]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/powerpc/mm/fault.c
move die notifier handling to common code
[net-next-2.6.git] / arch / powerpc / mm / fault.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
14cf11af
PM
18#include <linux/signal.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/errno.h>
22#include <linux/string.h>
23#include <linux/types.h>
24#include <linux/ptrace.h>
25#include <linux/mman.h>
26#include <linux/mm.h>
27#include <linux/interrupt.h>
28#include <linux/highmem.h>
29#include <linux/module.h>
30#include <linux/kprobes.h>
1eeb66a1 31#include <linux/kdebug.h>
14cf11af
PM
32
33#include <asm/page.h>
34#include <asm/pgtable.h>
35#include <asm/mmu.h>
36#include <asm/mmu_context.h>
37#include <asm/system.h>
38#include <asm/uaccess.h>
39#include <asm/tlbflush.h>
14cf11af
PM
40#include <asm/siginfo.h>
41
4f9e87c0
AK
42#ifdef CONFIG_KPROBES
43ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
44
45/* Hook to register for page fault notifications */
46int register_page_fault_notifier(struct notifier_block *nb)
47{
48 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
49}
50
51int unregister_page_fault_notifier(struct notifier_block *nb)
52{
53 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
54}
55
56static inline int notify_page_fault(enum die_val val, const char *str,
57 struct pt_regs *regs, long err, int trap, int sig)
58{
59 struct die_args args = {
60 .regs = regs,
61 .str = str,
62 .err = err,
63 .trapnr = trap,
64 .signr = sig
65 };
66 return atomic_notifier_call_chain(&notify_page_fault_chain, val, &args);
67}
68#else
69static inline int notify_page_fault(enum die_val val, const char *str,
70 struct pt_regs *regs, long err, int trap, int sig)
71{
72 return NOTIFY_DONE;
73}
74#endif
75
14cf11af
PM
76/*
77 * Check whether the instruction at regs->nip is a store using
78 * an update addressing form which will update r1.
79 */
80static int store_updates_sp(struct pt_regs *regs)
81{
82 unsigned int inst;
83
84 if (get_user(inst, (unsigned int __user *)regs->nip))
85 return 0;
86 /* check for 1 in the rA field */
87 if (((inst >> 16) & 0x1f) != 1)
88 return 0;
89 /* check major opcode */
90 switch (inst >> 26) {
91 case 37: /* stwu */
92 case 39: /* stbu */
93 case 45: /* sthu */
94 case 53: /* stfsu */
95 case 55: /* stfdu */
96 return 1;
97 case 62: /* std or stdu */
98 return (inst & 3) == 1;
99 case 31:
100 /* check minor opcode */
101 switch ((inst >> 1) & 0x3ff) {
102 case 181: /* stdux */
103 case 183: /* stwux */
104 case 247: /* stbux */
105 case 439: /* sthux */
106 case 695: /* stfsux */
107 case 759: /* stfdux */
108 return 1;
109 }
110 }
111 return 0;
112}
113
cffb09ce 114#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
bce6c5fd
AB
115static void do_dabr(struct pt_regs *regs, unsigned long address,
116 unsigned long error_code)
14cf11af
PM
117{
118 siginfo_t info;
119
120 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
121 11, SIGSEGV) == NOTIFY_STOP)
122 return;
123
124 if (debugger_dabr_match(regs))
125 return;
126
127 /* Clear the DABR */
128 set_dabr(0);
129
130 /* Deliver the signal to userspace */
131 info.si_signo = SIGTRAP;
132 info.si_errno = 0;
133 info.si_code = TRAP_HWBKPT;
bce6c5fd 134 info.si_addr = (void __user *)address;
14cf11af
PM
135 force_sig_info(SIGTRAP, &info, current);
136}
cffb09ce 137#endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
14cf11af
PM
138
139/*
140 * For 600- and 800-family processors, the error_code parameter is DSISR
141 * for a data fault, SRR1 for an instruction fault. For 400-family processors
142 * the error_code parameter is ESR for a data fault, 0 for an instruction
143 * fault.
144 * For 64-bit processors, the error_code parameter is
145 * - DSISR for a non-SLB data access fault,
146 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
147 * - 0 any SLB fault.
148 *
149 * The return value is 0 if the fault was handled, or the signal
150 * number if this is a kernel fault that can't be handled here.
151 */
152int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
153 unsigned long error_code)
154{
155 struct vm_area_struct * vma;
156 struct mm_struct *mm = current->mm;
157 siginfo_t info;
158 int code = SEGV_MAPERR;
159 int is_write = 0;
160 int trap = TRAP(regs);
161 int is_exec = trap == 0x400;
162
163#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
164 /*
165 * Fortunately the bit assignments in SRR1 for an instruction
166 * fault and DSISR for a data fault are mostly the same for the
167 * bits we are interested in. But there are some bits which
168 * indicate errors in DSISR but can validly be set in SRR1.
169 */
170 if (trap == 0x400)
171 error_code &= 0x48200000;
172 else
173 is_write = error_code & DSISR_ISSTORE;
174#else
175 is_write = error_code & ESR_DST;
176#endif /* CONFIG_4xx || CONFIG_BOOKE */
177
4f9e87c0 178 if (notify_page_fault(DIE_PAGE_FAULT, "page_fault", regs, error_code,
14cf11af
PM
179 11, SIGSEGV) == NOTIFY_STOP)
180 return 0;
181
182 if (trap == 0x300) {
183 if (debugger_fault_handler(regs))
184 return 0;
185 }
186
187 /* On a kernel SLB miss we can only check for a valid exception entry */
188 if (!user_mode(regs) && (address >= TASK_SIZE))
189 return SIGSEGV;
190
191#if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
192 if (error_code & DSISR_DABRMATCH) {
193 /* DABR match */
bce6c5fd 194 do_dabr(regs, address, error_code);
14cf11af
PM
195 return 0;
196 }
197#endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
198
199 if (in_atomic() || mm == NULL) {
200 if (!user_mode(regs))
201 return SIGSEGV;
202 /* in_atomic() in user mode is really bad,
203 as is current->mm == NULL. */
204 printk(KERN_EMERG "Page fault in user mode with"
205 "in_atomic() = %d mm = %p\n", in_atomic(), mm);
206 printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
207 regs->nip, regs->msr);
208 die("Weird page fault", regs, SIGSEGV);
209 }
210
211 /* When running in the kernel we expect faults to occur only to
212 * addresses in user space. All other faults represent errors in the
fc5266ea
AB
213 * kernel and should generate an OOPS. Unfortunately, in the case of an
214 * erroneous fault occurring in a code path which already holds mmap_sem
14cf11af
PM
215 * we will deadlock attempting to validate the fault against the
216 * address space. Luckily the kernel only validly references user
217 * space from well defined areas of code, which are listed in the
218 * exceptions table.
219 *
220 * As the vast majority of faults will be valid we will only perform
fc5266ea 221 * the source reference check when there is a possibility of a deadlock.
14cf11af
PM
222 * Attempt to lock the address space, if we cannot we then validate the
223 * source. If this is invalid we can skip the address space check,
224 * thus avoiding the deadlock.
225 */
226 if (!down_read_trylock(&mm->mmap_sem)) {
227 if (!user_mode(regs) && !search_exception_tables(regs->nip))
228 goto bad_area_nosemaphore;
229
230 down_read(&mm->mmap_sem);
231 }
232
233 vma = find_vma(mm, address);
234 if (!vma)
235 goto bad_area;
236 if (vma->vm_start <= address)
237 goto good_area;
238 if (!(vma->vm_flags & VM_GROWSDOWN))
239 goto bad_area;
240
241 /*
242 * N.B. The POWER/Open ABI allows programs to access up to
243 * 288 bytes below the stack pointer.
244 * The kernel signal delivery code writes up to about 1.5kB
245 * below the stack pointer (r1) before decrementing it.
246 * The exec code can write slightly over 640kB to the stack
247 * before setting the user r1. Thus we allow the stack to
248 * expand to 1MB without further checks.
249 */
250 if (address + 0x100000 < vma->vm_end) {
251 /* get user regs even if this fault is in kernel mode */
252 struct pt_regs *uregs = current->thread.regs;
253 if (uregs == NULL)
254 goto bad_area;
255
256 /*
257 * A user-mode access to an address a long way below
258 * the stack pointer is only valid if the instruction
259 * is one which would update the stack pointer to the
260 * address accessed if the instruction completed,
261 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
262 * (or the byte, halfword, float or double forms).
263 *
264 * If we don't check this then any write to the area
265 * between the last mapped region and the stack will
266 * expand the stack rather than segfaulting.
267 */
268 if (address + 2048 < uregs->gpr[1]
269 && (!user_mode(regs) || !store_updates_sp(regs)))
270 goto bad_area;
271 }
272 if (expand_stack(vma, address))
273 goto bad_area;
274
275good_area:
276 code = SEGV_ACCERR;
277#if defined(CONFIG_6xx)
278 if (error_code & 0x95700000)
279 /* an error such as lwarx to I/O controller space,
280 address matching DABR, eciwx, etc. */
281 goto bad_area;
282#endif /* CONFIG_6xx */
283#if defined(CONFIG_8xx)
284 /* The MPC8xx seems to always set 0x80000000, which is
285 * "undefined". Of those that can be set, this is the only
286 * one which seems bad.
287 */
288 if (error_code & 0x10000000)
289 /* Guarded storage error. */
290 goto bad_area;
291#endif /* CONFIG_8xx */
292
293 if (is_exec) {
294#ifdef CONFIG_PPC64
295 /* protection fault */
296 if (error_code & DSISR_PROTFAULT)
297 goto bad_area;
298 if (!(vma->vm_flags & VM_EXEC))
299 goto bad_area;
300#endif
301#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
302 pte_t *ptep;
bab70a4a 303 pmd_t *pmdp;
14cf11af
PM
304
305 /* Since 4xx/Book-E supports per-page execute permission,
306 * we lazily flush dcache to icache. */
307 ptep = NULL;
bab70a4a
ES
308 if (get_pteptr(mm, address, &ptep, &pmdp)) {
309 spinlock_t *ptl = pte_lockptr(mm, pmdp);
310 spin_lock(ptl);
311 if (pte_present(*ptep)) {
312 struct page *page = pte_page(*ptep);
14cf11af 313
bab70a4a
ES
314 if (!test_bit(PG_arch_1, &page->flags)) {
315 flush_dcache_icache_page(page);
316 set_bit(PG_arch_1, &page->flags);
317 }
318 pte_update(ptep, 0, _PAGE_HWEXEC);
319 _tlbie(address);
320 pte_unmap_unlock(ptep, ptl);
321 up_read(&mm->mmap_sem);
322 return 0;
14cf11af 323 }
bab70a4a 324 pte_unmap_unlock(ptep, ptl);
14cf11af 325 }
14cf11af
PM
326#endif
327 /* a write */
328 } else if (is_write) {
329 if (!(vma->vm_flags & VM_WRITE))
330 goto bad_area;
331 /* a read */
332 } else {
333 /* protection fault */
334 if (error_code & 0x08000000)
335 goto bad_area;
df67b3da 336 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
14cf11af
PM
337 goto bad_area;
338 }
339
340 /*
341 * If for any reason at all we couldn't handle the fault,
342 * make sure we exit gracefully rather than endlessly redo
343 * the fault.
344 */
345 survive:
346 switch (handle_mm_fault(mm, vma, address, is_write)) {
347
348 case VM_FAULT_MINOR:
349 current->min_flt++;
350 break;
351 case VM_FAULT_MAJOR:
352 current->maj_flt++;
353 break;
354 case VM_FAULT_SIGBUS:
355 goto do_sigbus;
356 case VM_FAULT_OOM:
357 goto out_of_memory;
358 default:
359 BUG();
360 }
361
362 up_read(&mm->mmap_sem);
363 return 0;
364
365bad_area:
366 up_read(&mm->mmap_sem);
367
368bad_area_nosemaphore:
369 /* User mode accesses cause a SIGSEGV */
370 if (user_mode(regs)) {
371 _exception(SIGSEGV, regs, code, address);
372 return 0;
373 }
374
375 if (is_exec && (error_code & DSISR_PROTFAULT)
376 && printk_ratelimit())
377 printk(KERN_CRIT "kernel tried to execute NX-protected"
378 " page (%lx) - exploit attempt? (uid: %d)\n",
379 address, current->uid);
380
381 return SIGSEGV;
382
383/*
384 * We ran out of memory, or some other thing happened to us that made
385 * us unable to handle the page fault gracefully.
386 */
387out_of_memory:
388 up_read(&mm->mmap_sem);
f400e198 389 if (is_init(current)) {
14cf11af
PM
390 yield();
391 down_read(&mm->mmap_sem);
392 goto survive;
393 }
394 printk("VM: killing process %s\n", current->comm);
395 if (user_mode(regs))
396 do_exit(SIGKILL);
397 return SIGKILL;
398
399do_sigbus:
400 up_read(&mm->mmap_sem);
401 if (user_mode(regs)) {
402 info.si_signo = SIGBUS;
403 info.si_errno = 0;
404 info.si_code = BUS_ADRERR;
405 info.si_addr = (void __user *)address;
406 force_sig_info(SIGBUS, &info, current);
407 return 0;
408 }
409 return SIGBUS;
410}
411
412/*
413 * bad_page_fault is called when we have a bad access from the kernel.
414 * It is called from the DSI and ISI handlers in head.S and from some
415 * of the procedures in traps.c.
416 */
417void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
418{
419 const struct exception_table_entry *entry;
420
421 /* Are we prepared to handle this fault? */
422 if ((entry = search_exception_tables(regs->nip)) != NULL) {
423 regs->nip = entry->fixup;
424 return;
425 }
426
427 /* kernel has accessed a bad area */
723925b7 428
723925b7 429 switch (regs->trap) {
a416dd8d
ME
430 case 0x300:
431 case 0x380:
432 printk(KERN_ALERT "Unable to handle kernel paging request for "
433 "data at address 0x%08lx\n", regs->dar);
434 break;
435 case 0x400:
436 case 0x480:
437 printk(KERN_ALERT "Unable to handle kernel paging request for "
438 "instruction fetch\n");
439 break;
440 default:
441 printk(KERN_ALERT "Unable to handle kernel paging request for "
442 "unknown fault\n");
443 break;
723925b7
OJ
444 }
445 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
446 regs->nip);
447
14cf11af
PM
448 die("Kernel access of bad area", regs, sig);
449}