]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/sh/kernel/cpu/sh4/sq.c
[PATCH] eicon: fix define conflict with ptrace
[net-next-2.6.git] / arch / sh / kernel / cpu / sh4 / sq.c
CommitLineData
1da177e4
LT
1/*
2 * arch/sh/kernel/cpu/sq.c
3 *
4 * General management API for SH-4 integrated Store Queues
5 *
6 * Copyright (C) 2001, 2002, 2003, 2004 Paul Mundt
7 * Copyright (C) 2001, 2002 M. R. Brown
8 *
9 * Some of this code has been adopted directly from the old arch/sh/mm/sq.c
10 * hack that was part of the LinuxDC project. For all intents and purposes,
11 * this is a completely new interface that really doesn't have much in common
12 * with the old zone-based approach at all. In fact, it's only listed here for
13 * general completeness.
14 *
15 * This file is subject to the terms and conditions of the GNU General Public
16 * License. See the file "COPYING" in the main directory of this archive
17 * for more details.
18 */
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/list.h>
24#include <linux/proc_fs.h>
25#include <linux/miscdevice.h>
26#include <linux/vmalloc.h>
27
28#include <asm/io.h>
29#include <asm/page.h>
30#include <asm/mmu_context.h>
31#include <asm/cpu/sq.h>
32
33static LIST_HEAD(sq_mapping_list);
34static DEFINE_SPINLOCK(sq_mapping_lock);
35
36/**
37 * sq_flush - Flush (prefetch) the store queue cache
38 * @addr: the store queue address to flush
39 *
40 * Executes a prefetch instruction on the specified store queue cache,
41 * so that the cached data is written to physical memory.
42 */
43inline void sq_flush(void *addr)
44{
45 __asm__ __volatile__ ("pref @%0" : : "r" (addr) : "memory");
46}
47
48/**
49 * sq_flush_range - Flush (prefetch) a specific SQ range
50 * @start: the store queue address to start flushing from
51 * @len: the length to flush
52 *
53 * Flushes the store queue cache from @start to @start + @len in a
54 * linear fashion.
55 */
56void sq_flush_range(unsigned long start, unsigned int len)
57{
58 volatile unsigned long *sq = (unsigned long *)start;
59 unsigned long dummy;
60
61 /* Flush the queues */
62 for (len >>= 5; len--; sq += 8)
63 sq_flush((void *)sq);
64
65 /* Wait for completion */
66 dummy = ctrl_inl(P4SEG_STORE_QUE);
67
68 ctrl_outl(0, P4SEG_STORE_QUE + 0);
69 ctrl_outl(0, P4SEG_STORE_QUE + 8);
70}
71
72static struct sq_mapping *__sq_alloc_mapping(unsigned long virt, unsigned long phys, unsigned long size, const char *name)
73{
74 struct sq_mapping *map;
75
76 if (virt + size > SQ_ADDRMAX)
77 return ERR_PTR(-ENOSPC);
78
79 map = kmalloc(sizeof(struct sq_mapping), GFP_KERNEL);
80 if (!map)
81 return ERR_PTR(-ENOMEM);
82
83 INIT_LIST_HEAD(&map->list);
84
85 map->sq_addr = virt;
86 map->addr = phys;
87 map->size = size + 1;
88 map->name = name;
89
90 list_add(&map->list, &sq_mapping_list);
91
92 return map;
93}
94
95static unsigned long __sq_get_next_addr(void)
96{
97 if (!list_empty(&sq_mapping_list)) {
98 struct list_head *pos, *tmp;
99
100 /*
101 * Read one off the list head, as it will have the highest
102 * mapped allocation. Set the next one up right above it.
103 *
104 * This is somewhat sub-optimal, as we don't look at
105 * gaps between allocations or anything lower then the
106 * highest-level allocation.
107 *
108 * However, in the interest of performance and the general
109 * lack of desire to do constant list rebalancing, we don't
110 * worry about it.
111 */
112 list_for_each_safe(pos, tmp, &sq_mapping_list) {
113 struct sq_mapping *entry;
114
115 entry = list_entry(pos, typeof(*entry), list);
116
117 return entry->sq_addr + entry->size;
118 }
119 }
120
121 return P4SEG_STORE_QUE;
122}
123
124/**
125 * __sq_remap - Perform a translation from the SQ to a phys addr
126 * @map: sq mapping containing phys and store queue addresses.
127 *
128 * Maps the store queue address specified in the mapping to the physical
129 * address specified in the mapping.
130 */
131static struct sq_mapping *__sq_remap(struct sq_mapping *map)
132{
133 unsigned long flags, pteh, ptel;
134 struct vm_struct *vma;
135 pgprot_t pgprot;
136
137 /*
138 * Without an MMU (or with it turned off), this is much more
139 * straightforward, as we can just load up each queue's QACR with
140 * the physical address appropriately masked.
141 */
142
143 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR0);
144 ctrl_outl(((map->addr >> 26) << 2) & 0x1c, SQ_QACR1);
145
146#ifdef CONFIG_MMU
147 /*
148 * With an MMU on the other hand, things are slightly more involved.
149 * Namely, we have to have a direct mapping between the SQ addr and
150 * the associated physical address in the UTLB by way of setting up
151 * a virt<->phys translation by hand. We do this by simply specifying
152 * the SQ addr in UTLB.VPN and the associated physical address in
153 * UTLB.PPN.
154 *
155 * Notably, even though this is a special case translation, and some
156 * of the configuration bits are meaningless, we're still required
157 * to have a valid ASID context in PTEH.
158 *
159 * We could also probably get by without explicitly setting PTEA, but
160 * we do it here just for good measure.
161 */
162 spin_lock_irqsave(&sq_mapping_lock, flags);
163
164 pteh = map->sq_addr;
165 ctrl_outl((pteh & MMU_VPN_MASK) | get_asid(), MMU_PTEH);
166
167 ptel = map->addr & PAGE_MASK;
168 ctrl_outl(((ptel >> 28) & 0xe) | (ptel & 0x1), MMU_PTEA);
169
170 pgprot = pgprot_noncached(PAGE_KERNEL);
171
172 ptel &= _PAGE_FLAGS_HARDWARE_MASK;
173 ptel |= pgprot_val(pgprot);
174 ctrl_outl(ptel, MMU_PTEL);
175
176 __asm__ __volatile__ ("ldtlb" : : : "memory");
177
178 spin_unlock_irqrestore(&sq_mapping_lock, flags);
179
180 /*
181 * Next, we need to map ourselves in the kernel page table, so that
182 * future accesses after a TLB flush will be handled when we take a
183 * page fault.
184 *
185 * Theoretically we could just do this directly and not worry about
186 * setting up the translation by hand ahead of time, but for the
187 * cases where we want a one-shot SQ mapping followed by a quick
188 * writeout before we hit the TLB flush, we do it anyways. This way
189 * we at least save ourselves the initial page fault overhead.
190 */
191 vma = __get_vm_area(map->size, VM_ALLOC, map->sq_addr, SQ_ADDRMAX);
192 if (!vma)
193 return ERR_PTR(-ENOMEM);
194
195 vma->phys_addr = map->addr;
196
197 if (remap_area_pages((unsigned long)vma->addr, vma->phys_addr,
198 map->size, pgprot_val(pgprot))) {
199 vunmap(vma->addr);
200 return NULL;
201 }
202#endif /* CONFIG_MMU */
203
204 return map;
205}
206
207/**
208 * sq_remap - Map a physical address through the Store Queues
209 * @phys: Physical address of mapping.
210 * @size: Length of mapping.
211 * @name: User invoking mapping.
212 *
213 * Remaps the physical address @phys through the next available store queue
214 * address of @size length. @name is logged at boot time as well as through
215 * the procfs interface.
216 *
217 * A pre-allocated and filled sq_mapping pointer is returned, and must be
218 * cleaned up with a call to sq_unmap() when the user is done with the
219 * mapping.
220 */
221struct sq_mapping *sq_remap(unsigned long phys, unsigned int size, const char *name)
222{
223 struct sq_mapping *map;
224 unsigned long virt, end;
225 unsigned int psz;
226
227 /* Don't allow wraparound or zero size */
228 end = phys + size - 1;
229 if (!size || end < phys)
230 return NULL;
231 /* Don't allow anyone to remap normal memory.. */
232 if (phys < virt_to_phys(high_memory))
233 return NULL;
234
235 phys &= PAGE_MASK;
236
237 size = PAGE_ALIGN(end + 1) - phys;
238 virt = __sq_get_next_addr();
239 psz = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
240 map = __sq_alloc_mapping(virt, phys, size, name);
241
242 printk("sqremap: %15s [%4d page%s] va 0x%08lx pa 0x%08lx\n",
243 map->name ? map->name : "???",
244 psz, psz == 1 ? " " : "s",
245 map->sq_addr, map->addr);
246
247 return __sq_remap(map);
248}
249
250/**
251 * sq_unmap - Unmap a Store Queue allocation
252 * @map: Pre-allocated Store Queue mapping.
253 *
254 * Unmaps the store queue allocation @map that was previously created by
255 * sq_remap(). Also frees up the pte that was previously inserted into
256 * the kernel page table and discards the UTLB translation.
257 */
258void sq_unmap(struct sq_mapping *map)
259{
260 if (map->sq_addr > (unsigned long)high_memory)
261 vfree((void *)(map->sq_addr & PAGE_MASK));
262
263 list_del(&map->list);
264 kfree(map);
265}
266
267/**
268 * sq_clear - Clear a store queue range
269 * @addr: Address to start clearing from.
270 * @len: Length to clear.
271 *
272 * A quick zero-fill implementation for clearing out memory that has been
273 * remapped through the store queues.
274 */
275void sq_clear(unsigned long addr, unsigned int len)
276{
277 int i;
278
279 /* Clear out both queues linearly */
280 for (i = 0; i < 8; i++) {
281 ctrl_outl(0, addr + i + 0);
282 ctrl_outl(0, addr + i + 8);
283 }
284
285 sq_flush_range(addr, len);
286}
287
288/**
289 * sq_vma_unmap - Unmap a VMA range
290 * @area: VMA containing range.
291 * @addr: Start of range.
292 * @len: Length of range.
293 *
294 * Searches the sq_mapping_list for a mapping matching the sq addr @addr,
295 * and subsequently frees up the entry. Further cleanup is done by generic
296 * code.
297 */
298static void sq_vma_unmap(struct vm_area_struct *area,
299 unsigned long addr, size_t len)
300{
301 struct list_head *pos, *tmp;
302
303 list_for_each_safe(pos, tmp, &sq_mapping_list) {
304 struct sq_mapping *entry;
305
306 entry = list_entry(pos, typeof(*entry), list);
307
308 if (entry->sq_addr == addr) {
309 /*
310 * We could probably get away without doing the tlb flush
311 * here, as generic code should take care of most of this
312 * when unmapping the rest of the VMA range for us. Leave
313 * it in for added sanity for the time being..
314 */
315 __flush_tlb_page(get_asid(), entry->sq_addr & PAGE_MASK);
316
317 list_del(&entry->list);
318 kfree(entry);
319
320 return;
321 }
322 }
323}
324
325/**
326 * sq_vma_sync - Sync a VMA range
327 * @area: VMA containing range.
328 * @start: Start of range.
329 * @len: Length of range.
330 * @flags: Additional flags.
331 *
332 * Synchronizes an sq mapped range by flushing the store queue cache for
333 * the duration of the mapping.
334 *
335 * Used internally for user mappings, which must use msync() to prefetch
336 * the store queue cache.
337 */
338static int sq_vma_sync(struct vm_area_struct *area,
339 unsigned long start, size_t len, unsigned int flags)
340{
341 sq_flush_range(start, len);
342
343 return 0;
344}
345
346static struct vm_operations_struct sq_vma_ops = {
347 .unmap = sq_vma_unmap,
348 .sync = sq_vma_sync,
349};
350
351/**
352 * sq_mmap - mmap() for /dev/cpu/sq
353 * @file: unused.
354 * @vma: VMA to remap.
355 *
356 * Remap the specified vma @vma through the store queues, and setup associated
357 * information for the new mapping. Also build up the page tables for the new
358 * area.
359 */
360static int sq_mmap(struct file *file, struct vm_area_struct *vma)
361{
362 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
363 unsigned long size = vma->vm_end - vma->vm_start;
364 struct sq_mapping *map;
365
366 /*
367 * We're not interested in any arbitrary virtual address that has
368 * been stuck in the VMA, as we already know what addresses we
369 * want. Save off the size, and reposition the VMA to begin at
370 * the next available sq address.
371 */
372 vma->vm_start = __sq_get_next_addr();
373 vma->vm_end = vma->vm_start + size;
374
375 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
376
377 vma->vm_flags |= VM_IO | VM_RESERVED;
378
379 map = __sq_alloc_mapping(vma->vm_start, offset, size, "Userspace");
380
381 if (io_remap_pfn_range(vma, map->sq_addr, map->addr >> PAGE_SHIFT,
382 size, vma->vm_page_prot))
383 return -EAGAIN;
384
385 vma->vm_ops = &sq_vma_ops;
386
387 return 0;
388}
389
390#ifdef CONFIG_PROC_FS
391static int sq_mapping_read_proc(char *buf, char **start, off_t off,
392 int len, int *eof, void *data)
393{
394 struct list_head *pos;
395 char *p = buf;
396
397 list_for_each_prev(pos, &sq_mapping_list) {
398 struct sq_mapping *entry;
399
400 entry = list_entry(pos, typeof(*entry), list);
401
402 p += sprintf(p, "%08lx-%08lx [%08lx]: %s\n", entry->sq_addr,
403 entry->sq_addr + entry->size - 1, entry->addr,
404 entry->name);
405 }
406
407 return p - buf;
408}
409#endif
410
411static struct file_operations sq_fops = {
412 .owner = THIS_MODULE,
413 .mmap = sq_mmap,
414};
415
416static struct miscdevice sq_dev = {
417 .minor = STORE_QUEUE_MINOR,
418 .name = "sq",
1da177e4
LT
419 .fops = &sq_fops,
420};
421
422static int __init sq_api_init(void)
423{
424 printk(KERN_NOTICE "sq: Registering store queue API.\n");
425
426#ifdef CONFIG_PROC_FS
427 create_proc_read_entry("sq_mapping", 0, 0, sq_mapping_read_proc, 0);
428#endif
429
430 return misc_register(&sq_dev);
431}
432
433static void __exit sq_api_exit(void)
434{
435 misc_deregister(&sq_dev);
436}
437
438module_init(sq_api_init);
439module_exit(sq_api_exit);
440
441MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, M. R. Brown <mrbrown@0xd6.org>");
442MODULE_DESCRIPTION("Simple API for SH-4 integrated Store Queues");
443MODULE_LICENSE("GPL");
444MODULE_ALIAS_MISCDEV(STORE_QUEUE_MINOR);
445
446EXPORT_SYMBOL(sq_remap);
447EXPORT_SYMBOL(sq_unmap);
448EXPORT_SYMBOL(sq_clear);
449EXPORT_SYMBOL(sq_flush);
450EXPORT_SYMBOL(sq_flush_range);
451