]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/powerpc/kernel/time.c
powerpc: tracing: Add powerpc tracepoints for timer entry and exit
[net-next-2.6.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
cdd6c482 56#include <linux/perf_event.h>
6795b85c 57#include <asm/trace.h>
1da177e4 58
1da177e4
LT
59#include <asm/io.h>
60#include <asm/processor.h>
61#include <asm/nvram.h>
62#include <asm/cache.h>
63#include <asm/machdep.h>
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/time.h>
1da177e4 66#include <asm/prom.h>
f2783c15
PM
67#include <asm/irq.h>
68#include <asm/div64.h>
2249ca9d 69#include <asm/smp.h>
a7f290da 70#include <asm/vdso_datapage.h>
1ababe11 71#include <asm/firmware.h>
06b8e878 72#include <asm/cputime.h>
f2783c15 73#ifdef CONFIG_PPC_ISERIES
8875ccfb 74#include <asm/iseries/it_lp_queue.h>
8021b8a7 75#include <asm/iseries/hv_call_xm.h>
f2783c15 76#endif
1da177e4 77
4a4cfe38
TB
78/* powerpc clocksource/clockevent code */
79
d831d0b8 80#include <linux/clockchips.h>
4a4cfe38
TB
81#include <linux/clocksource.h>
82
8e19608e 83static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
84static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
92};
93
8e19608e 94static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
95static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
103};
104
d831d0b8
TB
105#define DECREMENTER_MAX 0x7fffffff
106
107static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
111
112static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
8d165db1 115 .shift = 0, /* To be filled in */
d831d0b8
TB
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
121};
122
6e6b44e8
MM
123struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
126};
127
128static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 129
1da177e4 130#ifdef CONFIG_PPC_ISERIES
71712b45
TB
131static unsigned long __initdata iSeries_recal_titan;
132static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
133
134/* Forward declaration is only needed for iSereis compiles */
1c21a293 135static void __init clocksource_init(void);
1da177e4
LT
136#endif
137
138#define XSEC_PER_SEC (1024*1024)
139
f2783c15
PM
140#ifdef CONFIG_PPC64
141#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142#else
143/* compute ((xsec << 12) * max) >> 32 */
144#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145#endif
146
1da177e4
LT
147unsigned long tb_ticks_per_jiffy;
148unsigned long tb_ticks_per_usec = 100; /* sane default */
149EXPORT_SYMBOL(tb_ticks_per_usec);
150unsigned long tb_ticks_per_sec;
2cf82c02 151EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
152u64 tb_to_xs;
153unsigned tb_to_us;
092b8f34 154
7fc5c784 155#define TICKLEN_SCALE NTP_SCALE_SHIFT
1c21a293
ME
156static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157static u64 ticklen_to_xs; /* 0.64 fraction */
092b8f34
PM
158
159/* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
162
1da177e4 163DEFINE_SPINLOCK(rtc_lock);
6ae3db11 164EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 165
fc9069fe
TB
166static u64 tb_to_ns_scale __read_mostly;
167static unsigned tb_to_ns_shift __read_mostly;
168static unsigned long boot_tb __read_mostly;
1da177e4 169
1da177e4 170extern struct timezone sys_tz;
f2783c15 171static long timezone_offset;
1da177e4 172
10f7e7c1 173unsigned long ppc_proc_freq;
1474855d 174EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
175unsigned long ppc_tb_freq;
176
eb36c288
PM
177static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 179
c6622f63
PM
180#ifdef CONFIG_VIRT_CPU_ACCOUNTING
181/*
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
185 */
186u64 __cputime_jiffies_factor;
2cf82c02 187EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 188u64 __cputime_msec_factor;
2cf82c02 189EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 190u64 __cputime_sec_factor;
2cf82c02 191EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 192u64 __cputime_clockt_factor;
2cf82c02 193EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
194DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 196
a42548a1
SG
197cputime_t cputime_one_jiffy;
198
c6622f63
PM
199static void calc_cputime_factors(void)
200{
201 struct div_result res;
202
203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_jiffies_factor = res.result_low;
205 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 __cputime_msec_factor = res.result_low;
207 div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 __cputime_sec_factor = res.result_low;
209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 __cputime_clockt_factor = res.result_low;
211}
212
213/*
214 * Read the PURR on systems that have it, otherwise the timebase.
215 */
216static u64 read_purr(void)
217{
218 if (cpu_has_feature(CPU_FTR_PURR))
219 return mfspr(SPRN_PURR);
220 return mftb();
221}
222
4603ac18
MN
223/*
224 * Read the SPURR on systems that have it, otherwise the purr
225 */
226static u64 read_spurr(u64 purr)
227{
53024fe2
MM
228 /*
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
231 */
232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
4603ac18
MN
233 return mfspr(SPRN_SPURR);
234 return purr;
235}
236
c6622f63
PM
237/*
238 * Account time for a transition between system, hard irq
239 * or soft irq state.
240 */
241void account_system_vtime(struct task_struct *tsk)
242{
53024fe2 243 u64 now, nowscaled, delta, deltascaled, sys_time;
c6622f63
PM
244 unsigned long flags;
245
246 local_irq_save(flags);
247 now = read_purr();
4603ac18 248 nowscaled = read_spurr(now);
53024fe2 249 delta = now - get_paca()->startpurr;
4603ac18 250 deltascaled = nowscaled - get_paca()->startspurr;
53024fe2 251 get_paca()->startpurr = now;
4603ac18 252 get_paca()->startspurr = nowscaled;
c6622f63 253 if (!in_interrupt()) {
4603ac18
MN
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
256 * the system time */
53024fe2 257 sys_time = get_paca()->system_time;
2b46b567 258 if (get_paca()->user_time)
53024fe2
MM
259 deltascaled = deltascaled * sys_time /
260 (sys_time + get_paca()->user_time);
261 delta += sys_time;
c6622f63
PM
262 get_paca()->system_time = 0;
263 }
79741dd3
MS
264 if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 account_system_time(tsk, 0, delta, deltascaled);
266 else
267 account_idle_time(delta);
06b8e878
MN
268 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
269 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
c6622f63
PM
270 local_irq_restore(flags);
271}
272
273/*
274 * Transfer the user and system times accumulated in the paca
275 * by the exception entry and exit code to the generic process
276 * user and system time records.
277 * Must be called with interrupts disabled.
278 */
fa13a5a1 279void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 280{
4603ac18 281 cputime_t utime, utimescaled;
c6622f63
PM
282
283 utime = get_paca()->user_time;
284 get_paca()->user_time = 0;
06b8e878 285 utimescaled = cputime_to_scaled(utime);
457533a7 286 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
287}
288
c6622f63
PM
289/*
290 * Stuff for accounting stolen time.
291 */
292struct cpu_purr_data {
293 int initialized; /* thread is running */
c6622f63
PM
294 u64 tb; /* last TB value read */
295 u64 purr; /* last PURR value read */
4603ac18 296 u64 spurr; /* last SPURR value read */
c6622f63
PM
297};
298
df211c8a
NL
299/*
300 * Each entry in the cpu_purr_data array is manipulated only by its
301 * "owner" cpu -- usually in the timer interrupt but also occasionally
302 * in process context for cpu online. As long as cpus do not touch
303 * each others' cpu_purr_data, disabling local interrupts is
304 * sufficient to serialize accesses.
305 */
c6622f63
PM
306static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
307
308static void snapshot_tb_and_purr(void *data)
309{
df211c8a 310 unsigned long flags;
c6622f63
PM
311 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
312
df211c8a 313 local_irq_save(flags);
c27da339 314 p->tb = get_tb_or_rtc();
cbcdb93d 315 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
316 wmb();
317 p->initialized = 1;
df211c8a 318 local_irq_restore(flags);
c6622f63
PM
319}
320
321/*
322 * Called during boot when all cpus have come up.
323 */
324void snapshot_timebases(void)
325{
c6622f63
PM
326 if (!cpu_has_feature(CPU_FTR_PURR))
327 return;
15c8b6c1 328 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
c6622f63
PM
329}
330
df211c8a
NL
331/*
332 * Must be called with interrupts disabled.
333 */
c6622f63
PM
334void calculate_steal_time(void)
335{
cbcdb93d 336 u64 tb, purr;
c6622f63 337 s64 stolen;
cbcdb93d 338 struct cpu_purr_data *pme;
c6622f63 339
8b5621f1 340 pme = &__get_cpu_var(cpu_purr_data);
c6622f63 341 if (!pme->initialized)
db3801a8 342 return; /* !CPU_FTR_PURR or early in early boot */
c6622f63 343 tb = mftb();
cbcdb93d
SR
344 purr = mfspr(SPRN_PURR);
345 stolen = (tb - pme->tb) - (purr - pme->purr);
79741dd3
MS
346 if (stolen > 0) {
347 if (idle_task(smp_processor_id()) != current)
348 account_steal_time(stolen);
349 else
350 account_idle_time(stolen);
351 }
c6622f63
PM
352 pme->tb = tb;
353 pme->purr = purr;
c6622f63
PM
354}
355
4cefebb1 356#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
357/*
358 * Must be called before the cpu is added to the online map when
359 * a cpu is being brought up at runtime.
360 */
361static void snapshot_purr(void)
362{
cbcdb93d 363 struct cpu_purr_data *pme;
c6622f63
PM
364 unsigned long flags;
365
366 if (!cpu_has_feature(CPU_FTR_PURR))
367 return;
df211c8a 368 local_irq_save(flags);
8b5621f1 369 pme = &__get_cpu_var(cpu_purr_data);
cbcdb93d
SR
370 pme->tb = mftb();
371 pme->purr = mfspr(SPRN_PURR);
c6622f63 372 pme->initialized = 1;
df211c8a 373 local_irq_restore(flags);
c6622f63
PM
374}
375
376#endif /* CONFIG_PPC_SPLPAR */
377
378#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
379#define calc_cputime_factors()
c6622f63
PM
380#define calculate_steal_time() do { } while (0)
381#endif
382
383#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
384#define snapshot_purr() do { } while (0)
385#endif
386
387/*
388 * Called when a cpu comes up after the system has finished booting,
389 * i.e. as a result of a hotplug cpu action.
390 */
391void snapshot_timebase(void)
392{
c27da339 393 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
394 snapshot_purr();
395}
396
6defa38b
PM
397void __delay(unsigned long loops)
398{
399 unsigned long start;
400 int diff;
401
402 if (__USE_RTC()) {
403 start = get_rtcl();
404 do {
405 /* the RTCL register wraps at 1000000000 */
406 diff = get_rtcl() - start;
407 if (diff < 0)
408 diff += 1000000000;
409 } while (diff < loops);
410 } else {
411 start = get_tbl();
412 while (get_tbl() - start < loops)
413 HMT_low();
414 HMT_medium();
415 }
416}
417EXPORT_SYMBOL(__delay);
418
419void udelay(unsigned long usecs)
420{
421 __delay(tb_ticks_per_usec * usecs);
422}
423EXPORT_SYMBOL(udelay);
424
f2783c15 425static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 426 u64 new_tb_to_xs)
1da177e4 427{
f2783c15
PM
428 /*
429 * tb_update_count is used to allow the userspace gettimeofday code
430 * to assure itself that it sees a consistent view of the tb_to_xs and
431 * stamp_xsec variables. It reads the tb_update_count, then reads
432 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
433 * the two values of tb_update_count match and are even then the
434 * tb_to_xs and stamp_xsec values are consistent. If not, then it
435 * loops back and reads them again until this criteria is met.
0a45d449
PM
436 * We expect the caller to have done the first increment of
437 * vdso_data->tb_update_count already.
f2783c15 438 */
a7f290da
BH
439 vdso_data->tb_orig_stamp = new_tb_stamp;
440 vdso_data->stamp_xsec = new_stamp_xsec;
441 vdso_data->tb_to_xs = new_tb_to_xs;
442 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
443 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
597bc5c0 444 vdso_data->stamp_xtime = xtime;
0d8d4d42 445 smp_wmb();
a7f290da 446 ++(vdso_data->tb_update_count);
f2783c15
PM
447}
448
1da177e4
LT
449#ifdef CONFIG_SMP
450unsigned long profile_pc(struct pt_regs *regs)
451{
452 unsigned long pc = instruction_pointer(regs);
453
454 if (in_lock_functions(pc))
455 return regs->link;
456
457 return pc;
458}
459EXPORT_SYMBOL(profile_pc);
460#endif
461
462#ifdef CONFIG_PPC_ISERIES
463
464/*
465 * This function recalibrates the timebase based on the 49-bit time-of-day
466 * value in the Titan chip. The Titan is much more accurate than the value
467 * returned by the service processor for the timebase frequency.
468 */
469
71712b45 470static int __init iSeries_tb_recal(void)
1da177e4
LT
471{
472 struct div_result divres;
473 unsigned long titan, tb;
71712b45
TB
474
475 /* Make sure we only run on iSeries */
476 if (!firmware_has_feature(FW_FEATURE_ISERIES))
477 return -ENODEV;
478
1da177e4
LT
479 tb = get_tb();
480 titan = HvCallXm_loadTod();
481 if ( iSeries_recal_titan ) {
482 unsigned long tb_ticks = tb - iSeries_recal_tb;
483 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
484 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
14ea58ad
JL
485 unsigned long new_tb_ticks_per_jiffy =
486 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
1da177e4
LT
487 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
488 char sign = '+';
489 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
490 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
491
492 if ( tick_diff < 0 ) {
493 tick_diff = -tick_diff;
494 sign = '-';
495 }
496 if ( tick_diff ) {
497 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
498 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
499 new_tb_ticks_per_jiffy, sign, tick_diff );
500 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
501 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 502 calc_cputime_factors();
1da177e4 503 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
1da177e4 504 tb_to_xs = divres.result_low;
a7f290da
BH
505 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
506 vdso_data->tb_to_xs = tb_to_xs;
a42548a1 507 setup_cputime_one_jiffy();
1da177e4
LT
508 }
509 else {
510 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
511 " new tb_ticks_per_jiffy = %lu\n"
512 " old tb_ticks_per_jiffy = %lu\n",
513 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
514 }
515 }
516 }
517 iSeries_recal_titan = titan;
518 iSeries_recal_tb = tb;
71712b45 519
4a4cfe38
TB
520 /* Called here as now we know accurate values for the timebase */
521 clocksource_init();
71712b45 522 return 0;
1da177e4 523}
71712b45
TB
524late_initcall(iSeries_tb_recal);
525
526/* Called from platform early init */
527void __init iSeries_time_init_early(void)
528{
529 iSeries_recal_tb = get_tb();
530 iSeries_recal_titan = HvCallXm_loadTod();
531}
532#endif /* CONFIG_PPC_ISERIES */
1da177e4 533
cdd6c482
IM
534#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
535DEFINE_PER_CPU(u8, perf_event_pending);
105988c0 536
cdd6c482 537void set_perf_event_pending(void)
105988c0 538{
cdd6c482 539 get_cpu_var(perf_event_pending) = 1;
105988c0 540 set_dec(1);
cdd6c482 541 put_cpu_var(perf_event_pending);
105988c0
PM
542}
543
cdd6c482
IM
544#define test_perf_event_pending() __get_cpu_var(perf_event_pending)
545#define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
105988c0 546
cdd6c482 547#else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
105988c0 548
cdd6c482
IM
549#define test_perf_event_pending() 0
550#define clear_perf_event_pending()
105988c0 551
cdd6c482 552#endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
105988c0 553
1da177e4
LT
554/*
555 * For iSeries shared processors, we have to let the hypervisor
556 * set the hardware decrementer. We set a virtual decrementer
557 * in the lppaca and call the hypervisor if the virtual
558 * decrementer is less than the current value in the hardware
559 * decrementer. (almost always the new decrementer value will
560 * be greater than the current hardware decementer so the hypervisor
561 * call will not be needed)
562 */
563
1da177e4
LT
564/*
565 * timer_interrupt - gets called when the decrementer overflows,
566 * with interrupts disabled.
567 */
c7aeffc4 568void timer_interrupt(struct pt_regs * regs)
1da177e4 569{
7d12e780 570 struct pt_regs *old_regs;
6e6b44e8
MM
571 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
572 struct clock_event_device *evt = &decrementer->event;
d968014b 573 u64 now;
d831d0b8 574
6795b85c
AB
575 trace_timer_interrupt_entry(regs);
576
d831d0b8
TB
577 /* Ensure a positive value is written to the decrementer, or else
578 * some CPUs will continuue to take decrementer exceptions */
579 set_dec(DECREMENTER_MAX);
f2783c15
PM
580
581#ifdef CONFIG_PPC32
cdd6c482
IM
582 if (test_perf_event_pending()) {
583 clear_perf_event_pending();
584 perf_event_do_pending();
105988c0 585 }
f2783c15
PM
586 if (atomic_read(&ppc_n_lost_interrupts) != 0)
587 do_IRQ(regs);
588#endif
1da177e4 589
d968014b 590 now = get_tb_or_rtc();
6e6b44e8 591 if (now < decrementer->next_tb) {
d968014b 592 /* not time for this event yet */
6e6b44e8 593 now = decrementer->next_tb - now;
d968014b 594 if (now <= DECREMENTER_MAX)
43875cc0 595 set_dec((int)now);
6795b85c 596 trace_timer_interrupt_exit(regs);
d968014b
PM
597 return;
598 }
7d12e780 599 old_regs = set_irq_regs(regs);
1da177e4
LT
600 irq_enter();
601
c6622f63 602 calculate_steal_time();
1da177e4 603
f2783c15 604#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
605 if (firmware_has_feature(FW_FEATURE_ISERIES))
606 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
607#endif
608
d831d0b8
TB
609 if (evt->event_handler)
610 evt->event_handler(evt);
1da177e4
LT
611
612#ifdef CONFIG_PPC_ISERIES
501b6d29 613 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 614 process_hvlpevents();
1da177e4
LT
615#endif
616
f2783c15 617#ifdef CONFIG_PPC64
8d15a3e5 618 /* collect purr register values often, for accurate calculations */
1ababe11 619 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
620 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
621 cu->current_tb = mfspr(SPRN_PURR);
622 }
f2783c15 623#endif
1da177e4
LT
624
625 irq_exit();
7d12e780 626 set_irq_regs(old_regs);
6795b85c
AB
627
628 trace_timer_interrupt_exit(regs);
1da177e4
LT
629}
630
f2783c15
PM
631void wakeup_decrementer(void)
632{
092b8f34 633 unsigned long ticks;
f2783c15 634
f2783c15 635 /*
092b8f34
PM
636 * The timebase gets saved on sleep and restored on wakeup,
637 * so all we need to do is to reset the decrementer.
f2783c15 638 */
092b8f34
PM
639 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
640 if (ticks < tb_ticks_per_jiffy)
641 ticks = tb_ticks_per_jiffy - ticks;
642 else
643 ticks = 1;
644 set_dec(ticks);
f2783c15
PM
645}
646
7ac5dde9
SW
647#ifdef CONFIG_SUSPEND
648void generic_suspend_disable_irqs(void)
649{
650 preempt_disable();
651
652 /* Disable the decrementer, so that it doesn't interfere
653 * with suspending.
654 */
655
656 set_dec(0x7fffffff);
657 local_irq_disable();
658 set_dec(0x7fffffff);
659}
660
661void generic_suspend_enable_irqs(void)
662{
663 wakeup_decrementer();
664
665 local_irq_enable();
666 preempt_enable();
667}
668
669/* Overrides the weak version in kernel/power/main.c */
670void arch_suspend_disable_irqs(void)
671{
672 if (ppc_md.suspend_disable_irqs)
673 ppc_md.suspend_disable_irqs();
674 generic_suspend_disable_irqs();
675}
676
677/* Overrides the weak version in kernel/power/main.c */
678void arch_suspend_enable_irqs(void)
679{
680 generic_suspend_enable_irqs();
681 if (ppc_md.suspend_enable_irqs)
682 ppc_md.suspend_enable_irqs();
683}
684#endif
685
a5b518ed 686#ifdef CONFIG_SMP
f2783c15
PM
687void __init smp_space_timers(unsigned int max_cpus)
688{
689 int i;
eb36c288 690 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 691
cbe62e2b
PM
692 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
693 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 694
0e551954 695 for_each_possible_cpu(i) {
c6622f63
PM
696 if (i == boot_cpuid)
697 continue;
e147ec8f 698 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
699 }
700}
701#endif
702
1da177e4
LT
703/*
704 * Scheduler clock - returns current time in nanosec units.
705 *
706 * Note: mulhdu(a, b) (multiply high double unsigned) returns
707 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
708 * are 64-bit unsigned numbers.
709 */
710unsigned long long sched_clock(void)
711{
96c44507
PM
712 if (__USE_RTC())
713 return get_rtc();
fc9069fe 714 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
715}
716
0bb474a4 717static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
718{
719 struct device_node *cpu;
a7f67bdf 720 const unsigned int *fp;
0bb474a4 721 int found = 0;
10f7e7c1 722
0bb474a4 723 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
724 cpu = of_find_node_by_type(NULL, "cpu");
725
d8a8188d 726 if (cpu) {
e2eb6392 727 fp = of_get_property(cpu, name, NULL);
d8a8188d 728 if (fp) {
0bb474a4 729 found = 1;
a4dc7ff0 730 *val = of_read_ulong(fp, cells);
10f7e7c1 731 }
0bb474a4
AB
732
733 of_node_put(cpu);
10f7e7c1 734 }
0bb474a4
AB
735
736 return found;
737}
738
77c0a700
BH
739/* should become __cpuinit when secondary_cpu_time_init also is */
740void start_cpu_decrementer(void)
741{
742#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
743 /* Clear any pending timer interrupts */
744 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
745
746 /* Enable decrementer interrupt */
747 mtspr(SPRN_TCR, TCR_DIE);
748#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
749}
750
0bb474a4
AB
751void __init generic_calibrate_decr(void)
752{
753 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
754
755 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
756 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
757
10f7e7c1
AB
758 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
759 "(not found)\n");
0bb474a4 760 }
10f7e7c1 761
0bb474a4
AB
762 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
763
764 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
765 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
766
767 printk(KERN_ERR "WARNING: Estimating processor frequency "
768 "(not found)\n");
10f7e7c1 769 }
10f7e7c1 770}
10f7e7c1 771
aa3be5f3 772int update_persistent_clock(struct timespec now)
f2783c15
PM
773{
774 struct rtc_time tm;
775
aa3be5f3
TB
776 if (!ppc_md.set_rtc_time)
777 return 0;
778
779 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
780 tm.tm_year -= 1900;
781 tm.tm_mon -= 1;
782
783 return ppc_md.set_rtc_time(&tm);
784}
785
d4f587c6 786void read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
787{
788 struct rtc_time tm;
789 static int first = 1;
790
d90246cd 791 ts->tv_nsec = 0;
aa3be5f3
TB
792 /* XXX this is a litle fragile but will work okay in the short term */
793 if (first) {
794 first = 0;
795 if (ppc_md.time_init)
796 timezone_offset = ppc_md.time_init();
797
798 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
799 if (ppc_md.get_boot_time) {
800 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
801 return;
802 }
803 }
804 if (!ppc_md.get_rtc_time) {
805 ts->tv_sec = 0;
806 return;
aa3be5f3 807 }
f2783c15 808 ppc_md.get_rtc_time(&tm);
d4f587c6
MS
809 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
810 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
811}
812
4a4cfe38 813/* clocksource code */
8e19608e 814static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
815{
816 return (cycle_t)get_rtc();
817}
818
8e19608e 819static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
820{
821 return (cycle_t)get_tb();
822}
823
824void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
825{
826 u64 t2x, stamp_xsec;
827
828 if (clock != &clocksource_timebase)
829 return;
830
831 /* Make userspace gettimeofday spin until we're done. */
832 ++vdso_data->tb_update_count;
833 smp_mb();
834
835 /* XXX this assumes clock->shift == 22 */
836 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
837 t2x = (u64) clock->mult * 4611686018ULL;
838 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
839 do_div(stamp_xsec, 1000000000);
840 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
841 update_gtod(clock->cycle_last, stamp_xsec, t2x);
842}
843
844void update_vsyscall_tz(void)
845{
846 /* Make userspace gettimeofday spin until we're done. */
847 ++vdso_data->tb_update_count;
848 smp_mb();
849 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
850 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
851 smp_mb();
852 ++vdso_data->tb_update_count;
853}
854
1c21a293 855static void __init clocksource_init(void)
4a4cfe38
TB
856{
857 struct clocksource *clock;
858
859 if (__USE_RTC())
860 clock = &clocksource_rtc;
861 else
862 clock = &clocksource_timebase;
863
864 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
865
866 if (clocksource_register(clock)) {
867 printk(KERN_ERR "clocksource: %s is already registered\n",
868 clock->name);
869 return;
870 }
871
872 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
873 clock->name, clock->mult, clock->shift);
874}
875
d831d0b8
TB
876static int decrementer_set_next_event(unsigned long evt,
877 struct clock_event_device *dev)
878{
6e6b44e8 879 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
880 set_dec(evt);
881 return 0;
882}
883
884static void decrementer_set_mode(enum clock_event_mode mode,
885 struct clock_event_device *dev)
886{
887 if (mode != CLOCK_EVT_MODE_ONESHOT)
888 decrementer_set_next_event(DECREMENTER_MAX, dev);
889}
890
8d165db1
AB
891static void __init setup_clockevent_multiplier(unsigned long hz)
892{
893 u64 mult, shift = 32;
894
895 while (1) {
896 mult = div_sc(hz, NSEC_PER_SEC, shift);
897 if (mult && (mult >> 32UL) == 0UL)
898 break;
899
900 shift--;
901 }
902
903 decrementer_clockevent.shift = shift;
904 decrementer_clockevent.mult = mult;
905}
906
d831d0b8
TB
907static void register_decrementer_clockevent(int cpu)
908{
6e6b44e8 909 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
910
911 *dec = decrementer_clockevent;
320ab2b0 912 dec->cpumask = cpumask_of(cpu);
d831d0b8 913
0302f12e 914 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
d831d0b8
TB
915 dec->name, dec->mult, dec->shift, cpu);
916
917 clockevents_register_device(dec);
918}
919
c481887f 920static void __init init_decrementer_clockevent(void)
d831d0b8
TB
921{
922 int cpu = smp_processor_id();
923
8d165db1 924 setup_clockevent_multiplier(ppc_tb_freq);
d831d0b8
TB
925 decrementer_clockevent.max_delta_ns =
926 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
927 decrementer_clockevent.min_delta_ns =
928 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
929
930 register_decrementer_clockevent(cpu);
931}
932
933void secondary_cpu_time_init(void)
934{
77c0a700
BH
935 /* Start the decrementer on CPUs that have manual control
936 * such as BookE
937 */
938 start_cpu_decrementer();
939
d831d0b8
TB
940 /* FIME: Should make unrelatred change to move snapshot_timebase
941 * call here ! */
942 register_decrementer_clockevent(smp_processor_id());
943}
944
f2783c15 945/* This function is only called on the boot processor */
1da177e4
LT
946void __init time_init(void)
947{
1da177e4 948 unsigned long flags;
1da177e4 949 struct div_result res;
092b8f34 950 u64 scale, x;
f2783c15
PM
951 unsigned shift;
952
96c44507
PM
953 if (__USE_RTC()) {
954 /* 601 processor: dec counts down by 128 every 128ns */
955 ppc_tb_freq = 1000000000;
eb36c288 956 tb_last_jiffy = get_rtcl();
96c44507
PM
957 } else {
958 /* Normal PowerPC with timebase register */
959 ppc_md.calibrate_decr();
224ad80a 960 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 961 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 962 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 963 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 964 tb_last_jiffy = get_tb();
96c44507 965 }
374e99d4
PM
966
967 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 968 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
969 tb_ticks_per_usec = ppc_tb_freq / 1000000;
970 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 971 calc_cputime_factors();
a42548a1 972 setup_cputime_one_jiffy();
092b8f34
PM
973
974 /*
975 * Calculate the length of each tick in ns. It will not be
976 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
977 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
978 * rounded up.
979 */
980 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
981 do_div(x, ppc_tb_freq);
982 tick_nsec = x;
983 last_tick_len = x << TICKLEN_SCALE;
984
985 /*
986 * Compute ticklen_to_xs, which is a factor which gets multiplied
987 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
988 * It is computed as:
989 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
990 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
991 * which turns out to be N = 51 - SHIFT_HZ.
992 * This gives the result as a 0.64 fixed-point fraction.
993 * That value is reduced by an offset amounting to 1 xsec per
994 * 2^31 timebase ticks to avoid problems with time going backwards
995 * by 1 xsec when we do timer_recalc_offset due to losing the
996 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
997 * since there are 2^20 xsec in a second.
092b8f34 998 */
0a45d449
PM
999 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1000 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
1001 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1002 ticklen_to_xs = res.result_low;
1003
1004 /* Compute tb_to_xs from tick_nsec */
1005 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 1006
1da177e4
LT
1007 /*
1008 * Compute scale factor for sched_clock.
1009 * The calibrate_decr() function has set tb_ticks_per_sec,
1010 * which is the timebase frequency.
1011 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1012 * the 128-bit result as a 64.64 fixed-point number.
1013 * We then shift that number right until it is less than 1.0,
1014 * giving us the scale factor and shift count to use in
1015 * sched_clock().
1016 */
1017 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1018 scale = res.result_low;
1019 for (shift = 0; res.result_high != 0; ++shift) {
1020 scale = (scale >> 1) | (res.result_high << 63);
1021 res.result_high >>= 1;
1022 }
1023 tb_to_ns_scale = scale;
1024 tb_to_ns_shift = shift;
fc9069fe 1025 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 1026 boot_tb = get_tb_or_rtc();
1da177e4 1027
1da177e4 1028 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1029
1030 /* If platform provided a timezone (pmac), we correct the time */
1031 if (timezone_offset) {
1032 sys_tz.tz_minuteswest = -timezone_offset / 60;
1033 sys_tz.tz_dsttime = 0;
092b8f34
PM
1034 }
1035
a7f290da
BH
1036 vdso_data->tb_orig_stamp = tb_last_jiffy;
1037 vdso_data->tb_update_count = 0;
1038 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1039 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1040 vdso_data->tb_to_xs = tb_to_xs;
1da177e4 1041
1da177e4
LT
1042 write_sequnlock_irqrestore(&xtime_lock, flags);
1043
77c0a700
BH
1044 /* Start the decrementer on CPUs that have manual control
1045 * such as BookE
1046 */
1047 start_cpu_decrementer();
1048
4a4cfe38
TB
1049 /* Register the clocksource, if we're not running on iSeries */
1050 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1051 clocksource_init();
1052
d831d0b8 1053 init_decrementer_clockevent();
1da177e4
LT
1054}
1055
1da177e4 1056
1da177e4
LT
1057#define FEBRUARY 2
1058#define STARTOFTIME 1970
1059#define SECDAY 86400L
1060#define SECYR (SECDAY * 365)
f2783c15
PM
1061#define leapyear(year) ((year) % 4 == 0 && \
1062 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1063#define days_in_year(a) (leapyear(a) ? 366 : 365)
1064#define days_in_month(a) (month_days[(a) - 1])
1065
1066static int month_days[12] = {
1067 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1068};
1069
1070/*
1071 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1072 */
1073void GregorianDay(struct rtc_time * tm)
1074{
1075 int leapsToDate;
1076 int lastYear;
1077 int day;
1078 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1079
f2783c15 1080 lastYear = tm->tm_year - 1;
1da177e4
LT
1081
1082 /*
1083 * Number of leap corrections to apply up to end of last year
1084 */
f2783c15 1085 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1086
1087 /*
1088 * This year is a leap year if it is divisible by 4 except when it is
1089 * divisible by 100 unless it is divisible by 400
1090 *
f2783c15 1091 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1092 */
f2783c15 1093 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1094
1095 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1096 tm->tm_mday;
1097
f2783c15 1098 tm->tm_wday = day % 7;
1da177e4
LT
1099}
1100
1101void to_tm(int tim, struct rtc_time * tm)
1102{
1103 register int i;
1104 register long hms, day;
1105
1106 day = tim / SECDAY;
1107 hms = tim % SECDAY;
1108
1109 /* Hours, minutes, seconds are easy */
1110 tm->tm_hour = hms / 3600;
1111 tm->tm_min = (hms % 3600) / 60;
1112 tm->tm_sec = (hms % 3600) % 60;
1113
1114 /* Number of years in days */
1115 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1116 day -= days_in_year(i);
1117 tm->tm_year = i;
1118
1119 /* Number of months in days left */
1120 if (leapyear(tm->tm_year))
1121 days_in_month(FEBRUARY) = 29;
1122 for (i = 1; day >= days_in_month(i); i++)
1123 day -= days_in_month(i);
1124 days_in_month(FEBRUARY) = 28;
1125 tm->tm_mon = i;
1126
1127 /* Days are what is left over (+1) from all that. */
1128 tm->tm_mday = day + 1;
1129
1130 /*
1131 * Determine the day of week
1132 */
1133 GregorianDay(tm);
1134}
1135
1136/* Auxiliary function to compute scaling factors */
1137/* Actually the choice of a timebase running at 1/4 the of the bus
1138 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1139 * It makes this computation very precise (27-28 bits typically) which
1140 * is optimistic considering the stability of most processor clock
1141 * oscillators and the precision with which the timebase frequency
1142 * is measured but does not harm.
1143 */
f2783c15
PM
1144unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1145{
1da177e4
LT
1146 unsigned mlt=0, tmp, err;
1147 /* No concern for performance, it's done once: use a stupid
1148 * but safe and compact method to find the multiplier.
1149 */
1150
1151 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1152 if (mulhwu(inscale, mlt|tmp) < outscale)
1153 mlt |= tmp;
1da177e4
LT
1154 }
1155
1156 /* We might still be off by 1 for the best approximation.
1157 * A side effect of this is that if outscale is too large
1158 * the returned value will be zero.
1159 * Many corner cases have been checked and seem to work,
1160 * some might have been forgotten in the test however.
1161 */
1162
f2783c15
PM
1163 err = inscale * (mlt+1);
1164 if (err <= inscale/2)
1165 mlt++;
1da177e4 1166 return mlt;
f2783c15 1167}
1da177e4
LT
1168
1169/*
1170 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1171 * result.
1172 */
f2783c15
PM
1173void div128_by_32(u64 dividend_high, u64 dividend_low,
1174 unsigned divisor, struct div_result *dr)
1da177e4 1175{
f2783c15
PM
1176 unsigned long a, b, c, d;
1177 unsigned long w, x, y, z;
1178 u64 ra, rb, rc;
1da177e4
LT
1179
1180 a = dividend_high >> 32;
1181 b = dividend_high & 0xffffffff;
1182 c = dividend_low >> 32;
1183 d = dividend_low & 0xffffffff;
1184
f2783c15
PM
1185 w = a / divisor;
1186 ra = ((u64)(a - (w * divisor)) << 32) + b;
1187
f2783c15
PM
1188 rb = ((u64) do_div(ra, divisor) << 32) + c;
1189 x = ra;
1da177e4 1190
f2783c15
PM
1191 rc = ((u64) do_div(rb, divisor) << 32) + d;
1192 y = rb;
1193
1194 do_div(rc, divisor);
1195 z = rc;
1da177e4 1196
f2783c15
PM
1197 dr->result_high = ((u64)w << 32) + x;
1198 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1199
1200}
bcd68a70 1201
177996e6
BH
1202/* We don't need to calibrate delay, we use the CPU timebase for that */
1203void calibrate_delay(void)
1204{
1205 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1206 * as the number of __delay(1) in a jiffy, so make it so
1207 */
1208 loops_per_jiffy = tb_ticks_per_jiffy;
1209}
1210
bcd68a70
GU
1211static int __init rtc_init(void)
1212{
1213 struct platform_device *pdev;
1214
1215 if (!ppc_md.get_rtc_time)
1216 return -ENODEV;
1217
1218 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1219 if (IS_ERR(pdev))
1220 return PTR_ERR(pdev);
1221
1222 return 0;
1223}
1224
1225module_init(rtc_init);