]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/mm/discontig.c
[PATCH] optional ZONE_DMA: optional ZONE_DMA for ia64
[net-next-2.6.git] / arch / ia64 / mm / discontig.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
11 */
12
13/*
14 * Platform initialization for Discontig Memory
15 */
16
17#include <linux/kernel.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bootmem.h>
21#include <linux/acpi.h>
22#include <linux/efi.h>
23#include <linux/nodemask.h>
24#include <asm/pgalloc.h>
25#include <asm/tlb.h>
26#include <asm/meminit.h>
27#include <asm/numa.h>
28#include <asm/sections.h>
29
30/*
31 * Track per-node information needed to setup the boot memory allocator, the
32 * per-node areas, and the real VM.
33 */
34struct early_node_data {
35 struct ia64_node_data *node_data;
1da177e4
LT
36 unsigned long pernode_addr;
37 unsigned long pernode_size;
38 struct bootmem_data bootmem_data;
39 unsigned long num_physpages;
09ae1f58 40#ifdef CONFIG_ZONE_DMA
1da177e4 41 unsigned long num_dma_physpages;
09ae1f58 42#endif
1da177e4
LT
43 unsigned long min_pfn;
44 unsigned long max_pfn;
45};
46
47static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
564601a5 48static nodemask_t memory_less_mask __initdata;
1da177e4 49
ae5a2c1c
YG
50static pg_data_t *pgdat_list[MAX_NUMNODES];
51
1da177e4
LT
52/*
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
55 */
acb7f672 56#define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
1da177e4 57#define NODEDATA_ALIGN(addr, node) \
acb7f672
JS
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
1da177e4
LT
60
61/**
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
66 *
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
73 */
74static int __init build_node_maps(unsigned long start, unsigned long len,
75 int node)
76{
77 unsigned long cstart, epfn, end = start + len;
78 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
79
80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 cstart = GRANULEROUNDDOWN(start);
82
83 if (!bdp->node_low_pfn) {
84 bdp->node_boot_start = cstart;
85 bdp->node_low_pfn = epfn;
86 } else {
87 bdp->node_boot_start = min(cstart, bdp->node_boot_start);
88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
89 }
90
91 min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT);
92 max_low_pfn = max(max_low_pfn, bdp->node_low_pfn);
93
94 return 0;
95}
96
97/**
564601a5 98 * early_nr_cpus_node - return number of cpus on a given node
1da177e4
LT
99 * @node: node to check
100 *
564601a5 101 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
1da177e4 102 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
564601a5 103 * called yet. Note that node 0 will also count all non-existent cpus.
1da177e4 104 */
dd0932d9 105static int __meminit early_nr_cpus_node(int node)
1da177e4
LT
106{
107 int cpu, n = 0;
108
109 for (cpu = 0; cpu < NR_CPUS; cpu++)
110 if (node == node_cpuid[cpu].nid)
564601a5 111 n++;
1da177e4
LT
112
113 return n;
114}
115
564601a5 116/**
117 * compute_pernodesize - compute size of pernode data
118 * @node: the node id.
119 */
dd0932d9 120static unsigned long __meminit compute_pernodesize(int node)
564601a5 121{
122 unsigned long pernodesize = 0, cpus;
123
124 cpus = early_nr_cpus_node(node);
125 pernodesize += PERCPU_PAGE_SIZE * cpus;
126 pernodesize += node * L1_CACHE_BYTES;
127 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
129 pernodesize = PAGE_ALIGN(pernodesize);
130 return pernodesize;
131}
1da177e4 132
8d7e3517
TL
133/**
134 * per_cpu_node_setup - setup per-cpu areas on each node
135 * @cpu_data: per-cpu area on this node
136 * @node: node to setup
137 *
138 * Copy the static per-cpu data into the region we just set aside and then
139 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
140 * the end of the area.
141 */
142static void *per_cpu_node_setup(void *cpu_data, int node)
143{
144#ifdef CONFIG_SMP
145 int cpu;
146
147 for (cpu = 0; cpu < NR_CPUS; cpu++) {
148 if (node == node_cpuid[cpu].nid) {
149 memcpy(__va(cpu_data), __phys_per_cpu_start,
150 __per_cpu_end - __per_cpu_start);
151 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
152 __per_cpu_start;
153 cpu_data += PERCPU_PAGE_SIZE;
154 }
155 }
156#endif
157 return cpu_data;
158}
159
1da177e4 160/**
564601a5 161 * fill_pernode - initialize pernode data.
162 * @node: the node id.
163 * @pernode: physical address of pernode data
164 * @pernodesize: size of the pernode data
1da177e4 165 */
564601a5 166static void __init fill_pernode(int node, unsigned long pernode,
167 unsigned long pernodesize)
1da177e4 168{
564601a5 169 void *cpu_data;
8d7e3517 170 int cpus = early_nr_cpus_node(node);
564601a5 171 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
1da177e4 172
564601a5 173 mem_data[node].pernode_addr = pernode;
174 mem_data[node].pernode_size = pernodesize;
175 memset(__va(pernode), 0, pernodesize);
1da177e4 176
564601a5 177 cpu_data = (void *)pernode;
178 pernode += PERCPU_PAGE_SIZE * cpus;
179 pernode += node * L1_CACHE_BYTES;
180
ae5a2c1c 181 pgdat_list[node] = __va(pernode);
564601a5 182 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
183
184 mem_data[node].node_data = __va(pernode);
185 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
186
ae5a2c1c 187 pgdat_list[node]->bdata = bdp;
564601a5 188 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
189
8d7e3517 190 cpu_data = per_cpu_node_setup(cpu_data, node);
1da177e4 191
564601a5 192 return;
193}
8d7e3517 194
1da177e4
LT
195/**
196 * find_pernode_space - allocate memory for memory map and per-node structures
197 * @start: physical start of range
198 * @len: length of range
199 * @node: node where this range resides
200 *
201 * This routine reserves space for the per-cpu data struct, the list of
202 * pg_data_ts and the per-node data struct. Each node will have something like
203 * the following in the first chunk of addr. space large enough to hold it.
204 *
205 * ________________________
206 * | |
207 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
208 * | PERCPU_PAGE_SIZE * | start and length big enough
209 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
210 * |------------------------|
211 * | local pg_data_t * |
212 * |------------------------|
213 * | local ia64_node_data |
214 * |------------------------|
215 * | ??? |
216 * |________________________|
217 *
218 * Once this space has been set aside, the bootmem maps are initialized. We
219 * could probably move the allocation of the per-cpu and ia64_node_data space
220 * outside of this function and use alloc_bootmem_node(), but doing it here
221 * is straightforward and we get the alignments we want so...
222 */
223static int __init find_pernode_space(unsigned long start, unsigned long len,
224 int node)
225{
564601a5 226 unsigned long epfn;
1da177e4 227 unsigned long pernodesize = 0, pernode, pages, mapsize;
1da177e4
LT
228 struct bootmem_data *bdp = &mem_data[node].bootmem_data;
229
230 epfn = (start + len) >> PAGE_SHIFT;
231
232 pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT);
233 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
234
235 /*
236 * Make sure this memory falls within this node's usable memory
237 * since we may have thrown some away in build_maps().
238 */
239 if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn)
240 return 0;
241
242 /* Don't setup this node's local space twice... */
243 if (mem_data[node].pernode_addr)
244 return 0;
245
246 /*
247 * Calculate total size needed, incl. what's necessary
248 * for good alignment and alias prevention.
249 */
564601a5 250 pernodesize = compute_pernodesize(node);
1da177e4
LT
251 pernode = NODEDATA_ALIGN(start, node);
252
253 /* Is this range big enough for what we want to store here? */
564601a5 254 if (start + len > (pernode + pernodesize + mapsize))
255 fill_pernode(node, pernode, pernodesize);
1da177e4
LT
256
257 return 0;
258}
259
260/**
261 * free_node_bootmem - free bootmem allocator memory for use
262 * @start: physical start of range
263 * @len: length of range
264 * @node: node where this range resides
265 *
266 * Simply calls the bootmem allocator to free the specified ranged from
267 * the given pg_data_t's bdata struct. After this function has been called
268 * for all the entries in the EFI memory map, the bootmem allocator will
269 * be ready to service allocation requests.
270 */
271static int __init free_node_bootmem(unsigned long start, unsigned long len,
272 int node)
273{
ae5a2c1c 274 free_bootmem_node(pgdat_list[node], start, len);
1da177e4
LT
275
276 return 0;
277}
278
279/**
280 * reserve_pernode_space - reserve memory for per-node space
281 *
282 * Reserve the space used by the bootmem maps & per-node space in the boot
283 * allocator so that when we actually create the real mem maps we don't
284 * use their memory.
285 */
286static void __init reserve_pernode_space(void)
287{
288 unsigned long base, size, pages;
289 struct bootmem_data *bdp;
290 int node;
291
292 for_each_online_node(node) {
ae5a2c1c 293 pg_data_t *pdp = pgdat_list[node];
1da177e4 294
564601a5 295 if (node_isset(node, memory_less_mask))
296 continue;
297
1da177e4
LT
298 bdp = pdp->bdata;
299
300 /* First the bootmem_map itself */
301 pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT);
302 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
303 base = __pa(bdp->node_bootmem_map);
304 reserve_bootmem_node(pdp, base, size);
305
306 /* Now the per-node space */
307 size = mem_data[node].pernode_size;
308 base = __pa(mem_data[node].pernode_addr);
309 reserve_bootmem_node(pdp, base, size);
310 }
311}
312
7049027c
YG
313static void __meminit scatter_node_data(void)
314{
315 pg_data_t **dst;
316 int node;
317
dd8041f1
YG
318 /*
319 * for_each_online_node() can't be used at here.
320 * node_online_map is not set for hot-added nodes at this time,
321 * because we are halfway through initialization of the new node's
322 * structures. If for_each_online_node() is used, a new node's
323 * pg_data_ptrs will be not initialized. Insted of using it,
324 * pgdat_list[] is checked.
325 */
326 for_each_node(node) {
327 if (pgdat_list[node]) {
328 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
329 memcpy(dst, pgdat_list, sizeof(pgdat_list));
330 }
7049027c
YG
331 }
332}
333
1da177e4
LT
334/**
335 * initialize_pernode_data - fixup per-cpu & per-node pointers
336 *
337 * Each node's per-node area has a copy of the global pg_data_t list, so
338 * we copy that to each node here, as well as setting the per-cpu pointer
339 * to the local node data structure. The active_cpus field of the per-node
340 * structure gets setup by the platform_cpu_init() function later.
341 */
342static void __init initialize_pernode_data(void)
343{
8d7e3517 344 int cpu, node;
1da177e4 345
7049027c
YG
346 scatter_node_data();
347
8d7e3517 348#ifdef CONFIG_SMP
1da177e4
LT
349 /* Set the node_data pointer for each per-cpu struct */
350 for (cpu = 0; cpu < NR_CPUS; cpu++) {
351 node = node_cpuid[cpu].nid;
352 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
353 }
8d7e3517
TL
354#else
355 {
356 struct cpuinfo_ia64 *cpu0_cpu_info;
357 cpu = 0;
358 node = node_cpuid[cpu].nid;
359 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
360 ((char *)&per_cpu__cpu_info - __per_cpu_start));
361 cpu0_cpu_info->node_data = mem_data[node].node_data;
362 }
363#endif /* CONFIG_SMP */
1da177e4
LT
364}
365
564601a5 366/**
367 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
368 * node but fall back to any other node when __alloc_bootmem_node fails
369 * for best.
370 * @nid: node id
371 * @pernodesize: size of this node's pernode data
564601a5 372 */
97835245 373static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
564601a5 374{
375 void *ptr = NULL;
376 u8 best = 0xff;
97835245 377 int bestnode = -1, node, anynode = 0;
564601a5 378
379 for_each_online_node(node) {
380 if (node_isset(node, memory_less_mask))
381 continue;
382 else if (node_distance(nid, node) < best) {
383 best = node_distance(nid, node);
384 bestnode = node;
385 }
97835245 386 anynode = node;
564601a5 387 }
388
97835245
BP
389 if (bestnode == -1)
390 bestnode = anynode;
391
ae5a2c1c 392 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
97835245 393 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
564601a5 394
564601a5 395 return ptr;
396}
397
564601a5 398/**
399 * memory_less_nodes - allocate and initialize CPU only nodes pernode
400 * information.
401 */
402static void __init memory_less_nodes(void)
403{
404 unsigned long pernodesize;
405 void *pernode;
406 int node;
407
408 for_each_node_mask(node, memory_less_mask) {
409 pernodesize = compute_pernodesize(node);
97835245 410 pernode = memory_less_node_alloc(node, pernodesize);
564601a5 411 fill_pernode(node, __pa(pernode), pernodesize);
412 }
413
414 return;
415}
416
1da177e4
LT
417/**
418 * find_memory - walk the EFI memory map and setup the bootmem allocator
419 *
420 * Called early in boot to setup the bootmem allocator, and to
421 * allocate the per-cpu and per-node structures.
422 */
423void __init find_memory(void)
424{
425 int node;
426
427 reserve_memory();
428
429 if (num_online_nodes() == 0) {
430 printk(KERN_ERR "node info missing!\n");
431 node_set_online(0);
432 }
433
564601a5 434 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
1da177e4
LT
435 min_low_pfn = -1;
436 max_low_pfn = 0;
437
1da177e4
LT
438 /* These actually end up getting called by call_pernode_memory() */
439 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
440 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
441
564601a5 442 for_each_online_node(node)
443 if (mem_data[node].bootmem_data.node_low_pfn) {
444 node_clear(node, memory_less_mask);
445 mem_data[node].min_pfn = ~0UL;
446 }
139b8304
BP
447
448 efi_memmap_walk(register_active_ranges, NULL);
449
1da177e4
LT
450 /*
451 * Initialize the boot memory maps in reverse order since that's
452 * what the bootmem allocator expects
453 */
454 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
455 unsigned long pernode, pernodesize, map;
456 struct bootmem_data *bdp;
457
458 if (!node_online(node))
459 continue;
564601a5 460 else if (node_isset(node, memory_less_mask))
461 continue;
1da177e4
LT
462
463 bdp = &mem_data[node].bootmem_data;
464 pernode = mem_data[node].pernode_addr;
465 pernodesize = mem_data[node].pernode_size;
466 map = pernode + pernodesize;
467
ae5a2c1c 468 init_bootmem_node(pgdat_list[node],
1da177e4
LT
469 map>>PAGE_SHIFT,
470 bdp->node_boot_start>>PAGE_SHIFT,
471 bdp->node_low_pfn);
472 }
473
474 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
475
476 reserve_pernode_space();
564601a5 477 memory_less_nodes();
1da177e4
LT
478 initialize_pernode_data();
479
480 max_pfn = max_low_pfn;
481
482 find_initrd();
475c63bd
H
483
484#ifdef CONFIG_CRASH_DUMP
485 /* If we are doing a crash dump, we still need to know the real mem
486 * size before original memory map is reset. */
487 saved_max_pfn = max_pfn;
488#endif
1da177e4
LT
489}
490
8d7e3517 491#ifdef CONFIG_SMP
1da177e4
LT
492/**
493 * per_cpu_init - setup per-cpu variables
494 *
495 * find_pernode_space() does most of this already, we just need to set
496 * local_per_cpu_offset
497 */
244fd545 498void __cpuinit *per_cpu_init(void)
1da177e4
LT
499{
500 int cpu;
ff741906
AR
501 static int first_time = 1;
502
1da177e4 503
8d7e3517
TL
504 if (smp_processor_id() != 0)
505 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
506
ff741906
AR
507 if (first_time) {
508 first_time = 0;
509 for (cpu = 0; cpu < NR_CPUS; cpu++)
510 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
511 }
1da177e4
LT
512
513 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
514}
8d7e3517 515#endif /* CONFIG_SMP */
1da177e4
LT
516
517/**
518 * show_mem - give short summary of memory stats
519 *
520 * Shows a simple page count of reserved and used pages in the system.
521 * For discontig machines, it does this on a per-pgdat basis.
522 */
523void show_mem(void)
524{
525 int i, total_reserved = 0;
526 int total_shared = 0, total_cached = 0;
527 unsigned long total_present = 0;
528 pg_data_t *pgdat;
529
709a6c1c 530 printk(KERN_INFO "Mem-info:\n");
1da177e4 531 show_free_areas();
709a6c1c
JS
532 printk(KERN_INFO "Free swap: %6ldkB\n",
533 nr_swap_pages<<(PAGE_SHIFT-10));
816add4e 534 printk(KERN_INFO "Node memory in pages:\n");
ec936fc5 535 for_each_online_pgdat(pgdat) {
208d54e5
DH
536 unsigned long present;
537 unsigned long flags;
1da177e4 538 int shared = 0, cached = 0, reserved = 0;
208d54e5 539
208d54e5
DH
540 pgdat_resize_lock(pgdat, &flags);
541 present = pgdat->node_present_pages;
1da177e4 542 for(i = 0; i < pgdat->node_spanned_pages; i++) {
2d4b1fa2
BP
543 struct page *page;
544 if (pfn_valid(pgdat->node_start_pfn + i))
545 page = pfn_to_page(pgdat->node_start_pfn + i);
ace1d816 546 else {
e44e41d0
BP
547 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
548 i) - 1;
1da177e4 549 continue;
ace1d816 550 }
408fde81 551 if (PageReserved(page))
1da177e4 552 reserved++;
408fde81 553 else if (PageSwapCache(page))
1da177e4 554 cached++;
408fde81
DH
555 else if (page_count(page))
556 shared += page_count(page)-1;
1da177e4 557 }
208d54e5 558 pgdat_resize_unlock(pgdat, &flags);
1da177e4
LT
559 total_present += present;
560 total_reserved += reserved;
561 total_cached += cached;
562 total_shared += shared;
816add4e
JS
563 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
564 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
565 present, reserved, shared, cached);
1da177e4 566 }
709a6c1c
JS
567 printk(KERN_INFO "%ld pages of RAM\n", total_present);
568 printk(KERN_INFO "%d reserved pages\n", total_reserved);
569 printk(KERN_INFO "%d pages shared\n", total_shared);
570 printk(KERN_INFO "%d pages swap cached\n", total_cached);
571 printk(KERN_INFO "Total of %ld pages in page table cache\n",
572 pgtable_quicklist_total_size());
573 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
1da177e4
LT
574}
575
576/**
577 * call_pernode_memory - use SRAT to call callback functions with node info
578 * @start: physical start of range
579 * @len: length of range
580 * @arg: function to call for each range
581 *
582 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
583 * out to which node a block of memory belongs. Ignore memory that we cannot
584 * identify, and split blocks that run across multiple nodes.
585 *
586 * Take this opportunity to round the start address up and the end address
587 * down to page boundaries.
588 */
589void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
590{
591 unsigned long rs, re, end = start + len;
592 void (*func)(unsigned long, unsigned long, int);
593 int i;
594
595 start = PAGE_ALIGN(start);
596 end &= PAGE_MASK;
597 if (start >= end)
598 return;
599
600 func = arg;
601
602 if (!num_node_memblks) {
603 /* No SRAT table, so assume one node (node 0) */
604 if (start < end)
605 (*func)(start, end - start, 0);
606 return;
607 }
608
609 for (i = 0; i < num_node_memblks; i++) {
610 rs = max(start, node_memblk[i].start_paddr);
611 re = min(end, node_memblk[i].start_paddr +
612 node_memblk[i].size);
613
614 if (rs < re)
615 (*func)(rs, re - rs, node_memblk[i].nid);
616
617 if (re == end)
618 break;
619 }
620}
621
622/**
623 * count_node_pages - callback to build per-node memory info structures
624 * @start: physical start of range
625 * @len: length of range
626 * @node: node where this range resides
627 *
628 * Each node has it's own number of physical pages, DMAable pages, start, and
629 * end page frame number. This routine will be called by call_pernode_memory()
630 * for each piece of usable memory and will setup these values for each node.
631 * Very similar to build_maps().
632 */
633static __init int count_node_pages(unsigned long start, unsigned long len, int node)
634{
635 unsigned long end = start + len;
636
637 mem_data[node].num_physpages += len >> PAGE_SHIFT;
09ae1f58 638#ifdef CONFIG_ZONE_DMA
1da177e4
LT
639 if (start <= __pa(MAX_DMA_ADDRESS))
640 mem_data[node].num_dma_physpages +=
641 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
09ae1f58 642#endif
1da177e4
LT
643 start = GRANULEROUNDDOWN(start);
644 start = ORDERROUNDDOWN(start);
645 end = GRANULEROUNDUP(end);
646 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
647 end >> PAGE_SHIFT);
648 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
649 start >> PAGE_SHIFT);
650
651 return 0;
652}
653
654/**
655 * paging_init - setup page tables
656 *
657 * paging_init() sets up the page tables for each node of the system and frees
658 * the bootmem allocator memory for general use.
659 */
660void __init paging_init(void)
661{
662 unsigned long max_dma;
1da177e4 663 unsigned long pfn_offset = 0;
05e0caad 664 unsigned long max_pfn = 0;
1da177e4 665 int node;
05e0caad 666 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4
LT
667
668 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
669
1da177e4
LT
670 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
671
524fd988
BP
672 sparse_memory_present_with_active_regions(MAX_NUMNODES);
673 sparse_init();
674
2d4b1fa2 675#ifdef CONFIG_VIRTUAL_MEM_MAP
921eea1c
BP
676 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
677 sizeof(struct page));
564601a5 678 vmem_map = (struct page *) vmalloc_end;
679 efi_memmap_walk(create_mem_map_page_table, NULL);
680 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
2d4b1fa2 681#endif
564601a5 682
1da177e4 683 for_each_online_node(node) {
1da177e4 684 num_physpages += mem_data[node].num_physpages;
1da177e4
LT
685 pfn_offset = mem_data[node].min_pfn;
686
2d4b1fa2 687#ifdef CONFIG_VIRTUAL_MEM_MAP
1da177e4 688 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
2d4b1fa2 689#endif
05e0caad
MG
690 if (mem_data[node].max_pfn > max_pfn)
691 max_pfn = mem_data[node].max_pfn;
1da177e4
LT
692 }
693
6391af17 694 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
09ae1f58 695#ifdef CONFIG_ZONE_DMA
05e0caad 696 max_zone_pfns[ZONE_DMA] = max_dma;
09ae1f58 697#endif
05e0caad
MG
698 max_zone_pfns[ZONE_NORMAL] = max_pfn;
699 free_area_init_nodes(max_zone_pfns);
700
1da177e4
LT
701 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
702}
7049027c 703
dd0932d9
YG
704pg_data_t *arch_alloc_nodedata(int nid)
705{
706 unsigned long size = compute_pernodesize(nid);
707
708 return kzalloc(size, GFP_KERNEL);
709}
710
711void arch_free_nodedata(pg_data_t *pgdat)
712{
713 kfree(pgdat);
714}
715
7049027c
YG
716void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
717{
718 pgdat_list[update_node] = update_pgdat;
719 scatter_node_data();
720}