]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/powerpc/oprofile/cell/spu_task_sync.c
ACPI: restore CONFIG_ACPI_SLEEP
[net-next-2.6.git] / arch / powerpc / oprofile / cell / spu_task_sync.c
CommitLineData
1474855d
BN
1/*
2 * Cell Broadband Engine OProfile Support
3 *
4 * (C) Copyright IBM Corporation 2006
5 *
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
16 * event buffer.
17 *
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
20 */
21#include <linux/dcookies.h>
22#include <linux/kref.h>
23#include <linux/mm.h>
24#include <linux/module.h>
25#include <linux/notifier.h>
26#include <linux/numa.h>
27#include <linux/oprofile.h>
28#include <linux/spinlock.h>
29#include "pr_util.h"
30
31#define RELEASE_ALL 9999
32
33static DEFINE_SPINLOCK(buffer_lock);
34static DEFINE_SPINLOCK(cache_lock);
35static int num_spu_nodes;
36int spu_prof_num_nodes;
37int last_guard_val[MAX_NUMNODES * 8];
38
39/* Container for caching information about an active SPU task. */
40struct cached_info {
41 struct vma_to_fileoffset_map *map;
42 struct spu *the_spu; /* needed to access pointer to local_store */
43 struct kref cache_ref;
44};
45
46static struct cached_info *spu_info[MAX_NUMNODES * 8];
47
48static void destroy_cached_info(struct kref *kref)
49{
50 struct cached_info *info;
51
52 info = container_of(kref, struct cached_info, cache_ref);
53 vma_map_free(info->map);
54 kfree(info);
55 module_put(THIS_MODULE);
56}
57
58/* Return the cached_info for the passed SPU number.
59 * ATTENTION: Callers are responsible for obtaining the
60 * cache_lock if needed prior to invoking this function.
61 */
62static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
63{
64 struct kref *ref;
65 struct cached_info *ret_info;
66
67 if (spu_num >= num_spu_nodes) {
68 printk(KERN_ERR "SPU_PROF: "
69 "%s, line %d: Invalid index %d into spu info cache\n",
70 __FUNCTION__, __LINE__, spu_num);
71 ret_info = NULL;
72 goto out;
73 }
74 if (!spu_info[spu_num] && the_spu) {
75 ref = spu_get_profile_private_kref(the_spu->ctx);
76 if (ref) {
77 spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
78 kref_get(&spu_info[spu_num]->cache_ref);
79 }
80 }
81
82 ret_info = spu_info[spu_num];
83 out:
84 return ret_info;
85}
86
87
88/* Looks for cached info for the passed spu. If not found, the
89 * cached info is created for the passed spu.
90 * Returns 0 for success; otherwise, -1 for error.
91 */
92static int
93prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
94{
95 unsigned long flags;
96 struct vma_to_fileoffset_map *new_map;
97 int retval = 0;
98 struct cached_info *info;
99
100 /* We won't bother getting cache_lock here since
101 * don't do anything with the cached_info that's returned.
102 */
103 info = get_cached_info(spu, spu->number);
104
105 if (info) {
106 pr_debug("Found cached SPU info.\n");
107 goto out;
108 }
109
110 /* Create cached_info and set spu_info[spu->number] to point to it.
111 * spu->number is a system-wide value, not a per-node value.
112 */
113 info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
114 if (!info) {
115 printk(KERN_ERR "SPU_PROF: "
116 "%s, line %d: create vma_map failed\n",
117 __FUNCTION__, __LINE__);
118 retval = -ENOMEM;
119 goto err_alloc;
120 }
121 new_map = create_vma_map(spu, objectId);
122 if (!new_map) {
123 printk(KERN_ERR "SPU_PROF: "
124 "%s, line %d: create vma_map failed\n",
125 __FUNCTION__, __LINE__);
126 retval = -ENOMEM;
127 goto err_alloc;
128 }
129
130 pr_debug("Created vma_map\n");
131 info->map = new_map;
132 info->the_spu = spu;
133 kref_init(&info->cache_ref);
134 spin_lock_irqsave(&cache_lock, flags);
135 spu_info[spu->number] = info;
136 /* Increment count before passing off ref to SPUFS. */
137 kref_get(&info->cache_ref);
138
139 /* We increment the module refcount here since SPUFS is
140 * responsible for the final destruction of the cached_info,
141 * and it must be able to access the destroy_cached_info()
142 * function defined in the OProfile module. We decrement
143 * the module refcount in destroy_cached_info.
144 */
145 try_module_get(THIS_MODULE);
146 spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
147 destroy_cached_info);
148 spin_unlock_irqrestore(&cache_lock, flags);
149 goto out;
150
151err_alloc:
152 kfree(info);
153out:
154 return retval;
155}
156
157/*
158 * NOTE: The caller is responsible for locking the
159 * cache_lock prior to calling this function.
160 */
161static int release_cached_info(int spu_index)
162{
163 int index, end;
164
165 if (spu_index == RELEASE_ALL) {
166 end = num_spu_nodes;
167 index = 0;
168 } else {
169 if (spu_index >= num_spu_nodes) {
170 printk(KERN_ERR "SPU_PROF: "
171 "%s, line %d: "
172 "Invalid index %d into spu info cache\n",
173 __FUNCTION__, __LINE__, spu_index);
174 goto out;
175 }
176 end = spu_index + 1;
177 index = spu_index;
178 }
179 for (; index < end; index++) {
180 if (spu_info[index]) {
181 kref_put(&spu_info[index]->cache_ref,
182 destroy_cached_info);
183 spu_info[index] = NULL;
184 }
185 }
186
187out:
188 return 0;
189}
190
191/* The source code for fast_get_dcookie was "borrowed"
192 * from drivers/oprofile/buffer_sync.c.
193 */
194
195/* Optimisation. We can manage without taking the dcookie sem
196 * because we cannot reach this code without at least one
197 * dcookie user still being registered (namely, the reader
198 * of the event buffer).
199 */
200static inline unsigned long fast_get_dcookie(struct dentry *dentry,
201 struct vfsmount *vfsmnt)
202{
203 unsigned long cookie;
204
205 if (dentry->d_cookie)
206 return (unsigned long)dentry;
207 get_dcookie(dentry, vfsmnt, &cookie);
208 return cookie;
209}
210
211/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
212 * which corresponds loosely to "application name". Also, determine
213 * the offset for the SPU ELF object. If computed offset is
214 * non-zero, it implies an embedded SPU object; otherwise, it's a
215 * separate SPU binary, in which case we retrieve it's dcookie.
216 * For the embedded case, we must determine if SPU ELF is embedded
217 * in the executable application or another file (i.e., shared lib).
218 * If embedded in a shared lib, we must get the dcookie and return
219 * that to the caller.
220 */
221static unsigned long
222get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
223 unsigned long *spu_bin_dcookie,
224 unsigned long spu_ref)
225{
226 unsigned long app_cookie = 0;
227 unsigned int my_offset = 0;
228 struct file *app = NULL;
229 struct vm_area_struct *vma;
230 struct mm_struct *mm = spu->mm;
231
232 if (!mm)
233 goto out;
234
235 down_read(&mm->mmap_sem);
236
237 for (vma = mm->mmap; vma; vma = vma->vm_next) {
238 if (!vma->vm_file)
239 continue;
240 if (!(vma->vm_flags & VM_EXECUTABLE))
241 continue;
242 app_cookie = fast_get_dcookie(vma->vm_file->f_dentry,
243 vma->vm_file->f_vfsmnt);
244 pr_debug("got dcookie for %s\n",
245 vma->vm_file->f_dentry->d_name.name);
246 app = vma->vm_file;
247 break;
248 }
249
250 for (vma = mm->mmap; vma; vma = vma->vm_next) {
251 if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
252 continue;
253 my_offset = spu_ref - vma->vm_start;
254 if (!vma->vm_file)
255 goto fail_no_image_cookie;
256
257 pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
258 my_offset, spu_ref,
259 vma->vm_file->f_dentry->d_name.name);
260 *offsetp = my_offset;
261 break;
262 }
263
264 *spu_bin_dcookie = fast_get_dcookie(vma->vm_file->f_dentry,
265 vma->vm_file->f_vfsmnt);
266 pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
267
268 up_read(&mm->mmap_sem);
269
270out:
271 return app_cookie;
272
273fail_no_image_cookie:
274 up_read(&mm->mmap_sem);
275
276 printk(KERN_ERR "SPU_PROF: "
277 "%s, line %d: Cannot find dcookie for SPU binary\n",
278 __FUNCTION__, __LINE__);
279 goto out;
280}
281
282
283
284/* This function finds or creates cached context information for the
285 * passed SPU and records SPU context information into the OProfile
286 * event buffer.
287 */
288static int process_context_switch(struct spu *spu, unsigned long objectId)
289{
290 unsigned long flags;
291 int retval;
292 unsigned int offset = 0;
293 unsigned long spu_cookie = 0, app_dcookie;
294
295 retval = prepare_cached_spu_info(spu, objectId);
296 if (retval)
297 goto out;
298
299 /* Get dcookie first because a mutex_lock is taken in that
300 * code path, so interrupts must not be disabled.
301 */
302 app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
303 if (!app_dcookie || !spu_cookie) {
304 retval = -ENOENT;
305 goto out;
306 }
307
308 /* Record context info in event buffer */
309 spin_lock_irqsave(&buffer_lock, flags);
310 add_event_entry(ESCAPE_CODE);
311 add_event_entry(SPU_CTX_SWITCH_CODE);
312 add_event_entry(spu->number);
313 add_event_entry(spu->pid);
314 add_event_entry(spu->tgid);
315 add_event_entry(app_dcookie);
316 add_event_entry(spu_cookie);
317 add_event_entry(offset);
318 spin_unlock_irqrestore(&buffer_lock, flags);
319 smp_wmb(); /* insure spu event buffer updates are written */
320 /* don't want entries intermingled... */
321out:
322 return retval;
323}
324
325/*
326 * This function is invoked on either a bind_context or unbind_context.
327 * If called for an unbind_context, the val arg is 0; otherwise,
328 * it is the object-id value for the spu context.
329 * The data arg is of type 'struct spu *'.
330 */
331static int spu_active_notify(struct notifier_block *self, unsigned long val,
332 void *data)
333{
334 int retval;
335 unsigned long flags;
336 struct spu *the_spu = data;
337
338 pr_debug("SPU event notification arrived\n");
339 if (!val) {
340 spin_lock_irqsave(&cache_lock, flags);
341 retval = release_cached_info(the_spu->number);
342 spin_unlock_irqrestore(&cache_lock, flags);
343 } else {
344 retval = process_context_switch(the_spu, val);
345 }
346 return retval;
347}
348
349static struct notifier_block spu_active = {
350 .notifier_call = spu_active_notify,
351};
352
353static int number_of_online_nodes(void)
354{
355 u32 cpu; u32 tmp;
356 int nodes = 0;
357 for_each_online_cpu(cpu) {
358 tmp = cbe_cpu_to_node(cpu) + 1;
359 if (tmp > nodes)
360 nodes++;
361 }
362 return nodes;
363}
364
365/* The main purpose of this function is to synchronize
366 * OProfile with SPUFS by registering to be notified of
367 * SPU task switches.
368 *
369 * NOTE: When profiling SPUs, we must ensure that only
370 * spu_sync_start is invoked and not the generic sync_start
371 * in drivers/oprofile/oprof.c. A return value of
372 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
373 * accomplish this.
374 */
375int spu_sync_start(void)
376{
377 int k;
378 int ret = SKIP_GENERIC_SYNC;
379 int register_ret;
380 unsigned long flags = 0;
381
382 spu_prof_num_nodes = number_of_online_nodes();
383 num_spu_nodes = spu_prof_num_nodes * 8;
384
385 spin_lock_irqsave(&buffer_lock, flags);
386 add_event_entry(ESCAPE_CODE);
387 add_event_entry(SPU_PROFILING_CODE);
388 add_event_entry(num_spu_nodes);
389 spin_unlock_irqrestore(&buffer_lock, flags);
390
391 /* Register for SPU events */
392 register_ret = spu_switch_event_register(&spu_active);
393 if (register_ret) {
394 ret = SYNC_START_ERROR;
395 goto out;
396 }
397
398 for (k = 0; k < (MAX_NUMNODES * 8); k++)
399 last_guard_val[k] = 0;
400 pr_debug("spu_sync_start -- running.\n");
401out:
402 return ret;
403}
404
405/* Record SPU program counter samples to the oprofile event buffer. */
406void spu_sync_buffer(int spu_num, unsigned int *samples,
407 int num_samples)
408{
409 unsigned long long file_offset;
410 unsigned long flags;
411 int i;
412 struct vma_to_fileoffset_map *map;
413 struct spu *the_spu;
414 unsigned long long spu_num_ll = spu_num;
415 unsigned long long spu_num_shifted = spu_num_ll << 32;
416 struct cached_info *c_info;
417
418 /* We need to obtain the cache_lock here because it's
419 * possible that after getting the cached_info, the SPU job
420 * corresponding to this cached_info may end, thus resulting
421 * in the destruction of the cached_info.
422 */
423 spin_lock_irqsave(&cache_lock, flags);
424 c_info = get_cached_info(NULL, spu_num);
425 if (!c_info) {
426 /* This legitimately happens when the SPU task ends before all
427 * samples are recorded.
428 * No big deal -- so we just drop a few samples.
429 */
430 pr_debug("SPU_PROF: No cached SPU contex "
431 "for SPU #%d. Dropping samples.\n", spu_num);
432 goto out;
433 }
434
435 map = c_info->map;
436 the_spu = c_info->the_spu;
437 spin_lock(&buffer_lock);
438 for (i = 0; i < num_samples; i++) {
439 unsigned int sample = *(samples+i);
440 int grd_val = 0;
441 file_offset = 0;
442 if (sample == 0)
443 continue;
444 file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
445
446 /* If overlays are used by this SPU application, the guard
447 * value is non-zero, indicating which overlay section is in
448 * use. We need to discard samples taken during the time
449 * period which an overlay occurs (i.e., guard value changes).
450 */
451 if (grd_val && grd_val != last_guard_val[spu_num]) {
452 last_guard_val[spu_num] = grd_val;
453 /* Drop the rest of the samples. */
454 break;
455 }
456
457 add_event_entry(file_offset | spu_num_shifted);
458 }
459 spin_unlock(&buffer_lock);
460out:
461 spin_unlock_irqrestore(&cache_lock, flags);
462}
463
464
465int spu_sync_stop(void)
466{
467 unsigned long flags = 0;
468 int ret = spu_switch_event_unregister(&spu_active);
469 if (ret) {
470 printk(KERN_ERR "SPU_PROF: "
471 "%s, line %d: spu_switch_event_unregister returned %d\n",
472 __FUNCTION__, __LINE__, ret);
473 goto out;
474 }
475
476 spin_lock_irqsave(&cache_lock, flags);
477 ret = release_cached_info(RELEASE_ALL);
478 spin_unlock_irqrestore(&cache_lock, flags);
479out:
480 pr_debug("spu_sync_stop -- done.\n");
481 return ret;
482}
483
484