]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/mips/kernel/traps.c
[PATCH] mips: changed from VR41xx to VR4100 series in Kconfig
[net-next-2.6.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004 Maciej W. Rozycki
13 */
14#include <linux/config.h>
15#include <linux/init.h>
16#include <linux/mm.h>
17#include <linux/module.h>
18#include <linux/sched.h>
19#include <linux/smp.h>
20#include <linux/smp_lock.h>
21#include <linux/spinlock.h>
22#include <linux/kallsyms.h>
23
24#include <asm/bootinfo.h>
25#include <asm/branch.h>
26#include <asm/break.h>
27#include <asm/cpu.h>
28#include <asm/fpu.h>
29#include <asm/module.h>
30#include <asm/pgtable.h>
31#include <asm/ptrace.h>
32#include <asm/sections.h>
33#include <asm/system.h>
34#include <asm/tlbdebug.h>
35#include <asm/traps.h>
36#include <asm/uaccess.h>
37#include <asm/mmu_context.h>
38#include <asm/watch.h>
39#include <asm/types.h>
40
41extern asmlinkage void handle_tlbm(void);
42extern asmlinkage void handle_tlbl(void);
43extern asmlinkage void handle_tlbs(void);
44extern asmlinkage void handle_adel(void);
45extern asmlinkage void handle_ades(void);
46extern asmlinkage void handle_ibe(void);
47extern asmlinkage void handle_dbe(void);
48extern asmlinkage void handle_sys(void);
49extern asmlinkage void handle_bp(void);
50extern asmlinkage void handle_ri(void);
51extern asmlinkage void handle_cpu(void);
52extern asmlinkage void handle_ov(void);
53extern asmlinkage void handle_tr(void);
54extern asmlinkage void handle_fpe(void);
55extern asmlinkage void handle_mdmx(void);
56extern asmlinkage void handle_watch(void);
57extern asmlinkage void handle_mcheck(void);
58extern asmlinkage void handle_reserved(void);
59
60extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp,
61 struct mips_fpu_soft_struct *ctx);
62
63void (*board_be_init)(void);
64int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
65
66/*
67 * These constant is for searching for possible module text segments.
68 * MODULE_RANGE is a guess of how much space is likely to be vmalloced.
69 */
70#define MODULE_RANGE (8*1024*1024)
71
72/*
73 * This routine abuses get_user()/put_user() to reference pointers
74 * with at least a bit of error checking ...
75 */
76void show_stack(struct task_struct *task, unsigned long *sp)
77{
78 const int field = 2 * sizeof(unsigned long);
79 long stackdata;
80 int i;
81
82 if (!sp) {
83 if (task && task != current)
84 sp = (unsigned long *) task->thread.reg29;
85 else
86 sp = (unsigned long *) &sp;
87 }
88
89 printk("Stack :");
90 i = 0;
91 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
92 if (i && ((i % (64 / field)) == 0))
93 printk("\n ");
94 if (i > 39) {
95 printk(" ...");
96 break;
97 }
98
99 if (__get_user(stackdata, sp++)) {
100 printk(" (Bad stack address)");
101 break;
102 }
103
104 printk(" %0*lx", field, stackdata);
105 i++;
106 }
107 printk("\n");
108}
109
110void show_trace(struct task_struct *task, unsigned long *stack)
111{
112 const int field = 2 * sizeof(unsigned long);
113 unsigned long addr;
114
115 if (!stack) {
116 if (task && task != current)
117 stack = (unsigned long *) task->thread.reg29;
118 else
119 stack = (unsigned long *) &stack;
120 }
121
122 printk("Call Trace:");
123#ifdef CONFIG_KALLSYMS
124 printk("\n");
125#endif
126 while (!kstack_end(stack)) {
127 addr = *stack++;
128 if (__kernel_text_address(addr)) {
129 printk(" [<%0*lx>] ", field, addr);
130 print_symbol("%s\n", addr);
131 }
132 }
133 printk("\n");
134}
135
136/*
137 * The architecture-independent dump_stack generator
138 */
139void dump_stack(void)
140{
141 unsigned long stack;
142
143 show_trace(current, &stack);
144}
145
146EXPORT_SYMBOL(dump_stack);
147
148void show_code(unsigned int *pc)
149{
150 long i;
151
152 printk("\nCode:");
153
154 for(i = -3 ; i < 6 ; i++) {
155 unsigned int insn;
156 if (__get_user(insn, pc + i)) {
157 printk(" (Bad address in epc)\n");
158 break;
159 }
160 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
161 }
162}
163
164void show_regs(struct pt_regs *regs)
165{
166 const int field = 2 * sizeof(unsigned long);
167 unsigned int cause = regs->cp0_cause;
168 int i;
169
170 printk("Cpu %d\n", smp_processor_id());
171
172 /*
173 * Saved main processor registers
174 */
175 for (i = 0; i < 32; ) {
176 if ((i % 4) == 0)
177 printk("$%2d :", i);
178 if (i == 0)
179 printk(" %0*lx", field, 0UL);
180 else if (i == 26 || i == 27)
181 printk(" %*s", field, "");
182 else
183 printk(" %0*lx", field, regs->regs[i]);
184
185 i++;
186 if ((i % 4) == 0)
187 printk("\n");
188 }
189
190 printk("Hi : %0*lx\n", field, regs->hi);
191 printk("Lo : %0*lx\n", field, regs->lo);
192
193 /*
194 * Saved cp0 registers
195 */
196 printk("epc : %0*lx ", field, regs->cp0_epc);
197 print_symbol("%s ", regs->cp0_epc);
198 printk(" %s\n", print_tainted());
199 printk("ra : %0*lx ", field, regs->regs[31]);
200 print_symbol("%s\n", regs->regs[31]);
201
202 printk("Status: %08x ", (uint32_t) regs->cp0_status);
203
204 if (regs->cp0_status & ST0_KX)
205 printk("KX ");
206 if (regs->cp0_status & ST0_SX)
207 printk("SX ");
208 if (regs->cp0_status & ST0_UX)
209 printk("UX ");
210 switch (regs->cp0_status & ST0_KSU) {
211 case KSU_USER:
212 printk("USER ");
213 break;
214 case KSU_SUPERVISOR:
215 printk("SUPERVISOR ");
216 break;
217 case KSU_KERNEL:
218 printk("KERNEL ");
219 break;
220 default:
221 printk("BAD_MODE ");
222 break;
223 }
224 if (regs->cp0_status & ST0_ERL)
225 printk("ERL ");
226 if (regs->cp0_status & ST0_EXL)
227 printk("EXL ");
228 if (regs->cp0_status & ST0_IE)
229 printk("IE ");
230 printk("\n");
231
232 printk("Cause : %08x\n", cause);
233
234 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
235 if (1 <= cause && cause <= 5)
236 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
237
238 printk("PrId : %08x\n", read_c0_prid());
239}
240
241void show_registers(struct pt_regs *regs)
242{
243 show_regs(regs);
244 print_modules();
245 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
246 current->comm, current->pid, current_thread_info(), current);
247 show_stack(current, (long *) regs->regs[29]);
248 show_trace(current, (long *) regs->regs[29]);
249 show_code((unsigned int *) regs->cp0_epc);
250 printk("\n");
251}
252
253static DEFINE_SPINLOCK(die_lock);
254
255NORET_TYPE void __die(const char * str, struct pt_regs * regs,
256 const char * file, const char * func, unsigned long line)
257{
258 static int die_counter;
259
260 console_verbose();
261 spin_lock_irq(&die_lock);
262 printk("%s", str);
263 if (file && func)
264 printk(" in %s:%s, line %ld", file, func, line);
265 printk("[#%d]:\n", ++die_counter);
266 show_registers(regs);
267 spin_unlock_irq(&die_lock);
268 do_exit(SIGSEGV);
269}
270
271void __die_if_kernel(const char * str, struct pt_regs * regs,
272 const char * file, const char * func, unsigned long line)
273{
274 if (!user_mode(regs))
275 __die(str, regs, file, func, line);
276}
277
278extern const struct exception_table_entry __start___dbe_table[];
279extern const struct exception_table_entry __stop___dbe_table[];
280
281void __declare_dbe_table(void)
282{
283 __asm__ __volatile__(
284 ".section\t__dbe_table,\"a\"\n\t"
285 ".previous"
286 );
287}
288
289/* Given an address, look for it in the exception tables. */
290static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
291{
292 const struct exception_table_entry *e;
293
294 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
295 if (!e)
296 e = search_module_dbetables(addr);
297 return e;
298}
299
300asmlinkage void do_be(struct pt_regs *regs)
301{
302 const int field = 2 * sizeof(unsigned long);
303 const struct exception_table_entry *fixup = NULL;
304 int data = regs->cp0_cause & 4;
305 int action = MIPS_BE_FATAL;
306
307 /* XXX For now. Fixme, this searches the wrong table ... */
308 if (data && !user_mode(regs))
309 fixup = search_dbe_tables(exception_epc(regs));
310
311 if (fixup)
312 action = MIPS_BE_FIXUP;
313
314 if (board_be_handler)
315 action = board_be_handler(regs, fixup != 0);
316
317 switch (action) {
318 case MIPS_BE_DISCARD:
319 return;
320 case MIPS_BE_FIXUP:
321 if (fixup) {
322 regs->cp0_epc = fixup->nextinsn;
323 return;
324 }
325 break;
326 default:
327 break;
328 }
329
330 /*
331 * Assume it would be too dangerous to continue ...
332 */
333 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
334 data ? "Data" : "Instruction",
335 field, regs->cp0_epc, field, regs->regs[31]);
336 die_if_kernel("Oops", regs);
337 force_sig(SIGBUS, current);
338}
339
340static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
341{
342 unsigned int *epc;
343
344 epc = (unsigned int *) regs->cp0_epc +
345 ((regs->cp0_cause & CAUSEF_BD) != 0);
346 if (!get_user(*opcode, epc))
347 return 0;
348
349 force_sig(SIGSEGV, current);
350 return 1;
351}
352
353/*
354 * ll/sc emulation
355 */
356
357#define OPCODE 0xfc000000
358#define BASE 0x03e00000
359#define RT 0x001f0000
360#define OFFSET 0x0000ffff
361#define LL 0xc0000000
362#define SC 0xe0000000
363
364/*
365 * The ll_bit is cleared by r*_switch.S
366 */
367
368unsigned long ll_bit;
369
370static struct task_struct *ll_task = NULL;
371
372static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
373{
374 unsigned long value, *vaddr;
375 long offset;
376 int signal = 0;
377
378 /*
379 * analyse the ll instruction that just caused a ri exception
380 * and put the referenced address to addr.
381 */
382
383 /* sign extend offset */
384 offset = opcode & OFFSET;
385 offset <<= 16;
386 offset >>= 16;
387
388 vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
389
390 if ((unsigned long)vaddr & 3) {
391 signal = SIGBUS;
392 goto sig;
393 }
394 if (get_user(value, vaddr)) {
395 signal = SIGSEGV;
396 goto sig;
397 }
398
399 preempt_disable();
400
401 if (ll_task == NULL || ll_task == current) {
402 ll_bit = 1;
403 } else {
404 ll_bit = 0;
405 }
406 ll_task = current;
407
408 preempt_enable();
409
410 regs->regs[(opcode & RT) >> 16] = value;
411
412 compute_return_epc(regs);
413 return;
414
415sig:
416 force_sig(signal, current);
417}
418
419static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
420{
421 unsigned long *vaddr, reg;
422 long offset;
423 int signal = 0;
424
425 /*
426 * analyse the sc instruction that just caused a ri exception
427 * and put the referenced address to addr.
428 */
429
430 /* sign extend offset */
431 offset = opcode & OFFSET;
432 offset <<= 16;
433 offset >>= 16;
434
435 vaddr = (unsigned long *)((long)(regs->regs[(opcode & BASE) >> 21]) + offset);
436 reg = (opcode & RT) >> 16;
437
438 if ((unsigned long)vaddr & 3) {
439 signal = SIGBUS;
440 goto sig;
441 }
442
443 preempt_disable();
444
445 if (ll_bit == 0 || ll_task != current) {
446 regs->regs[reg] = 0;
447 preempt_enable();
448 compute_return_epc(regs);
449 return;
450 }
451
452 preempt_enable();
453
454 if (put_user(regs->regs[reg], vaddr)) {
455 signal = SIGSEGV;
456 goto sig;
457 }
458
459 regs->regs[reg] = 1;
460
461 compute_return_epc(regs);
462 return;
463
464sig:
465 force_sig(signal, current);
466}
467
468/*
469 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
470 * opcodes are supposed to result in coprocessor unusable exceptions if
471 * executed on ll/sc-less processors. That's the theory. In practice a
472 * few processors such as NEC's VR4100 throw reserved instruction exceptions
473 * instead, so we're doing the emulation thing in both exception handlers.
474 */
475static inline int simulate_llsc(struct pt_regs *regs)
476{
477 unsigned int opcode;
478
479 if (unlikely(get_insn_opcode(regs, &opcode)))
480 return -EFAULT;
481
482 if ((opcode & OPCODE) == LL) {
483 simulate_ll(regs, opcode);
484 return 0;
485 }
486 if ((opcode & OPCODE) == SC) {
487 simulate_sc(regs, opcode);
488 return 0;
489 }
490
491 return -EFAULT; /* Strange things going on ... */
492}
493
494asmlinkage void do_ov(struct pt_regs *regs)
495{
496 siginfo_t info;
497
498 info.si_code = FPE_INTOVF;
499 info.si_signo = SIGFPE;
500 info.si_errno = 0;
501 info.si_addr = (void *)regs->cp0_epc;
502 force_sig_info(SIGFPE, &info, current);
503}
504
505/*
506 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
507 */
508asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
509{
510 if (fcr31 & FPU_CSR_UNI_X) {
511 int sig;
512
513 preempt_disable();
514
515 /*
516 * Unimplemented operation exception. If we've got the full
517 * software emulator on-board, let's use it...
518 *
519 * Force FPU to dump state into task/thread context. We're
520 * moving a lot of data here for what is probably a single
521 * instruction, but the alternative is to pre-decode the FP
522 * register operands before invoking the emulator, which seems
523 * a bit extreme for what should be an infrequent event.
524 */
525 save_fp(current);
526
527 /* Run the emulator */
528 sig = fpu_emulator_cop1Handler (0, regs,
529 &current->thread.fpu.soft);
530
531 /*
532 * We can't allow the emulated instruction to leave any of
533 * the cause bit set in $fcr31.
534 */
535 current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X;
536
537 /* Restore the hardware register state */
538 restore_fp(current);
539
540 preempt_enable();
541
542 /* If something went wrong, signal */
543 if (sig)
544 force_sig(sig, current);
545
546 return;
547 }
548
549 force_sig(SIGFPE, current);
550}
551
552asmlinkage void do_bp(struct pt_regs *regs)
553{
554 unsigned int opcode, bcode;
555 siginfo_t info;
556
557 die_if_kernel("Break instruction in kernel code", regs);
558
559 if (get_insn_opcode(regs, &opcode))
560 return;
561
562 /*
563 * There is the ancient bug in the MIPS assemblers that the break
564 * code starts left to bit 16 instead to bit 6 in the opcode.
565 * Gas is bug-compatible, but not always, grrr...
566 * We handle both cases with a simple heuristics. --macro
567 */
568 bcode = ((opcode >> 6) & ((1 << 20) - 1));
569 if (bcode < (1 << 10))
570 bcode <<= 10;
571
572 /*
573 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
574 * insns, even for break codes that indicate arithmetic failures.
575 * Weird ...)
576 * But should we continue the brokenness??? --macro
577 */
578 switch (bcode) {
579 case BRK_OVERFLOW << 10:
580 case BRK_DIVZERO << 10:
581 if (bcode == (BRK_DIVZERO << 10))
582 info.si_code = FPE_INTDIV;
583 else
584 info.si_code = FPE_INTOVF;
585 info.si_signo = SIGFPE;
586 info.si_errno = 0;
587 info.si_addr = (void *)regs->cp0_epc;
588 force_sig_info(SIGFPE, &info, current);
589 break;
590 default:
591 force_sig(SIGTRAP, current);
592 }
593}
594
595asmlinkage void do_tr(struct pt_regs *regs)
596{
597 unsigned int opcode, tcode = 0;
598 siginfo_t info;
599
600 die_if_kernel("Trap instruction in kernel code", regs);
601
602 if (get_insn_opcode(regs, &opcode))
603 return;
604
605 /* Immediate versions don't provide a code. */
606 if (!(opcode & OPCODE))
607 tcode = ((opcode >> 6) & ((1 << 10) - 1));
608
609 /*
610 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
611 * insns, even for trap codes that indicate arithmetic failures.
612 * Weird ...)
613 * But should we continue the brokenness??? --macro
614 */
615 switch (tcode) {
616 case BRK_OVERFLOW:
617 case BRK_DIVZERO:
618 if (tcode == BRK_DIVZERO)
619 info.si_code = FPE_INTDIV;
620 else
621 info.si_code = FPE_INTOVF;
622 info.si_signo = SIGFPE;
623 info.si_errno = 0;
624 info.si_addr = (void *)regs->cp0_epc;
625 force_sig_info(SIGFPE, &info, current);
626 break;
627 default:
628 force_sig(SIGTRAP, current);
629 }
630}
631
632asmlinkage void do_ri(struct pt_regs *regs)
633{
634 die_if_kernel("Reserved instruction in kernel code", regs);
635
636 if (!cpu_has_llsc)
637 if (!simulate_llsc(regs))
638 return;
639
640 force_sig(SIGILL, current);
641}
642
643asmlinkage void do_cpu(struct pt_regs *regs)
644{
645 unsigned int cpid;
646
647 die_if_kernel("do_cpu invoked from kernel context!", regs);
648
649 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
650
651 switch (cpid) {
652 case 0:
653 if (cpu_has_llsc)
654 break;
655
656 if (!simulate_llsc(regs))
657 return;
658 break;
659
660 case 1:
661 preempt_disable();
662
663 own_fpu();
664 if (used_math()) { /* Using the FPU again. */
665 restore_fp(current);
666 } else { /* First time FPU user. */
667 init_fpu();
668 set_used_math();
669 }
670
671 if (!cpu_has_fpu) {
672 int sig = fpu_emulator_cop1Handler(0, regs,
673 &current->thread.fpu.soft);
674 if (sig)
675 force_sig(sig, current);
676 }
677
678 preempt_enable();
679
680 return;
681
682 case 2:
683 case 3:
684 break;
685 }
686
687 force_sig(SIGILL, current);
688}
689
690asmlinkage void do_mdmx(struct pt_regs *regs)
691{
692 force_sig(SIGILL, current);
693}
694
695asmlinkage void do_watch(struct pt_regs *regs)
696{
697 /*
698 * We use the watch exception where available to detect stack
699 * overflows.
700 */
701 dump_tlb_all();
702 show_regs(regs);
703 panic("Caught WATCH exception - probably caused by stack overflow.");
704}
705
706asmlinkage void do_mcheck(struct pt_regs *regs)
707{
708 show_regs(regs);
709 dump_tlb_all();
710 /*
711 * Some chips may have other causes of machine check (e.g. SB1
712 * graduation timer)
713 */
714 panic("Caught Machine Check exception - %scaused by multiple "
715 "matching entries in the TLB.",
716 (regs->cp0_status & ST0_TS) ? "" : "not ");
717}
718
719asmlinkage void do_reserved(struct pt_regs *regs)
720{
721 /*
722 * Game over - no way to handle this if it ever occurs. Most probably
723 * caused by a new unknown cpu type or after another deadly
724 * hard/software error.
725 */
726 show_regs(regs);
727 panic("Caught reserved exception %ld - should not happen.",
728 (regs->cp0_cause & 0x7f) >> 2);
729}
730
731/*
732 * Some MIPS CPUs can enable/disable for cache parity detection, but do
733 * it different ways.
734 */
735static inline void parity_protection_init(void)
736{
737 switch (current_cpu_data.cputype) {
738 case CPU_24K:
739 /* 24K cache parity not currently implemented in FPGA */
740 printk(KERN_INFO "Disable cache parity protection for "
741 "MIPS 24K CPU.\n");
742 write_c0_ecc(read_c0_ecc() & ~0x80000000);
743 break;
744 case CPU_5KC:
745 /* Set the PE bit (bit 31) in the c0_ecc register. */
746 printk(KERN_INFO "Enable cache parity protection for "
747 "MIPS 5KC/24K CPUs.\n");
748 write_c0_ecc(read_c0_ecc() | 0x80000000);
749 break;
750 case CPU_20KC:
751 case CPU_25KF:
752 /* Clear the DE bit (bit 16) in the c0_status register. */
753 printk(KERN_INFO "Enable cache parity protection for "
754 "MIPS 20KC/25KF CPUs.\n");
755 clear_c0_status(ST0_DE);
756 break;
757 default:
758 break;
759 }
760}
761
762asmlinkage void cache_parity_error(void)
763{
764 const int field = 2 * sizeof(unsigned long);
765 unsigned int reg_val;
766
767 /* For the moment, report the problem and hang. */
768 printk("Cache error exception:\n");
769 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
770 reg_val = read_c0_cacheerr();
771 printk("c0_cacheerr == %08x\n", reg_val);
772
773 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
774 reg_val & (1<<30) ? "secondary" : "primary",
775 reg_val & (1<<31) ? "data" : "insn");
776 printk("Error bits: %s%s%s%s%s%s%s\n",
777 reg_val & (1<<29) ? "ED " : "",
778 reg_val & (1<<28) ? "ET " : "",
779 reg_val & (1<<26) ? "EE " : "",
780 reg_val & (1<<25) ? "EB " : "",
781 reg_val & (1<<24) ? "EI " : "",
782 reg_val & (1<<23) ? "E1 " : "",
783 reg_val & (1<<22) ? "E0 " : "");
784 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
785
786#if defined(CONFIG_CPU_MIPS32) || defined (CONFIG_CPU_MIPS64)
787 if (reg_val & (1<<22))
788 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
789
790 if (reg_val & (1<<23))
791 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
792#endif
793
794 panic("Can't handle the cache error!");
795}
796
797/*
798 * SDBBP EJTAG debug exception handler.
799 * We skip the instruction and return to the next instruction.
800 */
801void ejtag_exception_handler(struct pt_regs *regs)
802{
803 const int field = 2 * sizeof(unsigned long);
804 unsigned long depc, old_epc;
805 unsigned int debug;
806
807 printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
808 depc = read_c0_depc();
809 debug = read_c0_debug();
810 printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
811 if (debug & 0x80000000) {
812 /*
813 * In branch delay slot.
814 * We cheat a little bit here and use EPC to calculate the
815 * debug return address (DEPC). EPC is restored after the
816 * calculation.
817 */
818 old_epc = regs->cp0_epc;
819 regs->cp0_epc = depc;
820 __compute_return_epc(regs);
821 depc = regs->cp0_epc;
822 regs->cp0_epc = old_epc;
823 } else
824 depc += 4;
825 write_c0_depc(depc);
826
827#if 0
828 printk("\n\n----- Enable EJTAG single stepping ----\n\n");
829 write_c0_debug(debug | 0x100);
830#endif
831}
832
833/*
834 * NMI exception handler.
835 */
836void nmi_exception_handler(struct pt_regs *regs)
837{
838 printk("NMI taken!!!!\n");
839 die("NMI", regs);
840 while(1) ;
841}
842
843unsigned long exception_handlers[32];
844
845/*
846 * As a side effect of the way this is implemented we're limited
847 * to interrupt handlers in the address range from
848 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
849 */
850void *set_except_vector(int n, void *addr)
851{
852 unsigned long handler = (unsigned long) addr;
853 unsigned long old_handler = exception_handlers[n];
854
855 exception_handlers[n] = handler;
856 if (n == 0 && cpu_has_divec) {
857 *(volatile u32 *)(CAC_BASE + 0x200) = 0x08000000 |
858 (0x03ffffff & (handler >> 2));
859 flush_icache_range(CAC_BASE + 0x200, CAC_BASE + 0x204);
860 }
861 return (void *)old_handler;
862}
863
864/*
865 * This is used by native signal handling
866 */
867asmlinkage int (*save_fp_context)(struct sigcontext *sc);
868asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
869
870extern asmlinkage int _save_fp_context(struct sigcontext *sc);
871extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
872
873extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
874extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
875
876static inline void signal_init(void)
877{
878 if (cpu_has_fpu) {
879 save_fp_context = _save_fp_context;
880 restore_fp_context = _restore_fp_context;
881 } else {
882 save_fp_context = fpu_emulator_save_context;
883 restore_fp_context = fpu_emulator_restore_context;
884 }
885}
886
887#ifdef CONFIG_MIPS32_COMPAT
888
889/*
890 * This is used by 32-bit signal stuff on the 64-bit kernel
891 */
892asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
893asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
894
895extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
896extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
897
898extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
899extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
900
901static inline void signal32_init(void)
902{
903 if (cpu_has_fpu) {
904 save_fp_context32 = _save_fp_context32;
905 restore_fp_context32 = _restore_fp_context32;
906 } else {
907 save_fp_context32 = fpu_emulator_save_context32;
908 restore_fp_context32 = fpu_emulator_restore_context32;
909 }
910}
911#endif
912
913extern void cpu_cache_init(void);
914extern void tlb_init(void);
915
916void __init per_cpu_trap_init(void)
917{
918 unsigned int cpu = smp_processor_id();
919 unsigned int status_set = ST0_CU0;
920
921 /*
922 * Disable coprocessors and select 32-bit or 64-bit addressing
923 * and the 16/32 or 32/32 FPR register model. Reset the BEV
924 * flag that some firmware may have left set and the TS bit (for
925 * IP27). Set XX for ISA IV code to work.
926 */
927#ifdef CONFIG_MIPS64
928 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
929#endif
930 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
931 status_set |= ST0_XX;
932 change_c0_status(ST0_CU|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
933 status_set);
934
935 /*
936 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
937 * interrupt processing overhead. Use it where available.
938 */
939 if (cpu_has_divec)
940 set_c0_cause(CAUSEF_IV);
941
942 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
943 TLBMISS_HANDLER_SETUP();
944
945 atomic_inc(&init_mm.mm_count);
946 current->active_mm = &init_mm;
947 BUG_ON(current->mm);
948 enter_lazy_tlb(&init_mm, current);
949
950 cpu_cache_init();
951 tlb_init();
952}
953
954void __init trap_init(void)
955{
956 extern char except_vec3_generic, except_vec3_r4000;
957 extern char except_vec_ejtag_debug;
958 extern char except_vec4;
959 unsigned long i;
960
961 per_cpu_trap_init();
962
963 /*
964 * Copy the generic exception handlers to their final destination.
965 * This will be overriden later as suitable for a particular
966 * configuration.
967 */
968 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
969
970 /*
971 * Setup default vectors
972 */
973 for (i = 0; i <= 31; i++)
974 set_except_vector(i, handle_reserved);
975
976 /*
977 * Copy the EJTAG debug exception vector handler code to it's final
978 * destination.
979 */
980 if (cpu_has_ejtag)
981 memcpy((void *)(CAC_BASE + 0x300), &except_vec_ejtag_debug, 0x80);
982
983 /*
984 * Only some CPUs have the watch exceptions.
985 */
986 if (cpu_has_watch)
987 set_except_vector(23, handle_watch);
988
989 /*
990 * Some MIPS CPUs have a dedicated interrupt vector which reduces the
991 * interrupt processing overhead. Use it where available.
992 */
993 if (cpu_has_divec)
994 memcpy((void *)(CAC_BASE + 0x200), &except_vec4, 0x8);
995
996 /*
997 * Some CPUs can enable/disable for cache parity detection, but does
998 * it different ways.
999 */
1000 parity_protection_init();
1001
1002 /*
1003 * The Data Bus Errors / Instruction Bus Errors are signaled
1004 * by external hardware. Therefore these two exceptions
1005 * may have board specific handlers.
1006 */
1007 if (board_be_init)
1008 board_be_init();
1009
1010 set_except_vector(1, handle_tlbm);
1011 set_except_vector(2, handle_tlbl);
1012 set_except_vector(3, handle_tlbs);
1013
1014 set_except_vector(4, handle_adel);
1015 set_except_vector(5, handle_ades);
1016
1017 set_except_vector(6, handle_ibe);
1018 set_except_vector(7, handle_dbe);
1019
1020 set_except_vector(8, handle_sys);
1021 set_except_vector(9, handle_bp);
1022 set_except_vector(10, handle_ri);
1023 set_except_vector(11, handle_cpu);
1024 set_except_vector(12, handle_ov);
1025 set_except_vector(13, handle_tr);
1026 set_except_vector(22, handle_mdmx);
1027
1028 if (cpu_has_fpu && !cpu_has_nofpuex)
1029 set_except_vector(15, handle_fpe);
1030
1031 if (cpu_has_mcheck)
1032 set_except_vector(24, handle_mcheck);
1033
1034 if (cpu_has_vce)
1035 /* Special exception: R4[04]00 uses also the divec space. */
1036 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1037 else if (cpu_has_4kex)
1038 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1039 else
1040 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1041
1042 if (current_cpu_data.cputype == CPU_R6000 ||
1043 current_cpu_data.cputype == CPU_R6000A) {
1044 /*
1045 * The R6000 is the only R-series CPU that features a machine
1046 * check exception (similar to the R4000 cache error) and
1047 * unaligned ldc1/sdc1 exception. The handlers have not been
1048 * written yet. Well, anyway there is no R6000 machine on the
1049 * current list of targets for Linux/MIPS.
1050 * (Duh, crap, there is someone with a triple R6k machine)
1051 */
1052 //set_except_vector(14, handle_mc);
1053 //set_except_vector(15, handle_ndc);
1054 }
1055
1056 signal_init();
1057#ifdef CONFIG_MIPS32_COMPAT
1058 signal32_init();
1059#endif
1060
1061 flush_icache_range(CAC_BASE, CAC_BASE + 0x400);
1062}