]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/mips/kernel/traps.c
[MIPS] TX49x7: Fix reporting of the CPU name and PCI clock
[net-next-2.6.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4
LT
13 */
14#include <linux/config.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
20#include <linux/smp_lock.h>
21#include <linux/spinlock.h>
22#include <linux/kallsyms.h>
e01402b1 23#include <linux/bootmem.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
42#include <asm/watch.h>
43#include <asm/types.h>
44
45extern asmlinkage void handle_tlbm(void);
46extern asmlinkage void handle_tlbl(void);
47extern asmlinkage void handle_tlbs(void);
48extern asmlinkage void handle_adel(void);
49extern asmlinkage void handle_ades(void);
50extern asmlinkage void handle_ibe(void);
51extern asmlinkage void handle_dbe(void);
52extern asmlinkage void handle_sys(void);
53extern asmlinkage void handle_bp(void);
54extern asmlinkage void handle_ri(void);
55extern asmlinkage void handle_cpu(void);
56extern asmlinkage void handle_ov(void);
57extern asmlinkage void handle_tr(void);
58extern asmlinkage void handle_fpe(void);
59extern asmlinkage void handle_mdmx(void);
60extern asmlinkage void handle_watch(void);
340ee4b9 61extern asmlinkage void handle_mt(void);
e50c0a8f 62extern asmlinkage void handle_dsp(void);
1da177e4
LT
63extern asmlinkage void handle_mcheck(void);
64extern asmlinkage void handle_reserved(void);
65
12616ed2 66extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
1da177e4
LT
67 struct mips_fpu_soft_struct *ctx);
68
69void (*board_be_init)(void);
70int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
71void (*board_nmi_handler_setup)(void);
72void (*board_ejtag_handler_setup)(void);
73void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4
LT
74
75/*
76 * These constant is for searching for possible module text segments.
77 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
78 */
79#define MODULE_RANGE (8*1024*1024)
80
81/*
82 * This routine abuses get_user()/put_user() to reference pointers
83 * with at least a bit of error checking ...
84 */
85void show_stack(struct task_struct *task, unsigned long *sp)
86{
87 const int field = 2 * sizeof(unsigned long);
88 long stackdata;
89 int i;
90
91 if (!sp) {
92 if (task && task != current)
93 sp = (unsigned long *) task->thread.reg29;
94 else
95 sp = (unsigned long *) &sp;
96 }
97
98 printk("Stack :");
99 i = 0;
100 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
101 if (i && ((i % (64 / field)) == 0))
102 printk("\n ");
103 if (i > 39) {
104 printk(" ...");
105 break;
106 }
107
108 if (__get_user(stackdata, sp++)) {
109 printk(" (Bad stack address)");
110 break;
111 }
112
113 printk(" %0*lx", field, stackdata);
114 i++;
115 }
116 printk("\n");
117}
118
119void show_trace(struct task_struct *task, unsigned long *stack)
120{
121 const int field = 2 * sizeof(unsigned long);
122 unsigned long addr;
123
124 if (!stack) {
125 if (task && task != current)
126 stack = (unsigned long *) task->thread.reg29;
127 else
128 stack = (unsigned long *) &stack;
129 }
130
131 printk("Call Trace:");
132#ifdef CONFIG_KALLSYMS
133 printk("\n");
134#endif
135 while (!kstack_end(stack)) {
136 addr = *stack++;
137 if (__kernel_text_address(addr)) {
138 printk(" [<%0*lx>] ", field, addr);
139 print_symbol("%s\n", addr);
140 }
141 }
142 printk("\n");
143}
144
145/*
146 * The architecture-independent dump_stack generator
147 */
148void dump_stack(void)
149{
150 unsigned long stack;
151
152 show_trace(current, &stack);
153}
154
155EXPORT_SYMBOL(dump_stack);
156
157void show_code(unsigned int *pc)
158{
159 long i;
160
161 printk("\nCode:");
162
163 for(i = -3 ; i < 6 ; i++) {
164 unsigned int insn;
165 if (__get_user(insn, pc + i)) {
166 printk(" (Bad address in epc)\n");
167 break;
168 }
169 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
170 }
171}
172
173void show_regs(struct pt_regs *regs)
174{
175 const int field = 2 * sizeof(unsigned long);
176 unsigned int cause = regs->cp0_cause;
177 int i;
178
179 printk("Cpu %d\n", smp_processor_id());
180
181 /*
182 * Saved main processor registers
183 */
184 for (i = 0; i < 32; ) {
185 if ((i % 4) == 0)
186 printk("$%2d :", i);
187 if (i == 0)
188 printk(" %0*lx", field, 0UL);
189 else if (i == 26 || i == 27)
190 printk(" %*s", field, "");
191 else
192 printk(" %0*lx", field, regs->regs[i]);
193
194 i++;
195 if ((i % 4) == 0)
196 printk("\n");
197 }
198
199 printk("Hi : %0*lx\n", field, regs->hi);
200 printk("Lo : %0*lx\n", field, regs->lo);
201
202 /*
203 * Saved cp0 registers
204 */
205 printk("epc : %0*lx ", field, regs->cp0_epc);
206 print_symbol("%s ", regs->cp0_epc);
207 printk(" %s\n", print_tainted());
208 printk("ra : %0*lx ", field, regs->regs[31]);
209 print_symbol("%s\n", regs->regs[31]);
210
211 printk("Status: %08x ", (uint32_t) regs->cp0_status);
212
3b2396d9
MR
213 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
214 if (regs->cp0_status & ST0_KUO)
215 printk("KUo ");
216 if (regs->cp0_status & ST0_IEO)
217 printk("IEo ");
218 if (regs->cp0_status & ST0_KUP)
219 printk("KUp ");
220 if (regs->cp0_status & ST0_IEP)
221 printk("IEp ");
222 if (regs->cp0_status & ST0_KUC)
223 printk("KUc ");
224 if (regs->cp0_status & ST0_IEC)
225 printk("IEc ");
226 } else {
227 if (regs->cp0_status & ST0_KX)
228 printk("KX ");
229 if (regs->cp0_status & ST0_SX)
230 printk("SX ");
231 if (regs->cp0_status & ST0_UX)
232 printk("UX ");
233 switch (regs->cp0_status & ST0_KSU) {
234 case KSU_USER:
235 printk("USER ");
236 break;
237 case KSU_SUPERVISOR:
238 printk("SUPERVISOR ");
239 break;
240 case KSU_KERNEL:
241 printk("KERNEL ");
242 break;
243 default:
244 printk("BAD_MODE ");
245 break;
246 }
247 if (regs->cp0_status & ST0_ERL)
248 printk("ERL ");
249 if (regs->cp0_status & ST0_EXL)
250 printk("EXL ");
251 if (regs->cp0_status & ST0_IE)
252 printk("IE ");
1da177e4 253 }
1da177e4
LT
254 printk("\n");
255
256 printk("Cause : %08x\n", cause);
257
258 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
259 if (1 <= cause && cause <= 5)
260 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
261
262 printk("PrId : %08x\n", read_c0_prid());
263}
264
265void show_registers(struct pt_regs *regs)
266{
267 show_regs(regs);
268 print_modules();
269 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
270 current->comm, current->pid, current_thread_info(), current);
271 show_stack(current, (long *) regs->regs[29]);
272 show_trace(current, (long *) regs->regs[29]);
273 show_code((unsigned int *) regs->cp0_epc);
274 printk("\n");
275}
276
277static DEFINE_SPINLOCK(die_lock);
278
178086c8 279NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
1da177e4
LT
280{
281 static int die_counter;
282
283 console_verbose();
284 spin_lock_irq(&die_lock);
178086c8 285 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4
LT
286 show_registers(regs);
287 spin_unlock_irq(&die_lock);
288 do_exit(SIGSEGV);
289}
290
1da177e4
LT
291extern const struct exception_table_entry __start___dbe_table[];
292extern const struct exception_table_entry __stop___dbe_table[];
293
294void __declare_dbe_table(void)
295{
296 __asm__ __volatile__(
297 ".section\t__dbe_table,\"a\"\n\t"
298 ".previous"
299 );
300}
301
302/* Given an address, look for it in the exception tables. */
303static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
304{
305 const struct exception_table_entry *e;
306
307 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
308 if (!e)
309 e = search_module_dbetables(addr);
310 return e;
311}
312
313asmlinkage void do_be(struct pt_regs *regs)
314{
315 const int field = 2 * sizeof(unsigned long);
316 const struct exception_table_entry *fixup = NULL;
317 int data = regs->cp0_cause & 4;
318 int action = MIPS_BE_FATAL;
319
320 /* XXX For now. Fixme, this searches the wrong table ... */
321 if (data && !user_mode(regs))
322 fixup = search_dbe_tables(exception_epc(regs));
323
324 if (fixup)
325 action = MIPS_BE_FIXUP;
326
327 if (board_be_handler)
328 action = board_be_handler(regs, fixup != 0);
329
330 switch (action) {
331 case MIPS_BE_DISCARD:
332 return;
333 case MIPS_BE_FIXUP:
334 if (fixup) {
335 regs->cp0_epc = fixup->nextinsn;
336 return;
337 }
338 break;
339 default:
340 break;
341 }
342
343 /*
344 * Assume it would be too dangerous to continue ...
345 */
346 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
347 data ? "Data" : "Instruction",
348 field, regs->cp0_epc, field, regs->regs[31]);
349 die_if_kernel("Oops", regs);
350 force_sig(SIGBUS, current);
351}
352
353static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
354{
fe00f943 355 unsigned int __user *epc;
1da177e4 356
fe00f943 357 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
358 ((regs->cp0_cause & CAUSEF_BD) != 0);
359 if (!get_user(*opcode, epc))
360 return 0;
361
362 force_sig(SIGSEGV, current);
363 return 1;
364}
365
366/*
367 * ll/sc emulation
368 */
369
370#define OPCODE 0xfc000000
371#define BASE 0x03e00000
372#define RT 0x001f0000
373#define OFFSET 0x0000ffff
374#define LL 0xc0000000
375#define SC 0xe0000000
3c37026d
RB
376#define SPEC3 0x7c000000
377#define RD 0x0000f800
378#define FUNC 0x0000003f
379#define RDHWR 0x0000003b
1da177e4
LT
380
381/*
382 * The ll_bit is cleared by r*_switch.S
383 */
384
385unsigned long ll_bit;
386
387static struct task_struct *ll_task = NULL;
388
389static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
390{
fe00f943 391 unsigned long value, __user *vaddr;
1da177e4
LT
392 long offset;
393 int signal = 0;
394
395 /*
396 * analyse the ll instruction that just caused a ri exception
397 * and put the referenced address to addr.
398 */
399
400 /* sign extend offset */
401 offset = opcode & OFFSET;
402 offset <<= 16;
403 offset >>= 16;
404
fe00f943
RB
405 vaddr = (unsigned long __user *)
406 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
407
408 if ((unsigned long)vaddr & 3) {
409 signal = SIGBUS;
410 goto sig;
411 }
412 if (get_user(value, vaddr)) {
413 signal = SIGSEGV;
414 goto sig;
415 }
416
417 preempt_disable();
418
419 if (ll_task == NULL || ll_task == current) {
420 ll_bit = 1;
421 } else {
422 ll_bit = 0;
423 }
424 ll_task = current;
425
426 preempt_enable();
427
6dd04688
RB
428 compute_return_epc(regs);
429
1da177e4
LT
430 regs->regs[(opcode & RT) >> 16] = value;
431
1da177e4
LT
432 return;
433
434sig:
435 force_sig(signal, current);
436}
437
438static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
439{
fe00f943
RB
440 unsigned long __user *vaddr;
441 unsigned long reg;
1da177e4
LT
442 long offset;
443 int signal = 0;
444
445 /*
446 * analyse the sc instruction that just caused a ri exception
447 * and put the referenced address to addr.
448 */
449
450 /* sign extend offset */
451 offset = opcode & OFFSET;
452 offset <<= 16;
453 offset >>= 16;
454
fe00f943
RB
455 vaddr = (unsigned long __user *)
456 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
457 reg = (opcode & RT) >> 16;
458
459 if ((unsigned long)vaddr & 3) {
460 signal = SIGBUS;
461 goto sig;
462 }
463
464 preempt_disable();
465
466 if (ll_bit == 0 || ll_task != current) {
05b8042a 467 compute_return_epc(regs);
1da177e4
LT
468 regs->regs[reg] = 0;
469 preempt_enable();
1da177e4
LT
470 return;
471 }
472
473 preempt_enable();
474
475 if (put_user(regs->regs[reg], vaddr)) {
476 signal = SIGSEGV;
477 goto sig;
478 }
479
6dd04688 480 compute_return_epc(regs);
1da177e4
LT
481 regs->regs[reg] = 1;
482
1da177e4
LT
483 return;
484
485sig:
486 force_sig(signal, current);
487}
488
489/*
490 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
491 * opcodes are supposed to result in coprocessor unusable exceptions if
492 * executed on ll/sc-less processors. That's the theory. In practice a
493 * few processors such as NEC's VR4100 throw reserved instruction exceptions
494 * instead, so we're doing the emulation thing in both exception handlers.
495 */
496static inline int simulate_llsc(struct pt_regs *regs)
497{
498 unsigned int opcode;
499
500 if (unlikely(get_insn_opcode(regs, &opcode)))
501 return -EFAULT;
502
503 if ((opcode & OPCODE) == LL) {
504 simulate_ll(regs, opcode);
505 return 0;
506 }
507 if ((opcode & OPCODE) == SC) {
508 simulate_sc(regs, opcode);
509 return 0;
510 }
511
512 return -EFAULT; /* Strange things going on ... */
513}
514
3c37026d
RB
515/*
516 * Simulate trapping 'rdhwr' instructions to provide user accessible
517 * registers not implemented in hardware. The only current use of this
518 * is the thread area pointer.
519 */
520static inline int simulate_rdhwr(struct pt_regs *regs)
521{
dc8f6029 522 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
523 unsigned int opcode;
524
525 if (unlikely(get_insn_opcode(regs, &opcode)))
526 return -EFAULT;
527
528 if (unlikely(compute_return_epc(regs)))
529 return -EFAULT;
530
531 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
532 int rd = (opcode & RD) >> 11;
533 int rt = (opcode & RT) >> 16;
534 switch (rd) {
535 case 29:
536 regs->regs[rt] = ti->tp_value;
56ebd51b 537 return 0;
3c37026d
RB
538 default:
539 return -EFAULT;
540 }
541 }
542
56ebd51b
DJ
543 /* Not ours. */
544 return -EFAULT;
3c37026d
RB
545}
546
1da177e4
LT
547asmlinkage void do_ov(struct pt_regs *regs)
548{
549 siginfo_t info;
550
551 info.si_code = FPE_INTOVF;
552 info.si_signo = SIGFPE;
553 info.si_errno = 0;
fe00f943 554 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
555 force_sig_info(SIGFPE, &info, current);
556}
557
558/*
559 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
560 */
561asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
562{
563 if (fcr31 & FPU_CSR_UNI_X) {
564 int sig;
565
566 preempt_disable();
567
cd21dfcf
RB
568#ifdef CONFIG_PREEMPT
569 if (!is_fpu_owner()) {
570 /* We might lose fpu before disabling preempt... */
571 own_fpu();
572 BUG_ON(!used_math());
573 restore_fp(current);
574 }
575#endif
1da177e4
LT
576 /*
577 * Unimplemented operation exception. If we've got the full
578 * software emulator on-board, let's use it...
579 *
580 * Force FPU to dump state into task/thread context. We're
581 * moving a lot of data here for what is probably a single
582 * instruction, but the alternative is to pre-decode the FP
583 * register operands before invoking the emulator, which seems
584 * a bit extreme for what should be an infrequent event.
585 */
586 save_fp(current);
cd21dfcf
RB
587 /* Ensure 'resume' not overwrite saved fp context again. */
588 lose_fpu();
589
590 preempt_enable();
1da177e4
LT
591
592 /* Run the emulator */
12616ed2 593 sig = fpu_emulator_cop1Handler (regs,
1da177e4
LT
594 &current->thread.fpu.soft);
595
cd21dfcf
RB
596 preempt_disable();
597
598 own_fpu(); /* Using the FPU again. */
1da177e4
LT
599 /*
600 * We can't allow the emulated instruction to leave any of
601 * the cause bit set in $fcr31.
602 */
603 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
604
605 /* Restore the hardware register state */
606 restore_fp(current);
607
608 preempt_enable();
609
610 /* If something went wrong, signal */
611 if (sig)
612 force_sig(sig, current);
613
614 return;
615 }
616
617 force_sig(SIGFPE, current);
618}
619
620asmlinkage void do_bp(struct pt_regs *regs)
621{
622 unsigned int opcode, bcode;
623 siginfo_t info;
624
625 die_if_kernel("Break instruction in kernel code", regs);
626
627 if (get_insn_opcode(regs, &opcode))
628 return;
629
630 /*
631 * There is the ancient bug in the MIPS assemblers that the break
632 * code starts left to bit 16 instead to bit 6 in the opcode.
633 * Gas is bug-compatible, but not always, grrr...
634 * We handle both cases with a simple heuristics. --macro
635 */
636 bcode = ((opcode >> 6) & ((1 << 20) - 1));
637 if (bcode < (1 << 10))
638 bcode <<= 10;
639
640 /*
641 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
642 * insns, even for break codes that indicate arithmetic failures.
643 * Weird ...)
644 * But should we continue the brokenness??? --macro
645 */
646 switch (bcode) {
647 case BRK_OVERFLOW << 10:
648 case BRK_DIVZERO << 10:
649 if (bcode == (BRK_DIVZERO << 10))
650 info.si_code = FPE_INTDIV;
651 else
652 info.si_code = FPE_INTOVF;
653 info.si_signo = SIGFPE;
654 info.si_errno = 0;
fe00f943 655 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
656 force_sig_info(SIGFPE, &info, current);
657 break;
658 default:
659 force_sig(SIGTRAP, current);
660 }
661}
662
663asmlinkage void do_tr(struct pt_regs *regs)
664{
665 unsigned int opcode, tcode = 0;
666 siginfo_t info;
667
668 die_if_kernel("Trap instruction in kernel code", regs);
669
670 if (get_insn_opcode(regs, &opcode))
671 return;
672
673 /* Immediate versions don't provide a code. */
674 if (!(opcode & OPCODE))
675 tcode = ((opcode >> 6) & ((1 << 10) - 1));
676
677 /*
678 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
679 * insns, even for trap codes that indicate arithmetic failures.
680 * Weird ...)
681 * But should we continue the brokenness??? --macro
682 */
683 switch (tcode) {
684 case BRK_OVERFLOW:
685 case BRK_DIVZERO:
686 if (tcode == BRK_DIVZERO)
687 info.si_code = FPE_INTDIV;
688 else
689 info.si_code = FPE_INTOVF;
690 info.si_signo = SIGFPE;
691 info.si_errno = 0;
fe00f943 692 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
693 force_sig_info(SIGFPE, &info, current);
694 break;
695 default:
696 force_sig(SIGTRAP, current);
697 }
698}
699
700asmlinkage void do_ri(struct pt_regs *regs)
701{
702 die_if_kernel("Reserved instruction in kernel code", regs);
703
704 if (!cpu_has_llsc)
705 if (!simulate_llsc(regs))
706 return;
707
3c37026d
RB
708 if (!simulate_rdhwr(regs))
709 return;
710
1da177e4
LT
711 force_sig(SIGILL, current);
712}
713
714asmlinkage void do_cpu(struct pt_regs *regs)
715{
716 unsigned int cpid;
717
718 die_if_kernel("do_cpu invoked from kernel context!", regs);
719
720 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
721
722 switch (cpid) {
723 case 0:
3c37026d
RB
724 if (!cpu_has_llsc)
725 if (!simulate_llsc(regs))
726 return;
1da177e4 727
3c37026d 728 if (!simulate_rdhwr(regs))
1da177e4 729 return;
3c37026d 730
1da177e4
LT
731 break;
732
733 case 1:
734 preempt_disable();
735
736 own_fpu();
737 if (used_math()) { /* Using the FPU again. */
738 restore_fp(current);
739 } else { /* First time FPU user. */
740 init_fpu();
741 set_used_math();
742 }
743
cd21dfcf
RB
744 preempt_enable();
745
1da177e4 746 if (!cpu_has_fpu) {
12616ed2 747 int sig = fpu_emulator_cop1Handler(regs,
1da177e4
LT
748 &current->thread.fpu.soft);
749 if (sig)
750 force_sig(sig, current);
751 }
752
1da177e4
LT
753 return;
754
755 case 2:
756 case 3:
757 break;
758 }
759
760 force_sig(SIGILL, current);
761}
762
763asmlinkage void do_mdmx(struct pt_regs *regs)
764{
765 force_sig(SIGILL, current);
766}
767
768asmlinkage void do_watch(struct pt_regs *regs)
769{
770 /*
771 * We use the watch exception where available to detect stack
772 * overflows.
773 */
774 dump_tlb_all();
775 show_regs(regs);
776 panic("Caught WATCH exception - probably caused by stack overflow.");
777}
778
779asmlinkage void do_mcheck(struct pt_regs *regs)
780{
781 show_regs(regs);
782 dump_tlb_all();
783 /*
784 * Some chips may have other causes of machine check (e.g. SB1
785 * graduation timer)
786 */
787 panic("Caught Machine Check exception - %scaused by multiple "
788 "matching entries in the TLB.",
789 (regs->cp0_status & ST0_TS) ? "" : "not ");
790}
791
340ee4b9
RB
792asmlinkage void do_mt(struct pt_regs *regs)
793{
794 die_if_kernel("MIPS MT Thread exception in kernel", regs);
795
796 force_sig(SIGILL, current);
797}
798
799
e50c0a8f
RB
800asmlinkage void do_dsp(struct pt_regs *regs)
801{
802 if (cpu_has_dsp)
803 panic("Unexpected DSP exception\n");
804
805 force_sig(SIGILL, current);
806}
807
1da177e4
LT
808asmlinkage void do_reserved(struct pt_regs *regs)
809{
810 /*
811 * Game over - no way to handle this if it ever occurs. Most probably
812 * caused by a new unknown cpu type or after another deadly
813 * hard/software error.
814 */
815 show_regs(regs);
816 panic("Caught reserved exception %ld - should not happen.",
817 (regs->cp0_cause & 0x7f) >> 2);
818}
819
e01402b1
RB
820asmlinkage void do_default_vi(struct pt_regs *regs)
821{
822 show_regs(regs);
823 panic("Caught unexpected vectored interrupt.");
824}
825
1da177e4
LT
826/*
827 * Some MIPS CPUs can enable/disable for cache parity detection, but do
828 * it different ways.
829 */
830static inline void parity_protection_init(void)
831{
832 switch (current_cpu_data.cputype) {
833 case CPU_24K:
1da177e4 834 case CPU_5KC:
14f18b7f
RB
835 write_c0_ecc(0x80000000);
836 back_to_back_c0_hazard();
837 /* Set the PE bit (bit 31) in the c0_errctl register. */
838 printk(KERN_INFO "Cache parity protection %sabled\n",
839 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
840 break;
841 case CPU_20KC:
842 case CPU_25KF:
843 /* Clear the DE bit (bit 16) in the c0_status register. */
844 printk(KERN_INFO "Enable cache parity protection for "
845 "MIPS 20KC/25KF CPUs.\n");
846 clear_c0_status(ST0_DE);
847 break;
848 default:
849 break;
850 }
851}
852
853asmlinkage void cache_parity_error(void)
854{
855 const int field = 2 * sizeof(unsigned long);
856 unsigned int reg_val;
857
858 /* For the moment, report the problem and hang. */
859 printk("Cache error exception:\n");
860 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
861 reg_val = read_c0_cacheerr();
862 printk("c0_cacheerr == %08x\n", reg_val);
863
864 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
865 reg_val & (1<<30) ? "secondary" : "primary",
866 reg_val & (1<<31) ? "data" : "insn");
867 printk("Error bits: %s%s%s%s%s%s%s\n",
868 reg_val & (1<<29) ? "ED " : "",
869 reg_val & (1<<28) ? "ET " : "",
870 reg_val & (1<<26) ? "EE " : "",
871 reg_val & (1<<25) ? "EB " : "",
872 reg_val & (1<<24) ? "EI " : "",
873 reg_val & (1<<23) ? "E1 " : "",
874 reg_val & (1<<22) ? "E0 " : "");
875 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
876
ec917c2c 877#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
878 if (reg_val & (1<<22))
879 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
880
881 if (reg_val & (1<<23))
882 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
883#endif
884
885 panic("Can't handle the cache error!");
886}
887
888/*
889 * SDBBP EJTAG debug exception handler.
890 * We skip the instruction and return to the next instruction.
891 */
892void ejtag_exception_handler(struct pt_regs *regs)
893{
894 const int field = 2 * sizeof(unsigned long);
895 unsigned long depc, old_epc;
896 unsigned int debug;
897
898 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
899 depc = read_c0_depc();
900 debug = read_c0_debug();
901 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
902 if (debug & 0x80000000) {
903 /*
904 * In branch delay slot.
905 * We cheat a little bit here and use EPC to calculate the
906 * debug return address (DEPC). EPC is restored after the
907 * calculation.
908 */
909 old_epc = regs->cp0_epc;
910 regs->cp0_epc = depc;
911 __compute_return_epc(regs);
912 depc = regs->cp0_epc;
913 regs->cp0_epc = old_epc;
914 } else
915 depc += 4;
916 write_c0_depc(depc);
917
918#if 0
919 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
920 write_c0_debug(debug | 0x100);
921#endif
922}
923
924/*
925 * NMI exception handler.
926 */
927void nmi_exception_handler(struct pt_regs *regs)
928{
929 printk("NMI taken!!!!\n");
930 die("NMI", regs);
931 while(1) ;
932}
933
e01402b1
RB
934#define VECTORSPACING 0x100 /* for EI/VI mode */
935
936unsigned long ebase;
1da177e4 937unsigned long exception_handlers[32];
e01402b1 938unsigned long vi_handlers[64];
1da177e4
LT
939
940/*
941 * As a side effect of the way this is implemented we're limited
942 * to interrupt handlers in the address range from
943 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
944 */
945void *set_except_vector(int n, void *addr)
946{
947 unsigned long handler = (unsigned long) addr;
948 unsigned long old_handler = exception_handlers[n];
949
950 exception_handlers[n] = handler;
951 if (n == 0 && cpu_has_divec) {
e01402b1 952 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 953 (0x03ffffff & (handler >> 2));
e01402b1
RB
954 flush_icache_range(ebase + 0x200, ebase + 0x204);
955 }
956 return (void *)old_handler;
957}
958
959#ifdef CONFIG_CPU_MIPSR2
960/*
961 * Shadow register allocation
962 * FIXME: SMP...
963 */
964
965/* MIPSR2 shadow register sets */
966struct shadow_registers {
967 spinlock_t sr_lock; /* */
968 int sr_supported; /* Number of shadow register sets supported */
969 int sr_allocated; /* Bitmap of allocated shadow registers */
970} shadow_registers;
971
972void mips_srs_init(void)
973{
974#ifdef CONFIG_CPU_MIPSR2_SRS
975 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
976 printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported);
977#else
978 shadow_registers.sr_supported = 1;
979#endif
980 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
981 spin_lock_init(&shadow_registers.sr_lock);
982}
983
984int mips_srs_max(void)
985{
986 return shadow_registers.sr_supported;
987}
988
989int mips_srs_alloc (void)
990{
991 struct shadow_registers *sr = &shadow_registers;
992 unsigned long flags;
993 int set;
994
995 spin_lock_irqsave(&sr->sr_lock, flags);
996
997 for (set = 0; set < sr->sr_supported; set++) {
998 if ((sr->sr_allocated & (1 << set)) == 0) {
999 sr->sr_allocated |= 1 << set;
1000 spin_unlock_irqrestore(&sr->sr_lock, flags);
1001 return set;
1002 }
1003 }
1004
1005 /* None available */
1006 spin_unlock_irqrestore(&sr->sr_lock, flags);
1007 return -1;
1008}
1009
1010void mips_srs_free (int set)
1011{
1012 struct shadow_registers *sr = &shadow_registers;
1013 unsigned long flags;
1014
1015 spin_lock_irqsave(&sr->sr_lock, flags);
1016 sr->sr_allocated &= ~(1 << set);
1017 spin_unlock_irqrestore(&sr->sr_lock, flags);
1018}
1019
1020void *set_vi_srs_handler (int n, void *addr, int srs)
1021{
1022 unsigned long handler;
1023 unsigned long old_handler = vi_handlers[n];
1024 u32 *w;
1025 unsigned char *b;
1026
1027 if (!cpu_has_veic && !cpu_has_vint)
1028 BUG();
1029
1030 if (addr == NULL) {
1031 handler = (unsigned long) do_default_vi;
1032 srs = 0;
1033 }
1034 else
1035 handler = (unsigned long) addr;
1036 vi_handlers[n] = (unsigned long) addr;
1037
1038 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1039
1040 if (srs >= mips_srs_max())
1041 panic("Shadow register set %d not supported", srs);
1042
1043 if (cpu_has_veic) {
1044 if (board_bind_eic_interrupt)
1045 board_bind_eic_interrupt (n, srs);
1046 }
1047 else if (cpu_has_vint) {
1048 /* SRSMap is only defined if shadow sets are implemented */
1049 if (mips_srs_max() > 1)
1050 change_c0_srsmap (0xf << n*4, srs << n*4);
1051 }
1052
1053 if (srs == 0) {
1054 /*
1055 * If no shadow set is selected then use the default handler
1056 * that does normal register saving and a standard interrupt exit
1057 */
1058
1059 extern char except_vec_vi, except_vec_vi_lui;
1060 extern char except_vec_vi_ori, except_vec_vi_end;
1061 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1062 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1063 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1064
1065 if (handler_len > VECTORSPACING) {
1066 /*
1067 * Sigh... panicing won't help as the console
1068 * is probably not configured :(
1069 */
1070 panic ("VECTORSPACING too small");
1071 }
1072
1073 memcpy (b, &except_vec_vi, handler_len);
1074 w = (u32 *)(b + lui_offset);
1075 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1076 w = (u32 *)(b + ori_offset);
1077 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1078 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1079 }
1080 else {
1081 /*
1082 * In other cases jump directly to the interrupt handler
1083 *
1084 * It is the handlers responsibility to save registers if required
1085 * (eg hi/lo) and return from the exception using "eret"
1086 */
1087 w = (u32 *)b;
1088 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1089 *w = 0;
1090 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1091 }
e01402b1 1092
1da177e4
LT
1093 return (void *)old_handler;
1094}
1095
e01402b1
RB
1096void *set_vi_handler (int n, void *addr)
1097{
1098 return set_vi_srs_handler (n, addr, 0);
1099}
1100#endif
1101
1da177e4
LT
1102/*
1103 * This is used by native signal handling
1104 */
1105asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1106asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1107
1108extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1109extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1110
1111extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1112extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1113
1114static inline void signal_init(void)
1115{
1116 if (cpu_has_fpu) {
1117 save_fp_context = _save_fp_context;
1118 restore_fp_context = _restore_fp_context;
1119 } else {
1120 save_fp_context = fpu_emulator_save_context;
1121 restore_fp_context = fpu_emulator_restore_context;
1122 }
1123}
1124
1125#ifdef CONFIG_MIPS32_COMPAT
1126
1127/*
1128 * This is used by 32-bit signal stuff on the 64-bit kernel
1129 */
1130asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1131asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1132
1133extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1134extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1135
1136extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1137extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1138
1139static inline void signal32_init(void)
1140{
1141 if (cpu_has_fpu) {
1142 save_fp_context32 = _save_fp_context32;
1143 restore_fp_context32 = _restore_fp_context32;
1144 } else {
1145 save_fp_context32 = fpu_emulator_save_context32;
1146 restore_fp_context32 = fpu_emulator_restore_context32;
1147 }
1148}
1149#endif
1150
1151extern void cpu_cache_init(void);
1152extern void tlb_init(void);
1d40cfcd 1153extern void flush_tlb_handlers(void);
1da177e4
LT
1154
1155void __init per_cpu_trap_init(void)
1156{
1157 unsigned int cpu = smp_processor_id();
1158 unsigned int status_set = ST0_CU0;
1159
1160 /*
1161 * Disable coprocessors and select 32-bit or 64-bit addressing
1162 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1163 * flag that some firmware may have left set and the TS bit (for
1164 * IP27). Set XX for ISA IV code to work.
1165 */
875d43e7 1166#ifdef CONFIG_64BIT
1da177e4
LT
1167 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1168#endif
1169 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1170 status_set |= ST0_XX;
e50c0a8f 1171 change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1172 status_set);
1173
e50c0a8f
RB
1174 if (cpu_has_dsp)
1175 set_c0_status(ST0_MX);
1176
e01402b1
RB
1177#ifdef CONFIG_CPU_MIPSR2
1178 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1179#endif
1180
1da177e4 1181 /*
e01402b1 1182 * Interrupt handling.
1da177e4 1183 */
e01402b1
RB
1184 if (cpu_has_veic || cpu_has_vint) {
1185 write_c0_ebase (ebase);
1186 /* Setting vector spacing enables EI/VI mode */
1187 change_c0_intctl (0x3e0, VECTORSPACING);
1188 }
d03d0a57
RB
1189 if (cpu_has_divec) {
1190 if (cpu_has_mipsmt) {
1191 unsigned int vpflags = dvpe();
1192 set_c0_cause(CAUSEF_IV);
1193 evpe(vpflags);
1194 } else
1195 set_c0_cause(CAUSEF_IV);
1196 }
1da177e4
LT
1197
1198 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1199 TLBMISS_HANDLER_SETUP();
1200
1201 atomic_inc(&init_mm.mm_count);
1202 current->active_mm = &init_mm;
1203 BUG_ON(current->mm);
1204 enter_lazy_tlb(&init_mm, current);
1205
1206 cpu_cache_init();
1207 tlb_init();
1208}
1209
e01402b1
RB
1210/* Install CPU exception handler */
1211void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1212{
1213 memcpy((void *)(ebase + offset), addr, size);
1214 flush_icache_range(ebase + offset, ebase + offset + size);
1215}
1216
1217/* Install uncached CPU exception handler */
1218void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1219{
1220#ifdef CONFIG_32BIT
1221 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1222#endif
1223#ifdef CONFIG_64BIT
1224 unsigned long uncached_ebase = TO_UNCAC(ebase);
1225#endif
1226
1227 memcpy((void *)(uncached_ebase + offset), addr, size);
1228}
1229
1da177e4
LT
1230void __init trap_init(void)
1231{
1232 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1233 extern char except_vec4;
1234 unsigned long i;
1235
e01402b1
RB
1236 if (cpu_has_veic || cpu_has_vint)
1237 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1238 else
1239 ebase = CAC_BASE;
1240
1241#ifdef CONFIG_CPU_MIPSR2
1242 mips_srs_init();
1243#endif
1244
1da177e4
LT
1245 per_cpu_trap_init();
1246
1247 /*
1248 * Copy the generic exception handlers to their final destination.
1249 * This will be overriden later as suitable for a particular
1250 * configuration.
1251 */
e01402b1 1252 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1253
1254 /*
1255 * Setup default vectors
1256 */
1257 for (i = 0; i <= 31; i++)
1258 set_except_vector(i, handle_reserved);
1259
1260 /*
1261 * Copy the EJTAG debug exception vector handler code to it's final
1262 * destination.
1263 */
e01402b1
RB
1264 if (cpu_has_ejtag && board_ejtag_handler_setup)
1265 board_ejtag_handler_setup ();
1da177e4
LT
1266
1267 /*
1268 * Only some CPUs have the watch exceptions.
1269 */
1270 if (cpu_has_watch)
1271 set_except_vector(23, handle_watch);
1272
1273 /*
e01402b1 1274 * Initialise interrupt handlers
1da177e4 1275 */
e01402b1
RB
1276 if (cpu_has_veic || cpu_has_vint) {
1277 int nvec = cpu_has_veic ? 64 : 8;
1278 for (i = 0; i < nvec; i++)
1279 set_vi_handler (i, NULL);
1280 }
1281 else if (cpu_has_divec)
1282 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1283
1284 /*
1285 * Some CPUs can enable/disable for cache parity detection, but does
1286 * it different ways.
1287 */
1288 parity_protection_init();
1289
1290 /*
1291 * The Data Bus Errors / Instruction Bus Errors are signaled
1292 * by external hardware. Therefore these two exceptions
1293 * may have board specific handlers.
1294 */
1295 if (board_be_init)
1296 board_be_init();
1297
1298 set_except_vector(1, handle_tlbm);
1299 set_except_vector(2, handle_tlbl);
1300 set_except_vector(3, handle_tlbs);
1301
1302 set_except_vector(4, handle_adel);
1303 set_except_vector(5, handle_ades);
1304
1305 set_except_vector(6, handle_ibe);
1306 set_except_vector(7, handle_dbe);
1307
1308 set_except_vector(8, handle_sys);
1309 set_except_vector(9, handle_bp);
1310 set_except_vector(10, handle_ri);
1311 set_except_vector(11, handle_cpu);
1312 set_except_vector(12, handle_ov);
1313 set_except_vector(13, handle_tr);
1da177e4
LT
1314
1315 if (current_cpu_data.cputype == CPU_R6000 ||
1316 current_cpu_data.cputype == CPU_R6000A) {
1317 /*
1318 * The R6000 is the only R-series CPU that features a machine
1319 * check exception (similar to the R4000 cache error) and
1320 * unaligned ldc1/sdc1 exception. The handlers have not been
1321 * written yet. Well, anyway there is no R6000 machine on the
1322 * current list of targets for Linux/MIPS.
1323 * (Duh, crap, there is someone with a triple R6k machine)
1324 */
1325 //set_except_vector(14, handle_mc);
1326 //set_except_vector(15, handle_ndc);
1327 }
1328
e01402b1
RB
1329
1330 if (board_nmi_handler_setup)
1331 board_nmi_handler_setup();
1332
e50c0a8f
RB
1333 if (cpu_has_fpu && !cpu_has_nofpuex)
1334 set_except_vector(15, handle_fpe);
1335
1336 set_except_vector(22, handle_mdmx);
1337
1338 if (cpu_has_mcheck)
1339 set_except_vector(24, handle_mcheck);
1340
340ee4b9
RB
1341 if (cpu_has_mipsmt)
1342 set_except_vector(25, handle_mt);
1343
e50c0a8f
RB
1344 if (cpu_has_dsp)
1345 set_except_vector(26, handle_dsp);
1346
1347 if (cpu_has_vce)
1348 /* Special exception: R4[04]00 uses also the divec space. */
1349 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1350 else if (cpu_has_4kex)
1351 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1352 else
1353 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1354
1da177e4
LT
1355 signal_init();
1356#ifdef CONFIG_MIPS32_COMPAT
1357 signal32_init();
1358#endif
1359
e01402b1 1360 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1361 flush_tlb_handlers();
1da177e4 1362}