]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/sparc64/kernel/smp.c
[PATCH] more for_each_cpu() conversions
[net-next-2.6.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
1da177e4 42
1da177e4
LT
43extern void calibrate_delay(void);
44
45/* Please don't make this stuff initdata!!! --DaveM */
46static unsigned char boot_cpu_id;
47
c12a8289
AM
48cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
50cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
51 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
1da177e4
LT
52static cpumask_t smp_commenced_mask;
53static cpumask_t cpu_callout_map;
54
55void smp_info(struct seq_file *m)
56{
57 int i;
58
59 seq_printf(m, "State:\n");
394e3902
AM
60 for_each_online_cpu(i)
61 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
62}
63
64void smp_bogo(struct seq_file *m)
65{
66 int i;
67
394e3902
AM
68 for_each_online_cpu(i)
69 seq_printf(m,
70 "Cpu%dBogo\t: %lu.%02lu\n"
71 "Cpu%dClkTck\t: %016lx\n",
72 i, cpu_data(i).udelay_val / (500000/HZ),
73 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
74 i, cpu_data(i).clock_tick);
1da177e4
LT
75}
76
77void __init smp_store_cpu_info(int id)
78{
f03b8a54 79 int cpu_node, def;
1da177e4
LT
80
81 /* multiplier and counter set by
82 smp_setup_percpu_timer() */
83 cpu_data(id).udelay_val = loops_per_jiffy;
84
85 cpu_find_by_mid(id, &cpu_node);
86 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
87 "clock-frequency", 0);
88
f03b8a54 89 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
80dc0d6b 90 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
f03b8a54
DM
91 def);
92
93 def = 32;
80dc0d6b 94 cpu_data(id).dcache_line_size =
f03b8a54
DM
95 prom_getintdefault(cpu_node, "dcache-line-size", def);
96
97 def = 16 * 1024;
80dc0d6b 98 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
f03b8a54
DM
99 def);
100
101 def = 32;
80dc0d6b 102 cpu_data(id).icache_line_size =
f03b8a54
DM
103 prom_getintdefault(cpu_node, "icache-line-size", def);
104
105 def = ((tlb_type == hypervisor) ?
106 (3 * 1024 * 1024) :
107 (4 * 1024 * 1024));
80dc0d6b 108 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
f03b8a54
DM
109 def);
110
111 def = 64;
80dc0d6b 112 cpu_data(id).ecache_line_size =
f03b8a54
DM
113 prom_getintdefault(cpu_node, "ecache-line-size", def);
114
80dc0d6b
DM
115 printk("CPU[%d]: Caches "
116 "D[sz(%d):line_sz(%d)] "
117 "I[sz(%d):line_sz(%d)] "
118 "E[sz(%d):line_sz(%d)]\n",
119 id,
120 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
121 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
122 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
123}
124
125static void smp_setup_percpu_timer(void);
126
127static volatile unsigned long callin_flag = 0;
128
1da177e4
LT
129void __init smp_callin(void)
130{
131 int cpuid = hard_smp_processor_id();
132
56fb4df6 133 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 134
4a07e646 135 if (tlb_type == hypervisor)
490384e7 136 sun4v_ktsb_register();
481295f9 137
56fb4df6 138 __flush_tlb_all();
1da177e4
LT
139
140 smp_setup_percpu_timer();
141
816242da
DM
142 if (cheetah_pcache_forced_on)
143 cheetah_enable_pcache();
144
1da177e4
LT
145 local_irq_enable();
146
147 calibrate_delay();
148 smp_store_cpu_info(cpuid);
149 callin_flag = 1;
150 __asm__ __volatile__("membar #Sync\n\t"
151 "flush %%g6" : : : "memory");
152
153 /* Clear this or we will die instantly when we
154 * schedule back to this idler...
155 */
db7d9a4e 156 current_thread_info()->new_child = 0;
1da177e4
LT
157
158 /* Attach to the address space of init_task. */
159 atomic_inc(&init_mm.mm_count);
160 current->active_mm = &init_mm;
161
162 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 163 rmb();
1da177e4
LT
164
165 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
166
167 /* idle thread is expected to have preempt disabled */
168 preempt_disable();
1da177e4
LT
169}
170
171void cpu_panic(void)
172{
173 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
174 panic("SMP bolixed\n");
175}
176
d369ddd2 177static unsigned long current_tick_offset __read_mostly;
1da177e4
LT
178
179/* This tick register synchronization scheme is taken entirely from
180 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
181 *
182 * The only change I've made is to rework it so that the master
183 * initiates the synchonization instead of the slave. -DaveM
184 */
185
186#define MASTER 0
187#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
188
189#define NUM_ROUNDS 64 /* magic value */
190#define NUM_ITERS 5 /* likewise */
191
192static DEFINE_SPINLOCK(itc_sync_lock);
193static unsigned long go[SLAVE + 1];
194
195#define DEBUG_TICK_SYNC 0
196
197static inline long get_delta (long *rt, long *master)
198{
199 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
200 unsigned long tcenter, t0, t1, tm;
201 unsigned long i;
202
203 for (i = 0; i < NUM_ITERS; i++) {
204 t0 = tick_ops->get_tick();
205 go[MASTER] = 1;
4f07118f 206 membar_storeload();
1da177e4 207 while (!(tm = go[SLAVE]))
4f07118f 208 rmb();
1da177e4 209 go[SLAVE] = 0;
4f07118f 210 wmb();
1da177e4
LT
211 t1 = tick_ops->get_tick();
212
213 if (t1 - t0 < best_t1 - best_t0)
214 best_t0 = t0, best_t1 = t1, best_tm = tm;
215 }
216
217 *rt = best_t1 - best_t0;
218 *master = best_tm - best_t0;
219
220 /* average best_t0 and best_t1 without overflow: */
221 tcenter = (best_t0/2 + best_t1/2);
222 if (best_t0 % 2 + best_t1 % 2 == 2)
223 tcenter++;
224 return tcenter - best_tm;
225}
226
227void smp_synchronize_tick_client(void)
228{
229 long i, delta, adj, adjust_latency = 0, done = 0;
230 unsigned long flags, rt, master_time_stamp, bound;
231#if DEBUG_TICK_SYNC
232 struct {
233 long rt; /* roundtrip time */
234 long master; /* master's timestamp */
235 long diff; /* difference between midpoint and master's timestamp */
236 long lat; /* estimate of itc adjustment latency */
237 } t[NUM_ROUNDS];
238#endif
239
240 go[MASTER] = 1;
241
242 while (go[MASTER])
4f07118f 243 rmb();
1da177e4
LT
244
245 local_irq_save(flags);
246 {
247 for (i = 0; i < NUM_ROUNDS; i++) {
248 delta = get_delta(&rt, &master_time_stamp);
249 if (delta == 0) {
250 done = 1; /* let's lock on to this... */
251 bound = rt;
252 }
253
254 if (!done) {
255 if (i > 0) {
256 adjust_latency += -delta;
257 adj = -delta + adjust_latency/4;
258 } else
259 adj = -delta;
260
261 tick_ops->add_tick(adj, current_tick_offset);
262 }
263#if DEBUG_TICK_SYNC
264 t[i].rt = rt;
265 t[i].master = master_time_stamp;
266 t[i].diff = delta;
267 t[i].lat = adjust_latency/4;
268#endif
269 }
270 }
271 local_irq_restore(flags);
272
273#if DEBUG_TICK_SYNC
274 for (i = 0; i < NUM_ROUNDS; i++)
275 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
276 t[i].rt, t[i].master, t[i].diff, t[i].lat);
277#endif
278
279 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
280 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
281}
282
283static void smp_start_sync_tick_client(int cpu);
284
285static void smp_synchronize_one_tick(int cpu)
286{
287 unsigned long flags, i;
288
289 go[MASTER] = 0;
290
291 smp_start_sync_tick_client(cpu);
292
293 /* wait for client to be ready */
294 while (!go[MASTER])
4f07118f 295 rmb();
1da177e4
LT
296
297 /* now let the client proceed into his loop */
298 go[MASTER] = 0;
4f07118f 299 membar_storeload();
1da177e4
LT
300
301 spin_lock_irqsave(&itc_sync_lock, flags);
302 {
303 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
304 while (!go[MASTER])
4f07118f 305 rmb();
1da177e4 306 go[MASTER] = 0;
4f07118f 307 wmb();
1da177e4 308 go[SLAVE] = tick_ops->get_tick();
4f07118f 309 membar_storeload();
1da177e4
LT
310 }
311 }
312 spin_unlock_irqrestore(&itc_sync_lock, flags);
313}
314
72aff53f
DM
315extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
316
1da177e4
LT
317extern unsigned long sparc64_cpu_startup;
318
319/* The OBP cpu startup callback truncates the 3rd arg cookie to
320 * 32-bits (I think) so to be safe we have it read the pointer
321 * contained here so we work on >4GB machines. -DaveM
322 */
323static struct thread_info *cpu_new_thread = NULL;
324
325static int __devinit smp_boot_one_cpu(unsigned int cpu)
326{
327 unsigned long entry =
328 (unsigned long)(&sparc64_cpu_startup);
329 unsigned long cookie =
330 (unsigned long)(&cpu_new_thread);
331 struct task_struct *p;
7890f794 332 int timeout, ret;
1da177e4
LT
333
334 p = fork_idle(cpu);
335 callin_flag = 0;
f3169641 336 cpu_new_thread = task_thread_info(p);
1da177e4
LT
337 cpu_set(cpu, cpu_callout_map);
338
7890f794 339 if (tlb_type == hypervisor) {
72aff53f
DM
340 /* Alloc the mondo queues, cpu will load them. */
341 sun4v_init_mondo_queues(0, cpu, 1, 0);
342
7890f794
DM
343 prom_startcpu_cpuid(cpu, entry, cookie);
344 } else {
345 int cpu_node;
346
347 cpu_find_by_mid(cpu, &cpu_node);
348 prom_startcpu(cpu_node, entry, cookie);
349 }
1da177e4
LT
350
351 for (timeout = 0; timeout < 5000000; timeout++) {
352 if (callin_flag)
353 break;
354 udelay(100);
355 }
72aff53f 356
1da177e4
LT
357 if (callin_flag) {
358 ret = 0;
359 } else {
360 printk("Processor %d is stuck.\n", cpu);
361 cpu_clear(cpu, cpu_callout_map);
362 ret = -ENODEV;
363 }
364 cpu_new_thread = NULL;
365
366 return ret;
367}
368
369static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
370{
371 u64 result, target;
372 int stuck, tmp;
373
374 if (this_is_starfire) {
375 /* map to real upaid */
376 cpu = (((cpu & 0x3c) << 1) |
377 ((cpu & 0x40) >> 4) |
378 (cpu & 0x3));
379 }
380
381 target = (cpu << 14) | 0x70;
382again:
383 /* Ok, this is the real Spitfire Errata #54.
384 * One must read back from a UDB internal register
385 * after writes to the UDB interrupt dispatch, but
386 * before the membar Sync for that write.
387 * So we use the high UDB control register (ASI 0x7f,
388 * ADDR 0x20) for the dummy read. -DaveM
389 */
390 tmp = 0x40;
391 __asm__ __volatile__(
392 "wrpr %1, %2, %%pstate\n\t"
393 "stxa %4, [%0] %3\n\t"
394 "stxa %5, [%0+%8] %3\n\t"
395 "add %0, %8, %0\n\t"
396 "stxa %6, [%0+%8] %3\n\t"
397 "membar #Sync\n\t"
398 "stxa %%g0, [%7] %3\n\t"
399 "membar #Sync\n\t"
400 "mov 0x20, %%g1\n\t"
401 "ldxa [%%g1] 0x7f, %%g0\n\t"
402 "membar #Sync"
403 : "=r" (tmp)
404 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
405 "r" (data0), "r" (data1), "r" (data2), "r" (target),
406 "r" (0x10), "0" (tmp)
407 : "g1");
408
409 /* NOTE: PSTATE_IE is still clear. */
410 stuck = 100000;
411 do {
412 __asm__ __volatile__("ldxa [%%g0] %1, %0"
413 : "=r" (result)
414 : "i" (ASI_INTR_DISPATCH_STAT));
415 if (result == 0) {
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417 : : "r" (pstate));
418 return;
419 }
420 stuck -= 1;
421 if (stuck == 0)
422 break;
423 } while (result & 0x1);
424 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
425 : : "r" (pstate));
426 if (stuck == 0) {
427 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
428 smp_processor_id(), result);
429 } else {
430 udelay(2);
431 goto again;
432 }
433}
434
435static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
436{
437 u64 pstate;
438 int i;
439
440 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
441 for_each_cpu_mask(i, mask)
442 spitfire_xcall_helper(data0, data1, data2, pstate, i);
443}
444
445/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
446 * packet, but we have no use for that. However we do take advantage of
447 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
448 */
449static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
450{
451 u64 pstate, ver;
92704a1c 452 int nack_busy_id, is_jbus;
1da177e4
LT
453
454 if (cpus_empty(mask))
455 return;
456
457 /* Unfortunately, someone at Sun had the brilliant idea to make the
458 * busy/nack fields hard-coded by ITID number for this Ultra-III
459 * derivative processor.
460 */
461 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
462 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
463 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
464
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466
467retry:
468 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
469 : : "r" (pstate), "i" (PSTATE_IE));
470
471 /* Setup the dispatch data registers. */
472 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
473 "stxa %1, [%4] %6\n\t"
474 "stxa %2, [%5] %6\n\t"
475 "membar #Sync\n\t"
476 : /* no outputs */
477 : "r" (data0), "r" (data1), "r" (data2),
478 "r" (0x40), "r" (0x50), "r" (0x60),
479 "i" (ASI_INTR_W));
480
481 nack_busy_id = 0;
482 {
483 int i;
484
485 for_each_cpu_mask(i, mask) {
486 u64 target = (i << 14) | 0x70;
487
92704a1c 488 if (!is_jbus)
1da177e4
LT
489 target |= (nack_busy_id << 24);
490 __asm__ __volatile__(
491 "stxa %%g0, [%0] %1\n\t"
492 "membar #Sync\n\t"
493 : /* no outputs */
494 : "r" (target), "i" (ASI_INTR_W));
495 nack_busy_id++;
496 }
497 }
498
499 /* Now, poll for completion. */
500 {
501 u64 dispatch_stat;
502 long stuck;
503
504 stuck = 100000 * nack_busy_id;
505 do {
506 __asm__ __volatile__("ldxa [%%g0] %1, %0"
507 : "=r" (dispatch_stat)
508 : "i" (ASI_INTR_DISPATCH_STAT));
509 if (dispatch_stat == 0UL) {
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
511 : : "r" (pstate));
512 return;
513 }
514 if (!--stuck)
515 break;
516 } while (dispatch_stat & 0x5555555555555555UL);
517
518 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
519 : : "r" (pstate));
520
521 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
522 /* Busy bits will not clear, continue instead
523 * of freezing up on this cpu.
524 */
525 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
526 smp_processor_id(), dispatch_stat);
527 } else {
528 int i, this_busy_nack = 0;
529
530 /* Delay some random time with interrupts enabled
531 * to prevent deadlock.
532 */
533 udelay(2 * nack_busy_id);
534
535 /* Clear out the mask bits for cpus which did not
536 * NACK us.
537 */
538 for_each_cpu_mask(i, mask) {
539 u64 check_mask;
540
92704a1c 541 if (is_jbus)
1da177e4
LT
542 check_mask = (0x2UL << (2*i));
543 else
544 check_mask = (0x2UL <<
545 this_busy_nack);
546 if ((dispatch_stat & check_mask) == 0)
547 cpu_clear(i, mask);
548 this_busy_nack += 2;
549 }
550
551 goto retry;
552 }
553 }
554}
555
1d2f1f90 556/* Multi-cpu list version. */
a43fe0e7
DM
557static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
558{
b830ab66
DM
559 struct trap_per_cpu *tb;
560 u16 *cpu_list;
561 u64 *mondo;
562 cpumask_t error_mask;
563 unsigned long flags, status;
3cab0c3e 564 int cnt, retries, this_cpu, prev_sent, i;
b830ab66
DM
565
566 /* We have to do this whole thing with interrupts fully disabled.
567 * Otherwise if we send an xcall from interrupt context it will
568 * corrupt both our mondo block and cpu list state.
569 *
570 * One consequence of this is that we cannot use timeout mechanisms
571 * that depend upon interrupts being delivered locally. So, for
572 * example, we cannot sample jiffies and expect it to advance.
573 *
574 * Fortunately, udelay() uses %stick/%tick so we can use that.
575 */
576 local_irq_save(flags);
577
578 this_cpu = smp_processor_id();
579 tb = &trap_block[this_cpu];
1d2f1f90 580
b830ab66 581 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
582 mondo[0] = data0;
583 mondo[1] = data1;
584 mondo[2] = data2;
585 wmb();
586
b830ab66
DM
587 cpu_list = __va(tb->cpu_list_pa);
588
589 /* Setup the initial cpu list. */
590 cnt = 0;
591 for_each_cpu_mask(i, mask)
592 cpu_list[cnt++] = i;
593
594 cpus_clear(error_mask);
1d2f1f90 595 retries = 0;
3cab0c3e 596 prev_sent = 0;
1d2f1f90 597 do {
3cab0c3e 598 int forward_progress, n_sent;
1d2f1f90 599
b830ab66
DM
600 status = sun4v_cpu_mondo_send(cnt,
601 tb->cpu_list_pa,
602 tb->cpu_mondo_block_pa);
603
604 /* HV_EOK means all cpus received the xcall, we're done. */
605 if (likely(status == HV_EOK))
1d2f1f90 606 break;
b830ab66 607
3cab0c3e
DM
608 /* First, see if we made any forward progress.
609 *
610 * The hypervisor indicates successful sends by setting
611 * cpu list entries to the value 0xffff.
b830ab66 612 */
3cab0c3e 613 n_sent = 0;
b830ab66 614 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
615 if (likely(cpu_list[i] == 0xffff))
616 n_sent++;
1d2f1f90
DM
617 }
618
3cab0c3e
DM
619 forward_progress = 0;
620 if (n_sent > prev_sent)
621 forward_progress = 1;
622
623 prev_sent = n_sent;
624
b830ab66
DM
625 /* If we get a HV_ECPUERROR, then one or more of the cpus
626 * in the list are in error state. Use the cpu_state()
627 * hypervisor call to find out which cpus are in error state.
628 */
629 if (unlikely(status == HV_ECPUERROR)) {
630 for (i = 0; i < cnt; i++) {
631 long err;
632 u16 cpu;
633
634 cpu = cpu_list[i];
635 if (cpu == 0xffff)
636 continue;
637
638 err = sun4v_cpu_state(cpu);
639 if (err >= 0 &&
640 err == HV_CPU_STATE_ERROR) {
3cab0c3e 641 cpu_list[i] = 0xffff;
b830ab66
DM
642 cpu_set(cpu, error_mask);
643 }
644 }
645 } else if (unlikely(status != HV_EWOULDBLOCK))
646 goto fatal_mondo_error;
647
3cab0c3e
DM
648 /* Don't bother rewriting the CPU list, just leave the
649 * 0xffff and non-0xffff entries in there and the
650 * hypervisor will do the right thing.
651 *
652 * Only advance timeout state if we didn't make any
653 * forward progress.
654 */
b830ab66
DM
655 if (unlikely(!forward_progress)) {
656 if (unlikely(++retries > 10000))
657 goto fatal_mondo_timeout;
658
659 /* Delay a little bit to let other cpus catch up
660 * on their cpu mondo queue work.
661 */
662 udelay(2 * cnt);
663 }
1d2f1f90
DM
664 } while (1);
665
b830ab66
DM
666 local_irq_restore(flags);
667
668 if (unlikely(!cpus_empty(error_mask)))
669 goto fatal_mondo_cpu_error;
670
671 return;
672
673fatal_mondo_cpu_error:
674 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
675 "were in error state\n",
676 this_cpu);
677 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
678 for_each_cpu_mask(i, error_mask)
679 printk("%d ", i);
680 printk("]\n");
681 return;
682
683fatal_mondo_timeout:
684 local_irq_restore(flags);
685 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
686 " progress after %d retries.\n",
687 this_cpu, retries);
688 goto dump_cpu_list_and_out;
689
690fatal_mondo_error:
691 local_irq_restore(flags);
692 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
693 this_cpu, status);
694 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
695 "mondo_block_pa(%lx)\n",
696 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
697
698dump_cpu_list_and_out:
699 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
700 for (i = 0; i < cnt; i++)
701 printk("%u ", cpu_list[i]);
702 printk("]\n");
1d2f1f90 703}
a43fe0e7 704
1da177e4
LT
705/* Send cross call to all processors mentioned in MASK
706 * except self.
707 */
708static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
709{
710 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
711 int this_cpu = get_cpu();
712
713 cpus_and(mask, mask, cpu_online_map);
714 cpu_clear(this_cpu, mask);
715
716 if (tlb_type == spitfire)
717 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 718 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 719 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
720 else
721 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
722 /* NOTE: Caller runs local copy on master. */
723
724 put_cpu();
725}
726
727extern unsigned long xcall_sync_tick;
728
729static void smp_start_sync_tick_client(int cpu)
730{
731 cpumask_t mask = cpumask_of_cpu(cpu);
732
733 smp_cross_call_masked(&xcall_sync_tick,
734 0, 0, 0, mask);
735}
736
737/* Send cross call to all processors except self. */
738#define smp_cross_call(func, ctx, data1, data2) \
739 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
740
741struct call_data_struct {
742 void (*func) (void *info);
743 void *info;
744 atomic_t finished;
745 int wait;
746};
747
748static DEFINE_SPINLOCK(call_lock);
749static struct call_data_struct *call_data;
750
751extern unsigned long xcall_call_function;
752
753/*
754 * You must not call this function with disabled interrupts or from a
755 * hardware interrupt handler or from a bottom half handler.
756 */
bd40791e
DM
757static int smp_call_function_mask(void (*func)(void *info), void *info,
758 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
759{
760 struct call_data_struct data;
ee29074d 761 int cpus;
1da177e4
LT
762 long timeout;
763
1da177e4
LT
764 /* Can deadlock when called with interrupts disabled */
765 WARN_ON(irqs_disabled());
766
767 data.func = func;
768 data.info = info;
769 atomic_set(&data.finished, 0);
770 data.wait = wait;
771
772 spin_lock(&call_lock);
773
ee29074d
DM
774 cpu_clear(smp_processor_id(), mask);
775 cpus = cpus_weight(mask);
776 if (!cpus)
777 goto out_unlock;
778
1da177e4
LT
779 call_data = &data;
780
bd40791e 781 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4
LT
782
783 /*
784 * Wait for other cpus to complete function or at
785 * least snap the call data.
786 */
787 timeout = 1000000;
788 while (atomic_read(&data.finished) != cpus) {
789 if (--timeout <= 0)
790 goto out_timeout;
791 barrier();
792 udelay(1);
793 }
794
ee29074d 795out_unlock:
1da177e4
LT
796 spin_unlock(&call_lock);
797
798 return 0;
799
800out_timeout:
801 spin_unlock(&call_lock);
b830ab66
DM
802 printk("XCALL: Remote cpus not responding, ncpus=%d finished=%d\n",
803 cpus, atomic_read(&data.finished));
1da177e4
LT
804 return 0;
805}
806
bd40791e
DM
807int smp_call_function(void (*func)(void *info), void *info,
808 int nonatomic, int wait)
809{
810 return smp_call_function_mask(func, info, nonatomic, wait,
811 cpu_online_map);
812}
813
1da177e4
LT
814void smp_call_function_client(int irq, struct pt_regs *regs)
815{
816 void (*func) (void *info) = call_data->func;
817 void *info = call_data->info;
818
819 clear_softint(1 << irq);
820 if (call_data->wait) {
821 /* let initiator proceed only after completion */
822 func(info);
823 atomic_inc(&call_data->finished);
824 } else {
825 /* let initiator proceed after getting data */
826 atomic_inc(&call_data->finished);
827 func(info);
828 }
829}
830
bd40791e
DM
831static void tsb_sync(void *info)
832{
833 struct mm_struct *mm = info;
834
835 if (current->active_mm == mm)
836 tsb_context_switch(mm);
837}
838
839void smp_tsb_sync(struct mm_struct *mm)
840{
841 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
842}
843
1da177e4
LT
844extern unsigned long xcall_flush_tlb_mm;
845extern unsigned long xcall_flush_tlb_pending;
846extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
847extern unsigned long xcall_report_regs;
848extern unsigned long xcall_receive_signal;
ee29074d 849extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
850
851#ifdef DCACHE_ALIASING_POSSIBLE
852extern unsigned long xcall_flush_dcache_page_cheetah;
853#endif
854extern unsigned long xcall_flush_dcache_page_spitfire;
855
856#ifdef CONFIG_DEBUG_DCFLUSH
857extern atomic_t dcpage_flushes;
858extern atomic_t dcpage_flushes_xcall;
859#endif
860
861static __inline__ void __local_flush_dcache_page(struct page *page)
862{
863#ifdef DCACHE_ALIASING_POSSIBLE
864 __flush_dcache_page(page_address(page),
865 ((tlb_type == spitfire) &&
866 page_mapping(page) != NULL));
867#else
868 if (page_mapping(page) != NULL &&
869 tlb_type == spitfire)
870 __flush_icache_page(__pa(page_address(page)));
871#endif
872}
873
874void smp_flush_dcache_page_impl(struct page *page, int cpu)
875{
876 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
877 int this_cpu;
878
879 if (tlb_type == hypervisor)
880 return;
1da177e4
LT
881
882#ifdef CONFIG_DEBUG_DCFLUSH
883 atomic_inc(&dcpage_flushes);
884#endif
a43fe0e7
DM
885
886 this_cpu = get_cpu();
887
1da177e4
LT
888 if (cpu == this_cpu) {
889 __local_flush_dcache_page(page);
890 } else if (cpu_online(cpu)) {
891 void *pg_addr = page_address(page);
892 u64 data0;
893
894 if (tlb_type == spitfire) {
895 data0 =
896 ((u64)&xcall_flush_dcache_page_spitfire);
897 if (page_mapping(page) != NULL)
898 data0 |= ((u64)1 << 32);
899 spitfire_xcall_deliver(data0,
900 __pa(pg_addr),
901 (u64) pg_addr,
902 mask);
a43fe0e7 903 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
904#ifdef DCACHE_ALIASING_POSSIBLE
905 data0 =
906 ((u64)&xcall_flush_dcache_page_cheetah);
907 cheetah_xcall_deliver(data0,
908 __pa(pg_addr),
909 0, mask);
910#endif
911 }
912#ifdef CONFIG_DEBUG_DCFLUSH
913 atomic_inc(&dcpage_flushes_xcall);
914#endif
915 }
916
917 put_cpu();
918}
919
920void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
921{
922 void *pg_addr = page_address(page);
923 cpumask_t mask = cpu_online_map;
924 u64 data0;
a43fe0e7
DM
925 int this_cpu;
926
927 if (tlb_type == hypervisor)
928 return;
929
930 this_cpu = get_cpu();
1da177e4
LT
931
932 cpu_clear(this_cpu, mask);
933
934#ifdef CONFIG_DEBUG_DCFLUSH
935 atomic_inc(&dcpage_flushes);
936#endif
937 if (cpus_empty(mask))
938 goto flush_self;
939 if (tlb_type == spitfire) {
940 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
941 if (page_mapping(page) != NULL)
942 data0 |= ((u64)1 << 32);
943 spitfire_xcall_deliver(data0,
944 __pa(pg_addr),
945 (u64) pg_addr,
946 mask);
a43fe0e7 947 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
948#ifdef DCACHE_ALIASING_POSSIBLE
949 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
950 cheetah_xcall_deliver(data0,
951 __pa(pg_addr),
952 0, mask);
953#endif
954 }
955#ifdef CONFIG_DEBUG_DCFLUSH
956 atomic_inc(&dcpage_flushes_xcall);
957#endif
958 flush_self:
959 __local_flush_dcache_page(page);
960
961 put_cpu();
962}
963
a0663a79
DM
964static void __smp_receive_signal_mask(cpumask_t mask)
965{
966 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
967}
968
1da177e4
LT
969void smp_receive_signal(int cpu)
970{
971 cpumask_t mask = cpumask_of_cpu(cpu);
972
a0663a79
DM
973 if (cpu_online(cpu))
974 __smp_receive_signal_mask(mask);
1da177e4
LT
975}
976
977void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
978{
979 clear_softint(1 << irq);
980}
981
982void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 983{
a0663a79 984 struct mm_struct *mm;
ee29074d 985 unsigned long flags;
a0663a79 986
1da177e4 987 clear_softint(1 << irq);
a0663a79
DM
988
989 /* See if we need to allocate a new TLB context because
990 * the version of the one we are using is now out of date.
991 */
992 mm = current->active_mm;
ee29074d
DM
993 if (unlikely(!mm || (mm == &init_mm)))
994 return;
a0663a79 995
ee29074d 996 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 997
ee29074d
DM
998 if (unlikely(!CTX_VALID(mm->context)))
999 get_new_mmu_context(mm);
aac0aadf 1000
ee29074d 1001 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1002
ee29074d
DM
1003 load_secondary_context(mm);
1004 __flush_tlb_mm(CTX_HWBITS(mm->context),
1005 SECONDARY_CONTEXT);
a0663a79
DM
1006}
1007
1008void smp_new_mmu_context_version(void)
1009{
ee29074d 1010 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1011}
1012
1013void smp_report_regs(void)
1014{
1015 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1016}
1017
1da177e4
LT
1018/* We know that the window frames of the user have been flushed
1019 * to the stack before we get here because all callers of us
1020 * are flush_tlb_*() routines, and these run after flush_cache_*()
1021 * which performs the flushw.
1022 *
1023 * The SMP TLB coherency scheme we use works as follows:
1024 *
1025 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1026 * space has (potentially) executed on, this is the heuristic
1027 * we use to avoid doing cross calls.
1028 *
1029 * Also, for flushing from kswapd and also for clones, we
1030 * use cpu_vm_mask as the list of cpus to make run the TLB.
1031 *
1032 * 2) TLB context numbers are shared globally across all processors
1033 * in the system, this allows us to play several games to avoid
1034 * cross calls.
1035 *
1036 * One invariant is that when a cpu switches to a process, and
1037 * that processes tsk->active_mm->cpu_vm_mask does not have the
1038 * current cpu's bit set, that tlb context is flushed locally.
1039 *
1040 * If the address space is non-shared (ie. mm->count == 1) we avoid
1041 * cross calls when we want to flush the currently running process's
1042 * tlb state. This is done by clearing all cpu bits except the current
1043 * processor's in current->active_mm->cpu_vm_mask and performing the
1044 * flush locally only. This will force any subsequent cpus which run
1045 * this task to flush the context from the local tlb if the process
1046 * migrates to another cpu (again).
1047 *
1048 * 3) For shared address spaces (threads) and swapping we bite the
1049 * bullet for most cases and perform the cross call (but only to
1050 * the cpus listed in cpu_vm_mask).
1051 *
1052 * The performance gain from "optimizing" away the cross call for threads is
1053 * questionable (in theory the big win for threads is the massive sharing of
1054 * address space state across processors).
1055 */
62dbec78
DM
1056
1057/* This currently is only used by the hugetlb arch pre-fault
1058 * hook on UltraSPARC-III+ and later when changing the pagesize
1059 * bits of the context register for an address space.
1060 */
1da177e4
LT
1061void smp_flush_tlb_mm(struct mm_struct *mm)
1062{
62dbec78
DM
1063 u32 ctx = CTX_HWBITS(mm->context);
1064 int cpu = get_cpu();
1da177e4 1065
62dbec78
DM
1066 if (atomic_read(&mm->mm_users) == 1) {
1067 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1068 goto local_flush_and_out;
1069 }
1da177e4 1070
62dbec78
DM
1071 smp_cross_call_masked(&xcall_flush_tlb_mm,
1072 ctx, 0, 0,
1073 mm->cpu_vm_mask);
1da177e4 1074
62dbec78
DM
1075local_flush_and_out:
1076 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1077
62dbec78 1078 put_cpu();
1da177e4
LT
1079}
1080
1081void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1082{
1083 u32 ctx = CTX_HWBITS(mm->context);
1084 int cpu = get_cpu();
1085
dedeb002 1086 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1087 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1088 else
1089 smp_cross_call_masked(&xcall_flush_tlb_pending,
1090 ctx, nr, (unsigned long) vaddrs,
1091 mm->cpu_vm_mask);
1da177e4 1092
1da177e4
LT
1093 __flush_tlb_pending(ctx, nr, vaddrs);
1094
1095 put_cpu();
1096}
1097
1098void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1099{
1100 start &= PAGE_MASK;
1101 end = PAGE_ALIGN(end);
1102 if (start != end) {
1103 smp_cross_call(&xcall_flush_tlb_kernel_range,
1104 0, start, end);
1105
1106 __flush_tlb_kernel_range(start, end);
1107 }
1108}
1109
1110/* CPU capture. */
1111/* #define CAPTURE_DEBUG */
1112extern unsigned long xcall_capture;
1113
1114static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1115static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1116static unsigned long penguins_are_doing_time;
1117
1118void smp_capture(void)
1119{
1120 int result = atomic_add_ret(1, &smp_capture_depth);
1121
1122 if (result == 1) {
1123 int ncpus = num_online_cpus();
1124
1125#ifdef CAPTURE_DEBUG
1126 printk("CPU[%d]: Sending penguins to jail...",
1127 smp_processor_id());
1128#endif
1129 penguins_are_doing_time = 1;
4f07118f 1130 membar_storestore_loadstore();
1da177e4
LT
1131 atomic_inc(&smp_capture_registry);
1132 smp_cross_call(&xcall_capture, 0, 0, 0);
1133 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1134 rmb();
1da177e4
LT
1135#ifdef CAPTURE_DEBUG
1136 printk("done\n");
1137#endif
1138 }
1139}
1140
1141void smp_release(void)
1142{
1143 if (atomic_dec_and_test(&smp_capture_depth)) {
1144#ifdef CAPTURE_DEBUG
1145 printk("CPU[%d]: Giving pardon to "
1146 "imprisoned penguins\n",
1147 smp_processor_id());
1148#endif
1149 penguins_are_doing_time = 0;
4f07118f 1150 membar_storeload_storestore();
1da177e4
LT
1151 atomic_dec(&smp_capture_registry);
1152 }
1153}
1154
1155/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1156 * can service tlb flush xcalls...
1157 */
1158extern void prom_world(int);
96c6e0d8 1159
1da177e4
LT
1160void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1161{
1da177e4
LT
1162 clear_softint(1 << irq);
1163
1164 preempt_disable();
1165
1166 __asm__ __volatile__("flushw");
1da177e4
LT
1167 prom_world(1);
1168 atomic_inc(&smp_capture_registry);
4f07118f 1169 membar_storeload_storestore();
1da177e4 1170 while (penguins_are_doing_time)
4f07118f 1171 rmb();
1da177e4
LT
1172 atomic_dec(&smp_capture_registry);
1173 prom_world(0);
1174
1175 preempt_enable();
1176}
1177
1da177e4
LT
1178#define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1179#define prof_counter(__cpu) cpu_data(__cpu).counter
1180
1181void smp_percpu_timer_interrupt(struct pt_regs *regs)
1182{
1183 unsigned long compare, tick, pstate;
1184 int cpu = smp_processor_id();
1185 int user = user_mode(regs);
1186
1187 /*
1188 * Check for level 14 softint.
1189 */
1190 {
1191 unsigned long tick_mask = tick_ops->softint_mask;
1192
1193 if (!(get_softint() & tick_mask)) {
1194 extern void handler_irq(int, struct pt_regs *);
1195
1196 handler_irq(14, regs);
1197 return;
1198 }
1199 clear_softint(tick_mask);
1200 }
1201
1202 do {
1203 profile_tick(CPU_PROFILING, regs);
1204 if (!--prof_counter(cpu)) {
1205 irq_enter();
1206
1207 if (cpu == boot_cpu_id) {
1208 kstat_this_cpu.irqs[0]++;
1209 timer_tick_interrupt(regs);
1210 }
1211
1212 update_process_times(user);
1213
1214 irq_exit();
1215
1216 prof_counter(cpu) = prof_multiplier(cpu);
1217 }
1218
1219 /* Guarantee that the following sequences execute
1220 * uninterrupted.
1221 */
1222 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1223 "wrpr %0, %1, %%pstate"
1224 : "=r" (pstate)
1225 : "i" (PSTATE_IE));
1226
1227 compare = tick_ops->add_compare(current_tick_offset);
1228 tick = tick_ops->get_tick();
1229
1230 /* Restore PSTATE_IE. */
1231 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1232 : /* no outputs */
1233 : "r" (pstate));
1234 } while (time_after_eq(tick, compare));
1235}
1236
1237static void __init smp_setup_percpu_timer(void)
1238{
1239 int cpu = smp_processor_id();
1240 unsigned long pstate;
1241
1242 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1243
1244 /* Guarantee that the following sequences execute
1245 * uninterrupted.
1246 */
1247 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1248 "wrpr %0, %1, %%pstate"
1249 : "=r" (pstate)
1250 : "i" (PSTATE_IE));
1251
1252 tick_ops->init_tick(current_tick_offset);
1253
1254 /* Restore PSTATE_IE. */
1255 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1256 : /* no outputs */
1257 : "r" (pstate));
1258}
1259
1260void __init smp_tick_init(void)
1261{
1262 boot_cpu_id = hard_smp_processor_id();
1263 current_tick_offset = timer_tick_offset;
1264
1265 cpu_set(boot_cpu_id, cpu_online_map);
1266 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1267}
1268
1269/* /proc/profile writes can call this, don't __init it please. */
1270static DEFINE_SPINLOCK(prof_setup_lock);
1271
1272int setup_profiling_timer(unsigned int multiplier)
1273{
1274 unsigned long flags;
1275 int i;
1276
1277 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1278 return -EINVAL;
1279
1280 spin_lock_irqsave(&prof_setup_lock, flags);
394e3902 1281 for_each_cpu(i)
1da177e4
LT
1282 prof_multiplier(i) = multiplier;
1283 current_tick_offset = (timer_tick_offset / multiplier);
1284 spin_unlock_irqrestore(&prof_setup_lock, flags);
1285
1286 return 0;
1287}
1288
7abea921 1289/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1290void __init smp_prepare_cpus(unsigned int max_cpus)
1291{
8935dced
DM
1292 int i;
1293
1da177e4 1294 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1295 int instance, mid;
1296
1da177e4
LT
1297 instance = 0;
1298 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1299 if (mid != boot_cpu_id) {
1300 cpu_clear(mid, phys_cpu_present_map);
1301 if (num_possible_cpus() <= max_cpus)
1302 break;
1303 }
1304 instance++;
1305 }
1306 }
1307
8935dced
DM
1308 for_each_cpu(i) {
1309 if (tlb_type == hypervisor) {
1310 int j;
1311
1312 /* XXX get this mapping from machine description */
1313 for_each_cpu(j) {
1314 if ((j >> 2) == (i >> 2))
1315 cpu_set(j, cpu_sibling_map[i]);
1316 }
1317 } else {
1318 cpu_set(i, cpu_sibling_map[i]);
1319 }
1320 }
1321
1da177e4
LT
1322 smp_store_cpu_info(boot_cpu_id);
1323}
1324
7abea921
DM
1325/* Set this up early so that things like the scheduler can init
1326 * properly. We use the same cpu mask for both the present and
1327 * possible cpu map.
1328 */
1329void __init smp_setup_cpu_possible_map(void)
1330{
1331 int instance, mid;
1332
1333 instance = 0;
1334 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1335 if (mid < NR_CPUS)
1336 cpu_set(mid, phys_cpu_present_map);
1337 instance++;
1338 }
1339}
1340
1da177e4
LT
1341void __devinit smp_prepare_boot_cpu(void)
1342{
56fb4df6
DM
1343 int cpu = hard_smp_processor_id();
1344
1345 if (cpu >= NR_CPUS) {
1da177e4
LT
1346 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1347 prom_halt();
1348 }
1349
56fb4df6
DM
1350 current_thread_info()->cpu = cpu;
1351 __local_per_cpu_offset = __per_cpu_offset(cpu);
1da177e4
LT
1352
1353 cpu_set(smp_processor_id(), cpu_online_map);
1354 cpu_set(smp_processor_id(), phys_cpu_present_map);
1355}
1356
1357int __devinit __cpu_up(unsigned int cpu)
1358{
1359 int ret = smp_boot_one_cpu(cpu);
1360
1361 if (!ret) {
1362 cpu_set(cpu, smp_commenced_mask);
1363 while (!cpu_isset(cpu, cpu_online_map))
1364 mb();
1365 if (!cpu_isset(cpu, cpu_online_map)) {
1366 ret = -ENODEV;
1367 } else {
02fead75
DM
1368 /* On SUN4V, writes to %tick and %stick are
1369 * not allowed.
1370 */
1371 if (tlb_type != hypervisor)
1372 smp_synchronize_one_tick(cpu);
1da177e4
LT
1373 }
1374 }
1375 return ret;
1376}
1377
1378void __init smp_cpus_done(unsigned int max_cpus)
1379{
1380 unsigned long bogosum = 0;
1381 int i;
1382
394e3902
AM
1383 for_each_online_cpu(i)
1384 bogosum += cpu_data(i).udelay_val;
1da177e4
LT
1385 printk("Total of %ld processors activated "
1386 "(%lu.%02lu BogoMIPS).\n",
1387 (long) num_online_cpus(),
1388 bogosum/(500000/HZ),
1389 (bogosum/(5000/HZ))%100);
1390}
1391
1da177e4
LT
1392void smp_send_reschedule(int cpu)
1393{
64c7c8f8 1394 smp_receive_signal(cpu);
1da177e4
LT
1395}
1396
1397/* This is a nop because we capture all other cpus
1398 * anyways when making the PROM active.
1399 */
1400void smp_send_stop(void)
1401{
1402}
1403
d369ddd2
DM
1404unsigned long __per_cpu_base __read_mostly;
1405unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1406
1407EXPORT_SYMBOL(__per_cpu_base);
1408EXPORT_SYMBOL(__per_cpu_shift);
1409
1410void __init setup_per_cpu_areas(void)
1411{
1412 unsigned long goal, size, i;
1413 char *ptr;
1da177e4
LT
1414
1415 /* Copy section for each CPU (we discard the original) */
56fb4df6 1416 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1da177e4
LT
1417#ifdef CONFIG_MODULES
1418 if (goal < PERCPU_ENOUGH_ROOM)
1419 goal = PERCPU_ENOUGH_ROOM;
1420#endif
1421 __per_cpu_shift = 0;
1422 for (size = 1UL; size < goal; size <<= 1UL)
1423 __per_cpu_shift++;
1424
56fb4df6 1425 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1426
1427 __per_cpu_base = ptr - __per_cpu_start;
1428
1da177e4
LT
1429 for (i = 0; i < NR_CPUS; i++, ptr += size)
1430 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1da177e4 1431}