stepping ill, .Ldispatch_normal_ill
1401
1402 {
1403 /* See if the PC is the 1st bundle in the buffer */
1404 seq r25, r27, r26
1405
1406 /* Point to the 2nd bundle in the buffer */
1407 addi r26, r26, 8
1408 }
1409 {
1410 /* Point to the original pc */
1411 addi r24, r29, SINGLESTEP_STATE_ORIG_PC_OFFSET
1412
1413 /* Branch if the PC is the 1st bundle in the buffer */
1414 bnz r25, 3f
1415 }
1416 {
1417 /* See if the PC is the 2nd bundle of the buffer */
1418 seq r25, r27, r26
1419
1420 /* Set PC to next instruction */
1421 addi r24, r29, SINGLESTEP_STATE_NEXT_PC_OFFSET
1422 }
1423 {
1424 /* Point to flags */
1425 addi r25, r29, SINGLESTEP_STATE_FLAGS_OFFSET
1426
1427 /* Branch if PC is in the second bundle */
1428 bz r25, 2f
1429 }
1430 /* Load flags */
1431 lw r25, r25
1432 {
1433 /*
1434 * Get the offset for the register to restore
1435 * Note: the lower bound is 2, so we have implicit scaling by 4.
1436 * No multiplication of the register number by the size of a register
1437 * is needed.
1438 */
1439 mm r27, r25, zero, SINGLESTEP_STATE_TARGET_LB, \
1440 SINGLESTEP_STATE_TARGET_UB
1441
1442 /* Mask Rewrite_LR */
1443 andi r25, r25, SINGLESTEP_STATE_MASK_UPDATE
1444 }
1445 {
1446 addi r29, r29, SINGLESTEP_STATE_UPDATE_VALUE_OFFSET
1447
1448 /* Don't rewrite temp register */
1449 bz r25, 3f
1450 }
1451 {
1452 /* Get the temp value */
1453 lw r29, r29
1454
1455 /* Point to where the register is stored */
1456 add r27, r27, sp
1457 }
1458
1459 /* Add in the C ABI save area size to the register offset */
1460 addi r27, r27, C_ABI_SAVE_AREA_SIZE
1461
1462 /* Restore the user's register with the temp value */
1463 sw r27, r29
1464 j 3f
1465
14662:
1467 /* Must be in the third bundle */
1468 addi r24, r29, SINGLESTEP_STATE_BRANCH_NEXT_PC_OFFSET
1469
14703:
1471 /* set PC and continue */
1472 lw r26, r24
1473 sw r28, r26
1474
1475 /* Clear TIF_SINGLESTEP */
1476 GET_THREAD_INFO(r0)
1477
1478 addi r1, r0, THREAD_INFO_FLAGS_OFFSET
1479 {
1480 lw r2, r1
1481 addi r0, r0, THREAD_INFO_TASK_OFFSET /* currently a no-op */
1482 }
1483 andi r2, r2, ~_TIF_SINGLESTEP
1484 sw r1, r2
1485
1486 /* Issue a sigtrap */
1487 {
1488 lw r0, r0 /* indirect thru thread_info to get task_info*/
1489 addi r1, sp, C_ABI_SAVE_AREA_SIZE /* put ptregs pointer into r1 */
1490 move r2, zero /* load error code into r2 */
1491 }
1492
1493 jal send_sigtrap /* issue a SIGTRAP */
1494 FEEDBACK_REENTER(handle_ill)
1495 j .Lresume_userspace /* jump into middle of interrupt_return */
1496
1497.Ldispatch_normal_ill:
1498 {
1499 jalr r0
1500 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1501 }
1502 FEEDBACK_REENTER(handle_ill)
1503 {
1504 movei r30, 0 /* not an NMI */
1505 j interrupt_return
1506 }
1507 STD_ENDPROC(handle_ill)
1508
867e359b
CM
1509/* Various stub interrupt handlers and syscall handlers */
1510
1511STD_ENTRY_LOCAL(_kernel_double_fault)
1512 mfspr r1, EX_CONTEXT_1_0
1513 move r2, lr
1514 move r3, sp
1515 move r4, r52
1516 addi sp, sp, -C_ABI_SAVE_AREA_SIZE
1517 j kernel_double_fault
1518 STD_ENDPROC(_kernel_double_fault)
1519
1520STD_ENTRY_LOCAL(bad_intr)
1521 mfspr r2, EX_CONTEXT_1_0
1522 panic "Unhandled interrupt %#x: PC %#lx"
1523 STD_ENDPROC(bad_intr)
1524
1525/* Put address of pt_regs in reg and jump. */
1526#define PTREGS_SYSCALL(x, reg) \
1527 STD_ENTRY(x); \
1528 { \
1529 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1530 j _##x \
1531 }; \
1532 STD_ENDPROC(x)
1533
1534PTREGS_SYSCALL(sys_execve, r3)
1535PTREGS_SYSCALL(sys_sigaltstack, r2)
1536PTREGS_SYSCALL(sys_rt_sigreturn, r0)
1537
1538/* Save additional callee-saves to pt_regs, put address in reg and jump. */
1539#define PTREGS_SYSCALL_ALL_REGS(x, reg) \
1540 STD_ENTRY(x); \
1541 push_extra_callee_saves reg; \
1542 j _##x; \
1543 STD_ENDPROC(x)
1544
1545PTREGS_SYSCALL_ALL_REGS(sys_fork, r0)
1546PTREGS_SYSCALL_ALL_REGS(sys_vfork, r0)
1547PTREGS_SYSCALL_ALL_REGS(sys_clone, r4)
1548PTREGS_SYSCALL_ALL_REGS(sys_cmpxchg_badaddr, r1)
1549
1550/*
1551 * This entrypoint is taken for the cmpxchg and atomic_update fast
1552 * swints. We may wish to generalize it to other fast swints at some
1553 * point, but for now there are just two very similar ones, which
1554 * makes it faster.
1555 *
1556 * The fast swint code is designed to have a small footprint. It does
1557 * not save or restore any GPRs, counting on the caller-save registers
1558 * to be available to it on entry. It does not modify any callee-save
1559 * registers (including "lr"). It does not check what PL it is being
1560 * called at, so you'd better not call it other than at PL0.
1561 *
1562 * It does not use the stack, but since it might be re-interrupted by
1563 * a page fault which would assume the stack was valid, it does
1564 * save/restore the stack pointer and zero it out to make sure it gets reset.
1565 * Since we always keep interrupts disabled, the hypervisor won't
1566 * clobber our EX_CONTEXT_1_x registers, so we don't save/restore them
1567 * (other than to advance the PC on return).
1568 *
1569 * We have to manually validate the user vs kernel address range
1570 * (since at PL1 we can read/write both), and for performance reasons
1571 * we don't allow cmpxchg on the fc000000 memory region, since we only
1572 * validate that the user address is below PAGE_OFFSET.
1573 *
1574 * We place it in the __HEAD section to ensure it is relatively
1575 * near to the intvec_SWINT_1 code (reachable by a conditional branch).
1576 *
1577 * Must match register usage in do_page_fault().
1578 */
1579 __HEAD
1580 .align 64
1581 /* Align much later jump on the start of a cache line. */
1582#if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
1583 nop; nop
1584#endif
1585ENTRY(sys_cmpxchg)
1586
1587 /*
1588 * Save "sp" and set it zero for any possible page fault.
1589 *
1590 * HACK: We want to both zero sp and check r0's alignment,
1591 * so we do both at once. If "sp" becomes nonzero we
1592 * know r0 is unaligned and branch to the error handler that
1593 * restores sp, so this is OK.
1594 *
1595 * ICS is disabled right now so having a garbage but nonzero
1596 * sp is OK, since we won't execute any faulting instructions
1597 * when it is nonzero.
1598 */
1599 {
1600 move r27, sp
1601 andi sp, r0, 3
1602 }
1603
1604 /*
1605 * Get the lock address in ATOMIC_LOCK_REG, and also validate that the
1606 * address is less than PAGE_OFFSET, since that won't trap at PL1.
1607 * We only use bits less than PAGE_SHIFT to avoid having to worry
1608 * about aliasing among multiple mappings of the same physical page,
1609 * and we ignore the low 3 bits so we have one lock that covers
1610 * both a cmpxchg64() and a cmpxchg() on either its low or high word.
1611 * NOTE: this code must match __atomic_hashed_lock() in lib/atomic.c.
1612 */
1613
1614#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1615 {
1616 /* Check for unaligned input. */
1617 bnz sp, .Lcmpxchg_badaddr
1618 mm r25, r0, zero, 3, PAGE_SHIFT-1
1619 }
1620 {
1621 crc32_32 r25, zero, r25
1622 moveli r21, lo16(atomic_lock_ptr)
1623 }
1624 {
1625 auli r21, r21, ha16(atomic_lock_ptr)
1626 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1627 }
1628 {
1629 shri r20, r25, 32 - ATOMIC_HASH_L1_SHIFT
1630 slt_u r23, r0, r23
1631
1632 /*
1633 * Ensure that the TLB is loaded before we take out the lock.
1634 * On TILEPro, this will start fetching the value all the way
1635 * into our L1 as well (and if it gets modified before we
1636 * grab the lock, it will be invalidated from our cache
1637 * before we reload it). On tile64, we'll start fetching it
1638 * into our L1 if we're the home, and if we're not, we'll
1639 * still at least start fetching it into the home's L2.
1640 */
1641 lw r26, r0
1642 }
1643 {
1644 s2a r21, r20, r21
1645 bbns r23, .Lcmpxchg_badaddr
1646 }
1647 {
1648 lw r21, r21
1649 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1650 andi r25, r25, ATOMIC_HASH_L2_SIZE - 1
1651 }
1652 {
1653 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1654 bbs r23, .Lcmpxchg64
1655 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1656 }
1657
1658 {
1659 /*
1660 * We very carefully align the code that actually runs with
1661 * the lock held (nine bundles) so that we know it is all in
1662 * the icache when we start. This instruction (the jump) is
1663 * at the start of the first cache line, address zero mod 64;
1664 * we jump to somewhere in the second cache line to issue the
1665 * tns, then jump back to finish up.
1666 */
1667 s2a ATOMIC_LOCK_REG_NAME, r25, r21
1668 j .Lcmpxchg32_tns
1669 }
1670
1671#else /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1672 {
1673 /* Check for unaligned input. */
1674 bnz sp, .Lcmpxchg_badaddr
1675 auli r23, zero, hi16(PAGE_OFFSET) /* hugepage-aligned */
1676 }
1677 {
1678 /*
1679 * Slide bits into position for 'mm'. We want to ignore
1680 * the low 3 bits of r0, and consider only the next
1681 * ATOMIC_HASH_SHIFT bits.
1682 * Because of C pointer arithmetic, we want to compute this:
1683 *
1684 * ((char*)atomic_locks +
1685 * (((r0 >> 3) & (1 << (ATOMIC_HASH_SIZE - 1))) << 2))
1686 *
1687 * Instead of two shifts we just ">> 1", and use 'mm'
1688 * to ignore the low and high bits we don't want.
1689 */
1690 shri r25, r0, 1
1691
1692 slt_u r23, r0, r23
1693
1694 /*
1695 * Ensure that the TLB is loaded before we take out the lock.
1696 * On tilepro, this will start fetching the value all the way
1697 * into our L1 as well (and if it gets modified before we
1698 * grab the lock, it will be invalidated from our cache
1699 * before we reload it). On tile64, we'll start fetching it
1700 * into our L1 if we're the home, and if we're not, we'll
1701 * still at least start fetching it into the home's L2.
1702 */
1703 lw r26, r0
1704 }
1705 {
1706 /* atomic_locks is page aligned so this suffices to get its addr. */
1707 auli r21, zero, hi16(atomic_locks)
1708
1709 bbns r23, .Lcmpxchg_badaddr
1710 }
1711 {
1712 /*
1713 * Insert the hash bits into the page-aligned pointer.
1714 * ATOMIC_HASH_SHIFT is so big that we don't actually hash
1715 * the unmasked address bits, as that may cause unnecessary
1716 * collisions.
1717 */
1718 mm ATOMIC_LOCK_REG_NAME, r25, r21, 2, (ATOMIC_HASH_SHIFT + 2) - 1
1719
1720 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_cmpxchg64
1721 }
1722 {
1723 /* Branch away at this point if we're doing a 64-bit cmpxchg. */
1724 bbs r23, .Lcmpxchg64
1725 andi r23, r0, 7 /* Precompute alignment for cmpxchg64. */
1726 }
1727 {
1728 /*
1729 * We very carefully align the code that actually runs with
1730 * the lock held (nine bundles) so that we know it is all in
1731 * the icache when we start. This instruction (the jump) is
1732 * at the start of the first cache line, address zero mod 64;
1733 * we jump to somewhere in the second cache line to issue the
1734 * tns, then jump back to finish up.
1735 */
1736 j .Lcmpxchg32_tns
1737 }
1738
1739#endif /* ATOMIC_LOCKS_FOUND_VIA_TABLE() */
1740
1741 ENTRY(__sys_cmpxchg_grab_lock)
1742
1743 /*
1744 * Perform the actual cmpxchg or atomic_update.
1745 * Note that __futex_mark_unlocked() in uClibc relies on
1746 * atomic_update() to always perform an "mf", so don't make
1747 * it optional or conditional without modifying that code.
1748 */
1749.Ldo_cmpxchg32:
1750 {
1751 lw r21, r0
1752 seqi r23, TREG_SYSCALL_NR_NAME, __NR_FAST_atomic_update
1753 move r24, r2
1754 }
1755 {
1756 seq r22, r21, r1 /* See if cmpxchg matches. */
1757 and r25, r21, r1 /* If atomic_update, compute (*mem & mask) */
1758 }
1759 {
1760 or r22, r22, r23 /* Skip compare branch for atomic_update. */
1761 add r25, r25, r2 /* Compute (*mem & mask) + addend. */
1762 }
1763 {
1764 mvnz r24, r23, r25 /* Use atomic_update value if appropriate. */
1765 bbns r22, .Lcmpxchg32_mismatch
1766 }
1767 sw r0, r24
1768
1769 /* Do slow mtspr here so the following "mf" waits less. */
1770 {
1771 move sp, r27
1772 mtspr EX_CONTEXT_1_0, r28
1773 }
1774 mf
1775
1776 /* The following instruction is the start of the second cache line. */
1777 {
1778 move r0, r21
1779 sw ATOMIC_LOCK_REG_NAME, zero
1780 }
1781 iret
1782
1783 /* Duplicated code here in the case where we don't overlap "mf" */
1784.Lcmpxchg32_mismatch:
1785 {
1786 move r0, r21
1787 sw ATOMIC_LOCK_REG_NAME, zero
1788 }
1789 {
1790 move sp, r27
1791 mtspr EX_CONTEXT_1_0, r28
1792 }
1793 iret
1794
1795 /*
1796 * The locking code is the same for 32-bit cmpxchg/atomic_update,
1797 * and for 64-bit cmpxchg. We provide it as a macro and put
1798 * it into both versions. We can't share the code literally
1799 * since it depends on having the right branch-back address.
1800 * Note that the first few instructions should share the cache
1801 * line with the second half of the actual locked code.
1802 */
1803 .macro cmpxchg_lock, bitwidth
1804
1805 /* Lock; if we succeed, jump back up to the read-modify-write. */
1806#ifdef CONFIG_SMP
1807 tns r21, ATOMIC_LOCK_REG_NAME
1808#else
1809 /*
1810 * Non-SMP preserves all the lock infrastructure, to keep the
1811 * code simpler for the interesting (SMP) case. However, we do
1812 * one small optimization here and in atomic_asm.S, which is
1813 * to fake out acquiring the actual lock in the atomic_lock table.
1814 */
1815 movei r21, 0
1816#endif
1817
1818 /* Issue the slow SPR here while the tns result is in flight. */
1819 mfspr r28, EX_CONTEXT_1_0
1820
1821 {
1822 addi r28, r28, 8 /* return to the instruction after the swint1 */
1823 bzt r21, .Ldo_cmpxchg\bitwidth
1824 }
1825 /*
1826 * The preceding instruction is the last thing that must be
1827 * on the second cache line.
1828 */
1829
1830#ifdef CONFIG_SMP
1831 /*
1832 * We failed to acquire the tns lock on our first try. Now use
1833 * bounded exponential backoff to retry, like __atomic_spinlock().
1834 */
1835 {
1836 moveli r23, 2048 /* maximum backoff time in cycles */
1837 moveli r25, 32 /* starting backoff time in cycles */
1838 }
18391: mfspr r26, CYCLE_LOW /* get start point for this backoff */
18402: mfspr r22, CYCLE_LOW /* test to see if we've backed off enough */
1841 sub r22, r22, r26
1842 slt r22, r22, r25
1843 bbst r22, 2b
1844 {
1845 shli r25, r25, 1 /* double the backoff; retry the tns */
1846 tns r21, ATOMIC_LOCK_REG_NAME
1847 }
1848 slt r26, r23, r25 /* is the proposed backoff too big? */
1849 {
1850 mvnz r25, r26, r23
1851 bzt r21, .Ldo_cmpxchg\bitwidth
1852 }
1853 j 1b
1854#endif /* CONFIG_SMP */
1855 .endm
1856
1857.Lcmpxchg32_tns:
1858 cmpxchg_lock 32
1859
1860 /*
1861 * This code is invoked from sys_cmpxchg after most of the
1862 * preconditions have been checked. We still need to check
1863 * that r0 is 8-byte aligned, since if it's not we won't
1864 * actually be atomic. However, ATOMIC_LOCK_REG has the atomic
1865 * lock pointer and r27/r28 have the saved SP/PC.
1866 * r23 is holding "r0 & 7" so we can test for alignment.
1867 * The compare value is in r2/r3; the new value is in r4/r5.
1868 * On return, we must put the old value in r0/r1.
1869 */
1870 .align 64
1871.Lcmpxchg64:
1872 {
1873#if ATOMIC_LOCKS_FOUND_VIA_TABLE()
1874 s2a ATOMIC_LOCK_REG_NAME, r25, r21
1875#endif
1876 bzt r23, .Lcmpxchg64_tns
1877 }
1878 j .Lcmpxchg_badaddr
1879
1880.Ldo_cmpxchg64:
1881 {
1882 lw r21, r0
1883 addi r25, r0, 4
1884 }
1885 {
1886 lw r1, r25
1887 }
1888 seq r26, r21, r2
1889 {
1890 bz r26, .Lcmpxchg64_mismatch
1891 seq r26, r1, r3
1892 }
1893 {
1894 bz r26, .Lcmpxchg64_mismatch
1895 }
1896 sw r0, r4
1897 sw r25, r5
1898
1899 /*
1900 * The 32-bit path provides optimized "match" and "mismatch"
1901 * iret paths, but we don't have enough bundles in this cache line
1902 * to do that, so we just make even the "mismatch" path do an "mf".
1903 */
1904.Lcmpxchg64_mismatch:
1905 {
1906 move sp, r27
1907 mtspr EX_CONTEXT_1_0, r28
1908 }
1909 mf
1910 {
1911 move r0, r21
1912 sw ATOMIC_LOCK_REG_NAME, zero
1913 }
1914 iret
1915
1916.Lcmpxchg64_tns:
1917 cmpxchg_lock 64
1918
1919
1920 /*
1921 * Reset sp and revector to sys_cmpxchg_badaddr(), which will
1922 * just raise the appropriate signal and exit. Doing it this
1923 * way means we don't have to duplicate the code in intvec.S's
1924 * int_hand macro that locates the top of the stack.
1925 */
1926.Lcmpxchg_badaddr:
1927 {
1928 moveli TREG_SYSCALL_NR_NAME, __NR_cmpxchg_badaddr
1929 move sp, r27
1930 }
1931 j intvec_SWINT_1
1932 ENDPROC(sys_cmpxchg)
1933 ENTRY(__sys_cmpxchg_end)
1934
1935
1936/* The single-step support may need to read all the registers. */
1937int_unalign:
1938 push_extra_callee_saves r0
1939 j do_trap
1940
1941/* Include .intrpt1 array of interrupt vectors */
1942 .section ".intrpt1", "ax"
1943
1944#define op_handle_perf_interrupt bad_intr
1945#define op_handle_aux_perf_interrupt bad_intr
1946
9f9c0382 1947#ifndef CONFIG_HARDWALL
867e359b 1948#define do_hardwall_trap bad_intr
9f9c0382 1949#endif
867e359b
CM
1950
1951 int_hand INT_ITLB_MISS, ITLB_MISS, \
1952 do_page_fault, handle_interrupt_no_single_step
1953 int_hand INT_MEM_ERROR, MEM_ERROR, bad_intr
1954 int_hand INT_ILL, ILL, do_trap, handle_ill
1955 int_hand INT_GPV, GPV, do_trap
1956 int_hand INT_SN_ACCESS, SN_ACCESS, do_trap
1957 int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
1958 int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
1959 int_hand INT_IDN_REFILL, IDN_REFILL, bad_intr
1960 int_hand INT_UDN_REFILL, UDN_REFILL, bad_intr
1961 int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1962 int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1963 int_hand INT_SWINT_3, SWINT_3, do_trap
1964 int_hand INT_SWINT_2, SWINT_2, do_trap
1965 int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1966 int_hand INT_SWINT_0, SWINT_0, do_trap
1967 int_hand INT_UNALIGN_DATA, UNALIGN_DATA, int_unalign
1968 int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
1969 int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1970 int_hand INT_DMATLB_MISS, DMATLB_MISS, do_page_fault
1971 int_hand INT_DMATLB_ACCESS, DMATLB_ACCESS, do_page_fault
1972 int_hand INT_SNITLB_MISS, SNITLB_MISS, do_page_fault
1973 int_hand INT_SN_NOTIFY, SN_NOTIFY, bad_intr
1974 int_hand INT_SN_FIREWALL, SN_FIREWALL, do_hardwall_trap
1975 int_hand INT_IDN_FIREWALL, IDN_FIREWALL, bad_intr
1976 int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1977 int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1978 int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
1979 int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
1980 int_hand INT_DMA_NOTIFY, DMA_NOTIFY, bad_intr
1981 int_hand INT_IDN_CA, IDN_CA, bad_intr
1982 int_hand INT_UDN_CA, UDN_CA, bad_intr
1983 int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1984 int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1985 int_hand INT_PERF_COUNT, PERF_COUNT, \
1986 op_handle_perf_interrupt, handle_nmi
1987 int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
1988 int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
1989 dc_dispatch INT_INTCTRL_1, INTCTRL_1
1990 int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
1991 int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1992 hv_message_intr, handle_interrupt_downcall
1993 int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, \
1994 tile_dev_intr, handle_interrupt_downcall
1995 int_hand INT_I_ASID, I_ASID, bad_intr
1996 int_hand INT_D_ASID, D_ASID, bad_intr
1997 int_hand INT_DMATLB_MISS_DWNCL, DMATLB_MISS_DWNCL, \
1998 do_page_fault, handle_interrupt_downcall
1999 int_hand INT_SNITLB_MISS_DWNCL, SNITLB_MISS_DWNCL, \
2000 do_page_fault, handle_interrupt_downcall
2001 int_hand INT_DMATLB_ACCESS_DWNCL, DMATLB_ACCESS_DWNCL, \
2002 do_page_fault, handle_interrupt_downcall
2003 int_hand INT_SN_CPL, SN_CPL, bad_intr
2004 int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
2005#if CHIP_HAS_AUX_PERF_COUNTERS()
2006 int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
2007 op_handle_aux_perf_interrupt, handle_nmi
2008#endif
2009
2010 /* Synthetic interrupt delivered only by the simulator */
2011 int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint