]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/mm/init.c
Pull percpu-dtc into release branch
[net-next-2.6.git] / arch / ia64 / mm / init.c
CommitLineData
1da177e4
LT
1/*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 */
1da177e4
LT
7#include <linux/kernel.h>
8#include <linux/init.h>
9
10#include <linux/bootmem.h>
11#include <linux/efi.h>
12#include <linux/elf.h>
13#include <linux/mm.h>
14#include <linux/mmzone.h>
15#include <linux/module.h>
16#include <linux/personality.h>
17#include <linux/reboot.h>
18#include <linux/slab.h>
19#include <linux/swap.h>
20#include <linux/proc_fs.h>
21#include <linux/bitops.h>
139b8304 22#include <linux/kexec.h>
1da177e4
LT
23
24#include <asm/a.out.h>
25#include <asm/dma.h>
26#include <asm/ia32.h>
27#include <asm/io.h>
28#include <asm/machvec.h>
29#include <asm/numa.h>
30#include <asm/patch.h>
31#include <asm/pgalloc.h>
32#include <asm/sal.h>
33#include <asm/sections.h>
34#include <asm/system.h>
35#include <asm/tlb.h>
36#include <asm/uaccess.h>
37#include <asm/unistd.h>
38#include <asm/mca.h>
39
40DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
fde740e4
RH
42DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44
1da177e4
LT
45extern void ia64_tlb_init (void);
46
47unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48
49#ifdef CONFIG_VIRTUAL_MEM_MAP
50unsigned long vmalloc_end = VMALLOC_END_INIT;
51EXPORT_SYMBOL(vmalloc_end);
52struct page *vmem_map;
53EXPORT_SYMBOL(vmem_map);
54#endif
55
fde740e4 56struct page *zero_page_memmap_ptr; /* map entry for zero page */
1da177e4
LT
57EXPORT_SYMBOL(zero_page_memmap_ptr);
58
fde740e4 59#define MIN_PGT_PAGES 25UL
e96c9b47 60#define MAX_PGT_FREES_PER_PASS 16L
fde740e4
RH
61#define PGT_FRACTION_OF_NODE_MEM 16
62
63static inline long
64max_pgt_pages(void)
65{
66 u64 node_free_pages, max_pgt_pages;
67
68#ifndef CONFIG_NUMA
69 node_free_pages = nr_free_pages();
70#else
9195481d 71 node_free_pages = node_page_state(numa_node_id(), NR_FREE_PAGES);
fde740e4
RH
72#endif
73 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75 return max_pgt_pages;
76}
77
78static inline long
79min_pages_to_free(void)
80{
81 long pages_to_free;
82
83 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85 return pages_to_free;
86}
87
1da177e4 88void
fde740e4 89check_pgt_cache(void)
1da177e4 90{
fde740e4 91 long pages_to_free;
1da177e4 92
fde740e4
RH
93 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94 return;
1da177e4
LT
95
96 preempt_disable();
fde740e4
RH
97 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98 while (pages_to_free--) {
99 free_page((unsigned long)pgtable_quicklist_alloc());
100 }
101 preempt_enable();
102 preempt_disable();
1da177e4
LT
103 }
104 preempt_enable();
105}
106
107void
108lazy_mmu_prot_update (pte_t pte)
109{
110 unsigned long addr;
111 struct page *page;
5e48521e 112 unsigned long order;
1da177e4
LT
113
114 if (!pte_exec(pte))
115 return; /* not an executable page... */
116
117 page = pte_page(pte);
118 addr = (unsigned long) page_address(page);
119
120 if (test_bit(PG_arch_1, &page->flags))
121 return; /* i-cache is already coherent with d-cache */
122
5e48521e
ZY
123 if (PageCompound(page)) {
124 order = (unsigned long) (page[1].lru.prev);
125 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
126 }
127 else
128 flush_icache_range(addr, addr + PAGE_SIZE);
1da177e4
LT
129 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
130}
131
cde14bbf
JB
132/*
133 * Since DMA is i-cache coherent, any (complete) pages that were written via
134 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
135 * flush them when they get mapped into an executable vm-area.
136 */
137void
138dma_mark_clean(void *addr, size_t size)
139{
140 unsigned long pg_addr, end;
141
142 pg_addr = PAGE_ALIGN((unsigned long) addr);
143 end = (unsigned long) addr + size;
144 while (pg_addr + PAGE_SIZE <= end) {
145 struct page *page = virt_to_page(pg_addr);
146 set_bit(PG_arch_1, &page->flags);
147 pg_addr += PAGE_SIZE;
148 }
149}
150
1da177e4
LT
151inline void
152ia64_set_rbs_bot (void)
153{
154 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
155
156 if (stack_size > MAX_USER_STACK_SIZE)
157 stack_size = MAX_USER_STACK_SIZE;
83d2cd3d 158 current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
1da177e4
LT
159}
160
161/*
162 * This performs some platform-dependent address space initialization.
163 * On IA-64, we want to setup the VM area for the register backing
164 * store (which grows upwards) and install the gateway page which is
165 * used for signal trampolines, etc.
166 */
167void
168ia64_init_addr_space (void)
169{
170 struct vm_area_struct *vma;
171
172 ia64_set_rbs_bot();
173
174 /*
175 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
176 * the problem. When the process attempts to write to the register backing store
177 * for the first time, it will get a SEGFAULT in this case.
178 */
c3762229 179 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4 180 if (vma) {
1da177e4
LT
181 vma->vm_mm = current->mm;
182 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
183 vma->vm_end = vma->vm_start + PAGE_SIZE;
184 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
46dea3d0 185 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
1da177e4
LT
186 down_write(&current->mm->mmap_sem);
187 if (insert_vm_struct(current->mm, vma)) {
188 up_write(&current->mm->mmap_sem);
189 kmem_cache_free(vm_area_cachep, vma);
190 return;
191 }
192 up_write(&current->mm->mmap_sem);
193 }
194
195 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
196 if (!(current->personality & MMAP_PAGE_ZERO)) {
c3762229 197 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4 198 if (vma) {
1da177e4
LT
199 vma->vm_mm = current->mm;
200 vma->vm_end = PAGE_SIZE;
201 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
202 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
203 down_write(&current->mm->mmap_sem);
204 if (insert_vm_struct(current->mm, vma)) {
205 up_write(&current->mm->mmap_sem);
206 kmem_cache_free(vm_area_cachep, vma);
207 return;
208 }
209 up_write(&current->mm->mmap_sem);
210 }
211 }
212}
213
214void
215free_initmem (void)
216{
217 unsigned long addr, eaddr;
218
219 addr = (unsigned long) ia64_imva(__init_begin);
220 eaddr = (unsigned long) ia64_imva(__init_end);
221 while (addr < eaddr) {
222 ClearPageReserved(virt_to_page(addr));
7835e98b 223 init_page_count(virt_to_page(addr));
1da177e4
LT
224 free_page(addr);
225 ++totalram_pages;
226 addr += PAGE_SIZE;
227 }
228 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
229 (__init_end - __init_begin) >> 10);
230}
231
dae28066 232void __init
1da177e4
LT
233free_initrd_mem (unsigned long start, unsigned long end)
234{
235 struct page *page;
236 /*
237 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
238 * Thus EFI and the kernel may have different page sizes. It is
239 * therefore possible to have the initrd share the same page as
240 * the end of the kernel (given current setup).
241 *
242 * To avoid freeing/using the wrong page (kernel sized) we:
243 * - align up the beginning of initrd
244 * - align down the end of initrd
245 *
246 * | |
247 * |=============| a000
248 * | |
249 * | |
250 * | | 9000
251 * |/////////////|
252 * |/////////////|
253 * |=============| 8000
254 * |///INITRD////|
255 * |/////////////|
256 * |/////////////| 7000
257 * | |
258 * |KKKKKKKKKKKKK|
259 * |=============| 6000
260 * |KKKKKKKKKKKKK|
261 * |KKKKKKKKKKKKK|
262 * K=kernel using 8KB pages
263 *
264 * In this example, we must free page 8000 ONLY. So we must align up
265 * initrd_start and keep initrd_end as is.
266 */
267 start = PAGE_ALIGN(start);
268 end = end & PAGE_MASK;
269
270 if (start < end)
271 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
272
273 for (; start < end; start += PAGE_SIZE) {
274 if (!virt_addr_valid(start))
275 continue;
276 page = virt_to_page(start);
277 ClearPageReserved(page);
7835e98b 278 init_page_count(page);
1da177e4
LT
279 free_page(start);
280 ++totalram_pages;
281 }
282}
283
284/*
285 * This installs a clean page in the kernel's page table.
286 */
dae28066 287static struct page * __init
1da177e4
LT
288put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
289{
290 pgd_t *pgd;
291 pud_t *pud;
292 pmd_t *pmd;
293 pte_t *pte;
294
295 if (!PageReserved(page))
296 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
297 page_address(page));
298
299 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
300
1da177e4
LT
301 {
302 pud = pud_alloc(&init_mm, pgd, address);
303 if (!pud)
304 goto out;
1da177e4
LT
305 pmd = pmd_alloc(&init_mm, pud, address);
306 if (!pmd)
307 goto out;
872fec16 308 pte = pte_alloc_kernel(pmd, address);
1da177e4
LT
309 if (!pte)
310 goto out;
872fec16 311 if (!pte_none(*pte))
1da177e4 312 goto out;
1da177e4 313 set_pte(pte, mk_pte(page, pgprot));
1da177e4 314 }
872fec16 315 out:
1da177e4
LT
316 /* no need for flush_tlb */
317 return page;
318}
319
914a4ea4 320static void __init
1da177e4
LT
321setup_gate (void)
322{
323 struct page *page;
324
325 /*
ad597bd5
DMT
326 * Map the gate page twice: once read-only to export the ELF
327 * headers etc. and once execute-only page to enable
328 * privilege-promotion via "epc":
1da177e4
LT
329 */
330 page = virt_to_page(ia64_imva(__start_gate_section));
331 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
332#ifdef HAVE_BUGGY_SEGREL
333 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
334 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
335#else
336 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
ad597bd5
DMT
337 /* Fill in the holes (if any) with read-only zero pages: */
338 {
339 unsigned long addr;
340
341 for (addr = GATE_ADDR + PAGE_SIZE;
342 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
343 addr += PAGE_SIZE)
344 {
345 put_kernel_page(ZERO_PAGE(0), addr,
346 PAGE_READONLY);
347 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
348 PAGE_READONLY);
349 }
350 }
1da177e4
LT
351#endif
352 ia64_patch_gate();
353}
354
355void __devinit
356ia64_mmu_init (void *my_cpu_data)
357{
00b65985 358 unsigned long pta, impl_va_bits;
1da177e4
LT
359 extern void __devinit tlb_init (void);
360
361#ifdef CONFIG_DISABLE_VHPT
362# define VHPT_ENABLE_BIT 0
363#else
364# define VHPT_ENABLE_BIT 1
365#endif
366
1da177e4
LT
367 /*
368 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
369 * address space. The IA-64 architecture guarantees that at least 50 bits of
370 * virtual address space are implemented but if we pick a large enough page size
371 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
372 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
373 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
374 * problem in practice. Alternatively, we could truncate the top of the mapped
375 * address space to not permit mappings that would overlap with the VMLPT.
376 * --davidm 00/12/06
377 */
378# define pte_bits 3
379# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
380 /*
381 * The virtual page table has to cover the entire implemented address space within
382 * a region even though not all of this space may be mappable. The reason for
383 * this is that the Access bit and Dirty bit fault handlers perform
384 * non-speculative accesses to the virtual page table, so the address range of the
385 * virtual page table itself needs to be covered by virtual page table.
386 */
387# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
388# define POW2(n) (1ULL << (n))
389
390 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
391
392 if (impl_va_bits < 51 || impl_va_bits > 61)
393 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
6cf07a8c
PC
394 /*
395 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
396 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
397 * the test makes sure that our mapped space doesn't overlap the
398 * unimplemented hole in the middle of the region.
399 */
400 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
401 (mapped_space_bits > impl_va_bits - 1))
402 panic("Cannot build a big enough virtual-linear page table"
403 " to cover mapped address space.\n"
404 " Try using a smaller page size.\n");
405
1da177e4
LT
406
407 /* place the VMLPT at the end of each page-table mapped region: */
408 pta = POW2(61) - POW2(vmlpt_bits);
409
1da177e4
LT
410 /*
411 * Set the (virtually mapped linear) page table address. Bit
412 * 8 selects between the short and long format, bits 2-7 the
413 * size of the table, and bit 0 whether the VHPT walker is
414 * enabled.
415 */
416 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
417
418 ia64_tlb_init();
419
420#ifdef CONFIG_HUGETLB_PAGE
421 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
422 ia64_srlz_d();
423#endif
424}
425
426#ifdef CONFIG_VIRTUAL_MEM_MAP
e44e41d0
BP
427int vmemmap_find_next_valid_pfn(int node, int i)
428{
429 unsigned long end_address, hole_next_pfn;
430 unsigned long stop_address;
431 pg_data_t *pgdat = NODE_DATA(node);
432
433 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
434 end_address = PAGE_ALIGN(end_address);
435
436 stop_address = (unsigned long) &vmem_map[
437 pgdat->node_start_pfn + pgdat->node_spanned_pages];
438
439 do {
440 pgd_t *pgd;
441 pud_t *pud;
442 pmd_t *pmd;
443 pte_t *pte;
444
445 pgd = pgd_offset_k(end_address);
446 if (pgd_none(*pgd)) {
447 end_address += PGDIR_SIZE;
448 continue;
449 }
450
451 pud = pud_offset(pgd, end_address);
452 if (pud_none(*pud)) {
453 end_address += PUD_SIZE;
454 continue;
455 }
456
457 pmd = pmd_offset(pud, end_address);
458 if (pmd_none(*pmd)) {
459 end_address += PMD_SIZE;
460 continue;
461 }
462
463 pte = pte_offset_kernel(pmd, end_address);
464retry_pte:
465 if (pte_none(*pte)) {
466 end_address += PAGE_SIZE;
467 pte++;
468 if ((end_address < stop_address) &&
469 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
470 goto retry_pte;
471 continue;
472 }
473 /* Found next valid vmem_map page */
474 break;
475 } while (end_address < stop_address);
476
477 end_address = min(end_address, stop_address);
478 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
479 hole_next_pfn = end_address / sizeof(struct page);
480 return hole_next_pfn - pgdat->node_start_pfn;
481}
1da177e4 482
dae28066 483int __init
1da177e4
LT
484create_mem_map_page_table (u64 start, u64 end, void *arg)
485{
486 unsigned long address, start_page, end_page;
487 struct page *map_start, *map_end;
488 int node;
489 pgd_t *pgd;
490 pud_t *pud;
491 pmd_t *pmd;
492 pte_t *pte;
493
494 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
495 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
496
497 start_page = (unsigned long) map_start & PAGE_MASK;
498 end_page = PAGE_ALIGN((unsigned long) map_end);
499 node = paddr_to_nid(__pa(start));
500
501 for (address = start_page; address < end_page; address += PAGE_SIZE) {
502 pgd = pgd_offset_k(address);
503 if (pgd_none(*pgd))
504 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
505 pud = pud_offset(pgd, address);
506
507 if (pud_none(*pud))
508 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
509 pmd = pmd_offset(pud, address);
510
511 if (pmd_none(*pmd))
512 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
513 pte = pte_offset_kernel(pmd, address);
514
515 if (pte_none(*pte))
516 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
517 PAGE_KERNEL));
518 }
519 return 0;
520}
521
522struct memmap_init_callback_data {
523 struct page *start;
524 struct page *end;
525 int nid;
526 unsigned long zone;
527};
528
529static int
530virtual_memmap_init (u64 start, u64 end, void *arg)
531{
532 struct memmap_init_callback_data *args;
533 struct page *map_start, *map_end;
534
535 args = (struct memmap_init_callback_data *) arg;
536 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
537 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
538
539 if (map_start < args->start)
540 map_start = args->start;
541 if (map_end > args->end)
542 map_end = args->end;
543
544 /*
545 * We have to initialize "out of bounds" struct page elements that fit completely
546 * on the same pages that were allocated for the "in bounds" elements because they
547 * may be referenced later (and found to be "reserved").
548 */
549 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
550 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
551 / sizeof(struct page));
552
553 if (map_start < map_end)
554 memmap_init_zone((unsigned long)(map_end - map_start),
a2f3aa02
DH
555 args->nid, args->zone, page_to_pfn(map_start),
556 MEMMAP_EARLY);
1da177e4
LT
557 return 0;
558}
559
560void
561memmap_init (unsigned long size, int nid, unsigned long zone,
562 unsigned long start_pfn)
563{
564 if (!vmem_map)
a2f3aa02 565 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
1da177e4
LT
566 else {
567 struct page *start;
568 struct memmap_init_callback_data args;
569
570 start = pfn_to_page(start_pfn);
571 args.start = start;
572 args.end = start + size;
573 args.nid = nid;
574 args.zone = zone;
575
576 efi_memmap_walk(virtual_memmap_init, &args);
577 }
578}
579
580int
581ia64_pfn_valid (unsigned long pfn)
582{
583 char byte;
584 struct page *pg = pfn_to_page(pfn);
585
586 return (__get_user(byte, (char __user *) pg) == 0)
587 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
588 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
589}
590EXPORT_SYMBOL(ia64_pfn_valid);
591
dae28066 592int __init
1da177e4
LT
593find_largest_hole (u64 start, u64 end, void *arg)
594{
595 u64 *max_gap = arg;
596
597 static u64 last_end = PAGE_OFFSET;
598
599 /* NOTE: this algorithm assumes efi memmap table is ordered */
600
601 if (*max_gap < (start - last_end))
602 *max_gap = start - last_end;
603 last_end = end;
604 return 0;
605}
05e0caad 606
139b8304
BP
607#endif /* CONFIG_VIRTUAL_MEM_MAP */
608
05e0caad 609int __init
8b9c1068 610register_active_ranges(u64 start, u64 end, void *arg)
05e0caad 611{
139b8304
BP
612 int nid = paddr_to_nid(__pa(start));
613
614 if (nid < 0)
615 nid = 0;
616#ifdef CONFIG_KEXEC
617 if (start > crashk_res.start && start < crashk_res.end)
618 start = crashk_res.end;
619 if (end > crashk_res.start && end < crashk_res.end)
620 end = crashk_res.start;
621#endif
622
623 if (start < end)
624 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
625 __pa(end) >> PAGE_SHIFT);
05e0caad
MG
626 return 0;
627}
1da177e4 628
dae28066 629static int __init
1da177e4
LT
630count_reserved_pages (u64 start, u64 end, void *arg)
631{
632 unsigned long num_reserved = 0;
633 unsigned long *count = arg;
634
635 for (; start < end; start += PAGE_SIZE)
636 if (PageReserved(virt_to_page(start)))
637 ++num_reserved;
638 *count += num_reserved;
639 return 0;
640}
641
a3f5c338
ZN
642int
643find_max_min_low_pfn (unsigned long start, unsigned long end, void *arg)
644{
645 unsigned long pfn_start, pfn_end;
646#ifdef CONFIG_FLATMEM
647 pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
648 pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
649#else
650 pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
651 pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
652#endif
653 min_low_pfn = min(min_low_pfn, pfn_start);
654 max_low_pfn = max(max_low_pfn, pfn_end);
655 return 0;
656}
657
1da177e4
LT
658/*
659 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
660 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
661 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
662 * useful for performance testing, but conceivably could also come in handy for debugging
663 * purposes.
664 */
665
03906ea0 666static int nolwsys __initdata;
1da177e4
LT
667
668static int __init
669nolwsys_setup (char *s)
670{
671 nolwsys = 1;
672 return 1;
673}
674
675__setup("nolwsys", nolwsys_setup);
676
dae28066 677void __init
1da177e4
LT
678mem_init (void)
679{
680 long reserved_pages, codesize, datasize, initsize;
1da177e4
LT
681 pg_data_t *pgdat;
682 int i;
683 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
684
fde740e4
RH
685 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
686 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
687 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
688
1da177e4
LT
689#ifdef CONFIG_PCI
690 /*
691 * This needs to be called _after_ the command line has been parsed but _before_
692 * any drivers that may need the PCI DMA interface are initialized or bootmem has
693 * been freed.
694 */
695 platform_dma_init();
696#endif
697
2d4b1fa2 698#ifdef CONFIG_FLATMEM
1da177e4
LT
699 if (!mem_map)
700 BUG();
701 max_mapnr = max_low_pfn;
702#endif
703
704 high_memory = __va(max_low_pfn * PAGE_SIZE);
705
706 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
707 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
708 kclist_add(&kcore_kernel, _stext, _end - _stext);
709
ec936fc5 710 for_each_online_pgdat(pgdat)
564601a5 711 if (pgdat->bdata->node_bootmem_map)
712 totalram_pages += free_all_bootmem_node(pgdat);
1da177e4
LT
713
714 reserved_pages = 0;
715 efi_memmap_walk(count_reserved_pages, &reserved_pages);
716
717 codesize = (unsigned long) _etext - (unsigned long) _stext;
718 datasize = (unsigned long) _edata - (unsigned long) _etext;
719 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
720
721 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
722 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
723 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
724 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
725
1da177e4
LT
726
727 /*
728 * For fsyscall entrpoints with no light-weight handler, use the ordinary
729 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
730 * code can tell them apart.
731 */
732 for (i = 0; i < NR_syscalls; ++i) {
733 extern unsigned long fsyscall_table[NR_syscalls];
734 extern unsigned long sys_call_table[NR_syscalls];
735
736 if (!fsyscall_table[i] || nolwsys)
737 fsyscall_table[i] = sys_call_table[i] | 1;
738 }
739 setup_gate();
740
741#ifdef CONFIG_IA32_SUPPORT
742 ia32_mem_init();
743#endif
744}
1681b8e1
YG
745
746#ifdef CONFIG_MEMORY_HOTPLUG
747void online_page(struct page *page)
748{
749 ClearPageReserved(page);
7835e98b 750 init_page_count(page);
1681b8e1
YG
751 __free_page(page);
752 totalram_pages++;
753 num_physpages++;
754}
755
bc02af93 756int arch_add_memory(int nid, u64 start, u64 size)
1681b8e1
YG
757{
758 pg_data_t *pgdat;
759 struct zone *zone;
760 unsigned long start_pfn = start >> PAGE_SHIFT;
761 unsigned long nr_pages = size >> PAGE_SHIFT;
762 int ret;
763
bc02af93 764 pgdat = NODE_DATA(nid);
1681b8e1
YG
765
766 zone = pgdat->node_zones + ZONE_NORMAL;
767 ret = __add_pages(zone, start_pfn, nr_pages);
768
769 if (ret)
770 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
771 __FUNCTION__, ret);
772
773 return ret;
774}
775
776int remove_memory(u64 start, u64 size)
777{
778 return -EINVAL;
779}
9c576ff1 780EXPORT_SYMBOL_GPL(remove_memory);
1681b8e1 781#endif