]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/parisc/kernel/smp.c
[PATCH] sched: disable preempt in idle tasks
[net-next-2.6.git] / arch / parisc / kernel / smp.c
CommitLineData
1da177e4
LT
1/*
2** SMP Support
3**
4** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
5** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
6** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
7**
8** Lots of stuff stolen from arch/alpha/kernel/smp.c
9** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
10**
11** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
12** -grant (1/12/2001)
13**
14** This program is free software; you can redistribute it and/or modify
15** it under the terms of the GNU General Public License as published by
16** the Free Software Foundation; either version 2 of the License, or
17** (at your option) any later version.
18*/
19#undef ENTRY_SYS_CPUS /* syscall support for iCOD-like functionality */
20
413059f2 21#include <linux/config.h>
1da177e4
LT
22
23#include <linux/types.h>
24#include <linux/spinlock.h>
25#include <linux/slab.h>
26
27#include <linux/kernel.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/smp.h>
33#include <linux/kernel_stat.h>
34#include <linux/mm.h>
35#include <linux/delay.h>
36#include <linux/bitops.h>
37
38#include <asm/system.h>
39#include <asm/atomic.h>
40#include <asm/current.h>
41#include <asm/delay.h>
42#include <asm/pgalloc.h> /* for flush_tlb_all() proto/macro */
43
44#include <asm/io.h>
45#include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
46#include <asm/mmu_context.h>
47#include <asm/page.h>
48#include <asm/pgtable.h>
49#include <asm/pgalloc.h>
50#include <asm/processor.h>
51#include <asm/ptrace.h>
52#include <asm/unistd.h>
53#include <asm/cacheflush.h>
54
55#define kDEBUG 0
56
57DEFINE_SPINLOCK(smp_lock);
58
59volatile struct task_struct *smp_init_current_idle_task;
60
61static volatile int cpu_now_booting = 0; /* track which CPU is booting */
62
63static int parisc_max_cpus = 1;
64
65/* online cpus are ones that we've managed to bring up completely
66 * possible cpus are all valid cpu
67 * present cpus are all detected cpu
68 *
69 * On startup we bring up the "possible" cpus. Since we discover
70 * CPUs later, we add them as hotplug, so the possible cpu mask is
71 * empty in the beginning.
72 */
73
74cpumask_t cpu_online_map = CPU_MASK_NONE; /* Bitmap of online CPUs */
75cpumask_t cpu_possible_map = CPU_MASK_ALL; /* Bitmap of Present CPUs */
76
77EXPORT_SYMBOL(cpu_online_map);
78EXPORT_SYMBOL(cpu_possible_map);
79
80
81struct smp_call_struct {
82 void (*func) (void *info);
83 void *info;
84 long wait;
85 atomic_t unstarted_count;
86 atomic_t unfinished_count;
87};
88static volatile struct smp_call_struct *smp_call_function_data;
89
90enum ipi_message_type {
91 IPI_NOP=0,
92 IPI_RESCHEDULE=1,
93 IPI_CALL_FUNC,
94 IPI_CPU_START,
95 IPI_CPU_STOP,
96 IPI_CPU_TEST
97};
98
99
100/********** SMP inter processor interrupt and communication routines */
101
102#undef PER_CPU_IRQ_REGION
103#ifdef PER_CPU_IRQ_REGION
104/* XXX REVISIT Ignore for now.
105** *May* need this "hook" to register IPI handler
106** once we have perCPU ExtIntr switch tables.
107*/
108static void
109ipi_init(int cpuid)
110{
111
112 /* If CPU is present ... */
113#ifdef ENTRY_SYS_CPUS
114 /* *and* running (not stopped) ... */
115#error iCOD support wants state checked here.
116#endif
117
118#error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
119
120 if(cpu_online(cpuid) )
121 {
122 switch_to_idle_task(current);
123 }
124
125 return;
126}
127#endif
128
129
130/*
131** Yoink this CPU from the runnable list...
132**
133*/
134static void
135halt_processor(void)
136{
137#ifdef ENTRY_SYS_CPUS
138#error halt_processor() needs rework
139/*
140** o migrate I/O interrupts off this CPU.
141** o leave IPI enabled - __cli() will disable IPI.
142** o leave CPU in online map - just change the state
143*/
144 cpu_data[this_cpu].state = STATE_STOPPED;
145 mark_bh(IPI_BH);
146#else
147 /* REVISIT : redirect I/O Interrupts to another CPU? */
148 /* REVISIT : does PM *know* this CPU isn't available? */
149 cpu_clear(smp_processor_id(), cpu_online_map);
150 local_irq_disable();
151 for (;;)
152 ;
153#endif
154}
155
156
157irqreturn_t
158ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
159{
160 int this_cpu = smp_processor_id();
161 struct cpuinfo_parisc *p = &cpu_data[this_cpu];
162 unsigned long ops;
163 unsigned long flags;
164
165 /* Count this now; we may make a call that never returns. */
166 p->ipi_count++;
167
168 mb(); /* Order interrupt and bit testing. */
169
170 for (;;) {
171 spin_lock_irqsave(&(p->lock),flags);
172 ops = p->pending_ipi;
173 p->pending_ipi = 0;
174 spin_unlock_irqrestore(&(p->lock),flags);
175
176 mb(); /* Order bit clearing and data access. */
177
178 if (!ops)
179 break;
180
181 while (ops) {
182 unsigned long which = ffz(~ops);
183
184 switch (which) {
185 case IPI_RESCHEDULE:
186#if (kDEBUG>=100)
187 printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
188#endif /* kDEBUG */
189 ops &= ~(1 << IPI_RESCHEDULE);
190 /*
191 * Reschedule callback. Everything to be
192 * done is done by the interrupt return path.
193 */
194 break;
195
196 case IPI_CALL_FUNC:
197#if (kDEBUG>=100)
198 printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
199#endif /* kDEBUG */
200 ops &= ~(1 << IPI_CALL_FUNC);
201 {
202 volatile struct smp_call_struct *data;
203 void (*func)(void *info);
204 void *info;
205 int wait;
206
207 data = smp_call_function_data;
208 func = data->func;
209 info = data->info;
210 wait = data->wait;
211
212 mb();
213 atomic_dec ((atomic_t *)&data->unstarted_count);
214
215 /* At this point, *data can't
216 * be relied upon.
217 */
218
219 (*func)(info);
220
221 /* Notify the sending CPU that the
222 * task is done.
223 */
224 mb();
225 if (wait)
226 atomic_dec ((atomic_t *)&data->unfinished_count);
227 }
228 break;
229
230 case IPI_CPU_START:
231#if (kDEBUG>=100)
232 printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
233#endif /* kDEBUG */
234 ops &= ~(1 << IPI_CPU_START);
235#ifdef ENTRY_SYS_CPUS
236 p->state = STATE_RUNNING;
237#endif
238 break;
239
240 case IPI_CPU_STOP:
241#if (kDEBUG>=100)
242 printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
243#endif /* kDEBUG */
244 ops &= ~(1 << IPI_CPU_STOP);
245#ifdef ENTRY_SYS_CPUS
246#else
247 halt_processor();
248#endif
249 break;
250
251 case IPI_CPU_TEST:
252#if (kDEBUG>=100)
253 printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
254#endif /* kDEBUG */
255 ops &= ~(1 << IPI_CPU_TEST);
256 break;
257
258 default:
259 printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
260 this_cpu, which);
261 ops &= ~(1 << which);
262 return IRQ_NONE;
263 } /* Switch */
264 } /* while (ops) */
265 }
266 return IRQ_HANDLED;
267}
268
269
270static inline void
271ipi_send(int cpu, enum ipi_message_type op)
272{
273 struct cpuinfo_parisc *p = &cpu_data[cpu];
274 unsigned long flags;
275
276 spin_lock_irqsave(&(p->lock),flags);
277 p->pending_ipi |= 1 << op;
278 gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
279 spin_unlock_irqrestore(&(p->lock),flags);
280}
281
282
283static inline void
284send_IPI_single(int dest_cpu, enum ipi_message_type op)
285{
286 if (dest_cpu == NO_PROC_ID) {
287 BUG();
288 return;
289 }
290
291 ipi_send(dest_cpu, op);
292}
293
294static inline void
295send_IPI_allbutself(enum ipi_message_type op)
296{
297 int i;
298
299 for (i = 0; i < NR_CPUS; i++) {
300 if (cpu_online(i) && i != smp_processor_id())
301 send_IPI_single(i, op);
302 }
303}
304
305
306inline void
307smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
308
309static inline void
310smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
311
312void
313smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
314
315
316/**
317 * Run a function on all other CPUs.
318 * <func> The function to run. This must be fast and non-blocking.
319 * <info> An arbitrary pointer to pass to the function.
320 * <retry> If true, keep retrying until ready.
321 * <wait> If true, wait until function has completed on other CPUs.
322 * [RETURNS] 0 on success, else a negative status code.
323 *
324 * Does not return until remote CPUs are nearly ready to execute <func>
325 * or have executed.
326 */
327
328int
329smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
330{
331 struct smp_call_struct data;
332 unsigned long timeout;
333 static DEFINE_SPINLOCK(lock);
334 int retries = 0;
335
336 if (num_online_cpus() < 2)
337 return 0;
338
339 /* Can deadlock when called with interrupts disabled */
340 WARN_ON(irqs_disabled());
341
342 data.func = func;
343 data.info = info;
344 data.wait = wait;
345 atomic_set(&data.unstarted_count, num_online_cpus() - 1);
346 atomic_set(&data.unfinished_count, num_online_cpus() - 1);
347
348 if (retry) {
349 spin_lock (&lock);
350 while (smp_call_function_data != 0)
351 barrier();
352 }
353 else {
354 spin_lock (&lock);
355 if (smp_call_function_data) {
356 spin_unlock (&lock);
357 return -EBUSY;
358 }
359 }
360
361 smp_call_function_data = &data;
362 spin_unlock (&lock);
363
364 /* Send a message to all other CPUs and wait for them to respond */
365 send_IPI_allbutself(IPI_CALL_FUNC);
366
367 retry:
368 /* Wait for response */
369 timeout = jiffies + HZ;
370 while ( (atomic_read (&data.unstarted_count) > 0) &&
371 time_before (jiffies, timeout) )
372 barrier ();
373
374 if (atomic_read (&data.unstarted_count) > 0) {
375 printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
376 smp_processor_id(), ++retries);
377 goto retry;
378 }
379 /* We either got one or timed out. Release the lock */
380
381 mb();
382 smp_call_function_data = NULL;
383
384 while (wait && atomic_read (&data.unfinished_count) > 0)
385 barrier ();
386
387 return 0;
388}
389
390EXPORT_SYMBOL(smp_call_function);
391
392/*
393 * Flush all other CPU's tlb and then mine. Do this with on_each_cpu()
394 * as we want to ensure all TLB's flushed before proceeding.
395 */
396
397extern void flush_tlb_all_local(void);
398
399void
400smp_flush_tlb_all(void)
401{
402 on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
403}
404
405
406void
407smp_do_timer(struct pt_regs *regs)
408{
409 int cpu = smp_processor_id();
410 struct cpuinfo_parisc *data = &cpu_data[cpu];
411
412 if (!--data->prof_counter) {
413 data->prof_counter = data->prof_multiplier;
414 update_process_times(user_mode(regs));
415 }
416}
417
418/*
419 * Called by secondaries to update state and initialize CPU registers.
420 */
421static void __init
422smp_cpu_init(int cpunum)
423{
424 extern int init_per_cpu(int); /* arch/parisc/kernel/setup.c */
425 extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
426
427 /* Set modes and Enable floating point coprocessor */
428 (void) init_per_cpu(cpunum);
429
430 disable_sr_hashing();
431
432 mb();
433
434 /* Well, support 2.4 linux scheme as well. */
435 if (cpu_test_and_set(cpunum, cpu_online_map))
436 {
437 extern void machine_halt(void); /* arch/parisc.../process.c */
438
439 printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
440 machine_halt();
441 }
442
443 /* Initialise the idle task for this CPU */
444 atomic_inc(&init_mm.mm_count);
445 current->active_mm = &init_mm;
446 if(current->mm)
447 BUG();
448 enter_lazy_tlb(&init_mm, current);
449
450 init_IRQ(); /* make sure no IRQ's are enabled or pending */
451}
452
453
454/*
455 * Slaves start using C here. Indirectly called from smp_slave_stext.
456 * Do what start_kernel() and main() do for boot strap processor (aka monarch)
457 */
458void __init smp_callin(void)
459{
460 int slave_id = cpu_now_booting;
461#if 0
462 void *istack;
463#endif
464
465 smp_cpu_init(slave_id);
5bfb5d69 466 preempt_disable();
1da177e4
LT
467
468#if 0 /* NOT WORKING YET - see entry.S */
469 istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
470 if (istack == NULL) {
471 printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
472 BUG();
473 }
474 mtctl(istack,31);
475#endif
476
477 flush_cache_all_local(); /* start with known state */
478 flush_tlb_all_local();
479
480 local_irq_enable(); /* Interrupts have been off until now */
481
482 cpu_idle(); /* Wait for timer to schedule some work */
483
484 /* NOTREACHED */
485 panic("smp_callin() AAAAaaaaahhhh....\n");
486}
487
488/*
489 * Bring one cpu online.
490 */
491int __init smp_boot_one_cpu(int cpuid)
492{
493 struct task_struct *idle;
494 long timeout;
495
496 /*
497 * Create an idle task for this CPU. Note the address wed* give
498 * to kernel_thread is irrelevant -- it's going to start
499 * where OS_BOOT_RENDEVZ vector in SAL says to start. But
500 * this gets all the other task-y sort of data structures set
501 * up like we wish. We need to pull the just created idle task
502 * off the run queue and stuff it into the init_tasks[] array.
503 * Sheesh . . .
504 */
505
506 idle = fork_idle(cpuid);
507 if (IS_ERR(idle))
508 panic("SMP: fork failed for CPU:%d", cpuid);
509
510 idle->thread_info->cpu = cpuid;
511
512 /* Let _start know what logical CPU we're booting
513 ** (offset into init_tasks[],cpu_data[])
514 */
515 cpu_now_booting = cpuid;
516
517 /*
518 ** boot strap code needs to know the task address since
519 ** it also contains the process stack.
520 */
521 smp_init_current_idle_task = idle ;
522 mb();
523
524 printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
525
526 /*
527 ** This gets PDC to release the CPU from a very tight loop.
528 **
529 ** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
530 ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
531 ** is executed after receiving the rendezvous signal (an interrupt to
532 ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
533 ** contents of memory are valid."
534 */
535 gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
536 mb();
537
538 /*
539 * OK, wait a bit for that CPU to finish staggering about.
540 * Slave will set a bit when it reaches smp_cpu_init().
541 * Once the "monarch CPU" sees the bit change, it can move on.
542 */
543 for (timeout = 0; timeout < 10000; timeout++) {
544 if(cpu_online(cpuid)) {
545 /* Which implies Slave has started up */
546 cpu_now_booting = 0;
547 smp_init_current_idle_task = NULL;
548 goto alive ;
549 }
550 udelay(100);
551 barrier();
552 }
553
554 put_task_struct(idle);
555 idle = NULL;
556
557 printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
558 return -1;
559
560alive:
561 /* Remember the Slave data */
562#if (kDEBUG>=100)
563 printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
564 cpuid, timeout * 100);
565#endif /* kDEBUG */
566#ifdef ENTRY_SYS_CPUS
567 cpu_data[cpuid].state = STATE_RUNNING;
568#endif
569 return 0;
570}
571
572void __devinit smp_prepare_boot_cpu(void)
573{
574 int bootstrap_processor=cpu_data[0].cpuid; /* CPU ID of BSP */
575
576#ifdef ENTRY_SYS_CPUS
577 cpu_data[0].state = STATE_RUNNING;
578#endif
579
580 /* Setup BSP mappings */
581 printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
582
583 cpu_set(bootstrap_processor, cpu_online_map);
584 cpu_set(bootstrap_processor, cpu_present_map);
585}
586
587
588
589/*
590** inventory.c:do_inventory() hasn't yet been run and thus we
591** don't 'discover' the additional CPU's until later.
592*/
593void __init smp_prepare_cpus(unsigned int max_cpus)
594{
595 cpus_clear(cpu_present_map);
596 cpu_set(0, cpu_present_map);
597
598 parisc_max_cpus = max_cpus;
599 if (!max_cpus)
600 printk(KERN_INFO "SMP mode deactivated.\n");
601}
602
603
604void smp_cpus_done(unsigned int cpu_max)
605{
606 return;
607}
608
609
610int __devinit __cpu_up(unsigned int cpu)
611{
612 if (cpu != 0 && cpu < parisc_max_cpus)
613 smp_boot_one_cpu(cpu);
614
615 return cpu_online(cpu) ? 0 : -ENOSYS;
616}
617
618
619
620#ifdef ENTRY_SYS_CPUS
621/* Code goes along with:
622** entry.s: ENTRY_NAME(sys_cpus) / * 215, for cpu stat * /
623*/
624int sys_cpus(int argc, char **argv)
625{
626 int i,j=0;
627 extern int current_pid(int cpu);
628
629 if( argc > 2 ) {
630 printk("sys_cpus:Only one argument supported\n");
631 return (-1);
632 }
633 if ( argc == 1 ){
634
635#ifdef DUMP_MORE_STATE
636 for(i=0; i<NR_CPUS; i++) {
637 int cpus_per_line = 4;
638 if(cpu_online(i)) {
639 if (j++ % cpus_per_line)
640 printk(" %3d",i);
641 else
642 printk("\n %3d",i);
643 }
644 }
645 printk("\n");
646#else
647 printk("\n 0\n");
648#endif
649 } else if((argc==2) && !(strcmp(argv[1],"-l"))) {
650 printk("\nCPUSTATE TASK CPUNUM CPUID HARDCPU(HPA)\n");
651#ifdef DUMP_MORE_STATE
652 for(i=0;i<NR_CPUS;i++) {
653 if (!cpu_online(i))
654 continue;
655 if (cpu_data[i].cpuid != NO_PROC_ID) {
656 switch(cpu_data[i].state) {
657 case STATE_RENDEZVOUS:
658 printk("RENDEZVS ");
659 break;
660 case STATE_RUNNING:
661 printk((current_pid(i)!=0) ? "RUNNING " : "IDLING ");
662 break;
663 case STATE_STOPPED:
664 printk("STOPPED ");
665 break;
666 case STATE_HALTED:
667 printk("HALTED ");
668 break;
669 default:
670 printk("%08x?", cpu_data[i].state);
671 break;
672 }
673 if(cpu_online(i)) {
674 printk(" %4d",current_pid(i));
675 }
676 printk(" %6d",cpu_number_map(i));
677 printk(" %5d",i);
678 printk(" 0x%lx\n",cpu_data[i].hpa);
679 }
680 }
681#else
682 printk("\n%s %4d 0 0 --------",
683 (current->pid)?"RUNNING ": "IDLING ",current->pid);
684#endif
685 } else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
686#ifdef DUMP_MORE_STATE
687 printk("\nCPUSTATE CPUID\n");
688 for (i=0;i<NR_CPUS;i++) {
689 if (!cpu_online(i))
690 continue;
691 if (cpu_data[i].cpuid != NO_PROC_ID) {
692 switch(cpu_data[i].state) {
693 case STATE_RENDEZVOUS:
694 printk("RENDEZVS");break;
695 case STATE_RUNNING:
696 printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
697 break;
698 case STATE_STOPPED:
699 printk("STOPPED ");break;
700 case STATE_HALTED:
701 printk("HALTED ");break;
702 default:
703 }
704 printk(" %5d\n",i);
705 }
706 }
707#else
708 printk("\n%s CPU0",(current->pid==0)?"RUNNING ":"IDLING ");
709#endif
710 } else {
711 printk("sys_cpus:Unknown request\n");
712 return (-1);
713 }
714 return 0;
715}
716#endif /* ENTRY_SYS_CPUS */
717
718#ifdef CONFIG_PROC_FS
719int __init
720setup_profiling_timer(unsigned int multiplier)
721{
722 return -EINVAL;
723}
724#endif