]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/mips/kernel/traps.c
[MIPS] Unconditionally writeback and invalidate caches on kexec.
[net-next-2.6.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4 13 */
8e8a52ed 14#include <linux/bug.h>
1da177e4
LT
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
1da177e4
LT
20#include <linux/spinlock.h>
21#include <linux/kallsyms.h>
e01402b1 22#include <linux/bootmem.h>
d4fd1989 23#include <linux/interrupt.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
1da177e4 42#include <asm/types.h>
1df0f0ff 43#include <asm/stacktrace.h>
1da177e4 44
e4ac58af 45extern asmlinkage void handle_int(void);
1da177e4
LT
46extern asmlinkage void handle_tlbm(void);
47extern asmlinkage void handle_tlbl(void);
48extern asmlinkage void handle_tlbs(void);
49extern asmlinkage void handle_adel(void);
50extern asmlinkage void handle_ades(void);
51extern asmlinkage void handle_ibe(void);
52extern asmlinkage void handle_dbe(void);
53extern asmlinkage void handle_sys(void);
54extern asmlinkage void handle_bp(void);
55extern asmlinkage void handle_ri(void);
5b10496b
AN
56extern asmlinkage void handle_ri_rdhwr_vivt(void);
57extern asmlinkage void handle_ri_rdhwr(void);
1da177e4
LT
58extern asmlinkage void handle_cpu(void);
59extern asmlinkage void handle_ov(void);
60extern asmlinkage void handle_tr(void);
61extern asmlinkage void handle_fpe(void);
62extern asmlinkage void handle_mdmx(void);
63extern asmlinkage void handle_watch(void);
340ee4b9 64extern asmlinkage void handle_mt(void);
e50c0a8f 65extern asmlinkage void handle_dsp(void);
1da177e4
LT
66extern asmlinkage void handle_mcheck(void);
67extern asmlinkage void handle_reserved(void);
68
12616ed2 69extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
e04582b7 70 struct mips_fpu_struct *ctx, int has_fpu);
1da177e4 71
9267a30d 72void (*board_watchpoint_handler)(struct pt_regs *regs);
1da177e4
LT
73void (*board_be_init)(void);
74int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
75void (*board_nmi_handler_setup)(void);
76void (*board_ejtag_handler_setup)(void);
77void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4 78
1da177e4 79
4d157d5e 80static void show_raw_backtrace(unsigned long reg29)
e889d78f 81{
4d157d5e 82 unsigned long *sp = (unsigned long *)reg29;
e889d78f
AN
83 unsigned long addr;
84
85 printk("Call Trace:");
86#ifdef CONFIG_KALLSYMS
87 printk("\n");
88#endif
87151ae3
FBH
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
e889d78f
AN
93 }
94 printk("\n");
95}
96
f66686f7 97#ifdef CONFIG_KALLSYMS
1df0f0ff 98int raw_show_trace;
f66686f7
AN
99static int __init set_raw_show_trace(char *str)
100{
101 raw_show_trace = 1;
102 return 1;
103}
104__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 105#endif
4d157d5e 106
87151ae3 107static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
f66686f7 108{
4d157d5e
FBH
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
f66686f7 111 unsigned long pc = regs->cp0_epc;
f66686f7
AN
112
113 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 114 show_raw_backtrace(sp);
f66686f7
AN
115 return;
116 }
117 printk("Call Trace:\n");
4d157d5e 118 do {
87151ae3 119 print_ip_sym(pc);
1924600c 120 pc = unwind_stack(task, &sp, pc, &ra);
4d157d5e 121 } while (pc);
f66686f7
AN
122 printk("\n");
123}
f66686f7 124
1da177e4
LT
125/*
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
128 */
f66686f7 129static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
1da177e4
LT
130{
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
5e0373b8 134 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
1da177e4
LT
135
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
144 }
145
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
149 }
150
151 printk(" %0*lx", field, stackdata);
152 i++;
153 }
154 printk("\n");
87151ae3 155 show_backtrace(task, regs);
f66686f7
AN
156}
157
f66686f7
AN
158void show_stack(struct task_struct *task, unsigned long *sp)
159{
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
172 }
173 }
174 show_stacktrace(task, &regs);
1da177e4
LT
175}
176
177/*
178 * The architecture-independent dump_stack generator
179 */
180void dump_stack(void)
181{
1666a6fc 182 struct pt_regs regs;
1da177e4 183
1666a6fc
FBH
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
1da177e4
LT
186}
187
188EXPORT_SYMBOL(dump_stack);
189
e1bb8289 190static void show_code(unsigned int __user *pc)
1da177e4
LT
191{
192 long i;
193
194 printk("\nCode:");
195
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
201 }
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
203 }
204}
205
206void show_regs(struct pt_regs *regs)
207{
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
211
212 printk("Cpu %d\n", smp_processor_id());
213
214 /*
215 * Saved main processor registers
216 */
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
226
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
230 }
231
9693a853
FBH
232#ifdef CONFIG_CPU_HAS_SMARTMIPS
233 printk("Acx : %0*lx\n", field, regs->acx);
234#endif
1da177e4
LT
235 printk("Hi : %0*lx\n", field, regs->hi);
236 printk("Lo : %0*lx\n", field, regs->lo);
237
238 /*
239 * Saved cp0 registers
240 */
241 printk("epc : %0*lx ", field, regs->cp0_epc);
242 print_symbol("%s ", regs->cp0_epc);
243 printk(" %s\n", print_tainted());
244 printk("ra : %0*lx ", field, regs->regs[31]);
245 print_symbol("%s\n", regs->regs[31]);
246
247 printk("Status: %08x ", (uint32_t) regs->cp0_status);
248
3b2396d9
MR
249 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
250 if (regs->cp0_status & ST0_KUO)
251 printk("KUo ");
252 if (regs->cp0_status & ST0_IEO)
253 printk("IEo ");
254 if (regs->cp0_status & ST0_KUP)
255 printk("KUp ");
256 if (regs->cp0_status & ST0_IEP)
257 printk("IEp ");
258 if (regs->cp0_status & ST0_KUC)
259 printk("KUc ");
260 if (regs->cp0_status & ST0_IEC)
261 printk("IEc ");
262 } else {
263 if (regs->cp0_status & ST0_KX)
264 printk("KX ");
265 if (regs->cp0_status & ST0_SX)
266 printk("SX ");
267 if (regs->cp0_status & ST0_UX)
268 printk("UX ");
269 switch (regs->cp0_status & ST0_KSU) {
270 case KSU_USER:
271 printk("USER ");
272 break;
273 case KSU_SUPERVISOR:
274 printk("SUPERVISOR ");
275 break;
276 case KSU_KERNEL:
277 printk("KERNEL ");
278 break;
279 default:
280 printk("BAD_MODE ");
281 break;
282 }
283 if (regs->cp0_status & ST0_ERL)
284 printk("ERL ");
285 if (regs->cp0_status & ST0_EXL)
286 printk("EXL ");
287 if (regs->cp0_status & ST0_IE)
288 printk("IE ");
1da177e4 289 }
1da177e4
LT
290 printk("\n");
291
292 printk("Cause : %08x\n", cause);
293
294 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
295 if (1 <= cause && cause <= 5)
296 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
297
298 printk("PrId : %08x\n", read_c0_prid());
299}
300
301void show_registers(struct pt_regs *regs)
302{
303 show_regs(regs);
304 print_modules();
305 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
306 current->comm, current->pid, current_thread_info(), current);
f66686f7 307 show_stacktrace(current, regs);
e1bb8289 308 show_code((unsigned int __user *) regs->cp0_epc);
1da177e4
LT
309 printk("\n");
310}
311
312static DEFINE_SPINLOCK(die_lock);
313
b3f6df9f 314void __noreturn die(const char * str, struct pt_regs * regs)
1da177e4
LT
315{
316 static int die_counter;
41c594ab
RB
317#ifdef CONFIG_MIPS_MT_SMTC
318 unsigned long dvpret = dvpe();
319#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
320
321 console_verbose();
322 spin_lock_irq(&die_lock);
41c594ab
RB
323 bust_spinlocks(1);
324#ifdef CONFIG_MIPS_MT_SMTC
325 mips_mt_regdump(dvpret);
326#endif /* CONFIG_MIPS_MT_SMTC */
178086c8 327 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4 328 show_registers(regs);
bcdcd8e7 329 add_taint(TAINT_DIE);
1da177e4 330 spin_unlock_irq(&die_lock);
d4fd1989
MB
331
332 if (in_interrupt())
333 panic("Fatal exception in interrupt");
334
335 if (panic_on_oops) {
336 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
337 ssleep(5);
338 panic("Fatal exception");
339 }
340
1da177e4
LT
341 do_exit(SIGSEGV);
342}
343
1da177e4
LT
344extern const struct exception_table_entry __start___dbe_table[];
345extern const struct exception_table_entry __stop___dbe_table[];
346
b6dcec9b
RB
347__asm__(
348" .section __dbe_table, \"a\"\n"
349" .previous \n");
1da177e4
LT
350
351/* Given an address, look for it in the exception tables. */
352static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
353{
354 const struct exception_table_entry *e;
355
356 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
357 if (!e)
358 e = search_module_dbetables(addr);
359 return e;
360}
361
362asmlinkage void do_be(struct pt_regs *regs)
363{
364 const int field = 2 * sizeof(unsigned long);
365 const struct exception_table_entry *fixup = NULL;
366 int data = regs->cp0_cause & 4;
367 int action = MIPS_BE_FATAL;
368
369 /* XXX For now. Fixme, this searches the wrong table ... */
370 if (data && !user_mode(regs))
371 fixup = search_dbe_tables(exception_epc(regs));
372
373 if (fixup)
374 action = MIPS_BE_FIXUP;
375
376 if (board_be_handler)
28fc582c 377 action = board_be_handler(regs, fixup != NULL);
1da177e4
LT
378
379 switch (action) {
380 case MIPS_BE_DISCARD:
381 return;
382 case MIPS_BE_FIXUP:
383 if (fixup) {
384 regs->cp0_epc = fixup->nextinsn;
385 return;
386 }
387 break;
388 default:
389 break;
390 }
391
392 /*
393 * Assume it would be too dangerous to continue ...
394 */
395 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
396 data ? "Data" : "Instruction",
397 field, regs->cp0_epc, field, regs->regs[31]);
398 die_if_kernel("Oops", regs);
399 force_sig(SIGBUS, current);
400}
401
1da177e4
LT
402/*
403 * ll/sc emulation
404 */
405
406#define OPCODE 0xfc000000
407#define BASE 0x03e00000
408#define RT 0x001f0000
409#define OFFSET 0x0000ffff
410#define LL 0xc0000000
411#define SC 0xe0000000
3c37026d
RB
412#define SPEC3 0x7c000000
413#define RD 0x0000f800
414#define FUNC 0x0000003f
415#define RDHWR 0x0000003b
1da177e4
LT
416
417/*
418 * The ll_bit is cleared by r*_switch.S
419 */
420
421unsigned long ll_bit;
422
423static struct task_struct *ll_task = NULL;
424
425static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
426{
fe00f943 427 unsigned long value, __user *vaddr;
1da177e4
LT
428 long offset;
429 int signal = 0;
430
431 /*
432 * analyse the ll instruction that just caused a ri exception
433 * and put the referenced address to addr.
434 */
435
436 /* sign extend offset */
437 offset = opcode & OFFSET;
438 offset <<= 16;
439 offset >>= 16;
440
fe00f943
RB
441 vaddr = (unsigned long __user *)
442 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
443
444 if ((unsigned long)vaddr & 3) {
445 signal = SIGBUS;
446 goto sig;
447 }
448 if (get_user(value, vaddr)) {
449 signal = SIGSEGV;
450 goto sig;
451 }
452
453 preempt_disable();
454
455 if (ll_task == NULL || ll_task == current) {
456 ll_bit = 1;
457 } else {
458 ll_bit = 0;
459 }
460 ll_task = current;
461
462 preempt_enable();
463
6dd04688
RB
464 compute_return_epc(regs);
465
1da177e4
LT
466 regs->regs[(opcode & RT) >> 16] = value;
467
1da177e4
LT
468 return;
469
470sig:
471 force_sig(signal, current);
472}
473
474static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
475{
fe00f943
RB
476 unsigned long __user *vaddr;
477 unsigned long reg;
1da177e4
LT
478 long offset;
479 int signal = 0;
480
481 /*
482 * analyse the sc instruction that just caused a ri exception
483 * and put the referenced address to addr.
484 */
485
486 /* sign extend offset */
487 offset = opcode & OFFSET;
488 offset <<= 16;
489 offset >>= 16;
490
fe00f943
RB
491 vaddr = (unsigned long __user *)
492 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
493 reg = (opcode & RT) >> 16;
494
495 if ((unsigned long)vaddr & 3) {
496 signal = SIGBUS;
497 goto sig;
498 }
499
500 preempt_disable();
501
502 if (ll_bit == 0 || ll_task != current) {
05b8042a 503 compute_return_epc(regs);
1da177e4
LT
504 regs->regs[reg] = 0;
505 preempt_enable();
1da177e4
LT
506 return;
507 }
508
509 preempt_enable();
510
511 if (put_user(regs->regs[reg], vaddr)) {
512 signal = SIGSEGV;
513 goto sig;
514 }
515
6dd04688 516 compute_return_epc(regs);
1da177e4
LT
517 regs->regs[reg] = 1;
518
1da177e4
LT
519 return;
520
521sig:
522 force_sig(signal, current);
523}
524
525/*
526 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
527 * opcodes are supposed to result in coprocessor unusable exceptions if
528 * executed on ll/sc-less processors. That's the theory. In practice a
529 * few processors such as NEC's VR4100 throw reserved instruction exceptions
530 * instead, so we're doing the emulation thing in both exception handlers.
531 */
532static inline int simulate_llsc(struct pt_regs *regs)
533{
534 unsigned int opcode;
535
e5679882
RB
536 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
537 goto out_sigsegv;
1da177e4
LT
538
539 if ((opcode & OPCODE) == LL) {
540 simulate_ll(regs, opcode);
541 return 0;
542 }
543 if ((opcode & OPCODE) == SC) {
544 simulate_sc(regs, opcode);
545 return 0;
546 }
547
548 return -EFAULT; /* Strange things going on ... */
e5679882
RB
549
550out_sigsegv:
551 force_sig(SIGSEGV, current);
552 return -EFAULT;
1da177e4
LT
553}
554
3c37026d
RB
555/*
556 * Simulate trapping 'rdhwr' instructions to provide user accessible
557 * registers not implemented in hardware. The only current use of this
558 * is the thread area pointer.
559 */
560static inline int simulate_rdhwr(struct pt_regs *regs)
561{
dc8f6029 562 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
563 unsigned int opcode;
564
e5679882
RB
565 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
566 goto out_sigsegv;
3c37026d
RB
567
568 if (unlikely(compute_return_epc(regs)))
569 return -EFAULT;
570
571 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
572 int rd = (opcode & RD) >> 11;
573 int rt = (opcode & RT) >> 16;
574 switch (rd) {
575 case 29:
576 regs->regs[rt] = ti->tp_value;
56ebd51b 577 return 0;
3c37026d
RB
578 default:
579 return -EFAULT;
580 }
581 }
582
56ebd51b
DJ
583 /* Not ours. */
584 return -EFAULT;
e5679882
RB
585
586out_sigsegv:
587 force_sig(SIGSEGV, current);
588 return -EFAULT;
3c37026d
RB
589}
590
1da177e4
LT
591asmlinkage void do_ov(struct pt_regs *regs)
592{
593 siginfo_t info;
594
36ccf1c0
RB
595 die_if_kernel("Integer overflow", regs);
596
1da177e4
LT
597 info.si_code = FPE_INTOVF;
598 info.si_signo = SIGFPE;
599 info.si_errno = 0;
fe00f943 600 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
601 force_sig_info(SIGFPE, &info, current);
602}
603
604/*
605 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
606 */
607asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
608{
57725f9e
CD
609 die_if_kernel("FP exception in kernel code", regs);
610
1da177e4
LT
611 if (fcr31 & FPU_CSR_UNI_X) {
612 int sig;
613
1da177e4 614 /*
a3dddd56 615 * Unimplemented operation exception. If we've got the full
1da177e4
LT
616 * software emulator on-board, let's use it...
617 *
618 * Force FPU to dump state into task/thread context. We're
619 * moving a lot of data here for what is probably a single
620 * instruction, but the alternative is to pre-decode the FP
621 * register operands before invoking the emulator, which seems
622 * a bit extreme for what should be an infrequent event.
623 */
cd21dfcf 624 /* Ensure 'resume' not overwrite saved fp context again. */
53dc8028 625 lose_fpu(1);
1da177e4
LT
626
627 /* Run the emulator */
e04582b7 628 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
1da177e4
LT
629
630 /*
631 * We can't allow the emulated instruction to leave any of
632 * the cause bit set in $fcr31.
633 */
eae89076 634 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
635
636 /* Restore the hardware register state */
53dc8028 637 own_fpu(1); /* Using the FPU again. */
1da177e4
LT
638
639 /* If something went wrong, signal */
640 if (sig)
641 force_sig(sig, current);
642
643 return;
644 }
645
646 force_sig(SIGFPE, current);
647}
648
649asmlinkage void do_bp(struct pt_regs *regs)
650{
651 unsigned int opcode, bcode;
652 siginfo_t info;
653
ba755f8e 654 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
e5679882 655 goto out_sigsegv;
1da177e4
LT
656
657 /*
658 * There is the ancient bug in the MIPS assemblers that the break
659 * code starts left to bit 16 instead to bit 6 in the opcode.
660 * Gas is bug-compatible, but not always, grrr...
661 * We handle both cases with a simple heuristics. --macro
662 */
663 bcode = ((opcode >> 6) & ((1 << 20) - 1));
664 if (bcode < (1 << 10))
665 bcode <<= 10;
666
667 /*
668 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
669 * insns, even for break codes that indicate arithmetic failures.
670 * Weird ...)
671 * But should we continue the brokenness??? --macro
672 */
673 switch (bcode) {
674 case BRK_OVERFLOW << 10:
675 case BRK_DIVZERO << 10:
63dc68a8 676 die_if_kernel("Break instruction in kernel code", regs);
1da177e4
LT
677 if (bcode == (BRK_DIVZERO << 10))
678 info.si_code = FPE_INTDIV;
679 else
680 info.si_code = FPE_INTOVF;
681 info.si_signo = SIGFPE;
682 info.si_errno = 0;
fe00f943 683 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
684 force_sig_info(SIGFPE, &info, current);
685 break;
63dc68a8
RB
686 case BRK_BUG:
687 die("Kernel bug detected", regs);
688 break;
1da177e4 689 default:
63dc68a8 690 die_if_kernel("Break instruction in kernel code", regs);
1da177e4
LT
691 force_sig(SIGTRAP, current);
692 }
90fccb13 693 return;
e5679882
RB
694
695out_sigsegv:
696 force_sig(SIGSEGV, current);
1da177e4
LT
697}
698
699asmlinkage void do_tr(struct pt_regs *regs)
700{
701 unsigned int opcode, tcode = 0;
702 siginfo_t info;
703
ba755f8e 704 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
e5679882 705 goto out_sigsegv;
1da177e4
LT
706
707 /* Immediate versions don't provide a code. */
708 if (!(opcode & OPCODE))
709 tcode = ((opcode >> 6) & ((1 << 10) - 1));
710
711 /*
712 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
713 * insns, even for trap codes that indicate arithmetic failures.
714 * Weird ...)
715 * But should we continue the brokenness??? --macro
716 */
717 switch (tcode) {
718 case BRK_OVERFLOW:
719 case BRK_DIVZERO:
63dc68a8 720 die_if_kernel("Trap instruction in kernel code", regs);
1da177e4
LT
721 if (tcode == BRK_DIVZERO)
722 info.si_code = FPE_INTDIV;
723 else
724 info.si_code = FPE_INTOVF;
725 info.si_signo = SIGFPE;
726 info.si_errno = 0;
fe00f943 727 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
728 force_sig_info(SIGFPE, &info, current);
729 break;
63dc68a8
RB
730 case BRK_BUG:
731 die("Kernel bug detected", regs);
732 break;
1da177e4 733 default:
63dc68a8 734 die_if_kernel("Trap instruction in kernel code", regs);
1da177e4
LT
735 force_sig(SIGTRAP, current);
736 }
90fccb13 737 return;
e5679882
RB
738
739out_sigsegv:
740 force_sig(SIGSEGV, current);
1da177e4
LT
741}
742
743asmlinkage void do_ri(struct pt_regs *regs)
744{
745 die_if_kernel("Reserved instruction in kernel code", regs);
746
747 if (!cpu_has_llsc)
748 if (!simulate_llsc(regs))
749 return;
750
3c37026d
RB
751 if (!simulate_rdhwr(regs))
752 return;
753
1da177e4
LT
754 force_sig(SIGILL, current);
755}
756
d223a861
RB
757/*
758 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
759 * emulated more than some threshold number of instructions, force migration to
760 * a "CPU" that has FP support.
761 */
762static void mt_ase_fp_affinity(void)
763{
764#ifdef CONFIG_MIPS_MT_FPAFF
765 if (mt_fpemul_threshold > 0 &&
766 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
767 /*
768 * If there's no FPU present, or if the application has already
769 * restricted the allowed set to exclude any CPUs with FPUs,
770 * we'll skip the procedure.
771 */
772 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
773 cpumask_t tmask;
774
775 cpus_and(tmask, current->thread.user_cpus_allowed,
776 mt_fpu_cpumask);
777 set_cpus_allowed(current, tmask);
293c5bd1 778 set_thread_flag(TIF_FPUBOUND);
d223a861
RB
779 }
780 }
781#endif /* CONFIG_MIPS_MT_FPAFF */
782}
783
1da177e4
LT
784asmlinkage void do_cpu(struct pt_regs *regs)
785{
786 unsigned int cpid;
787
5323180d
AN
788 die_if_kernel("do_cpu invoked from kernel context!", regs);
789
1da177e4
LT
790 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
791
792 switch (cpid) {
793 case 0:
3c37026d
RB
794 if (!cpu_has_llsc)
795 if (!simulate_llsc(regs))
796 return;
1da177e4 797
3c37026d 798 if (!simulate_rdhwr(regs))
1da177e4 799 return;
3c37026d 800
1da177e4
LT
801 break;
802
803 case 1:
53dc8028
AN
804 if (used_math()) /* Using the FPU again. */
805 own_fpu(1);
806 else { /* First time FPU user. */
1da177e4
LT
807 init_fpu();
808 set_used_math();
809 }
810
5323180d 811 if (!raw_cpu_has_fpu) {
e04582b7 812 int sig;
e04582b7
AN
813 sig = fpu_emulator_cop1Handler(regs,
814 &current->thread.fpu, 0);
1da177e4
LT
815 if (sig)
816 force_sig(sig, current);
d223a861
RB
817 else
818 mt_ase_fp_affinity();
1da177e4
LT
819 }
820
1da177e4
LT
821 return;
822
823 case 2:
824 case 3:
825 break;
826 }
827
828 force_sig(SIGILL, current);
829}
830
831asmlinkage void do_mdmx(struct pt_regs *regs)
832{
833 force_sig(SIGILL, current);
834}
835
836asmlinkage void do_watch(struct pt_regs *regs)
837{
9267a30d
MSJ
838 if (board_watchpoint_handler) {
839 (*board_watchpoint_handler)(regs);
840 return;
841 }
842
1da177e4
LT
843 /*
844 * We use the watch exception where available to detect stack
845 * overflows.
846 */
847 dump_tlb_all();
848 show_regs(regs);
849 panic("Caught WATCH exception - probably caused by stack overflow.");
850}
851
852asmlinkage void do_mcheck(struct pt_regs *regs)
853{
cac4bcbc
RB
854 const int field = 2 * sizeof(unsigned long);
855 int multi_match = regs->cp0_status & ST0_TS;
856
1da177e4 857 show_regs(regs);
cac4bcbc
RB
858
859 if (multi_match) {
860 printk("Index : %0x\n", read_c0_index());
861 printk("Pagemask: %0x\n", read_c0_pagemask());
862 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
863 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
864 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
865 printk("\n");
866 dump_tlb_all();
867 }
868
e1bb8289 869 show_code((unsigned int __user *) regs->cp0_epc);
cac4bcbc 870
1da177e4
LT
871 /*
872 * Some chips may have other causes of machine check (e.g. SB1
873 * graduation timer)
874 */
875 panic("Caught Machine Check exception - %scaused by multiple "
876 "matching entries in the TLB.",
cac4bcbc 877 (multi_match) ? "" : "not ");
1da177e4
LT
878}
879
340ee4b9
RB
880asmlinkage void do_mt(struct pt_regs *regs)
881{
41c594ab
RB
882 int subcode;
883
41c594ab
RB
884 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
885 >> VPECONTROL_EXCPT_SHIFT;
886 switch (subcode) {
887 case 0:
e35a5e35 888 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
889 break;
890 case 1:
e35a5e35 891 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
892 break;
893 case 2:
e35a5e35 894 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
895 break;
896 case 3:
e35a5e35 897 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
898 break;
899 case 4:
e35a5e35 900 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
901 break;
902 case 5:
e35a5e35 903 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
41c594ab
RB
904 break;
905 default:
e35a5e35 906 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
907 subcode);
908 break;
909 }
340ee4b9
RB
910 die_if_kernel("MIPS MT Thread exception in kernel", regs);
911
912 force_sig(SIGILL, current);
913}
914
915
e50c0a8f
RB
916asmlinkage void do_dsp(struct pt_regs *regs)
917{
918 if (cpu_has_dsp)
919 panic("Unexpected DSP exception\n");
920
921 force_sig(SIGILL, current);
922}
923
1da177e4
LT
924asmlinkage void do_reserved(struct pt_regs *regs)
925{
926 /*
927 * Game over - no way to handle this if it ever occurs. Most probably
928 * caused by a new unknown cpu type or after another deadly
929 * hard/software error.
930 */
931 show_regs(regs);
932 panic("Caught reserved exception %ld - should not happen.",
933 (regs->cp0_cause & 0x7f) >> 2);
934}
935
936/*
937 * Some MIPS CPUs can enable/disable for cache parity detection, but do
938 * it different ways.
939 */
940static inline void parity_protection_init(void)
941{
942 switch (current_cpu_data.cputype) {
943 case CPU_24K:
98a41de9 944 case CPU_34K:
1da177e4 945 case CPU_5KC:
14f18b7f
RB
946 write_c0_ecc(0x80000000);
947 back_to_back_c0_hazard();
948 /* Set the PE bit (bit 31) in the c0_errctl register. */
949 printk(KERN_INFO "Cache parity protection %sabled\n",
950 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
951 break;
952 case CPU_20KC:
953 case CPU_25KF:
954 /* Clear the DE bit (bit 16) in the c0_status register. */
955 printk(KERN_INFO "Enable cache parity protection for "
956 "MIPS 20KC/25KF CPUs.\n");
957 clear_c0_status(ST0_DE);
958 break;
959 default:
960 break;
961 }
962}
963
964asmlinkage void cache_parity_error(void)
965{
966 const int field = 2 * sizeof(unsigned long);
967 unsigned int reg_val;
968
969 /* For the moment, report the problem and hang. */
970 printk("Cache error exception:\n");
971 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
972 reg_val = read_c0_cacheerr();
973 printk("c0_cacheerr == %08x\n", reg_val);
974
975 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
976 reg_val & (1<<30) ? "secondary" : "primary",
977 reg_val & (1<<31) ? "data" : "insn");
978 printk("Error bits: %s%s%s%s%s%s%s\n",
979 reg_val & (1<<29) ? "ED " : "",
980 reg_val & (1<<28) ? "ET " : "",
981 reg_val & (1<<26) ? "EE " : "",
982 reg_val & (1<<25) ? "EB " : "",
983 reg_val & (1<<24) ? "EI " : "",
984 reg_val & (1<<23) ? "E1 " : "",
985 reg_val & (1<<22) ? "E0 " : "");
986 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
987
ec917c2c 988#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
989 if (reg_val & (1<<22))
990 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
991
992 if (reg_val & (1<<23))
993 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
994#endif
995
996 panic("Can't handle the cache error!");
997}
998
999/*
1000 * SDBBP EJTAG debug exception handler.
1001 * We skip the instruction and return to the next instruction.
1002 */
1003void ejtag_exception_handler(struct pt_regs *regs)
1004{
1005 const int field = 2 * sizeof(unsigned long);
1006 unsigned long depc, old_epc;
1007 unsigned int debug;
1008
70ae6126 1009 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1010 depc = read_c0_depc();
1011 debug = read_c0_debug();
70ae6126 1012 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1013 if (debug & 0x80000000) {
1014 /*
1015 * In branch delay slot.
1016 * We cheat a little bit here and use EPC to calculate the
1017 * debug return address (DEPC). EPC is restored after the
1018 * calculation.
1019 */
1020 old_epc = regs->cp0_epc;
1021 regs->cp0_epc = depc;
1022 __compute_return_epc(regs);
1023 depc = regs->cp0_epc;
1024 regs->cp0_epc = old_epc;
1025 } else
1026 depc += 4;
1027 write_c0_depc(depc);
1028
1029#if 0
70ae6126 1030 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1031 write_c0_debug(debug | 0x100);
1032#endif
1033}
1034
1035/*
1036 * NMI exception handler.
1037 */
1038void nmi_exception_handler(struct pt_regs *regs)
1039{
41c594ab
RB
1040#ifdef CONFIG_MIPS_MT_SMTC
1041 unsigned long dvpret = dvpe();
1042 bust_spinlocks(1);
1043 printk("NMI taken!!!!\n");
1044 mips_mt_regdump(dvpret);
1045#else
1046 bust_spinlocks(1);
1da177e4 1047 printk("NMI taken!!!!\n");
41c594ab 1048#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1049 die("NMI", regs);
1050 while(1) ;
1051}
1052
e01402b1
RB
1053#define VECTORSPACING 0x100 /* for EI/VI mode */
1054
1055unsigned long ebase;
1da177e4 1056unsigned long exception_handlers[32];
e01402b1 1057unsigned long vi_handlers[64];
1da177e4
LT
1058
1059/*
1060 * As a side effect of the way this is implemented we're limited
1061 * to interrupt handlers in the address range from
1062 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1063 */
1064void *set_except_vector(int n, void *addr)
1065{
1066 unsigned long handler = (unsigned long) addr;
1067 unsigned long old_handler = exception_handlers[n];
1068
1069 exception_handlers[n] = handler;
1070 if (n == 0 && cpu_has_divec) {
e01402b1 1071 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 1072 (0x03ffffff & (handler >> 2));
e01402b1
RB
1073 flush_icache_range(ebase + 0x200, ebase + 0x204);
1074 }
1075 return (void *)old_handler;
1076}
1077
f41ae0b2 1078#ifdef CONFIG_CPU_MIPSR2_SRS
e01402b1 1079/*
193dd2ce 1080 * MIPSR2 shadow register set allocation
e01402b1
RB
1081 * FIXME: SMP...
1082 */
1083
193dd2ce
RB
1084static struct shadow_registers {
1085 /*
1086 * Number of shadow register sets supported
1087 */
1088 unsigned long sr_supported;
1089 /*
1090 * Bitmap of allocated shadow registers
1091 */
1092 unsigned long sr_allocated;
e01402b1
RB
1093} shadow_registers;
1094
bb12d612 1095static void mips_srs_init(void)
e01402b1 1096{
e01402b1 1097 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
3ab0f40f 1098 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
7acb783e 1099 shadow_registers.sr_supported);
e01402b1 1100 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
e01402b1
RB
1101}
1102
1103int mips_srs_max(void)
1104{
1105 return shadow_registers.sr_supported;
1106}
1107
ff3eab2a 1108int mips_srs_alloc(void)
e01402b1
RB
1109{
1110 struct shadow_registers *sr = &shadow_registers;
e01402b1
RB
1111 int set;
1112
193dd2ce
RB
1113again:
1114 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1115 if (set >= sr->sr_supported)
1116 return -1;
e01402b1 1117
193dd2ce
RB
1118 if (test_and_set_bit(set, &sr->sr_allocated))
1119 goto again;
e01402b1 1120
193dd2ce 1121 return set;
e01402b1
RB
1122}
1123
41c594ab 1124void mips_srs_free(int set)
e01402b1
RB
1125{
1126 struct shadow_registers *sr = &shadow_registers;
e01402b1 1127
193dd2ce 1128 clear_bit(set, &sr->sr_allocated);
e01402b1
RB
1129}
1130
6ba07e59
AN
1131static asmlinkage void do_default_vi(void)
1132{
1133 show_regs(get_irq_regs());
1134 panic("Caught unexpected vectored interrupt.");
1135}
1136
ef300e42 1137static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
e01402b1
RB
1138{
1139 unsigned long handler;
1140 unsigned long old_handler = vi_handlers[n];
1141 u32 *w;
1142 unsigned char *b;
1143
1144 if (!cpu_has_veic && !cpu_has_vint)
1145 BUG();
1146
1147 if (addr == NULL) {
1148 handler = (unsigned long) do_default_vi;
1149 srs = 0;
41c594ab 1150 } else
e01402b1
RB
1151 handler = (unsigned long) addr;
1152 vi_handlers[n] = (unsigned long) addr;
1153
1154 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1155
1156 if (srs >= mips_srs_max())
1157 panic("Shadow register set %d not supported", srs);
1158
1159 if (cpu_has_veic) {
1160 if (board_bind_eic_interrupt)
1161 board_bind_eic_interrupt (n, srs);
41c594ab 1162 } else if (cpu_has_vint) {
e01402b1
RB
1163 /* SRSMap is only defined if shadow sets are implemented */
1164 if (mips_srs_max() > 1)
1165 change_c0_srsmap (0xf << n*4, srs << n*4);
1166 }
1167
1168 if (srs == 0) {
1169 /*
1170 * If no shadow set is selected then use the default handler
1171 * that does normal register saving and a standard interrupt exit
1172 */
1173
1174 extern char except_vec_vi, except_vec_vi_lui;
1175 extern char except_vec_vi_ori, except_vec_vi_end;
41c594ab
RB
1176#ifdef CONFIG_MIPS_MT_SMTC
1177 /*
1178 * We need to provide the SMTC vectored interrupt handler
1179 * not only with the address of the handler, but with the
1180 * Status.IM bit to be masked before going there.
1181 */
1182 extern char except_vec_vi_mori;
1183 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1184#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1185 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1186 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1187 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1188
1189 if (handler_len > VECTORSPACING) {
1190 /*
1191 * Sigh... panicing won't help as the console
1192 * is probably not configured :(
1193 */
1194 panic ("VECTORSPACING too small");
1195 }
1196
1197 memcpy (b, &except_vec_vi, handler_len);
41c594ab 1198#ifdef CONFIG_MIPS_MT_SMTC
8e8a52ed
RB
1199 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1200
41c594ab
RB
1201 w = (u32 *)(b + mori_offset);
1202 *w = (*w & 0xffff0000) | (0x100 << n);
1203#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1204 w = (u32 *)(b + lui_offset);
1205 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1206 w = (u32 *)(b + ori_offset);
1207 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1208 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1209 }
1210 else {
1211 /*
1212 * In other cases jump directly to the interrupt handler
1213 *
1214 * It is the handlers responsibility to save registers if required
1215 * (eg hi/lo) and return from the exception using "eret"
1216 */
1217 w = (u32 *)b;
1218 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1219 *w = 0;
1220 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1221 }
e01402b1 1222
1da177e4
LT
1223 return (void *)old_handler;
1224}
1225
ef300e42 1226void *set_vi_handler(int n, vi_handler_t addr)
e01402b1 1227{
ff3eab2a 1228 return set_vi_srs_handler(n, addr, 0);
e01402b1 1229}
f41ae0b2
RB
1230
1231#else
1232
1233static inline void mips_srs_init(void)
1234{
1235}
1236
1237#endif /* CONFIG_CPU_MIPSR2_SRS */
e01402b1 1238
1da177e4
LT
1239/*
1240 * This is used by native signal handling
1241 */
53dc8028
AN
1242asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1243asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1da177e4 1244
53dc8028
AN
1245extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1246extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1da177e4 1247
53dc8028
AN
1248extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1249extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1da177e4 1250
41c594ab 1251#ifdef CONFIG_SMP
53dc8028 1252static int smp_save_fp_context(struct sigcontext __user *sc)
41c594ab 1253{
53dc8028 1254 return raw_cpu_has_fpu
41c594ab
RB
1255 ? _save_fp_context(sc)
1256 : fpu_emulator_save_context(sc);
1257}
1258
53dc8028 1259static int smp_restore_fp_context(struct sigcontext __user *sc)
41c594ab 1260{
53dc8028 1261 return raw_cpu_has_fpu
41c594ab
RB
1262 ? _restore_fp_context(sc)
1263 : fpu_emulator_restore_context(sc);
1264}
1265#endif
1266
1da177e4
LT
1267static inline void signal_init(void)
1268{
41c594ab
RB
1269#ifdef CONFIG_SMP
1270 /* For now just do the cpu_has_fpu check when the functions are invoked */
1271 save_fp_context = smp_save_fp_context;
1272 restore_fp_context = smp_restore_fp_context;
1273#else
1da177e4
LT
1274 if (cpu_has_fpu) {
1275 save_fp_context = _save_fp_context;
1276 restore_fp_context = _restore_fp_context;
1277 } else {
1278 save_fp_context = fpu_emulator_save_context;
1279 restore_fp_context = fpu_emulator_restore_context;
1280 }
41c594ab 1281#endif
1da177e4
LT
1282}
1283
1284#ifdef CONFIG_MIPS32_COMPAT
1285
1286/*
1287 * This is used by 32-bit signal stuff on the 64-bit kernel
1288 */
53dc8028
AN
1289asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1290asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1da177e4 1291
53dc8028
AN
1292extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1293extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1da177e4 1294
53dc8028
AN
1295extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1296extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1da177e4
LT
1297
1298static inline void signal32_init(void)
1299{
1300 if (cpu_has_fpu) {
1301 save_fp_context32 = _save_fp_context32;
1302 restore_fp_context32 = _restore_fp_context32;
1303 } else {
1304 save_fp_context32 = fpu_emulator_save_context32;
1305 restore_fp_context32 = fpu_emulator_restore_context32;
1306 }
1307}
1308#endif
1309
1310extern void cpu_cache_init(void);
1311extern void tlb_init(void);
1d40cfcd 1312extern void flush_tlb_handlers(void);
1da177e4
LT
1313
1314void __init per_cpu_trap_init(void)
1315{
1316 unsigned int cpu = smp_processor_id();
1317 unsigned int status_set = ST0_CU0;
41c594ab
RB
1318#ifdef CONFIG_MIPS_MT_SMTC
1319 int secondaryTC = 0;
1320 int bootTC = (cpu == 0);
1321
1322 /*
1323 * Only do per_cpu_trap_init() for first TC of Each VPE.
1324 * Note that this hack assumes that the SMTC init code
1325 * assigns TCs consecutively and in ascending order.
1326 */
1327
1328 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1329 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1330 secondaryTC = 1;
1331#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1332
1333 /*
1334 * Disable coprocessors and select 32-bit or 64-bit addressing
1335 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1336 * flag that some firmware may have left set and the TS bit (for
1337 * IP27). Set XX for ISA IV code to work.
1338 */
875d43e7 1339#ifdef CONFIG_64BIT
1da177e4
LT
1340 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1341#endif
1342 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1343 status_set |= ST0_XX;
b38c7399 1344 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1345 status_set);
1346
e50c0a8f
RB
1347 if (cpu_has_dsp)
1348 set_c0_status(ST0_MX);
1349
e01402b1 1350#ifdef CONFIG_CPU_MIPSR2
a3692020
RB
1351 if (cpu_has_mips_r2) {
1352 unsigned int enable = 0x0000000f;
1353
1354 if (cpu_has_userlocal)
1355 enable |= (1 << 29);
1356
1357 write_c0_hwrena(enable);
1358 }
e01402b1
RB
1359#endif
1360
41c594ab
RB
1361#ifdef CONFIG_MIPS_MT_SMTC
1362 if (!secondaryTC) {
1363#endif /* CONFIG_MIPS_MT_SMTC */
1364
e01402b1
RB
1365 if (cpu_has_veic || cpu_has_vint) {
1366 write_c0_ebase (ebase);
1367 /* Setting vector spacing enables EI/VI mode */
1368 change_c0_intctl (0x3e0, VECTORSPACING);
1369 }
d03d0a57
RB
1370 if (cpu_has_divec) {
1371 if (cpu_has_mipsmt) {
1372 unsigned int vpflags = dvpe();
1373 set_c0_cause(CAUSEF_IV);
1374 evpe(vpflags);
1375 } else
1376 set_c0_cause(CAUSEF_IV);
1377 }
3b1d4ed5
RB
1378
1379 /*
1380 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1381 *
1382 * o read IntCtl.IPTI to determine the timer interrupt
1383 * o read IntCtl.IPPCI to determine the performance counter interrupt
1384 */
1385 if (cpu_has_mips_r2) {
1386 cp0_compare_irq = (read_c0_intctl () >> 29) & 7;
3b1d4ed5 1387 cp0_perfcount_irq = (read_c0_intctl () >> 26) & 7;
c3e838a2 1388 if (cp0_perfcount_irq == cp0_compare_irq)
3b1d4ed5 1389 cp0_perfcount_irq = -1;
c3e838a2
CD
1390 } else {
1391 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1392 cp0_perfcount_irq = -1;
3b1d4ed5
RB
1393 }
1394
41c594ab
RB
1395#ifdef CONFIG_MIPS_MT_SMTC
1396 }
1397#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1398
1399 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1400 TLBMISS_HANDLER_SETUP();
1401
1402 atomic_inc(&init_mm.mm_count);
1403 current->active_mm = &init_mm;
1404 BUG_ON(current->mm);
1405 enter_lazy_tlb(&init_mm, current);
1406
41c594ab
RB
1407#ifdef CONFIG_MIPS_MT_SMTC
1408 if (bootTC) {
1409#endif /* CONFIG_MIPS_MT_SMTC */
1410 cpu_cache_init();
1411 tlb_init();
1412#ifdef CONFIG_MIPS_MT_SMTC
6a05888d
RB
1413 } else if (!secondaryTC) {
1414 /*
1415 * First TC in non-boot VPE must do subset of tlb_init()
1416 * for MMU countrol registers.
1417 */
1418 write_c0_pagemask(PM_DEFAULT_MASK);
1419 write_c0_wired(0);
41c594ab
RB
1420 }
1421#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1422}
1423
e01402b1
RB
1424/* Install CPU exception handler */
1425void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1426{
1427 memcpy((void *)(ebase + offset), addr, size);
1428 flush_icache_range(ebase + offset, ebase + offset + size);
1429}
1430
1431/* Install uncached CPU exception handler */
1432void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1433{
1434#ifdef CONFIG_32BIT
1435 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1436#endif
1437#ifdef CONFIG_64BIT
1438 unsigned long uncached_ebase = TO_UNCAC(ebase);
1439#endif
1440
1441 memcpy((void *)(uncached_ebase + offset), addr, size);
1442}
1443
5b10496b
AN
1444static int __initdata rdhwr_noopt;
1445static int __init set_rdhwr_noopt(char *str)
1446{
1447 rdhwr_noopt = 1;
1448 return 1;
1449}
1450
1451__setup("rdhwr_noopt", set_rdhwr_noopt);
1452
1da177e4
LT
1453void __init trap_init(void)
1454{
1455 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1456 extern char except_vec4;
1457 unsigned long i;
1458
e01402b1
RB
1459 if (cpu_has_veic || cpu_has_vint)
1460 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1461 else
1462 ebase = CAC_BASE;
1463
e01402b1 1464 mips_srs_init();
e01402b1 1465
1da177e4
LT
1466 per_cpu_trap_init();
1467
1468 /*
1469 * Copy the generic exception handlers to their final destination.
1470 * This will be overriden later as suitable for a particular
1471 * configuration.
1472 */
e01402b1 1473 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1474
1475 /*
1476 * Setup default vectors
1477 */
1478 for (i = 0; i <= 31; i++)
1479 set_except_vector(i, handle_reserved);
1480
1481 /*
1482 * Copy the EJTAG debug exception vector handler code to it's final
1483 * destination.
1484 */
e01402b1
RB
1485 if (cpu_has_ejtag && board_ejtag_handler_setup)
1486 board_ejtag_handler_setup ();
1da177e4
LT
1487
1488 /*
1489 * Only some CPUs have the watch exceptions.
1490 */
1491 if (cpu_has_watch)
1492 set_except_vector(23, handle_watch);
1493
1494 /*
e01402b1 1495 * Initialise interrupt handlers
1da177e4 1496 */
e01402b1
RB
1497 if (cpu_has_veic || cpu_has_vint) {
1498 int nvec = cpu_has_veic ? 64 : 8;
1499 for (i = 0; i < nvec; i++)
ff3eab2a 1500 set_vi_handler(i, NULL);
e01402b1
RB
1501 }
1502 else if (cpu_has_divec)
1503 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1504
1505 /*
1506 * Some CPUs can enable/disable for cache parity detection, but does
1507 * it different ways.
1508 */
1509 parity_protection_init();
1510
1511 /*
1512 * The Data Bus Errors / Instruction Bus Errors are signaled
1513 * by external hardware. Therefore these two exceptions
1514 * may have board specific handlers.
1515 */
1516 if (board_be_init)
1517 board_be_init();
1518
e4ac58af 1519 set_except_vector(0, handle_int);
1da177e4
LT
1520 set_except_vector(1, handle_tlbm);
1521 set_except_vector(2, handle_tlbl);
1522 set_except_vector(3, handle_tlbs);
1523
1524 set_except_vector(4, handle_adel);
1525 set_except_vector(5, handle_ades);
1526
1527 set_except_vector(6, handle_ibe);
1528 set_except_vector(7, handle_dbe);
1529
1530 set_except_vector(8, handle_sys);
1531 set_except_vector(9, handle_bp);
5b10496b
AN
1532 set_except_vector(10, rdhwr_noopt ? handle_ri :
1533 (cpu_has_vtag_icache ?
1534 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1da177e4
LT
1535 set_except_vector(11, handle_cpu);
1536 set_except_vector(12, handle_ov);
1537 set_except_vector(13, handle_tr);
1da177e4
LT
1538
1539 if (current_cpu_data.cputype == CPU_R6000 ||
1540 current_cpu_data.cputype == CPU_R6000A) {
1541 /*
1542 * The R6000 is the only R-series CPU that features a machine
1543 * check exception (similar to the R4000 cache error) and
1544 * unaligned ldc1/sdc1 exception. The handlers have not been
1545 * written yet. Well, anyway there is no R6000 machine on the
1546 * current list of targets for Linux/MIPS.
1547 * (Duh, crap, there is someone with a triple R6k machine)
1548 */
1549 //set_except_vector(14, handle_mc);
1550 //set_except_vector(15, handle_ndc);
1551 }
1552
e01402b1
RB
1553
1554 if (board_nmi_handler_setup)
1555 board_nmi_handler_setup();
1556
e50c0a8f
RB
1557 if (cpu_has_fpu && !cpu_has_nofpuex)
1558 set_except_vector(15, handle_fpe);
1559
1560 set_except_vector(22, handle_mdmx);
1561
1562 if (cpu_has_mcheck)
1563 set_except_vector(24, handle_mcheck);
1564
340ee4b9
RB
1565 if (cpu_has_mipsmt)
1566 set_except_vector(25, handle_mt);
1567
acaec427 1568 set_except_vector(26, handle_dsp);
e50c0a8f
RB
1569
1570 if (cpu_has_vce)
1571 /* Special exception: R4[04]00 uses also the divec space. */
1572 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1573 else if (cpu_has_4kex)
1574 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1575 else
1576 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1577
1da177e4
LT
1578 signal_init();
1579#ifdef CONFIG_MIPS32_COMPAT
1580 signal32_init();
1581#endif
1582
e01402b1 1583 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1584 flush_tlb_handlers();
1da177e4 1585}