]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/mips/kernel/traps.c
[MIPS] Stacktrace build-fix and improvement
[net-next-2.6.git] / arch / mips / kernel / traps.c
CommitLineData
1da177e4
LT
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
36ccf1c0 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
1da177e4
LT
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
3b2396d9 12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
1da177e4 13 */
1da177e4
LT
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/module.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/smp_lock.h>
20#include <linux/spinlock.h>
21#include <linux/kallsyms.h>
e01402b1 22#include <linux/bootmem.h>
d4fd1989 23#include <linux/interrupt.h>
1da177e4
LT
24
25#include <asm/bootinfo.h>
26#include <asm/branch.h>
27#include <asm/break.h>
28#include <asm/cpu.h>
e50c0a8f 29#include <asm/dsp.h>
1da177e4 30#include <asm/fpu.h>
340ee4b9
RB
31#include <asm/mipsregs.h>
32#include <asm/mipsmtregs.h>
1da177e4
LT
33#include <asm/module.h>
34#include <asm/pgtable.h>
35#include <asm/ptrace.h>
36#include <asm/sections.h>
37#include <asm/system.h>
38#include <asm/tlbdebug.h>
39#include <asm/traps.h>
40#include <asm/uaccess.h>
41#include <asm/mmu_context.h>
42#include <asm/watch.h>
43#include <asm/types.h>
1df0f0ff 44#include <asm/stacktrace.h>
1da177e4 45
e4ac58af 46extern asmlinkage void handle_int(void);
1da177e4
LT
47extern asmlinkage void handle_tlbm(void);
48extern asmlinkage void handle_tlbl(void);
49extern asmlinkage void handle_tlbs(void);
50extern asmlinkage void handle_adel(void);
51extern asmlinkage void handle_ades(void);
52extern asmlinkage void handle_ibe(void);
53extern asmlinkage void handle_dbe(void);
54extern asmlinkage void handle_sys(void);
55extern asmlinkage void handle_bp(void);
56extern asmlinkage void handle_ri(void);
57extern asmlinkage void handle_cpu(void);
58extern asmlinkage void handle_ov(void);
59extern asmlinkage void handle_tr(void);
60extern asmlinkage void handle_fpe(void);
61extern asmlinkage void handle_mdmx(void);
62extern asmlinkage void handle_watch(void);
340ee4b9 63extern asmlinkage void handle_mt(void);
e50c0a8f 64extern asmlinkage void handle_dsp(void);
1da177e4
LT
65extern asmlinkage void handle_mcheck(void);
66extern asmlinkage void handle_reserved(void);
67
12616ed2 68extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
eae89076 69 struct mips_fpu_struct *ctx);
1da177e4
LT
70
71void (*board_be_init)(void);
72int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
e01402b1
RB
73void (*board_nmi_handler_setup)(void);
74void (*board_ejtag_handler_setup)(void);
75void (*board_bind_eic_interrupt)(int irq, int regset);
1da177e4 76
1da177e4 77
4d157d5e 78static void show_raw_backtrace(unsigned long reg29)
e889d78f 79{
4d157d5e 80 unsigned long *sp = (unsigned long *)reg29;
e889d78f
AN
81 unsigned long addr;
82
83 printk("Call Trace:");
84#ifdef CONFIG_KALLSYMS
85 printk("\n");
86#endif
87151ae3
FBH
87 while (!kstack_end(sp)) {
88 addr = *sp++;
89 if (__kernel_text_address(addr))
90 print_ip_sym(addr);
e889d78f
AN
91 }
92 printk("\n");
93}
94
f66686f7 95#ifdef CONFIG_KALLSYMS
1df0f0ff 96int raw_show_trace;
f66686f7
AN
97static int __init set_raw_show_trace(char *str)
98{
99 raw_show_trace = 1;
100 return 1;
101}
102__setup("raw_show_trace", set_raw_show_trace);
1df0f0ff 103#endif
4d157d5e 104
87151ae3 105static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
f66686f7 106{
4d157d5e
FBH
107 unsigned long sp = regs->regs[29];
108 unsigned long ra = regs->regs[31];
f66686f7 109 unsigned long pc = regs->cp0_epc;
f66686f7
AN
110
111 if (raw_show_trace || !__kernel_text_address(pc)) {
87151ae3 112 show_raw_backtrace(sp);
f66686f7
AN
113 return;
114 }
115 printk("Call Trace:\n");
4d157d5e 116 do {
87151ae3 117 print_ip_sym(pc);
4d157d5e
FBH
118 pc = unwind_stack(task, &sp, pc, ra);
119 ra = 0;
120 } while (pc);
f66686f7
AN
121 printk("\n");
122}
f66686f7 123
1da177e4
LT
124/*
125 * This routine abuses get_user()/put_user() to reference pointers
126 * with at least a bit of error checking ...
127 */
f66686f7 128static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
1da177e4
LT
129{
130 const int field = 2 * sizeof(unsigned long);
131 long stackdata;
132 int i;
f66686f7 133 unsigned long *sp = (unsigned long *)regs->regs[29];
1da177e4
LT
134
135 printk("Stack :");
136 i = 0;
137 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
138 if (i && ((i % (64 / field)) == 0))
139 printk("\n ");
140 if (i > 39) {
141 printk(" ...");
142 break;
143 }
144
145 if (__get_user(stackdata, sp++)) {
146 printk(" (Bad stack address)");
147 break;
148 }
149
150 printk(" %0*lx", field, stackdata);
151 i++;
152 }
153 printk("\n");
87151ae3 154 show_backtrace(task, regs);
f66686f7
AN
155}
156
f66686f7
AN
157void show_stack(struct task_struct *task, unsigned long *sp)
158{
159 struct pt_regs regs;
160 if (sp) {
161 regs.regs[29] = (unsigned long)sp;
162 regs.regs[31] = 0;
163 regs.cp0_epc = 0;
164 } else {
165 if (task && task != current) {
166 regs.regs[29] = task->thread.reg29;
167 regs.regs[31] = 0;
168 regs.cp0_epc = task->thread.reg31;
169 } else {
170 prepare_frametrace(&regs);
171 }
172 }
173 show_stacktrace(task, &regs);
1da177e4
LT
174}
175
176/*
177 * The architecture-independent dump_stack generator
178 */
179void dump_stack(void)
180{
1666a6fc 181 struct pt_regs regs;
1da177e4 182
1666a6fc
FBH
183 prepare_frametrace(&regs);
184 show_backtrace(current, &regs);
1da177e4
LT
185}
186
187EXPORT_SYMBOL(dump_stack);
188
189void show_code(unsigned int *pc)
190{
191 long i;
192
193 printk("\nCode:");
194
195 for(i = -3 ; i < 6 ; i++) {
196 unsigned int insn;
197 if (__get_user(insn, pc + i)) {
198 printk(" (Bad address in epc)\n");
199 break;
200 }
201 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
202 }
203}
204
205void show_regs(struct pt_regs *regs)
206{
207 const int field = 2 * sizeof(unsigned long);
208 unsigned int cause = regs->cp0_cause;
209 int i;
210
211 printk("Cpu %d\n", smp_processor_id());
212
213 /*
214 * Saved main processor registers
215 */
216 for (i = 0; i < 32; ) {
217 if ((i % 4) == 0)
218 printk("$%2d :", i);
219 if (i == 0)
220 printk(" %0*lx", field, 0UL);
221 else if (i == 26 || i == 27)
222 printk(" %*s", field, "");
223 else
224 printk(" %0*lx", field, regs->regs[i]);
225
226 i++;
227 if ((i % 4) == 0)
228 printk("\n");
229 }
230
231 printk("Hi : %0*lx\n", field, regs->hi);
232 printk("Lo : %0*lx\n", field, regs->lo);
233
234 /*
235 * Saved cp0 registers
236 */
237 printk("epc : %0*lx ", field, regs->cp0_epc);
238 print_symbol("%s ", regs->cp0_epc);
239 printk(" %s\n", print_tainted());
240 printk("ra : %0*lx ", field, regs->regs[31]);
241 print_symbol("%s\n", regs->regs[31]);
242
243 printk("Status: %08x ", (uint32_t) regs->cp0_status);
244
3b2396d9
MR
245 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
246 if (regs->cp0_status & ST0_KUO)
247 printk("KUo ");
248 if (regs->cp0_status & ST0_IEO)
249 printk("IEo ");
250 if (regs->cp0_status & ST0_KUP)
251 printk("KUp ");
252 if (regs->cp0_status & ST0_IEP)
253 printk("IEp ");
254 if (regs->cp0_status & ST0_KUC)
255 printk("KUc ");
256 if (regs->cp0_status & ST0_IEC)
257 printk("IEc ");
258 } else {
259 if (regs->cp0_status & ST0_KX)
260 printk("KX ");
261 if (regs->cp0_status & ST0_SX)
262 printk("SX ");
263 if (regs->cp0_status & ST0_UX)
264 printk("UX ");
265 switch (regs->cp0_status & ST0_KSU) {
266 case KSU_USER:
267 printk("USER ");
268 break;
269 case KSU_SUPERVISOR:
270 printk("SUPERVISOR ");
271 break;
272 case KSU_KERNEL:
273 printk("KERNEL ");
274 break;
275 default:
276 printk("BAD_MODE ");
277 break;
278 }
279 if (regs->cp0_status & ST0_ERL)
280 printk("ERL ");
281 if (regs->cp0_status & ST0_EXL)
282 printk("EXL ");
283 if (regs->cp0_status & ST0_IE)
284 printk("IE ");
1da177e4 285 }
1da177e4
LT
286 printk("\n");
287
288 printk("Cause : %08x\n", cause);
289
290 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
291 if (1 <= cause && cause <= 5)
292 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
293
294 printk("PrId : %08x\n", read_c0_prid());
295}
296
297void show_registers(struct pt_regs *regs)
298{
299 show_regs(regs);
300 print_modules();
301 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
302 current->comm, current->pid, current_thread_info(), current);
f66686f7 303 show_stacktrace(current, regs);
1da177e4
LT
304 show_code((unsigned int *) regs->cp0_epc);
305 printk("\n");
306}
307
308static DEFINE_SPINLOCK(die_lock);
309
178086c8 310NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
1da177e4
LT
311{
312 static int die_counter;
41c594ab
RB
313#ifdef CONFIG_MIPS_MT_SMTC
314 unsigned long dvpret = dvpe();
315#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
316
317 console_verbose();
318 spin_lock_irq(&die_lock);
41c594ab
RB
319 bust_spinlocks(1);
320#ifdef CONFIG_MIPS_MT_SMTC
321 mips_mt_regdump(dvpret);
322#endif /* CONFIG_MIPS_MT_SMTC */
178086c8 323 printk("%s[#%d]:\n", str, ++die_counter);
1da177e4
LT
324 show_registers(regs);
325 spin_unlock_irq(&die_lock);
d4fd1989
MB
326
327 if (in_interrupt())
328 panic("Fatal exception in interrupt");
329
330 if (panic_on_oops) {
331 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
332 ssleep(5);
333 panic("Fatal exception");
334 }
335
1da177e4
LT
336 do_exit(SIGSEGV);
337}
338
1da177e4
LT
339extern const struct exception_table_entry __start___dbe_table[];
340extern const struct exception_table_entry __stop___dbe_table[];
341
342void __declare_dbe_table(void)
343{
344 __asm__ __volatile__(
345 ".section\t__dbe_table,\"a\"\n\t"
346 ".previous"
347 );
348}
349
350/* Given an address, look for it in the exception tables. */
351static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
352{
353 const struct exception_table_entry *e;
354
355 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
356 if (!e)
357 e = search_module_dbetables(addr);
358 return e;
359}
360
361asmlinkage void do_be(struct pt_regs *regs)
362{
363 const int field = 2 * sizeof(unsigned long);
364 const struct exception_table_entry *fixup = NULL;
365 int data = regs->cp0_cause & 4;
366 int action = MIPS_BE_FATAL;
367
368 /* XXX For now. Fixme, this searches the wrong table ... */
369 if (data && !user_mode(regs))
370 fixup = search_dbe_tables(exception_epc(regs));
371
372 if (fixup)
373 action = MIPS_BE_FIXUP;
374
375 if (board_be_handler)
376 action = board_be_handler(regs, fixup != 0);
377
378 switch (action) {
379 case MIPS_BE_DISCARD:
380 return;
381 case MIPS_BE_FIXUP:
382 if (fixup) {
383 regs->cp0_epc = fixup->nextinsn;
384 return;
385 }
386 break;
387 default:
388 break;
389 }
390
391 /*
392 * Assume it would be too dangerous to continue ...
393 */
394 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
395 data ? "Data" : "Instruction",
396 field, regs->cp0_epc, field, regs->regs[31]);
397 die_if_kernel("Oops", regs);
398 force_sig(SIGBUS, current);
399}
400
401static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode)
402{
fe00f943 403 unsigned int __user *epc;
1da177e4 404
fe00f943 405 epc = (unsigned int __user *) regs->cp0_epc +
1da177e4
LT
406 ((regs->cp0_cause & CAUSEF_BD) != 0);
407 if (!get_user(*opcode, epc))
408 return 0;
409
410 force_sig(SIGSEGV, current);
411 return 1;
412}
413
414/*
415 * ll/sc emulation
416 */
417
418#define OPCODE 0xfc000000
419#define BASE 0x03e00000
420#define RT 0x001f0000
421#define OFFSET 0x0000ffff
422#define LL 0xc0000000
423#define SC 0xe0000000
3c37026d
RB
424#define SPEC3 0x7c000000
425#define RD 0x0000f800
426#define FUNC 0x0000003f
427#define RDHWR 0x0000003b
1da177e4
LT
428
429/*
430 * The ll_bit is cleared by r*_switch.S
431 */
432
433unsigned long ll_bit;
434
435static struct task_struct *ll_task = NULL;
436
437static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
438{
fe00f943 439 unsigned long value, __user *vaddr;
1da177e4
LT
440 long offset;
441 int signal = 0;
442
443 /*
444 * analyse the ll instruction that just caused a ri exception
445 * and put the referenced address to addr.
446 */
447
448 /* sign extend offset */
449 offset = opcode & OFFSET;
450 offset <<= 16;
451 offset >>= 16;
452
fe00f943
RB
453 vaddr = (unsigned long __user *)
454 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
455
456 if ((unsigned long)vaddr & 3) {
457 signal = SIGBUS;
458 goto sig;
459 }
460 if (get_user(value, vaddr)) {
461 signal = SIGSEGV;
462 goto sig;
463 }
464
465 preempt_disable();
466
467 if (ll_task == NULL || ll_task == current) {
468 ll_bit = 1;
469 } else {
470 ll_bit = 0;
471 }
472 ll_task = current;
473
474 preempt_enable();
475
6dd04688
RB
476 compute_return_epc(regs);
477
1da177e4
LT
478 regs->regs[(opcode & RT) >> 16] = value;
479
1da177e4
LT
480 return;
481
482sig:
483 force_sig(signal, current);
484}
485
486static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
487{
fe00f943
RB
488 unsigned long __user *vaddr;
489 unsigned long reg;
1da177e4
LT
490 long offset;
491 int signal = 0;
492
493 /*
494 * analyse the sc instruction that just caused a ri exception
495 * and put the referenced address to addr.
496 */
497
498 /* sign extend offset */
499 offset = opcode & OFFSET;
500 offset <<= 16;
501 offset >>= 16;
502
fe00f943
RB
503 vaddr = (unsigned long __user *)
504 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
1da177e4
LT
505 reg = (opcode & RT) >> 16;
506
507 if ((unsigned long)vaddr & 3) {
508 signal = SIGBUS;
509 goto sig;
510 }
511
512 preempt_disable();
513
514 if (ll_bit == 0 || ll_task != current) {
05b8042a 515 compute_return_epc(regs);
1da177e4
LT
516 regs->regs[reg] = 0;
517 preempt_enable();
1da177e4
LT
518 return;
519 }
520
521 preempt_enable();
522
523 if (put_user(regs->regs[reg], vaddr)) {
524 signal = SIGSEGV;
525 goto sig;
526 }
527
6dd04688 528 compute_return_epc(regs);
1da177e4
LT
529 regs->regs[reg] = 1;
530
1da177e4
LT
531 return;
532
533sig:
534 force_sig(signal, current);
535}
536
537/*
538 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
539 * opcodes are supposed to result in coprocessor unusable exceptions if
540 * executed on ll/sc-less processors. That's the theory. In practice a
541 * few processors such as NEC's VR4100 throw reserved instruction exceptions
542 * instead, so we're doing the emulation thing in both exception handlers.
543 */
544static inline int simulate_llsc(struct pt_regs *regs)
545{
546 unsigned int opcode;
547
548 if (unlikely(get_insn_opcode(regs, &opcode)))
549 return -EFAULT;
550
551 if ((opcode & OPCODE) == LL) {
552 simulate_ll(regs, opcode);
553 return 0;
554 }
555 if ((opcode & OPCODE) == SC) {
556 simulate_sc(regs, opcode);
557 return 0;
558 }
559
560 return -EFAULT; /* Strange things going on ... */
561}
562
3c37026d
RB
563/*
564 * Simulate trapping 'rdhwr' instructions to provide user accessible
565 * registers not implemented in hardware. The only current use of this
566 * is the thread area pointer.
567 */
568static inline int simulate_rdhwr(struct pt_regs *regs)
569{
dc8f6029 570 struct thread_info *ti = task_thread_info(current);
3c37026d
RB
571 unsigned int opcode;
572
573 if (unlikely(get_insn_opcode(regs, &opcode)))
574 return -EFAULT;
575
576 if (unlikely(compute_return_epc(regs)))
577 return -EFAULT;
578
579 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
580 int rd = (opcode & RD) >> 11;
581 int rt = (opcode & RT) >> 16;
582 switch (rd) {
583 case 29:
584 regs->regs[rt] = ti->tp_value;
56ebd51b 585 return 0;
3c37026d
RB
586 default:
587 return -EFAULT;
588 }
589 }
590
56ebd51b
DJ
591 /* Not ours. */
592 return -EFAULT;
3c37026d
RB
593}
594
1da177e4
LT
595asmlinkage void do_ov(struct pt_regs *regs)
596{
597 siginfo_t info;
598
36ccf1c0
RB
599 die_if_kernel("Integer overflow", regs);
600
1da177e4
LT
601 info.si_code = FPE_INTOVF;
602 info.si_signo = SIGFPE;
603 info.si_errno = 0;
fe00f943 604 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
605 force_sig_info(SIGFPE, &info, current);
606}
607
608/*
609 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
610 */
611asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
612{
57725f9e
CD
613 die_if_kernel("FP exception in kernel code", regs);
614
1da177e4
LT
615 if (fcr31 & FPU_CSR_UNI_X) {
616 int sig;
617
618 preempt_disable();
619
cd21dfcf
RB
620#ifdef CONFIG_PREEMPT
621 if (!is_fpu_owner()) {
622 /* We might lose fpu before disabling preempt... */
623 own_fpu();
624 BUG_ON(!used_math());
625 restore_fp(current);
626 }
627#endif
1da177e4 628 /*
a3dddd56 629 * Unimplemented operation exception. If we've got the full
1da177e4
LT
630 * software emulator on-board, let's use it...
631 *
632 * Force FPU to dump state into task/thread context. We're
633 * moving a lot of data here for what is probably a single
634 * instruction, but the alternative is to pre-decode the FP
635 * register operands before invoking the emulator, which seems
636 * a bit extreme for what should be an infrequent event.
637 */
638 save_fp(current);
cd21dfcf
RB
639 /* Ensure 'resume' not overwrite saved fp context again. */
640 lose_fpu();
641
642 preempt_enable();
1da177e4
LT
643
644 /* Run the emulator */
eae89076 645 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu);
1da177e4 646
cd21dfcf
RB
647 preempt_disable();
648
649 own_fpu(); /* Using the FPU again. */
1da177e4
LT
650 /*
651 * We can't allow the emulated instruction to leave any of
652 * the cause bit set in $fcr31.
653 */
eae89076 654 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1da177e4
LT
655
656 /* Restore the hardware register state */
657 restore_fp(current);
658
659 preempt_enable();
660
661 /* If something went wrong, signal */
662 if (sig)
663 force_sig(sig, current);
664
665 return;
666 }
667
668 force_sig(SIGFPE, current);
669}
670
671asmlinkage void do_bp(struct pt_regs *regs)
672{
673 unsigned int opcode, bcode;
674 siginfo_t info;
675
676 die_if_kernel("Break instruction in kernel code", regs);
677
678 if (get_insn_opcode(regs, &opcode))
679 return;
680
681 /*
682 * There is the ancient bug in the MIPS assemblers that the break
683 * code starts left to bit 16 instead to bit 6 in the opcode.
684 * Gas is bug-compatible, but not always, grrr...
685 * We handle both cases with a simple heuristics. --macro
686 */
687 bcode = ((opcode >> 6) & ((1 << 20) - 1));
688 if (bcode < (1 << 10))
689 bcode <<= 10;
690
691 /*
692 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
693 * insns, even for break codes that indicate arithmetic failures.
694 * Weird ...)
695 * But should we continue the brokenness??? --macro
696 */
697 switch (bcode) {
698 case BRK_OVERFLOW << 10:
699 case BRK_DIVZERO << 10:
700 if (bcode == (BRK_DIVZERO << 10))
701 info.si_code = FPE_INTDIV;
702 else
703 info.si_code = FPE_INTOVF;
704 info.si_signo = SIGFPE;
705 info.si_errno = 0;
fe00f943 706 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
707 force_sig_info(SIGFPE, &info, current);
708 break;
709 default:
710 force_sig(SIGTRAP, current);
711 }
712}
713
714asmlinkage void do_tr(struct pt_regs *regs)
715{
716 unsigned int opcode, tcode = 0;
717 siginfo_t info;
718
719 die_if_kernel("Trap instruction in kernel code", regs);
720
721 if (get_insn_opcode(regs, &opcode))
722 return;
723
724 /* Immediate versions don't provide a code. */
725 if (!(opcode & OPCODE))
726 tcode = ((opcode >> 6) & ((1 << 10) - 1));
727
728 /*
729 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
730 * insns, even for trap codes that indicate arithmetic failures.
731 * Weird ...)
732 * But should we continue the brokenness??? --macro
733 */
734 switch (tcode) {
735 case BRK_OVERFLOW:
736 case BRK_DIVZERO:
737 if (tcode == BRK_DIVZERO)
738 info.si_code = FPE_INTDIV;
739 else
740 info.si_code = FPE_INTOVF;
741 info.si_signo = SIGFPE;
742 info.si_errno = 0;
fe00f943 743 info.si_addr = (void __user *) regs->cp0_epc;
1da177e4
LT
744 force_sig_info(SIGFPE, &info, current);
745 break;
746 default:
747 force_sig(SIGTRAP, current);
748 }
749}
750
751asmlinkage void do_ri(struct pt_regs *regs)
752{
753 die_if_kernel("Reserved instruction in kernel code", regs);
754
755 if (!cpu_has_llsc)
756 if (!simulate_llsc(regs))
757 return;
758
3c37026d
RB
759 if (!simulate_rdhwr(regs))
760 return;
761
1da177e4
LT
762 force_sig(SIGILL, current);
763}
764
765asmlinkage void do_cpu(struct pt_regs *regs)
766{
767 unsigned int cpid;
768
769 die_if_kernel("do_cpu invoked from kernel context!", regs);
770
771 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
772
773 switch (cpid) {
774 case 0:
3c37026d
RB
775 if (!cpu_has_llsc)
776 if (!simulate_llsc(regs))
777 return;
1da177e4 778
3c37026d 779 if (!simulate_rdhwr(regs))
1da177e4 780 return;
3c37026d 781
1da177e4
LT
782 break;
783
784 case 1:
785 preempt_disable();
786
787 own_fpu();
788 if (used_math()) { /* Using the FPU again. */
789 restore_fp(current);
790 } else { /* First time FPU user. */
791 init_fpu();
792 set_used_math();
793 }
794
cd21dfcf
RB
795 preempt_enable();
796
1da177e4 797 if (!cpu_has_fpu) {
12616ed2 798 int sig = fpu_emulator_cop1Handler(regs,
eae89076 799 &current->thread.fpu);
1da177e4
LT
800 if (sig)
801 force_sig(sig, current);
f088fc84
RB
802#ifdef CONFIG_MIPS_MT_FPAFF
803 else {
804 /*
805 * MIPS MT processors may have fewer FPU contexts
806 * than CPU threads. If we've emulated more than
807 * some threshold number of instructions, force
808 * migration to a "CPU" that has FP support.
809 */
810 if(mt_fpemul_threshold > 0
811 && ((current->thread.emulated_fp++
812 > mt_fpemul_threshold))) {
813 /*
814 * If there's no FPU present, or if the
815 * application has already restricted
816 * the allowed set to exclude any CPUs
817 * with FPUs, we'll skip the procedure.
818 */
819 if (cpus_intersects(current->cpus_allowed,
820 mt_fpu_cpumask)) {
821 cpumask_t tmask;
822
823 cpus_and(tmask,
824 current->thread.user_cpus_allowed,
825 mt_fpu_cpumask);
826 set_cpus_allowed(current, tmask);
827 current->thread.mflags |= MF_FPUBOUND;
828 }
829 }
830 }
831#endif /* CONFIG_MIPS_MT_FPAFF */
1da177e4
LT
832 }
833
1da177e4
LT
834 return;
835
836 case 2:
837 case 3:
41c594ab 838 die_if_kernel("do_cpu invoked from kernel context!", regs);
1da177e4
LT
839 break;
840 }
841
842 force_sig(SIGILL, current);
843}
844
845asmlinkage void do_mdmx(struct pt_regs *regs)
846{
847 force_sig(SIGILL, current);
848}
849
850asmlinkage void do_watch(struct pt_regs *regs)
851{
852 /*
853 * We use the watch exception where available to detect stack
854 * overflows.
855 */
856 dump_tlb_all();
857 show_regs(regs);
858 panic("Caught WATCH exception - probably caused by stack overflow.");
859}
860
861asmlinkage void do_mcheck(struct pt_regs *regs)
862{
cac4bcbc
RB
863 const int field = 2 * sizeof(unsigned long);
864 int multi_match = regs->cp0_status & ST0_TS;
865
1da177e4 866 show_regs(regs);
cac4bcbc
RB
867
868 if (multi_match) {
869 printk("Index : %0x\n", read_c0_index());
870 printk("Pagemask: %0x\n", read_c0_pagemask());
871 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
872 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
873 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
874 printk("\n");
875 dump_tlb_all();
876 }
877
878 show_code((unsigned int *) regs->cp0_epc);
879
1da177e4
LT
880 /*
881 * Some chips may have other causes of machine check (e.g. SB1
882 * graduation timer)
883 */
884 panic("Caught Machine Check exception - %scaused by multiple "
885 "matching entries in the TLB.",
cac4bcbc 886 (multi_match) ? "" : "not ");
1da177e4
LT
887}
888
340ee4b9
RB
889asmlinkage void do_mt(struct pt_regs *regs)
890{
41c594ab
RB
891 int subcode;
892
41c594ab
RB
893 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
894 >> VPECONTROL_EXCPT_SHIFT;
895 switch (subcode) {
896 case 0:
e35a5e35 897 printk(KERN_DEBUG "Thread Underflow\n");
41c594ab
RB
898 break;
899 case 1:
e35a5e35 900 printk(KERN_DEBUG "Thread Overflow\n");
41c594ab
RB
901 break;
902 case 2:
e35a5e35 903 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
41c594ab
RB
904 break;
905 case 3:
e35a5e35 906 printk(KERN_DEBUG "Gating Storage Exception\n");
41c594ab
RB
907 break;
908 case 4:
e35a5e35 909 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
41c594ab
RB
910 break;
911 case 5:
e35a5e35 912 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
41c594ab
RB
913 break;
914 default:
e35a5e35 915 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
41c594ab
RB
916 subcode);
917 break;
918 }
340ee4b9
RB
919 die_if_kernel("MIPS MT Thread exception in kernel", regs);
920
921 force_sig(SIGILL, current);
922}
923
924
e50c0a8f
RB
925asmlinkage void do_dsp(struct pt_regs *regs)
926{
927 if (cpu_has_dsp)
928 panic("Unexpected DSP exception\n");
929
930 force_sig(SIGILL, current);
931}
932
1da177e4
LT
933asmlinkage void do_reserved(struct pt_regs *regs)
934{
935 /*
936 * Game over - no way to handle this if it ever occurs. Most probably
937 * caused by a new unknown cpu type or after another deadly
938 * hard/software error.
939 */
940 show_regs(regs);
941 panic("Caught reserved exception %ld - should not happen.",
942 (regs->cp0_cause & 0x7f) >> 2);
943}
944
e01402b1
RB
945asmlinkage void do_default_vi(struct pt_regs *regs)
946{
947 show_regs(regs);
948 panic("Caught unexpected vectored interrupt.");
949}
950
1da177e4
LT
951/*
952 * Some MIPS CPUs can enable/disable for cache parity detection, but do
953 * it different ways.
954 */
955static inline void parity_protection_init(void)
956{
957 switch (current_cpu_data.cputype) {
958 case CPU_24K:
98a41de9 959 case CPU_34K:
1da177e4 960 case CPU_5KC:
14f18b7f
RB
961 write_c0_ecc(0x80000000);
962 back_to_back_c0_hazard();
963 /* Set the PE bit (bit 31) in the c0_errctl register. */
964 printk(KERN_INFO "Cache parity protection %sabled\n",
965 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1da177e4
LT
966 break;
967 case CPU_20KC:
968 case CPU_25KF:
969 /* Clear the DE bit (bit 16) in the c0_status register. */
970 printk(KERN_INFO "Enable cache parity protection for "
971 "MIPS 20KC/25KF CPUs.\n");
972 clear_c0_status(ST0_DE);
973 break;
974 default:
975 break;
976 }
977}
978
979asmlinkage void cache_parity_error(void)
980{
981 const int field = 2 * sizeof(unsigned long);
982 unsigned int reg_val;
983
984 /* For the moment, report the problem and hang. */
985 printk("Cache error exception:\n");
986 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
987 reg_val = read_c0_cacheerr();
988 printk("c0_cacheerr == %08x\n", reg_val);
989
990 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
991 reg_val & (1<<30) ? "secondary" : "primary",
992 reg_val & (1<<31) ? "data" : "insn");
993 printk("Error bits: %s%s%s%s%s%s%s\n",
994 reg_val & (1<<29) ? "ED " : "",
995 reg_val & (1<<28) ? "ET " : "",
996 reg_val & (1<<26) ? "EE " : "",
997 reg_val & (1<<25) ? "EB " : "",
998 reg_val & (1<<24) ? "EI " : "",
999 reg_val & (1<<23) ? "E1 " : "",
1000 reg_val & (1<<22) ? "E0 " : "");
1001 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1002
ec917c2c 1003#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1da177e4
LT
1004 if (reg_val & (1<<22))
1005 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1006
1007 if (reg_val & (1<<23))
1008 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1009#endif
1010
1011 panic("Can't handle the cache error!");
1012}
1013
1014/*
1015 * SDBBP EJTAG debug exception handler.
1016 * We skip the instruction and return to the next instruction.
1017 */
1018void ejtag_exception_handler(struct pt_regs *regs)
1019{
1020 const int field = 2 * sizeof(unsigned long);
1021 unsigned long depc, old_epc;
1022 unsigned int debug;
1023
70ae6126 1024 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1da177e4
LT
1025 depc = read_c0_depc();
1026 debug = read_c0_debug();
70ae6126 1027 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1da177e4
LT
1028 if (debug & 0x80000000) {
1029 /*
1030 * In branch delay slot.
1031 * We cheat a little bit here and use EPC to calculate the
1032 * debug return address (DEPC). EPC is restored after the
1033 * calculation.
1034 */
1035 old_epc = regs->cp0_epc;
1036 regs->cp0_epc = depc;
1037 __compute_return_epc(regs);
1038 depc = regs->cp0_epc;
1039 regs->cp0_epc = old_epc;
1040 } else
1041 depc += 4;
1042 write_c0_depc(depc);
1043
1044#if 0
70ae6126 1045 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1da177e4
LT
1046 write_c0_debug(debug | 0x100);
1047#endif
1048}
1049
1050/*
1051 * NMI exception handler.
1052 */
1053void nmi_exception_handler(struct pt_regs *regs)
1054{
41c594ab
RB
1055#ifdef CONFIG_MIPS_MT_SMTC
1056 unsigned long dvpret = dvpe();
1057 bust_spinlocks(1);
1058 printk("NMI taken!!!!\n");
1059 mips_mt_regdump(dvpret);
1060#else
1061 bust_spinlocks(1);
1da177e4 1062 printk("NMI taken!!!!\n");
41c594ab 1063#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1064 die("NMI", regs);
1065 while(1) ;
1066}
1067
e01402b1
RB
1068#define VECTORSPACING 0x100 /* for EI/VI mode */
1069
1070unsigned long ebase;
1da177e4 1071unsigned long exception_handlers[32];
e01402b1 1072unsigned long vi_handlers[64];
1da177e4
LT
1073
1074/*
1075 * As a side effect of the way this is implemented we're limited
1076 * to interrupt handlers in the address range from
1077 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1078 */
1079void *set_except_vector(int n, void *addr)
1080{
1081 unsigned long handler = (unsigned long) addr;
1082 unsigned long old_handler = exception_handlers[n];
1083
1084 exception_handlers[n] = handler;
1085 if (n == 0 && cpu_has_divec) {
e01402b1 1086 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1da177e4 1087 (0x03ffffff & (handler >> 2));
e01402b1
RB
1088 flush_icache_range(ebase + 0x200, ebase + 0x204);
1089 }
1090 return (void *)old_handler;
1091}
1092
f41ae0b2 1093#ifdef CONFIG_CPU_MIPSR2_SRS
e01402b1 1094/*
193dd2ce 1095 * MIPSR2 shadow register set allocation
e01402b1
RB
1096 * FIXME: SMP...
1097 */
1098
193dd2ce
RB
1099static struct shadow_registers {
1100 /*
1101 * Number of shadow register sets supported
1102 */
1103 unsigned long sr_supported;
1104 /*
1105 * Bitmap of allocated shadow registers
1106 */
1107 unsigned long sr_allocated;
e01402b1
RB
1108} shadow_registers;
1109
bb12d612 1110static void mips_srs_init(void)
e01402b1 1111{
e01402b1 1112 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
7acb783e
RB
1113 printk(KERN_INFO "%d MIPSR2 register sets available\n",
1114 shadow_registers.sr_supported);
e01402b1 1115 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
e01402b1
RB
1116}
1117
1118int mips_srs_max(void)
1119{
1120 return shadow_registers.sr_supported;
1121}
1122
ff3eab2a 1123int mips_srs_alloc(void)
e01402b1
RB
1124{
1125 struct shadow_registers *sr = &shadow_registers;
e01402b1
RB
1126 int set;
1127
193dd2ce
RB
1128again:
1129 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1130 if (set >= sr->sr_supported)
1131 return -1;
e01402b1 1132
193dd2ce
RB
1133 if (test_and_set_bit(set, &sr->sr_allocated))
1134 goto again;
e01402b1 1135
193dd2ce 1136 return set;
e01402b1
RB
1137}
1138
41c594ab 1139void mips_srs_free(int set)
e01402b1
RB
1140{
1141 struct shadow_registers *sr = &shadow_registers;
e01402b1 1142
193dd2ce 1143 clear_bit(set, &sr->sr_allocated);
e01402b1
RB
1144}
1145
b4d05cb9 1146static void *set_vi_srs_handler(int n, void *addr, int srs)
e01402b1
RB
1147{
1148 unsigned long handler;
1149 unsigned long old_handler = vi_handlers[n];
1150 u32 *w;
1151 unsigned char *b;
1152
1153 if (!cpu_has_veic && !cpu_has_vint)
1154 BUG();
1155
1156 if (addr == NULL) {
1157 handler = (unsigned long) do_default_vi;
1158 srs = 0;
41c594ab 1159 } else
e01402b1
RB
1160 handler = (unsigned long) addr;
1161 vi_handlers[n] = (unsigned long) addr;
1162
1163 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1164
1165 if (srs >= mips_srs_max())
1166 panic("Shadow register set %d not supported", srs);
1167
1168 if (cpu_has_veic) {
1169 if (board_bind_eic_interrupt)
1170 board_bind_eic_interrupt (n, srs);
41c594ab 1171 } else if (cpu_has_vint) {
e01402b1
RB
1172 /* SRSMap is only defined if shadow sets are implemented */
1173 if (mips_srs_max() > 1)
1174 change_c0_srsmap (0xf << n*4, srs << n*4);
1175 }
1176
1177 if (srs == 0) {
1178 /*
1179 * If no shadow set is selected then use the default handler
1180 * that does normal register saving and a standard interrupt exit
1181 */
1182
1183 extern char except_vec_vi, except_vec_vi_lui;
1184 extern char except_vec_vi_ori, except_vec_vi_end;
41c594ab
RB
1185#ifdef CONFIG_MIPS_MT_SMTC
1186 /*
1187 * We need to provide the SMTC vectored interrupt handler
1188 * not only with the address of the handler, but with the
1189 * Status.IM bit to be masked before going there.
1190 */
1191 extern char except_vec_vi_mori;
1192 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1193#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1194 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1195 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1196 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1197
1198 if (handler_len > VECTORSPACING) {
1199 /*
1200 * Sigh... panicing won't help as the console
1201 * is probably not configured :(
1202 */
1203 panic ("VECTORSPACING too small");
1204 }
1205
1206 memcpy (b, &except_vec_vi, handler_len);
41c594ab
RB
1207#ifdef CONFIG_MIPS_MT_SMTC
1208 if (n > 7)
1209 printk("Vector index %d exceeds SMTC maximum\n", n);
1210 w = (u32 *)(b + mori_offset);
1211 *w = (*w & 0xffff0000) | (0x100 << n);
1212#endif /* CONFIG_MIPS_MT_SMTC */
e01402b1
RB
1213 w = (u32 *)(b + lui_offset);
1214 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1215 w = (u32 *)(b + ori_offset);
1216 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1217 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1218 }
1219 else {
1220 /*
1221 * In other cases jump directly to the interrupt handler
1222 *
1223 * It is the handlers responsibility to save registers if required
1224 * (eg hi/lo) and return from the exception using "eret"
1225 */
1226 w = (u32 *)b;
1227 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1228 *w = 0;
1229 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1da177e4 1230 }
e01402b1 1231
1da177e4
LT
1232 return (void *)old_handler;
1233}
1234
41c594ab 1235void *set_vi_handler(int n, void *addr)
e01402b1 1236{
ff3eab2a 1237 return set_vi_srs_handler(n, addr, 0);
e01402b1 1238}
f41ae0b2
RB
1239
1240#else
1241
1242static inline void mips_srs_init(void)
1243{
1244}
1245
1246#endif /* CONFIG_CPU_MIPSR2_SRS */
e01402b1 1247
1da177e4
LT
1248/*
1249 * This is used by native signal handling
1250 */
1251asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1252asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1253
1254extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1255extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1256
1257extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1258extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1259
41c594ab
RB
1260#ifdef CONFIG_SMP
1261static int smp_save_fp_context(struct sigcontext *sc)
1262{
1263 return cpu_has_fpu
1264 ? _save_fp_context(sc)
1265 : fpu_emulator_save_context(sc);
1266}
1267
1268static int smp_restore_fp_context(struct sigcontext *sc)
1269{
1270 return cpu_has_fpu
1271 ? _restore_fp_context(sc)
1272 : fpu_emulator_restore_context(sc);
1273}
1274#endif
1275
1da177e4
LT
1276static inline void signal_init(void)
1277{
41c594ab
RB
1278#ifdef CONFIG_SMP
1279 /* For now just do the cpu_has_fpu check when the functions are invoked */
1280 save_fp_context = smp_save_fp_context;
1281 restore_fp_context = smp_restore_fp_context;
1282#else
1da177e4
LT
1283 if (cpu_has_fpu) {
1284 save_fp_context = _save_fp_context;
1285 restore_fp_context = _restore_fp_context;
1286 } else {
1287 save_fp_context = fpu_emulator_save_context;
1288 restore_fp_context = fpu_emulator_restore_context;
1289 }
41c594ab 1290#endif
1da177e4
LT
1291}
1292
1293#ifdef CONFIG_MIPS32_COMPAT
1294
1295/*
1296 * This is used by 32-bit signal stuff on the 64-bit kernel
1297 */
1298asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1299asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1300
1301extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1302extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1303
1304extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1305extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1306
1307static inline void signal32_init(void)
1308{
1309 if (cpu_has_fpu) {
1310 save_fp_context32 = _save_fp_context32;
1311 restore_fp_context32 = _restore_fp_context32;
1312 } else {
1313 save_fp_context32 = fpu_emulator_save_context32;
1314 restore_fp_context32 = fpu_emulator_restore_context32;
1315 }
1316}
1317#endif
1318
1319extern void cpu_cache_init(void);
1320extern void tlb_init(void);
1d40cfcd 1321extern void flush_tlb_handlers(void);
1da177e4
LT
1322
1323void __init per_cpu_trap_init(void)
1324{
1325 unsigned int cpu = smp_processor_id();
1326 unsigned int status_set = ST0_CU0;
41c594ab
RB
1327#ifdef CONFIG_MIPS_MT_SMTC
1328 int secondaryTC = 0;
1329 int bootTC = (cpu == 0);
1330
1331 /*
1332 * Only do per_cpu_trap_init() for first TC of Each VPE.
1333 * Note that this hack assumes that the SMTC init code
1334 * assigns TCs consecutively and in ascending order.
1335 */
1336
1337 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1338 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1339 secondaryTC = 1;
1340#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1341
1342 /*
1343 * Disable coprocessors and select 32-bit or 64-bit addressing
1344 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1345 * flag that some firmware may have left set and the TS bit (for
1346 * IP27). Set XX for ISA IV code to work.
1347 */
875d43e7 1348#ifdef CONFIG_64BIT
1da177e4
LT
1349 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1350#endif
1351 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1352 status_set |= ST0_XX;
b38c7399 1353 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1da177e4
LT
1354 status_set);
1355
e50c0a8f
RB
1356 if (cpu_has_dsp)
1357 set_c0_status(ST0_MX);
1358
e01402b1
RB
1359#ifdef CONFIG_CPU_MIPSR2
1360 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1361#endif
1362
41c594ab
RB
1363#ifdef CONFIG_MIPS_MT_SMTC
1364 if (!secondaryTC) {
1365#endif /* CONFIG_MIPS_MT_SMTC */
1366
1da177e4 1367 /*
e01402b1 1368 * Interrupt handling.
1da177e4 1369 */
e01402b1
RB
1370 if (cpu_has_veic || cpu_has_vint) {
1371 write_c0_ebase (ebase);
1372 /* Setting vector spacing enables EI/VI mode */
1373 change_c0_intctl (0x3e0, VECTORSPACING);
1374 }
d03d0a57
RB
1375 if (cpu_has_divec) {
1376 if (cpu_has_mipsmt) {
1377 unsigned int vpflags = dvpe();
1378 set_c0_cause(CAUSEF_IV);
1379 evpe(vpflags);
1380 } else
1381 set_c0_cause(CAUSEF_IV);
1382 }
41c594ab
RB
1383#ifdef CONFIG_MIPS_MT_SMTC
1384 }
1385#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1386
1387 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1388 TLBMISS_HANDLER_SETUP();
1389
1390 atomic_inc(&init_mm.mm_count);
1391 current->active_mm = &init_mm;
1392 BUG_ON(current->mm);
1393 enter_lazy_tlb(&init_mm, current);
1394
41c594ab
RB
1395#ifdef CONFIG_MIPS_MT_SMTC
1396 if (bootTC) {
1397#endif /* CONFIG_MIPS_MT_SMTC */
1398 cpu_cache_init();
1399 tlb_init();
1400#ifdef CONFIG_MIPS_MT_SMTC
1401 }
1402#endif /* CONFIG_MIPS_MT_SMTC */
1da177e4
LT
1403}
1404
e01402b1
RB
1405/* Install CPU exception handler */
1406void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1407{
1408 memcpy((void *)(ebase + offset), addr, size);
1409 flush_icache_range(ebase + offset, ebase + offset + size);
1410}
1411
1412/* Install uncached CPU exception handler */
1413void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1414{
1415#ifdef CONFIG_32BIT
1416 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1417#endif
1418#ifdef CONFIG_64BIT
1419 unsigned long uncached_ebase = TO_UNCAC(ebase);
1420#endif
1421
1422 memcpy((void *)(uncached_ebase + offset), addr, size);
1423}
1424
1da177e4
LT
1425void __init trap_init(void)
1426{
1427 extern char except_vec3_generic, except_vec3_r4000;
1da177e4
LT
1428 extern char except_vec4;
1429 unsigned long i;
1430
e01402b1
RB
1431 if (cpu_has_veic || cpu_has_vint)
1432 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1433 else
1434 ebase = CAC_BASE;
1435
e01402b1 1436 mips_srs_init();
e01402b1 1437
1da177e4
LT
1438 per_cpu_trap_init();
1439
1440 /*
1441 * Copy the generic exception handlers to their final destination.
1442 * This will be overriden later as suitable for a particular
1443 * configuration.
1444 */
e01402b1 1445 set_handler(0x180, &except_vec3_generic, 0x80);
1da177e4
LT
1446
1447 /*
1448 * Setup default vectors
1449 */
1450 for (i = 0; i <= 31; i++)
1451 set_except_vector(i, handle_reserved);
1452
1453 /*
1454 * Copy the EJTAG debug exception vector handler code to it's final
1455 * destination.
1456 */
e01402b1
RB
1457 if (cpu_has_ejtag && board_ejtag_handler_setup)
1458 board_ejtag_handler_setup ();
1da177e4
LT
1459
1460 /*
1461 * Only some CPUs have the watch exceptions.
1462 */
1463 if (cpu_has_watch)
1464 set_except_vector(23, handle_watch);
1465
1466 /*
e01402b1 1467 * Initialise interrupt handlers
1da177e4 1468 */
e01402b1
RB
1469 if (cpu_has_veic || cpu_has_vint) {
1470 int nvec = cpu_has_veic ? 64 : 8;
1471 for (i = 0; i < nvec; i++)
ff3eab2a 1472 set_vi_handler(i, NULL);
e01402b1
RB
1473 }
1474 else if (cpu_has_divec)
1475 set_handler(0x200, &except_vec4, 0x8);
1da177e4
LT
1476
1477 /*
1478 * Some CPUs can enable/disable for cache parity detection, but does
1479 * it different ways.
1480 */
1481 parity_protection_init();
1482
1483 /*
1484 * The Data Bus Errors / Instruction Bus Errors are signaled
1485 * by external hardware. Therefore these two exceptions
1486 * may have board specific handlers.
1487 */
1488 if (board_be_init)
1489 board_be_init();
1490
e4ac58af 1491 set_except_vector(0, handle_int);
1da177e4
LT
1492 set_except_vector(1, handle_tlbm);
1493 set_except_vector(2, handle_tlbl);
1494 set_except_vector(3, handle_tlbs);
1495
1496 set_except_vector(4, handle_adel);
1497 set_except_vector(5, handle_ades);
1498
1499 set_except_vector(6, handle_ibe);
1500 set_except_vector(7, handle_dbe);
1501
1502 set_except_vector(8, handle_sys);
1503 set_except_vector(9, handle_bp);
1504 set_except_vector(10, handle_ri);
1505 set_except_vector(11, handle_cpu);
1506 set_except_vector(12, handle_ov);
1507 set_except_vector(13, handle_tr);
1da177e4
LT
1508
1509 if (current_cpu_data.cputype == CPU_R6000 ||
1510 current_cpu_data.cputype == CPU_R6000A) {
1511 /*
1512 * The R6000 is the only R-series CPU that features a machine
1513 * check exception (similar to the R4000 cache error) and
1514 * unaligned ldc1/sdc1 exception. The handlers have not been
1515 * written yet. Well, anyway there is no R6000 machine on the
1516 * current list of targets for Linux/MIPS.
1517 * (Duh, crap, there is someone with a triple R6k machine)
1518 */
1519 //set_except_vector(14, handle_mc);
1520 //set_except_vector(15, handle_ndc);
1521 }
1522
e01402b1
RB
1523
1524 if (board_nmi_handler_setup)
1525 board_nmi_handler_setup();
1526
e50c0a8f
RB
1527 if (cpu_has_fpu && !cpu_has_nofpuex)
1528 set_except_vector(15, handle_fpe);
1529
1530 set_except_vector(22, handle_mdmx);
1531
1532 if (cpu_has_mcheck)
1533 set_except_vector(24, handle_mcheck);
1534
340ee4b9
RB
1535 if (cpu_has_mipsmt)
1536 set_except_vector(25, handle_mt);
1537
e50c0a8f
RB
1538 if (cpu_has_dsp)
1539 set_except_vector(26, handle_dsp);
1540
1541 if (cpu_has_vce)
1542 /* Special exception: R4[04]00 uses also the divec space. */
1543 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1544 else if (cpu_has_4kex)
1545 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1546 else
1547 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1548
1da177e4
LT
1549 signal_init();
1550#ifdef CONFIG_MIPS32_COMPAT
1551 signal32_init();
1552#endif
1553
e01402b1 1554 flush_icache_range(ebase, ebase + 0x400);
1d40cfcd 1555 flush_tlb_handlers();
1da177e4 1556}