]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/kernel/perfmon.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
22#include <linux/config.h>
23#include <linux/module.h>
24#include <linux/kernel.h>
25#include <linux/sched.h>
26#include <linux/interrupt.h>
27#include <linux/smp_lock.h>
28#include <linux/proc_fs.h>
29#include <linux/seq_file.h>
30#include <linux/init.h>
31#include <linux/vmalloc.h>
32#include <linux/mm.h>
33#include <linux/sysctl.h>
34#include <linux/list.h>
35#include <linux/file.h>
36#include <linux/poll.h>
37#include <linux/vfs.h>
38#include <linux/pagemap.h>
39#include <linux/mount.h>
1da177e4
LT
40#include <linux/bitops.h>
41
42#include <asm/errno.h>
43#include <asm/intrinsics.h>
44#include <asm/page.h>
45#include <asm/perfmon.h>
46#include <asm/processor.h>
47#include <asm/signal.h>
48#include <asm/system.h>
49#include <asm/uaccess.h>
50#include <asm/delay.h>
51
52#ifdef CONFIG_PERFMON
53/*
54 * perfmon context state
55 */
56#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
57#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
58#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
59#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
60
61#define PFM_INVALID_ACTIVATION (~0UL)
62
63/*
64 * depth of message queue
65 */
66#define PFM_MAX_MSGS 32
67#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
68
69/*
70 * type of a PMU register (bitmask).
71 * bitmask structure:
72 * bit0 : register implemented
73 * bit1 : end marker
74 * bit2-3 : reserved
75 * bit4 : pmc has pmc.pm
76 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
77 * bit6-7 : register type
78 * bit8-31: reserved
79 */
80#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
81#define PFM_REG_IMPL 0x1 /* register implemented */
82#define PFM_REG_END 0x2 /* end marker */
83#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
84#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
85#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
86#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
87#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
88
89#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
90#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
91
92#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
93
94/* i assumed unsigned */
95#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
96#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
97
98/* XXX: these assume that register i is implemented */
99#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
100#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
101#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
102#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
103
104#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
105#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
106#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
107#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
108
109#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
110#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
111
112#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
113#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
114#define PFM_CTX_TASK(h) (h)->ctx_task
115
116#define PMU_PMC_OI 5 /* position of pmc.oi bit */
117
118/* XXX: does not support more than 64 PMDs */
119#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
120#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
121
122#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
123
124#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
125#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
126#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
127#define PFM_CODE_RR 0 /* requesting code range restriction */
128#define PFM_DATA_RR 1 /* requestion data range restriction */
129
130#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
131#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
132#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
133
134#define RDEP(x) (1UL<<(x))
135
136/*
137 * context protection macros
138 * in SMP:
139 * - we need to protect against CPU concurrency (spin_lock)
140 * - we need to protect against PMU overflow interrupts (local_irq_disable)
141 * in UP:
142 * - we need to protect against PMU overflow interrupts (local_irq_disable)
143 *
144 * spin_lock_irqsave()/spin_lock_irqrestore():
145 * in SMP: local_irq_disable + spin_lock
146 * in UP : local_irq_disable
147 *
148 * spin_lock()/spin_lock():
149 * in UP : removed automatically
150 * in SMP: protect against context accesses from other CPU. interrupts
151 * are not masked. This is useful for the PMU interrupt handler
152 * because we know we will not get PMU concurrency in that code.
153 */
154#define PROTECT_CTX(c, f) \
155 do { \
156 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
157 spin_lock_irqsave(&(c)->ctx_lock, f); \
158 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
159 } while(0)
160
161#define UNPROTECT_CTX(c, f) \
162 do { \
163 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
164 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
165 } while(0)
166
167#define PROTECT_CTX_NOPRINT(c, f) \
168 do { \
169 spin_lock_irqsave(&(c)->ctx_lock, f); \
170 } while(0)
171
172
173#define UNPROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define PROTECT_CTX_NOIRQ(c) \
180 do { \
181 spin_lock(&(c)->ctx_lock); \
182 } while(0)
183
184#define UNPROTECT_CTX_NOIRQ(c) \
185 do { \
186 spin_unlock(&(c)->ctx_lock); \
187 } while(0)
188
189
190#ifdef CONFIG_SMP
191
192#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
193#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
194#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
195
196#else /* !CONFIG_SMP */
197#define SET_ACTIVATION(t) do {} while(0)
198#define GET_ACTIVATION(t) do {} while(0)
199#define INC_ACTIVATION(t) do {} while(0)
200#endif /* CONFIG_SMP */
201
202#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
203#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
204#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
205
206#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
207#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
208
209#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
210
211/*
212 * cmp0 must be the value of pmc0
213 */
214#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
215
216#define PFMFS_MAGIC 0xa0b4d889
217
218/*
219 * debugging
220 */
221#define PFM_DEBUGGING 1
222#ifdef PFM_DEBUGGING
223#define DPRINT(a) \
224 do { \
225 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
226 } while (0)
227
228#define DPRINT_ovfl(a) \
229 do { \
230 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
231 } while (0)
232#endif
233
234/*
235 * 64-bit software counter structure
236 *
237 * the next_reset_type is applied to the next call to pfm_reset_regs()
238 */
239typedef struct {
240 unsigned long val; /* virtual 64bit counter value */
241 unsigned long lval; /* last reset value */
242 unsigned long long_reset; /* reset value on sampling overflow */
243 unsigned long short_reset; /* reset value on overflow */
244 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
245 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
246 unsigned long seed; /* seed for random-number generator */
247 unsigned long mask; /* mask for random-number generator */
248 unsigned int flags; /* notify/do not notify */
249 unsigned long eventid; /* overflow event identifier */
250} pfm_counter_t;
251
252/*
253 * context flags
254 */
255typedef struct {
256 unsigned int block:1; /* when 1, task will blocked on user notifications */
257 unsigned int system:1; /* do system wide monitoring */
258 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
259 unsigned int is_sampling:1; /* true if using a custom format */
260 unsigned int excl_idle:1; /* exclude idle task in system wide session */
261 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
262 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
263 unsigned int no_msg:1; /* no message sent on overflow */
264 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
265 unsigned int reserved:22;
266} pfm_context_flags_t;
267
268#define PFM_TRAP_REASON_NONE 0x0 /* default value */
269#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
270#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
271
272
273/*
274 * perfmon context: encapsulates all the state of a monitoring session
275 */
276
277typedef struct pfm_context {
278 spinlock_t ctx_lock; /* context protection */
279
280 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
281 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
282
283 struct task_struct *ctx_task; /* task to which context is attached */
284
285 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
286
287 struct semaphore ctx_restart_sem; /* use for blocking notification mode */
288
289 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
290 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
291 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
292
293 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
294 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
295 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
296
297 unsigned long ctx_pmcs[IA64_NUM_PMC_REGS]; /* saved copies of PMC values */
298
299 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
300 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
301 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
302 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
303
304 pfm_counter_t ctx_pmds[IA64_NUM_PMD_REGS]; /* software state for PMDS */
305
306 u64 ctx_saved_psr_up; /* only contains psr.up value */
307
308 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
309 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
310 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
311
312 int ctx_fd; /* file descriptor used my this context */
313 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
314
315 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
316 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
317 unsigned long ctx_smpl_size; /* size of sampling buffer */
318 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
319
320 wait_queue_head_t ctx_msgq_wait;
321 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
322 int ctx_msgq_head;
323 int ctx_msgq_tail;
324 struct fasync_struct *ctx_async_queue;
325
326 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
327} pfm_context_t;
328
329/*
330 * magic number used to verify that structure is really
331 * a perfmon context
332 */
333#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
334
335#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
336
337#ifdef CONFIG_SMP
338#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
339#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
340#else
341#define SET_LAST_CPU(ctx, v) do {} while(0)
342#define GET_LAST_CPU(ctx) do {} while(0)
343#endif
344
345
346#define ctx_fl_block ctx_flags.block
347#define ctx_fl_system ctx_flags.system
348#define ctx_fl_using_dbreg ctx_flags.using_dbreg
349#define ctx_fl_is_sampling ctx_flags.is_sampling
350#define ctx_fl_excl_idle ctx_flags.excl_idle
351#define ctx_fl_going_zombie ctx_flags.going_zombie
352#define ctx_fl_trap_reason ctx_flags.trap_reason
353#define ctx_fl_no_msg ctx_flags.no_msg
354#define ctx_fl_can_restart ctx_flags.can_restart
355
356#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
357#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
358
359/*
360 * global information about all sessions
361 * mostly used to synchronize between system wide and per-process
362 */
363typedef struct {
364 spinlock_t pfs_lock; /* lock the structure */
365
366 unsigned int pfs_task_sessions; /* number of per task sessions */
367 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
368 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
369 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
370 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
371} pfm_session_t;
372
373/*
374 * information about a PMC or PMD.
375 * dep_pmd[]: a bitmask of dependent PMD registers
376 * dep_pmc[]: a bitmask of dependent PMC registers
377 */
378typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
379typedef struct {
380 unsigned int type;
381 int pm_pos;
382 unsigned long default_value; /* power-on default value */
383 unsigned long reserved_mask; /* bitmask of reserved bits */
384 pfm_reg_check_t read_check;
385 pfm_reg_check_t write_check;
386 unsigned long dep_pmd[4];
387 unsigned long dep_pmc[4];
388} pfm_reg_desc_t;
389
390/* assume cnum is a valid monitor */
391#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
392
393/*
394 * This structure is initialized at boot time and contains
395 * a description of the PMU main characteristics.
396 *
397 * If the probe function is defined, detection is based
398 * on its return value:
399 * - 0 means recognized PMU
400 * - anything else means not supported
401 * When the probe function is not defined, then the pmu_family field
402 * is used and it must match the host CPU family such that:
403 * - cpu->family & config->pmu_family != 0
404 */
405typedef struct {
406 unsigned long ovfl_val; /* overflow value for counters */
407
408 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
409 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
410
411 unsigned int num_pmcs; /* number of PMCS: computed at init time */
412 unsigned int num_pmds; /* number of PMDS: computed at init time */
413 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
414 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
415
416 char *pmu_name; /* PMU family name */
417 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
418 unsigned int flags; /* pmu specific flags */
419 unsigned int num_ibrs; /* number of IBRS: computed at init time */
420 unsigned int num_dbrs; /* number of DBRS: computed at init time */
421 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
422 int (*probe)(void); /* customized probe routine */
423 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
424} pmu_config_t;
425/*
426 * PMU specific flags
427 */
428#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
429
430/*
431 * debug register related type definitions
432 */
433typedef struct {
434 unsigned long ibr_mask:56;
435 unsigned long ibr_plm:4;
436 unsigned long ibr_ig:3;
437 unsigned long ibr_x:1;
438} ibr_mask_reg_t;
439
440typedef struct {
441 unsigned long dbr_mask:56;
442 unsigned long dbr_plm:4;
443 unsigned long dbr_ig:2;
444 unsigned long dbr_w:1;
445 unsigned long dbr_r:1;
446} dbr_mask_reg_t;
447
448typedef union {
449 unsigned long val;
450 ibr_mask_reg_t ibr;
451 dbr_mask_reg_t dbr;
452} dbreg_t;
453
454
455/*
456 * perfmon command descriptions
457 */
458typedef struct {
459 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
460 char *cmd_name;
461 int cmd_flags;
462 unsigned int cmd_narg;
463 size_t cmd_argsize;
464 int (*cmd_getsize)(void *arg, size_t *sz);
465} pfm_cmd_desc_t;
466
467#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
468#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
469#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
470#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
471
472
473#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
474#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
475#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
476#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
477#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
478
479#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
480
1da177e4
LT
481typedef struct {
482 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
483 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
484 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
485 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
486 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
487 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
488 unsigned long pfm_smpl_handler_calls;
489 unsigned long pfm_smpl_handler_cycles;
490 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
491} pfm_stats_t;
492
493/*
494 * perfmon internal variables
495 */
496static pfm_stats_t pfm_stats[NR_CPUS];
497static pfm_session_t pfm_sessions; /* global sessions information */
498
fe12e25e 499static spinlock_t pfm_alt_install_check = SPIN_LOCK_UNLOCKED;
a1ecf7f6
TL
500static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
501
1da177e4
LT
502static struct proc_dir_entry *perfmon_dir;
503static pfm_uuid_t pfm_null_uuid = {0,};
504
505static spinlock_t pfm_buffer_fmt_lock;
506static LIST_HEAD(pfm_buffer_fmt_list);
507
508static pmu_config_t *pmu_conf;
509
510/* sysctl() controls */
4944930a
SE
511pfm_sysctl_t pfm_sysctl;
512EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
513
514static ctl_table pfm_ctl_table[]={
515 {1, "debug", &pfm_sysctl.debug, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
516 {2, "debug_ovfl", &pfm_sysctl.debug_ovfl, sizeof(int), 0666, NULL, &proc_dointvec, NULL,},
517 {3, "fastctxsw", &pfm_sysctl.fastctxsw, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
518 {4, "expert_mode", &pfm_sysctl.expert_mode, sizeof(int), 0600, NULL, &proc_dointvec, NULL,},
519 { 0, },
520};
521static ctl_table pfm_sysctl_dir[] = {
522 {1, "perfmon", NULL, 0, 0755, pfm_ctl_table, },
523 {0,},
524};
525static ctl_table pfm_sysctl_root[] = {
526 {1, "kernel", NULL, 0, 0755, pfm_sysctl_dir, },
527 {0,},
528};
529static struct ctl_table_header *pfm_sysctl_header;
530
531static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
532static int pfm_flush(struct file *filp);
533
534#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
535#define pfm_get_cpu_data(a,b) per_cpu(a, b)
536
537static inline void
538pfm_put_task(struct task_struct *task)
539{
540 if (task != current) put_task_struct(task);
541}
542
543static inline void
544pfm_set_task_notify(struct task_struct *task)
545{
546 struct thread_info *info;
547
548 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
549 set_bit(TIF_NOTIFY_RESUME, &info->flags);
550}
551
552static inline void
553pfm_clear_task_notify(void)
554{
555 clear_thread_flag(TIF_NOTIFY_RESUME);
556}
557
558static inline void
559pfm_reserve_page(unsigned long a)
560{
561 SetPageReserved(vmalloc_to_page((void *)a));
562}
563static inline void
564pfm_unreserve_page(unsigned long a)
565{
566 ClearPageReserved(vmalloc_to_page((void*)a));
567}
568
569static inline unsigned long
570pfm_protect_ctx_ctxsw(pfm_context_t *x)
571{
572 spin_lock(&(x)->ctx_lock);
573 return 0UL;
574}
575
576static inline unsigned long
577pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
578{
579 spin_unlock(&(x)->ctx_lock);
580}
581
582static inline unsigned int
583pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
584{
585 return do_munmap(mm, addr, len);
586}
587
588static inline unsigned long
589pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
590{
591 return get_unmapped_area(file, addr, len, pgoff, flags);
592}
593
594
595static struct super_block *
596pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
597{
598 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC);
599}
600
601static struct file_system_type pfm_fs_type = {
602 .name = "pfmfs",
603 .get_sb = pfmfs_get_sb,
604 .kill_sb = kill_anon_super,
605};
606
607DEFINE_PER_CPU(unsigned long, pfm_syst_info);
608DEFINE_PER_CPU(struct task_struct *, pmu_owner);
609DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
610DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 611EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
612
613
614/* forward declaration */
615static struct file_operations pfm_file_ops;
616
617/*
618 * forward declarations
619 */
620#ifndef CONFIG_SMP
621static void pfm_lazy_save_regs (struct task_struct *ta);
622#endif
623
624void dump_pmu_state(const char *);
625static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
626
627#include "perfmon_itanium.h"
628#include "perfmon_mckinley.h"
629#include "perfmon_generic.h"
630
631static pmu_config_t *pmu_confs[]={
632 &pmu_conf_mck,
633 &pmu_conf_ita,
634 &pmu_conf_gen, /* must be last */
635 NULL
636};
637
638
639static int pfm_end_notify_user(pfm_context_t *ctx);
640
641static inline void
642pfm_clear_psr_pp(void)
643{
644 ia64_rsm(IA64_PSR_PP);
645 ia64_srlz_i();
646}
647
648static inline void
649pfm_set_psr_pp(void)
650{
651 ia64_ssm(IA64_PSR_PP);
652 ia64_srlz_i();
653}
654
655static inline void
656pfm_clear_psr_up(void)
657{
658 ia64_rsm(IA64_PSR_UP);
659 ia64_srlz_i();
660}
661
662static inline void
663pfm_set_psr_up(void)
664{
665 ia64_ssm(IA64_PSR_UP);
666 ia64_srlz_i();
667}
668
669static inline unsigned long
670pfm_get_psr(void)
671{
672 unsigned long tmp;
673 tmp = ia64_getreg(_IA64_REG_PSR);
674 ia64_srlz_i();
675 return tmp;
676}
677
678static inline void
679pfm_set_psr_l(unsigned long val)
680{
681 ia64_setreg(_IA64_REG_PSR_L, val);
682 ia64_srlz_i();
683}
684
685static inline void
686pfm_freeze_pmu(void)
687{
688 ia64_set_pmc(0,1UL);
689 ia64_srlz_d();
690}
691
692static inline void
693pfm_unfreeze_pmu(void)
694{
695 ia64_set_pmc(0,0UL);
696 ia64_srlz_d();
697}
698
699static inline void
700pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
701{
702 int i;
703
704 for (i=0; i < nibrs; i++) {
705 ia64_set_ibr(i, ibrs[i]);
706 ia64_dv_serialize_instruction();
707 }
708 ia64_srlz_i();
709}
710
711static inline void
712pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
713{
714 int i;
715
716 for (i=0; i < ndbrs; i++) {
717 ia64_set_dbr(i, dbrs[i]);
718 ia64_dv_serialize_data();
719 }
720 ia64_srlz_d();
721}
722
723/*
724 * PMD[i] must be a counter. no check is made
725 */
726static inline unsigned long
727pfm_read_soft_counter(pfm_context_t *ctx, int i)
728{
729 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
730}
731
732/*
733 * PMD[i] must be a counter. no check is made
734 */
735static inline void
736pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
737{
738 unsigned long ovfl_val = pmu_conf->ovfl_val;
739
740 ctx->ctx_pmds[i].val = val & ~ovfl_val;
741 /*
742 * writing to unimplemented part is ignore, so we do not need to
743 * mask off top part
744 */
745 ia64_set_pmd(i, val & ovfl_val);
746}
747
748static pfm_msg_t *
749pfm_get_new_msg(pfm_context_t *ctx)
750{
751 int idx, next;
752
753 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
754
755 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
756 if (next == ctx->ctx_msgq_head) return NULL;
757
758 idx = ctx->ctx_msgq_tail;
759 ctx->ctx_msgq_tail = next;
760
761 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
762
763 return ctx->ctx_msgq+idx;
764}
765
766static pfm_msg_t *
767pfm_get_next_msg(pfm_context_t *ctx)
768{
769 pfm_msg_t *msg;
770
771 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
772
773 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
774
775 /*
776 * get oldest message
777 */
778 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
779
780 /*
781 * and move forward
782 */
783 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
784
785 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
786
787 return msg;
788}
789
790static void
791pfm_reset_msgq(pfm_context_t *ctx)
792{
793 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
794 DPRINT(("ctx=%p msgq reset\n", ctx));
795}
796
797static void *
798pfm_rvmalloc(unsigned long size)
799{
800 void *mem;
801 unsigned long addr;
802
803 size = PAGE_ALIGN(size);
804 mem = vmalloc(size);
805 if (mem) {
806 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
807 memset(mem, 0, size);
808 addr = (unsigned long)mem;
809 while (size > 0) {
810 pfm_reserve_page(addr);
811 addr+=PAGE_SIZE;
812 size-=PAGE_SIZE;
813 }
814 }
815 return mem;
816}
817
818static void
819pfm_rvfree(void *mem, unsigned long size)
820{
821 unsigned long addr;
822
823 if (mem) {
824 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
825 addr = (unsigned long) mem;
826 while ((long) size > 0) {
827 pfm_unreserve_page(addr);
828 addr+=PAGE_SIZE;
829 size-=PAGE_SIZE;
830 }
831 vfree(mem);
832 }
833 return;
834}
835
836static pfm_context_t *
837pfm_context_alloc(void)
838{
839 pfm_context_t *ctx;
840
841 /*
842 * allocate context descriptor
843 * must be able to free with interrupts disabled
844 */
845 ctx = kmalloc(sizeof(pfm_context_t), GFP_KERNEL);
846 if (ctx) {
847 memset(ctx, 0, sizeof(pfm_context_t));
848 DPRINT(("alloc ctx @%p\n", ctx));
849 }
850 return ctx;
851}
852
853static void
854pfm_context_free(pfm_context_t *ctx)
855{
856 if (ctx) {
857 DPRINT(("free ctx @%p\n", ctx));
858 kfree(ctx);
859 }
860}
861
862static void
863pfm_mask_monitoring(struct task_struct *task)
864{
865 pfm_context_t *ctx = PFM_GET_CTX(task);
866 struct thread_struct *th = &task->thread;
867 unsigned long mask, val, ovfl_mask;
868 int i;
869
870 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
871
872 ovfl_mask = pmu_conf->ovfl_val;
873 /*
874 * monitoring can only be masked as a result of a valid
875 * counter overflow. In UP, it means that the PMU still
876 * has an owner. Note that the owner can be different
877 * from the current task. However the PMU state belongs
878 * to the owner.
879 * In SMP, a valid overflow only happens when task is
880 * current. Therefore if we come here, we know that
881 * the PMU state belongs to the current task, therefore
882 * we can access the live registers.
883 *
884 * So in both cases, the live register contains the owner's
885 * state. We can ONLY touch the PMU registers and NOT the PSR.
886 *
887 * As a consequence to this call, the thread->pmds[] array
888 * contains stale information which must be ignored
889 * when context is reloaded AND monitoring is active (see
890 * pfm_restart).
891 */
892 mask = ctx->ctx_used_pmds[0];
893 for (i = 0; mask; i++, mask>>=1) {
894 /* skip non used pmds */
895 if ((mask & 0x1) == 0) continue;
896 val = ia64_get_pmd(i);
897
898 if (PMD_IS_COUNTING(i)) {
899 /*
900 * we rebuild the full 64 bit value of the counter
901 */
902 ctx->ctx_pmds[i].val += (val & ovfl_mask);
903 } else {
904 ctx->ctx_pmds[i].val = val;
905 }
906 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
907 i,
908 ctx->ctx_pmds[i].val,
909 val & ovfl_mask));
910 }
911 /*
912 * mask monitoring by setting the privilege level to 0
913 * we cannot use psr.pp/psr.up for this, it is controlled by
914 * the user
915 *
916 * if task is current, modify actual registers, otherwise modify
917 * thread save state, i.e., what will be restored in pfm_load_regs()
918 */
919 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
920 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
921 if ((mask & 0x1) == 0UL) continue;
922 ia64_set_pmc(i, th->pmcs[i] & ~0xfUL);
923 th->pmcs[i] &= ~0xfUL;
924 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, th->pmcs[i]));
925 }
926 /*
927 * make all of this visible
928 */
929 ia64_srlz_d();
930}
931
932/*
933 * must always be done with task == current
934 *
935 * context must be in MASKED state when calling
936 */
937static void
938pfm_restore_monitoring(struct task_struct *task)
939{
940 pfm_context_t *ctx = PFM_GET_CTX(task);
941 struct thread_struct *th = &task->thread;
942 unsigned long mask, ovfl_mask;
943 unsigned long psr, val;
944 int i, is_system;
945
946 is_system = ctx->ctx_fl_system;
947 ovfl_mask = pmu_conf->ovfl_val;
948
949 if (task != current) {
950 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
951 return;
952 }
953 if (ctx->ctx_state != PFM_CTX_MASKED) {
954 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
955 task->pid, current->pid, ctx->ctx_state);
956 return;
957 }
958 psr = pfm_get_psr();
959 /*
960 * monitoring is masked via the PMC.
961 * As we restore their value, we do not want each counter to
962 * restart right away. We stop monitoring using the PSR,
963 * restore the PMC (and PMD) and then re-establish the psr
964 * as it was. Note that there can be no pending overflow at
965 * this point, because monitoring was MASKED.
966 *
967 * system-wide session are pinned and self-monitoring
968 */
969 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
970 /* disable dcr pp */
971 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
972 pfm_clear_psr_pp();
973 } else {
974 pfm_clear_psr_up();
975 }
976 /*
977 * first, we restore the PMD
978 */
979 mask = ctx->ctx_used_pmds[0];
980 for (i = 0; mask; i++, mask>>=1) {
981 /* skip non used pmds */
982 if ((mask & 0x1) == 0) continue;
983
984 if (PMD_IS_COUNTING(i)) {
985 /*
986 * we split the 64bit value according to
987 * counter width
988 */
989 val = ctx->ctx_pmds[i].val & ovfl_mask;
990 ctx->ctx_pmds[i].val &= ~ovfl_mask;
991 } else {
992 val = ctx->ctx_pmds[i].val;
993 }
994 ia64_set_pmd(i, val);
995
996 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
997 i,
998 ctx->ctx_pmds[i].val,
999 val));
1000 }
1001 /*
1002 * restore the PMCs
1003 */
1004 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1005 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1006 if ((mask & 0x1) == 0UL) continue;
1007 th->pmcs[i] = ctx->ctx_pmcs[i];
1008 ia64_set_pmc(i, th->pmcs[i]);
1009 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, th->pmcs[i]));
1010 }
1011 ia64_srlz_d();
1012
1013 /*
1014 * must restore DBR/IBR because could be modified while masked
1015 * XXX: need to optimize
1016 */
1017 if (ctx->ctx_fl_using_dbreg) {
1018 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1019 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1020 }
1021
1022 /*
1023 * now restore PSR
1024 */
1025 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 /* enable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1028 ia64_srlz_i();
1029 }
1030 pfm_set_psr_l(psr);
1031}
1032
1033static inline void
1034pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1035{
1036 int i;
1037
1038 ia64_srlz_d();
1039
1040 for (i=0; mask; i++, mask>>=1) {
1041 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1042 }
1043}
1044
1045/*
1046 * reload from thread state (used for ctxw only)
1047 */
1048static inline void
1049pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1050{
1051 int i;
1052 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1053
1054 for (i=0; mask; i++, mask>>=1) {
1055 if ((mask & 0x1) == 0) continue;
1056 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1057 ia64_set_pmd(i, val);
1058 }
1059 ia64_srlz_d();
1060}
1061
1062/*
1063 * propagate PMD from context to thread-state
1064 */
1065static inline void
1066pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1067{
1068 struct thread_struct *thread = &task->thread;
1069 unsigned long ovfl_val = pmu_conf->ovfl_val;
1070 unsigned long mask = ctx->ctx_all_pmds[0];
1071 unsigned long val;
1072 int i;
1073
1074 DPRINT(("mask=0x%lx\n", mask));
1075
1076 for (i=0; mask; i++, mask>>=1) {
1077
1078 val = ctx->ctx_pmds[i].val;
1079
1080 /*
1081 * We break up the 64 bit value into 2 pieces
1082 * the lower bits go to the machine state in the
1083 * thread (will be reloaded on ctxsw in).
1084 * The upper part stays in the soft-counter.
1085 */
1086 if (PMD_IS_COUNTING(i)) {
1087 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1088 val &= ovfl_val;
1089 }
1090 thread->pmds[i] = val;
1091
1092 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1093 i,
1094 thread->pmds[i],
1095 ctx->ctx_pmds[i].val));
1096 }
1097}
1098
1099/*
1100 * propagate PMC from context to thread-state
1101 */
1102static inline void
1103pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1104{
1105 struct thread_struct *thread = &task->thread;
1106 unsigned long mask = ctx->ctx_all_pmcs[0];
1107 int i;
1108
1109 DPRINT(("mask=0x%lx\n", mask));
1110
1111 for (i=0; mask; i++, mask>>=1) {
1112 /* masking 0 with ovfl_val yields 0 */
1113 thread->pmcs[i] = ctx->ctx_pmcs[i];
1114 DPRINT(("pmc[%d]=0x%lx\n", i, thread->pmcs[i]));
1115 }
1116}
1117
1118
1119
1120static inline void
1121pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1122{
1123 int i;
1124
1125 for (i=0; mask; i++, mask>>=1) {
1126 if ((mask & 0x1) == 0) continue;
1127 ia64_set_pmc(i, pmcs[i]);
1128 }
1129 ia64_srlz_d();
1130}
1131
1132static inline int
1133pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1134{
1135 return memcmp(a, b, sizeof(pfm_uuid_t));
1136}
1137
1138static inline int
1139pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1140{
1141 int ret = 0;
1142 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1143 return ret;
1144}
1145
1146static inline int
1147pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1148{
1149 int ret = 0;
1150 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1151 return ret;
1152}
1153
1154
1155static inline int
1156pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1157 int cpu, void *arg)
1158{
1159 int ret = 0;
1160 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1161 return ret;
1162}
1163
1164static inline int
1165pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1166 int cpu, void *arg)
1167{
1168 int ret = 0;
1169 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1170 return ret;
1171}
1172
1173static inline int
1174pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1175{
1176 int ret = 0;
1177 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1178 return ret;
1179}
1180
1181static inline int
1182pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1183{
1184 int ret = 0;
1185 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1186 return ret;
1187}
1188
1189static pfm_buffer_fmt_t *
1190__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1191{
1192 struct list_head * pos;
1193 pfm_buffer_fmt_t * entry;
1194
1195 list_for_each(pos, &pfm_buffer_fmt_list) {
1196 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1197 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1198 return entry;
1199 }
1200 return NULL;
1201}
1202
1203/*
1204 * find a buffer format based on its uuid
1205 */
1206static pfm_buffer_fmt_t *
1207pfm_find_buffer_fmt(pfm_uuid_t uuid)
1208{
1209 pfm_buffer_fmt_t * fmt;
1210 spin_lock(&pfm_buffer_fmt_lock);
1211 fmt = __pfm_find_buffer_fmt(uuid);
1212 spin_unlock(&pfm_buffer_fmt_lock);
1213 return fmt;
1214}
1215
1216int
1217pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1218{
1219 int ret = 0;
1220
1221 /* some sanity checks */
1222 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1223
1224 /* we need at least a handler */
1225 if (fmt->fmt_handler == NULL) return -EINVAL;
1226
1227 /*
1228 * XXX: need check validity of fmt_arg_size
1229 */
1230
1231 spin_lock(&pfm_buffer_fmt_lock);
1232
1233 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1234 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1235 ret = -EBUSY;
1236 goto out;
1237 }
1238 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1239 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1240
1241out:
1242 spin_unlock(&pfm_buffer_fmt_lock);
1243 return ret;
1244}
1245EXPORT_SYMBOL(pfm_register_buffer_fmt);
1246
1247int
1248pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1249{
1250 pfm_buffer_fmt_t *fmt;
1251 int ret = 0;
1252
1253 spin_lock(&pfm_buffer_fmt_lock);
1254
1255 fmt = __pfm_find_buffer_fmt(uuid);
1256 if (!fmt) {
1257 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1258 ret = -EINVAL;
1259 goto out;
1260 }
1261 list_del_init(&fmt->fmt_list);
1262 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1263
1264out:
1265 spin_unlock(&pfm_buffer_fmt_lock);
1266 return ret;
1267
1268}
1269EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1270
8df5a500
SE
1271extern void update_pal_halt_status(int);
1272
1da177e4
LT
1273static int
1274pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1275{
1276 unsigned long flags;
1277 /*
1278 * validy checks on cpu_mask have been done upstream
1279 */
1280 LOCK_PFS(flags);
1281
1282 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1283 pfm_sessions.pfs_sys_sessions,
1284 pfm_sessions.pfs_task_sessions,
1285 pfm_sessions.pfs_sys_use_dbregs,
1286 is_syswide,
1287 cpu));
1288
1289 if (is_syswide) {
1290 /*
1291 * cannot mix system wide and per-task sessions
1292 */
1293 if (pfm_sessions.pfs_task_sessions > 0UL) {
1294 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1295 pfm_sessions.pfs_task_sessions));
1296 goto abort;
1297 }
1298
1299 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1300
1301 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1302
1303 pfm_sessions.pfs_sys_session[cpu] = task;
1304
1305 pfm_sessions.pfs_sys_sessions++ ;
1306
1307 } else {
1308 if (pfm_sessions.pfs_sys_sessions) goto abort;
1309 pfm_sessions.pfs_task_sessions++;
1310 }
1311
1312 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1313 pfm_sessions.pfs_sys_sessions,
1314 pfm_sessions.pfs_task_sessions,
1315 pfm_sessions.pfs_sys_use_dbregs,
1316 is_syswide,
1317 cpu));
1318
8df5a500
SE
1319 /*
1320 * disable default_idle() to go to PAL_HALT
1321 */
1322 update_pal_halt_status(0);
1323
1da177e4
LT
1324 UNLOCK_PFS(flags);
1325
1326 return 0;
1327
1328error_conflict:
1329 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1330 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1331 cpu));
1da177e4
LT
1332abort:
1333 UNLOCK_PFS(flags);
1334
1335 return -EBUSY;
1336
1337}
1338
1339static int
1340pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1341{
1342 unsigned long flags;
1343 /*
1344 * validy checks on cpu_mask have been done upstream
1345 */
1346 LOCK_PFS(flags);
1347
1348 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1349 pfm_sessions.pfs_sys_sessions,
1350 pfm_sessions.pfs_task_sessions,
1351 pfm_sessions.pfs_sys_use_dbregs,
1352 is_syswide,
1353 cpu));
1354
1355
1356 if (is_syswide) {
1357 pfm_sessions.pfs_sys_session[cpu] = NULL;
1358 /*
1359 * would not work with perfmon+more than one bit in cpu_mask
1360 */
1361 if (ctx && ctx->ctx_fl_using_dbreg) {
1362 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1363 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1364 } else {
1365 pfm_sessions.pfs_sys_use_dbregs--;
1366 }
1367 }
1368 pfm_sessions.pfs_sys_sessions--;
1369 } else {
1370 pfm_sessions.pfs_task_sessions--;
1371 }
1372 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1373 pfm_sessions.pfs_sys_sessions,
1374 pfm_sessions.pfs_task_sessions,
1375 pfm_sessions.pfs_sys_use_dbregs,
1376 is_syswide,
1377 cpu));
1378
8df5a500
SE
1379 /*
1380 * if possible, enable default_idle() to go into PAL_HALT
1381 */
1382 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1383 update_pal_halt_status(1);
1384
1da177e4
LT
1385 UNLOCK_PFS(flags);
1386
1387 return 0;
1388}
1389
1390/*
1391 * removes virtual mapping of the sampling buffer.
1392 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1393 * a PROTECT_CTX() section.
1394 */
1395static int
1396pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1397{
1398 int r;
1399
1400 /* sanity checks */
1401 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1402 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1403 return -EINVAL;
1404 }
1405
1406 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1407
1408 /*
1409 * does the actual unmapping
1410 */
1411 down_write(&task->mm->mmap_sem);
1412
1413 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1414
1415 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1416
1417 up_write(&task->mm->mmap_sem);
1418 if (r !=0) {
1419 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1420 }
1421
1422 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1423
1424 return 0;
1425}
1426
1427/*
1428 * free actual physical storage used by sampling buffer
1429 */
1430#if 0
1431static int
1432pfm_free_smpl_buffer(pfm_context_t *ctx)
1433{
1434 pfm_buffer_fmt_t *fmt;
1435
1436 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1437
1438 /*
1439 * we won't use the buffer format anymore
1440 */
1441 fmt = ctx->ctx_buf_fmt;
1442
1443 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1444 ctx->ctx_smpl_hdr,
1445 ctx->ctx_smpl_size,
1446 ctx->ctx_smpl_vaddr));
1447
1448 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1449
1450 /*
1451 * free the buffer
1452 */
1453 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1454
1455 ctx->ctx_smpl_hdr = NULL;
1456 ctx->ctx_smpl_size = 0UL;
1457
1458 return 0;
1459
1460invalid_free:
1461 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1462 return -EINVAL;
1463}
1464#endif
1465
1466static inline void
1467pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1468{
1469 if (fmt == NULL) return;
1470
1471 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1472
1473}
1474
1475/*
1476 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1477 * no real gain from having the whole whorehouse mounted. So we don't need
1478 * any operations on the root directory. However, we need a non-trivial
1479 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1480 */
1481static struct vfsmount *pfmfs_mnt;
1482
1483static int __init
1484init_pfm_fs(void)
1485{
1486 int err = register_filesystem(&pfm_fs_type);
1487 if (!err) {
1488 pfmfs_mnt = kern_mount(&pfm_fs_type);
1489 err = PTR_ERR(pfmfs_mnt);
1490 if (IS_ERR(pfmfs_mnt))
1491 unregister_filesystem(&pfm_fs_type);
1492 else
1493 err = 0;
1494 }
1495 return err;
1496}
1497
1498static void __exit
1499exit_pfm_fs(void)
1500{
1501 unregister_filesystem(&pfm_fs_type);
1502 mntput(pfmfs_mnt);
1503}
1504
1505static ssize_t
1506pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1507{
1508 pfm_context_t *ctx;
1509 pfm_msg_t *msg;
1510 ssize_t ret;
1511 unsigned long flags;
1512 DECLARE_WAITQUEUE(wait, current);
1513 if (PFM_IS_FILE(filp) == 0) {
1514 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1515 return -EINVAL;
1516 }
1517
1518 ctx = (pfm_context_t *)filp->private_data;
1519 if (ctx == NULL) {
1520 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1521 return -EINVAL;
1522 }
1523
1524 /*
1525 * check even when there is no message
1526 */
1527 if (size < sizeof(pfm_msg_t)) {
1528 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1529 return -EINVAL;
1530 }
1531
1532 PROTECT_CTX(ctx, flags);
1533
1534 /*
1535 * put ourselves on the wait queue
1536 */
1537 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1538
1539
1540 for(;;) {
1541 /*
1542 * check wait queue
1543 */
1544
1545 set_current_state(TASK_INTERRUPTIBLE);
1546
1547 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1548
1549 ret = 0;
1550 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1551
1552 UNPROTECT_CTX(ctx, flags);
1553
1554 /*
1555 * check non-blocking read
1556 */
1557 ret = -EAGAIN;
1558 if(filp->f_flags & O_NONBLOCK) break;
1559
1560 /*
1561 * check pending signals
1562 */
1563 if(signal_pending(current)) {
1564 ret = -EINTR;
1565 break;
1566 }
1567 /*
1568 * no message, so wait
1569 */
1570 schedule();
1571
1572 PROTECT_CTX(ctx, flags);
1573 }
1574 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1575 set_current_state(TASK_RUNNING);
1576 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577
1578 if (ret < 0) goto abort;
1579
1580 ret = -EINVAL;
1581 msg = pfm_get_next_msg(ctx);
1582 if (msg == NULL) {
1583 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1584 goto abort_locked;
1585 }
1586
4944930a 1587 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1588
1589 ret = -EFAULT;
1590 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1591
1592abort_locked:
1593 UNPROTECT_CTX(ctx, flags);
1594abort:
1595 return ret;
1596}
1597
1598static ssize_t
1599pfm_write(struct file *file, const char __user *ubuf,
1600 size_t size, loff_t *ppos)
1601{
1602 DPRINT(("pfm_write called\n"));
1603 return -EINVAL;
1604}
1605
1606static unsigned int
1607pfm_poll(struct file *filp, poll_table * wait)
1608{
1609 pfm_context_t *ctx;
1610 unsigned long flags;
1611 unsigned int mask = 0;
1612
1613 if (PFM_IS_FILE(filp) == 0) {
1614 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1615 return 0;
1616 }
1617
1618 ctx = (pfm_context_t *)filp->private_data;
1619 if (ctx == NULL) {
1620 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1621 return 0;
1622 }
1623
1624
1625 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1626
1627 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1628
1629 PROTECT_CTX(ctx, flags);
1630
1631 if (PFM_CTXQ_EMPTY(ctx) == 0)
1632 mask = POLLIN | POLLRDNORM;
1633
1634 UNPROTECT_CTX(ctx, flags);
1635
1636 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1637
1638 return mask;
1639}
1640
1641static int
1642pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1643{
1644 DPRINT(("pfm_ioctl called\n"));
1645 return -EINVAL;
1646}
1647
1648/*
1649 * interrupt cannot be masked when coming here
1650 */
1651static inline int
1652pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1653{
1654 int ret;
1655
1656 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1657
1658 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1659 current->pid,
1660 fd,
1661 on,
1662 ctx->ctx_async_queue, ret));
1663
1664 return ret;
1665}
1666
1667static int
1668pfm_fasync(int fd, struct file *filp, int on)
1669{
1670 pfm_context_t *ctx;
1671 int ret;
1672
1673 if (PFM_IS_FILE(filp) == 0) {
1674 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1675 return -EBADF;
1676 }
1677
1678 ctx = (pfm_context_t *)filp->private_data;
1679 if (ctx == NULL) {
1680 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1681 return -EBADF;
1682 }
1683 /*
1684 * we cannot mask interrupts during this call because this may
1685 * may go to sleep if memory is not readily avalaible.
1686 *
1687 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1688 * done in caller. Serialization of this function is ensured by caller.
1689 */
1690 ret = pfm_do_fasync(fd, filp, ctx, on);
1691
1692
1693 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1694 fd,
1695 on,
1696 ctx->ctx_async_queue, ret));
1697
1698 return ret;
1699}
1700
1701#ifdef CONFIG_SMP
1702/*
1703 * this function is exclusively called from pfm_close().
1704 * The context is not protected at that time, nor are interrupts
1705 * on the remote CPU. That's necessary to avoid deadlocks.
1706 */
1707static void
1708pfm_syswide_force_stop(void *info)
1709{
1710 pfm_context_t *ctx = (pfm_context_t *)info;
1711 struct pt_regs *regs = ia64_task_regs(current);
1712 struct task_struct *owner;
1713 unsigned long flags;
1714 int ret;
1715
1716 if (ctx->ctx_cpu != smp_processor_id()) {
1717 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1718 ctx->ctx_cpu,
1719 smp_processor_id());
1720 return;
1721 }
1722 owner = GET_PMU_OWNER();
1723 if (owner != ctx->ctx_task) {
1724 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1725 smp_processor_id(),
1726 owner->pid, ctx->ctx_task->pid);
1727 return;
1728 }
1729 if (GET_PMU_CTX() != ctx) {
1730 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1731 smp_processor_id(),
1732 GET_PMU_CTX(), ctx);
1733 return;
1734 }
1735
1736 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1737 /*
1738 * the context is already protected in pfm_close(), we simply
1739 * need to mask interrupts to avoid a PMU interrupt race on
1740 * this CPU
1741 */
1742 local_irq_save(flags);
1743
1744 ret = pfm_context_unload(ctx, NULL, 0, regs);
1745 if (ret) {
1746 DPRINT(("context_unload returned %d\n", ret));
1747 }
1748
1749 /*
1750 * unmask interrupts, PMU interrupts are now spurious here
1751 */
1752 local_irq_restore(flags);
1753}
1754
1755static void
1756pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1757{
1758 int ret;
1759
1760 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1761 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1762 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1763}
1764#endif /* CONFIG_SMP */
1765
1766/*
1767 * called for each close(). Partially free resources.
1768 * When caller is self-monitoring, the context is unloaded.
1769 */
1770static int
1771pfm_flush(struct file *filp)
1772{
1773 pfm_context_t *ctx;
1774 struct task_struct *task;
1775 struct pt_regs *regs;
1776 unsigned long flags;
1777 unsigned long smpl_buf_size = 0UL;
1778 void *smpl_buf_vaddr = NULL;
1779 int state, is_system;
1780
1781 if (PFM_IS_FILE(filp) == 0) {
1782 DPRINT(("bad magic for\n"));
1783 return -EBADF;
1784 }
1785
1786 ctx = (pfm_context_t *)filp->private_data;
1787 if (ctx == NULL) {
1788 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1789 return -EBADF;
1790 }
1791
1792 /*
1793 * remove our file from the async queue, if we use this mode.
1794 * This can be done without the context being protected. We come
1795 * here when the context has become unreacheable by other tasks.
1796 *
1797 * We may still have active monitoring at this point and we may
1798 * end up in pfm_overflow_handler(). However, fasync_helper()
1799 * operates with interrupts disabled and it cleans up the
1800 * queue. If the PMU handler is called prior to entering
1801 * fasync_helper() then it will send a signal. If it is
1802 * invoked after, it will find an empty queue and no
1803 * signal will be sent. In both case, we are safe
1804 */
1805 if (filp->f_flags & FASYNC) {
1806 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1807 pfm_do_fasync (-1, filp, ctx, 0);
1808 }
1809
1810 PROTECT_CTX(ctx, flags);
1811
1812 state = ctx->ctx_state;
1813 is_system = ctx->ctx_fl_system;
1814
1815 task = PFM_CTX_TASK(ctx);
1816 regs = ia64_task_regs(task);
1817
1818 DPRINT(("ctx_state=%d is_current=%d\n",
1819 state,
1820 task == current ? 1 : 0));
1821
1822 /*
1823 * if state == UNLOADED, then task is NULL
1824 */
1825
1826 /*
1827 * we must stop and unload because we are losing access to the context.
1828 */
1829 if (task == current) {
1830#ifdef CONFIG_SMP
1831 /*
1832 * the task IS the owner but it migrated to another CPU: that's bad
1833 * but we must handle this cleanly. Unfortunately, the kernel does
1834 * not provide a mechanism to block migration (while the context is loaded).
1835 *
1836 * We need to release the resource on the ORIGINAL cpu.
1837 */
1838 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1839
1840 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1841 /*
1842 * keep context protected but unmask interrupt for IPI
1843 */
1844 local_irq_restore(flags);
1845
1846 pfm_syswide_cleanup_other_cpu(ctx);
1847
1848 /*
1849 * restore interrupt masking
1850 */
1851 local_irq_save(flags);
1852
1853 /*
1854 * context is unloaded at this point
1855 */
1856 } else
1857#endif /* CONFIG_SMP */
1858 {
1859
1860 DPRINT(("forcing unload\n"));
1861 /*
1862 * stop and unload, returning with state UNLOADED
1863 * and session unreserved.
1864 */
1865 pfm_context_unload(ctx, NULL, 0, regs);
1866
1867 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1868 }
1869 }
1870
1871 /*
1872 * remove virtual mapping, if any, for the calling task.
1873 * cannot reset ctx field until last user is calling close().
1874 *
1875 * ctx_smpl_vaddr must never be cleared because it is needed
1876 * by every task with access to the context
1877 *
1878 * When called from do_exit(), the mm context is gone already, therefore
1879 * mm is NULL, i.e., the VMA is already gone and we do not have to
1880 * do anything here
1881 */
1882 if (ctx->ctx_smpl_vaddr && current->mm) {
1883 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1884 smpl_buf_size = ctx->ctx_smpl_size;
1885 }
1886
1887 UNPROTECT_CTX(ctx, flags);
1888
1889 /*
1890 * if there was a mapping, then we systematically remove it
1891 * at this point. Cannot be done inside critical section
1892 * because some VM function reenables interrupts.
1893 *
1894 */
1895 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1896
1897 return 0;
1898}
1899/*
1900 * called either on explicit close() or from exit_files().
1901 * Only the LAST user of the file gets to this point, i.e., it is
1902 * called only ONCE.
1903 *
1904 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1905 * (fput()),i.e, last task to access the file. Nobody else can access the
1906 * file at this point.
1907 *
1908 * When called from exit_files(), the VMA has been freed because exit_mm()
1909 * is executed before exit_files().
1910 *
1911 * When called from exit_files(), the current task is not yet ZOMBIE but we
1912 * flush the PMU state to the context.
1913 */
1914static int
1915pfm_close(struct inode *inode, struct file *filp)
1916{
1917 pfm_context_t *ctx;
1918 struct task_struct *task;
1919 struct pt_regs *regs;
1920 DECLARE_WAITQUEUE(wait, current);
1921 unsigned long flags;
1922 unsigned long smpl_buf_size = 0UL;
1923 void *smpl_buf_addr = NULL;
1924 int free_possible = 1;
1925 int state, is_system;
1926
1927 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1928
1929 if (PFM_IS_FILE(filp) == 0) {
1930 DPRINT(("bad magic\n"));
1931 return -EBADF;
1932 }
1933
1934 ctx = (pfm_context_t *)filp->private_data;
1935 if (ctx == NULL) {
1936 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1937 return -EBADF;
1938 }
1939
1940 PROTECT_CTX(ctx, flags);
1941
1942 state = ctx->ctx_state;
1943 is_system = ctx->ctx_fl_system;
1944
1945 task = PFM_CTX_TASK(ctx);
1946 regs = ia64_task_regs(task);
1947
1948 DPRINT(("ctx_state=%d is_current=%d\n",
1949 state,
1950 task == current ? 1 : 0));
1951
1952 /*
1953 * if task == current, then pfm_flush() unloaded the context
1954 */
1955 if (state == PFM_CTX_UNLOADED) goto doit;
1956
1957 /*
1958 * context is loaded/masked and task != current, we need to
1959 * either force an unload or go zombie
1960 */
1961
1962 /*
1963 * The task is currently blocked or will block after an overflow.
1964 * we must force it to wakeup to get out of the
1965 * MASKED state and transition to the unloaded state by itself.
1966 *
1967 * This situation is only possible for per-task mode
1968 */
1969 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
1970
1971 /*
1972 * set a "partial" zombie state to be checked
1973 * upon return from down() in pfm_handle_work().
1974 *
1975 * We cannot use the ZOMBIE state, because it is checked
1976 * by pfm_load_regs() which is called upon wakeup from down().
1977 * In such case, it would free the context and then we would
1978 * return to pfm_handle_work() which would access the
1979 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1980 * but visible to pfm_handle_work().
1981 *
1982 * For some window of time, we have a zombie context with
1983 * ctx_state = MASKED and not ZOMBIE
1984 */
1985 ctx->ctx_fl_going_zombie = 1;
1986
1987 /*
1988 * force task to wake up from MASKED state
1989 */
1990 up(&ctx->ctx_restart_sem);
1991
1992 DPRINT(("waking up ctx_state=%d\n", state));
1993
1994 /*
1995 * put ourself to sleep waiting for the other
1996 * task to report completion
1997 *
1998 * the context is protected by mutex, therefore there
1999 * is no risk of being notified of completion before
2000 * begin actually on the waitq.
2001 */
2002 set_current_state(TASK_INTERRUPTIBLE);
2003 add_wait_queue(&ctx->ctx_zombieq, &wait);
2004
2005 UNPROTECT_CTX(ctx, flags);
2006
2007 /*
2008 * XXX: check for signals :
2009 * - ok for explicit close
2010 * - not ok when coming from exit_files()
2011 */
2012 schedule();
2013
2014
2015 PROTECT_CTX(ctx, flags);
2016
2017
2018 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2019 set_current_state(TASK_RUNNING);
2020
2021 /*
2022 * context is unloaded at this point
2023 */
2024 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2025 }
2026 else if (task != current) {
2027#ifdef CONFIG_SMP
2028 /*
2029 * switch context to zombie state
2030 */
2031 ctx->ctx_state = PFM_CTX_ZOMBIE;
2032
2033 DPRINT(("zombie ctx for [%d]\n", task->pid));
2034 /*
2035 * cannot free the context on the spot. deferred until
2036 * the task notices the ZOMBIE state
2037 */
2038 free_possible = 0;
2039#else
2040 pfm_context_unload(ctx, NULL, 0, regs);
2041#endif
2042 }
2043
2044doit:
2045 /* reload state, may have changed during opening of critical section */
2046 state = ctx->ctx_state;
2047
2048 /*
2049 * the context is still attached to a task (possibly current)
2050 * we cannot destroy it right now
2051 */
2052
2053 /*
2054 * we must free the sampling buffer right here because
2055 * we cannot rely on it being cleaned up later by the
2056 * monitored task. It is not possible to free vmalloc'ed
2057 * memory in pfm_load_regs(). Instead, we remove the buffer
2058 * now. should there be subsequent PMU overflow originally
2059 * meant for sampling, the will be converted to spurious
2060 * and that's fine because the monitoring tools is gone anyway.
2061 */
2062 if (ctx->ctx_smpl_hdr) {
2063 smpl_buf_addr = ctx->ctx_smpl_hdr;
2064 smpl_buf_size = ctx->ctx_smpl_size;
2065 /* no more sampling */
2066 ctx->ctx_smpl_hdr = NULL;
2067 ctx->ctx_fl_is_sampling = 0;
2068 }
2069
2070 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2071 state,
2072 free_possible,
2073 smpl_buf_addr,
2074 smpl_buf_size));
2075
2076 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2077
2078 /*
2079 * UNLOADED that the session has already been unreserved.
2080 */
2081 if (state == PFM_CTX_ZOMBIE) {
2082 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2083 }
2084
2085 /*
2086 * disconnect file descriptor from context must be done
2087 * before we unlock.
2088 */
2089 filp->private_data = NULL;
2090
2091 /*
2092 * if we free on the spot, the context is now completely unreacheable
2093 * from the callers side. The monitored task side is also cut, so we
2094 * can freely cut.
2095 *
2096 * If we have a deferred free, only the caller side is disconnected.
2097 */
2098 UNPROTECT_CTX(ctx, flags);
2099
2100 /*
2101 * All memory free operations (especially for vmalloc'ed memory)
2102 * MUST be done with interrupts ENABLED.
2103 */
2104 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2105
2106 /*
2107 * return the memory used by the context
2108 */
2109 if (free_possible) pfm_context_free(ctx);
2110
2111 return 0;
2112}
2113
2114static int
2115pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2116{
2117 DPRINT(("pfm_no_open called\n"));
2118 return -ENXIO;
2119}
2120
2121
2122
2123static struct file_operations pfm_file_ops = {
2124 .llseek = no_llseek,
2125 .read = pfm_read,
2126 .write = pfm_write,
2127 .poll = pfm_poll,
2128 .ioctl = pfm_ioctl,
2129 .open = pfm_no_open, /* special open code to disallow open via /proc */
2130 .fasync = pfm_fasync,
2131 .release = pfm_close,
2132 .flush = pfm_flush
2133};
2134
2135static int
2136pfmfs_delete_dentry(struct dentry *dentry)
2137{
2138 return 1;
2139}
2140
2141static struct dentry_operations pfmfs_dentry_operations = {
2142 .d_delete = pfmfs_delete_dentry,
2143};
2144
2145
2146static int
2147pfm_alloc_fd(struct file **cfile)
2148{
2149 int fd, ret = 0;
2150 struct file *file = NULL;
2151 struct inode * inode;
2152 char name[32];
2153 struct qstr this;
2154
2155 fd = get_unused_fd();
2156 if (fd < 0) return -ENFILE;
2157
2158 ret = -ENFILE;
2159
2160 file = get_empty_filp();
2161 if (!file) goto out;
2162
2163 /*
2164 * allocate a new inode
2165 */
2166 inode = new_inode(pfmfs_mnt->mnt_sb);
2167 if (!inode) goto out;
2168
2169 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2170
2171 inode->i_mode = S_IFCHR|S_IRUGO;
2172 inode->i_uid = current->fsuid;
2173 inode->i_gid = current->fsgid;
2174
2175 sprintf(name, "[%lu]", inode->i_ino);
2176 this.name = name;
2177 this.len = strlen(name);
2178 this.hash = inode->i_ino;
2179
2180 ret = -ENOMEM;
2181
2182 /*
2183 * allocate a new dcache entry
2184 */
2185 file->f_dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2186 if (!file->f_dentry) goto out;
2187
2188 file->f_dentry->d_op = &pfmfs_dentry_operations;
2189
2190 d_add(file->f_dentry, inode);
2191 file->f_vfsmnt = mntget(pfmfs_mnt);
2192 file->f_mapping = inode->i_mapping;
2193
2194 file->f_op = &pfm_file_ops;
2195 file->f_mode = FMODE_READ;
2196 file->f_flags = O_RDONLY;
2197 file->f_pos = 0;
2198
2199 /*
2200 * may have to delay until context is attached?
2201 */
2202 fd_install(fd, file);
2203
2204 /*
2205 * the file structure we will use
2206 */
2207 *cfile = file;
2208
2209 return fd;
2210out:
2211 if (file) put_filp(file);
2212 put_unused_fd(fd);
2213 return ret;
2214}
2215
2216static void
2217pfm_free_fd(int fd, struct file *file)
2218{
2219 struct files_struct *files = current->files;
2220
2221 /*
2222 * there ie no fd_uninstall(), so we do it here
2223 */
2224 spin_lock(&files->file_lock);
2225 files->fd[fd] = NULL;
2226 spin_unlock(&files->file_lock);
2227
2228 if (file) put_filp(file);
2229 put_unused_fd(fd);
2230}
2231
2232static int
2233pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2234{
2235 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2236
2237 while (size > 0) {
2238 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2239
2240
2241 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2242 return -ENOMEM;
2243
2244 addr += PAGE_SIZE;
2245 buf += PAGE_SIZE;
2246 size -= PAGE_SIZE;
2247 }
2248 return 0;
2249}
2250
2251/*
2252 * allocate a sampling buffer and remaps it into the user address space of the task
2253 */
2254static int
2255pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2256{
2257 struct mm_struct *mm = task->mm;
2258 struct vm_area_struct *vma = NULL;
2259 unsigned long size;
2260 void *smpl_buf;
2261
2262
2263 /*
2264 * the fixed header + requested size and align to page boundary
2265 */
2266 size = PAGE_ALIGN(rsize);
2267
2268 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2269
2270 /*
2271 * check requested size to avoid Denial-of-service attacks
2272 * XXX: may have to refine this test
2273 * Check against address space limit.
2274 *
2275 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2276 * return -ENOMEM;
2277 */
2278 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2279 return -ENOMEM;
2280
2281 /*
2282 * We do the easy to undo allocations first.
2283 *
2284 * pfm_rvmalloc(), clears the buffer, so there is no leak
2285 */
2286 smpl_buf = pfm_rvmalloc(size);
2287 if (smpl_buf == NULL) {
2288 DPRINT(("Can't allocate sampling buffer\n"));
2289 return -ENOMEM;
2290 }
2291
2292 DPRINT(("smpl_buf @%p\n", smpl_buf));
2293
2294 /* allocate vma */
2295 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
2296 if (!vma) {
2297 DPRINT(("Cannot allocate vma\n"));
2298 goto error_kmem;
2299 }
2300 memset(vma, 0, sizeof(*vma));
2301
2302 /*
2303 * partially initialize the vma for the sampling buffer
2304 */
2305 vma->vm_mm = mm;
2306 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2307 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2308
2309 /*
2310 * Now we have everything we need and we can initialize
2311 * and connect all the data structures
2312 */
2313
2314 ctx->ctx_smpl_hdr = smpl_buf;
2315 ctx->ctx_smpl_size = size; /* aligned size */
2316
2317 /*
2318 * Let's do the difficult operations next.
2319 *
2320 * now we atomically find some area in the address space and
2321 * remap the buffer in it.
2322 */
2323 down_write(&task->mm->mmap_sem);
2324
2325 /* find some free area in address space, must have mmap sem held */
2326 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2327 if (vma->vm_start == 0UL) {
2328 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2329 up_write(&task->mm->mmap_sem);
2330 goto error;
2331 }
2332 vma->vm_end = vma->vm_start + size;
2333 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2334
2335 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2336
2337 /* can only be applied to current task, need to have the mm semaphore held when called */
2338 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2339 DPRINT(("Can't remap buffer\n"));
2340 up_write(&task->mm->mmap_sem);
2341 goto error;
2342 }
2343
2344 /*
2345 * now insert the vma in the vm list for the process, must be
2346 * done with mmap lock held
2347 */
2348 insert_vm_struct(mm, vma);
2349
2350 mm->total_vm += size >> PAGE_SHIFT;
2351 vm_stat_account(vma);
2352 up_write(&task->mm->mmap_sem);
2353
2354 /*
2355 * keep track of user level virtual address
2356 */
2357 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2358 *(unsigned long *)user_vaddr = vma->vm_start;
2359
2360 return 0;
2361
2362error:
2363 kmem_cache_free(vm_area_cachep, vma);
2364error_kmem:
2365 pfm_rvfree(smpl_buf, size);
2366
2367 return -ENOMEM;
2368}
2369
2370/*
2371 * XXX: do something better here
2372 */
2373static int
2374pfm_bad_permissions(struct task_struct *task)
2375{
2376 /* inspired by ptrace_attach() */
2377 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2378 current->uid,
2379 current->gid,
2380 task->euid,
2381 task->suid,
2382 task->uid,
2383 task->egid,
2384 task->sgid));
2385
2386 return ((current->uid != task->euid)
2387 || (current->uid != task->suid)
2388 || (current->uid != task->uid)
2389 || (current->gid != task->egid)
2390 || (current->gid != task->sgid)
2391 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2392}
2393
2394static int
2395pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2396{
2397 int ctx_flags;
2398
2399 /* valid signal */
2400
2401 ctx_flags = pfx->ctx_flags;
2402
2403 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2404
2405 /*
2406 * cannot block in this mode
2407 */
2408 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2409 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2410 return -EINVAL;
2411 }
2412 } else {
2413 }
2414 /* probably more to add here */
2415
2416 return 0;
2417}
2418
2419static int
2420pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2421 unsigned int cpu, pfarg_context_t *arg)
2422{
2423 pfm_buffer_fmt_t *fmt = NULL;
2424 unsigned long size = 0UL;
2425 void *uaddr = NULL;
2426 void *fmt_arg = NULL;
2427 int ret = 0;
2428#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2429
2430 /* invoke and lock buffer format, if found */
2431 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2432 if (fmt == NULL) {
2433 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2434 return -EINVAL;
2435 }
2436
2437 /*
2438 * buffer argument MUST be contiguous to pfarg_context_t
2439 */
2440 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2441
2442 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2443
2444 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2445
2446 if (ret) goto error;
2447
2448 /* link buffer format and context */
2449 ctx->ctx_buf_fmt = fmt;
2450
2451 /*
2452 * check if buffer format wants to use perfmon buffer allocation/mapping service
2453 */
2454 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2455 if (ret) goto error;
2456
2457 if (size) {
2458 /*
2459 * buffer is always remapped into the caller's address space
2460 */
2461 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2462 if (ret) goto error;
2463
2464 /* keep track of user address of buffer */
2465 arg->ctx_smpl_vaddr = uaddr;
2466 }
2467 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2468
2469error:
2470 return ret;
2471}
2472
2473static void
2474pfm_reset_pmu_state(pfm_context_t *ctx)
2475{
2476 int i;
2477
2478 /*
2479 * install reset values for PMC.
2480 */
2481 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2482 if (PMC_IS_IMPL(i) == 0) continue;
2483 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2484 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2485 }
2486 /*
2487 * PMD registers are set to 0UL when the context in memset()
2488 */
2489
2490 /*
2491 * On context switched restore, we must restore ALL pmc and ALL pmd even
2492 * when they are not actively used by the task. In UP, the incoming process
2493 * may otherwise pick up left over PMC, PMD state from the previous process.
2494 * As opposed to PMD, stale PMC can cause harm to the incoming
2495 * process because they may change what is being measured.
2496 * Therefore, we must systematically reinstall the entire
2497 * PMC state. In SMP, the same thing is possible on the
2498 * same CPU but also on between 2 CPUs.
2499 *
2500 * The problem with PMD is information leaking especially
2501 * to user level when psr.sp=0
2502 *
2503 * There is unfortunately no easy way to avoid this problem
2504 * on either UP or SMP. This definitively slows down the
2505 * pfm_load_regs() function.
2506 */
2507
2508 /*
2509 * bitmask of all PMCs accessible to this context
2510 *
2511 * PMC0 is treated differently.
2512 */
2513 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2514
2515 /*
2516 * bitmask of all PMDs that are accesible to this context
2517 */
2518 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2519
2520 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2521
2522 /*
2523 * useful in case of re-enable after disable
2524 */
2525 ctx->ctx_used_ibrs[0] = 0UL;
2526 ctx->ctx_used_dbrs[0] = 0UL;
2527}
2528
2529static int
2530pfm_ctx_getsize(void *arg, size_t *sz)
2531{
2532 pfarg_context_t *req = (pfarg_context_t *)arg;
2533 pfm_buffer_fmt_t *fmt;
2534
2535 *sz = 0;
2536
2537 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2538
2539 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2540 if (fmt == NULL) {
2541 DPRINT(("cannot find buffer format\n"));
2542 return -EINVAL;
2543 }
2544 /* get just enough to copy in user parameters */
2545 *sz = fmt->fmt_arg_size;
2546 DPRINT(("arg_size=%lu\n", *sz));
2547
2548 return 0;
2549}
2550
2551
2552
2553/*
2554 * cannot attach if :
2555 * - kernel task
2556 * - task not owned by caller
2557 * - task incompatible with context mode
2558 */
2559static int
2560pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2561{
2562 /*
2563 * no kernel task or task not owner by caller
2564 */
2565 if (task->mm == NULL) {
2566 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2567 return -EPERM;
2568 }
2569 if (pfm_bad_permissions(task)) {
2570 DPRINT(("no permission to attach to [%d]\n", task->pid));
2571 return -EPERM;
2572 }
2573 /*
2574 * cannot block in self-monitoring mode
2575 */
2576 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2577 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2578 return -EINVAL;
2579 }
2580
2581 if (task->exit_state == EXIT_ZOMBIE) {
2582 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2583 return -EBUSY;
2584 }
2585
2586 /*
2587 * always ok for self
2588 */
2589 if (task == current) return 0;
2590
2591 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2592 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2593 return -EBUSY;
2594 }
2595 /*
2596 * make sure the task is off any CPU
2597 */
2598 wait_task_inactive(task);
2599
2600 /* more to come... */
2601
2602 return 0;
2603}
2604
2605static int
2606pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2607{
2608 struct task_struct *p = current;
2609 int ret;
2610
2611 /* XXX: need to add more checks here */
2612 if (pid < 2) return -EPERM;
2613
2614 if (pid != current->pid) {
2615
2616 read_lock(&tasklist_lock);
2617
2618 p = find_task_by_pid(pid);
2619
2620 /* make sure task cannot go away while we operate on it */
2621 if (p) get_task_struct(p);
2622
2623 read_unlock(&tasklist_lock);
2624
2625 if (p == NULL) return -ESRCH;
2626 }
2627
2628 ret = pfm_task_incompatible(ctx, p);
2629 if (ret == 0) {
2630 *task = p;
2631 } else if (p != current) {
2632 pfm_put_task(p);
2633 }
2634 return ret;
2635}
2636
2637
2638
2639static int
2640pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2641{
2642 pfarg_context_t *req = (pfarg_context_t *)arg;
2643 struct file *filp;
2644 int ctx_flags;
2645 int ret;
2646
2647 /* let's check the arguments first */
2648 ret = pfarg_is_sane(current, req);
2649 if (ret < 0) return ret;
2650
2651 ctx_flags = req->ctx_flags;
2652
2653 ret = -ENOMEM;
2654
2655 ctx = pfm_context_alloc();
2656 if (!ctx) goto error;
2657
2658 ret = pfm_alloc_fd(&filp);
2659 if (ret < 0) goto error_file;
2660
2661 req->ctx_fd = ctx->ctx_fd = ret;
2662
2663 /*
2664 * attach context to file
2665 */
2666 filp->private_data = ctx;
2667
2668 /*
2669 * does the user want to sample?
2670 */
2671 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2672 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2673 if (ret) goto buffer_error;
2674 }
2675
2676 /*
2677 * init context protection lock
2678 */
2679 spin_lock_init(&ctx->ctx_lock);
2680
2681 /*
2682 * context is unloaded
2683 */
2684 ctx->ctx_state = PFM_CTX_UNLOADED;
2685
2686 /*
2687 * initialization of context's flags
2688 */
2689 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2690 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2691 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2692 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2693 /*
2694 * will move to set properties
2695 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2696 */
2697
2698 /*
2699 * init restart semaphore to locked
2700 */
2701 sema_init(&ctx->ctx_restart_sem, 0);
2702
2703 /*
2704 * activation is used in SMP only
2705 */
2706 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2707 SET_LAST_CPU(ctx, -1);
2708
2709 /*
2710 * initialize notification message queue
2711 */
2712 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2713 init_waitqueue_head(&ctx->ctx_msgq_wait);
2714 init_waitqueue_head(&ctx->ctx_zombieq);
2715
2716 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2717 ctx,
2718 ctx_flags,
2719 ctx->ctx_fl_system,
2720 ctx->ctx_fl_block,
2721 ctx->ctx_fl_excl_idle,
2722 ctx->ctx_fl_no_msg,
2723 ctx->ctx_fd));
2724
2725 /*
2726 * initialize soft PMU state
2727 */
2728 pfm_reset_pmu_state(ctx);
2729
2730 return 0;
2731
2732buffer_error:
2733 pfm_free_fd(ctx->ctx_fd, filp);
2734
2735 if (ctx->ctx_buf_fmt) {
2736 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2737 }
2738error_file:
2739 pfm_context_free(ctx);
2740
2741error:
2742 return ret;
2743}
2744
2745static inline unsigned long
2746pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2747{
2748 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2749 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2750 extern unsigned long carta_random32 (unsigned long seed);
2751
2752 if (reg->flags & PFM_REGFL_RANDOM) {
2753 new_seed = carta_random32(old_seed);
2754 val -= (old_seed & mask); /* counter values are negative numbers! */
2755 if ((mask >> 32) != 0)
2756 /* construct a full 64-bit random value: */
2757 new_seed |= carta_random32(old_seed >> 32) << 32;
2758 reg->seed = new_seed;
2759 }
2760 reg->lval = val;
2761 return val;
2762}
2763
2764static void
2765pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2766{
2767 unsigned long mask = ovfl_regs[0];
2768 unsigned long reset_others = 0UL;
2769 unsigned long val;
2770 int i;
2771
2772 /*
2773 * now restore reset value on sampling overflowed counters
2774 */
2775 mask >>= PMU_FIRST_COUNTER;
2776 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2777
2778 if ((mask & 0x1UL) == 0UL) continue;
2779
2780 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2781 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2782
2783 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2784 }
2785
2786 /*
2787 * Now take care of resetting the other registers
2788 */
2789 for(i = 0; reset_others; i++, reset_others >>= 1) {
2790
2791 if ((reset_others & 0x1) == 0) continue;
2792
2793 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2794
2795 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2796 is_long_reset ? "long" : "short", i, val));
2797 }
2798}
2799
2800static void
2801pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2802{
2803 unsigned long mask = ovfl_regs[0];
2804 unsigned long reset_others = 0UL;
2805 unsigned long val;
2806 int i;
2807
2808 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2809
2810 if (ctx->ctx_state == PFM_CTX_MASKED) {
2811 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2812 return;
2813 }
2814
2815 /*
2816 * now restore reset value on sampling overflowed counters
2817 */
2818 mask >>= PMU_FIRST_COUNTER;
2819 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2820
2821 if ((mask & 0x1UL) == 0UL) continue;
2822
2823 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2824 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2825
2826 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2827
2828 pfm_write_soft_counter(ctx, i, val);
2829 }
2830
2831 /*
2832 * Now take care of resetting the other registers
2833 */
2834 for(i = 0; reset_others; i++, reset_others >>= 1) {
2835
2836 if ((reset_others & 0x1) == 0) continue;
2837
2838 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2839
2840 if (PMD_IS_COUNTING(i)) {
2841 pfm_write_soft_counter(ctx, i, val);
2842 } else {
2843 ia64_set_pmd(i, val);
2844 }
2845 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2846 is_long_reset ? "long" : "short", i, val));
2847 }
2848 ia64_srlz_d();
2849}
2850
2851static int
2852pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2853{
2854 struct thread_struct *thread = NULL;
2855 struct task_struct *task;
2856 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2857 unsigned long value, pmc_pm;
2858 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2859 unsigned int cnum, reg_flags, flags, pmc_type;
2860 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2861 int is_monitor, is_counting, state;
2862 int ret = -EINVAL;
2863 pfm_reg_check_t wr_func;
2864#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2865
2866 state = ctx->ctx_state;
2867 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2868 is_system = ctx->ctx_fl_system;
2869 task = ctx->ctx_task;
2870 impl_pmds = pmu_conf->impl_pmds[0];
2871
2872 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2873
2874 if (is_loaded) {
2875 thread = &task->thread;
2876 /*
2877 * In system wide and when the context is loaded, access can only happen
2878 * when the caller is running on the CPU being monitored by the session.
2879 * It does not have to be the owner (ctx_task) of the context per se.
2880 */
2881 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2882 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2883 return -EBUSY;
2884 }
2885 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2886 }
2887 expert_mode = pfm_sysctl.expert_mode;
2888
2889 for (i = 0; i < count; i++, req++) {
2890
2891 cnum = req->reg_num;
2892 reg_flags = req->reg_flags;
2893 value = req->reg_value;
2894 smpl_pmds = req->reg_smpl_pmds[0];
2895 reset_pmds = req->reg_reset_pmds[0];
2896 flags = 0;
2897
2898
2899 if (cnum >= PMU_MAX_PMCS) {
2900 DPRINT(("pmc%u is invalid\n", cnum));
2901 goto error;
2902 }
2903
2904 pmc_type = pmu_conf->pmc_desc[cnum].type;
2905 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2906 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2907 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2908
2909 /*
2910 * we reject all non implemented PMC as well
2911 * as attempts to modify PMC[0-3] which are used
2912 * as status registers by the PMU
2913 */
2914 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2915 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2916 goto error;
2917 }
2918 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2919 /*
2920 * If the PMC is a monitor, then if the value is not the default:
2921 * - system-wide session: PMCx.pm=1 (privileged monitor)
2922 * - per-task : PMCx.pm=0 (user monitor)
2923 */
2924 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2925 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2926 cnum,
2927 pmc_pm,
2928 is_system));
2929 goto error;
2930 }
2931
2932 if (is_counting) {
2933 /*
2934 * enforce generation of overflow interrupt. Necessary on all
2935 * CPUs.
2936 */
2937 value |= 1 << PMU_PMC_OI;
2938
2939 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2940 flags |= PFM_REGFL_OVFL_NOTIFY;
2941 }
2942
2943 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2944
2945 /* verify validity of smpl_pmds */
2946 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2947 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2948 goto error;
2949 }
2950
2951 /* verify validity of reset_pmds */
2952 if ((reset_pmds & impl_pmds) != reset_pmds) {
2953 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2954 goto error;
2955 }
2956 } else {
2957 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2958 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2959 goto error;
2960 }
2961 /* eventid on non-counting monitors are ignored */
2962 }
2963
2964 /*
2965 * execute write checker, if any
2966 */
2967 if (likely(expert_mode == 0 && wr_func)) {
2968 ret = (*wr_func)(task, ctx, cnum, &value, regs);
2969 if (ret) goto error;
2970 ret = -EINVAL;
2971 }
2972
2973 /*
2974 * no error on this register
2975 */
2976 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2977
2978 /*
2979 * Now we commit the changes to the software state
2980 */
2981
2982 /*
2983 * update overflow information
2984 */
2985 if (is_counting) {
2986 /*
2987 * full flag update each time a register is programmed
2988 */
2989 ctx->ctx_pmds[cnum].flags = flags;
2990
2991 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2992 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
2993 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
2994
2995 /*
2996 * Mark all PMDS to be accessed as used.
2997 *
2998 * We do not keep track of PMC because we have to
2999 * systematically restore ALL of them.
3000 *
3001 * We do not update the used_monitors mask, because
3002 * if we have not programmed them, then will be in
3003 * a quiescent state, therefore we will not need to
3004 * mask/restore then when context is MASKED.
3005 */
3006 CTX_USED_PMD(ctx, reset_pmds);
3007 CTX_USED_PMD(ctx, smpl_pmds);
3008 /*
3009 * make sure we do not try to reset on
3010 * restart because we have established new values
3011 */
3012 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3013 }
3014 /*
3015 * Needed in case the user does not initialize the equivalent
3016 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3017 * possible leak here.
3018 */
3019 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3020
3021 /*
3022 * keep track of the monitor PMC that we are using.
3023 * we save the value of the pmc in ctx_pmcs[] and if
3024 * the monitoring is not stopped for the context we also
3025 * place it in the saved state area so that it will be
3026 * picked up later by the context switch code.
3027 *
3028 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3029 *
3030 * The value in thread->pmcs[] may be modified on overflow, i.e., when
3031 * monitoring needs to be stopped.
3032 */
3033 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3034
3035 /*
3036 * update context state
3037 */
3038 ctx->ctx_pmcs[cnum] = value;
3039
3040 if (is_loaded) {
3041 /*
3042 * write thread state
3043 */
3044 if (is_system == 0) thread->pmcs[cnum] = value;
3045
3046 /*
3047 * write hardware register if we can
3048 */
3049 if (can_access_pmu) {
3050 ia64_set_pmc(cnum, value);
3051 }
3052#ifdef CONFIG_SMP
3053 else {
3054 /*
3055 * per-task SMP only here
3056 *
3057 * we are guaranteed that the task is not running on the other CPU,
3058 * we indicate that this PMD will need to be reloaded if the task
3059 * is rescheduled on the CPU it ran last on.
3060 */
3061 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3062 }
3063#endif
3064 }
3065
3066 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3067 cnum,
3068 value,
3069 is_loaded,
3070 can_access_pmu,
3071 flags,
3072 ctx->ctx_all_pmcs[0],
3073 ctx->ctx_used_pmds[0],
3074 ctx->ctx_pmds[cnum].eventid,
3075 smpl_pmds,
3076 reset_pmds,
3077 ctx->ctx_reload_pmcs[0],
3078 ctx->ctx_used_monitors[0],
3079 ctx->ctx_ovfl_regs[0]));
3080 }
3081
3082 /*
3083 * make sure the changes are visible
3084 */
3085 if (can_access_pmu) ia64_srlz_d();
3086
3087 return 0;
3088error:
3089 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3090 return ret;
3091}
3092
3093static int
3094pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3095{
3096 struct thread_struct *thread = NULL;
3097 struct task_struct *task;
3098 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3099 unsigned long value, hw_value, ovfl_mask;
3100 unsigned int cnum;
3101 int i, can_access_pmu = 0, state;
3102 int is_counting, is_loaded, is_system, expert_mode;
3103 int ret = -EINVAL;
3104 pfm_reg_check_t wr_func;
3105
3106
3107 state = ctx->ctx_state;
3108 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3109 is_system = ctx->ctx_fl_system;
3110 ovfl_mask = pmu_conf->ovfl_val;
3111 task = ctx->ctx_task;
3112
3113 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3114
3115 /*
3116 * on both UP and SMP, we can only write to the PMC when the task is
3117 * the owner of the local PMU.
3118 */
3119 if (likely(is_loaded)) {
3120 thread = &task->thread;
3121 /*
3122 * In system wide and when the context is loaded, access can only happen
3123 * when the caller is running on the CPU being monitored by the session.
3124 * It does not have to be the owner (ctx_task) of the context per se.
3125 */
3126 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3127 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3128 return -EBUSY;
3129 }
3130 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3131 }
3132 expert_mode = pfm_sysctl.expert_mode;
3133
3134 for (i = 0; i < count; i++, req++) {
3135
3136 cnum = req->reg_num;
3137 value = req->reg_value;
3138
3139 if (!PMD_IS_IMPL(cnum)) {
3140 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3141 goto abort_mission;
3142 }
3143 is_counting = PMD_IS_COUNTING(cnum);
3144 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3145
3146 /*
3147 * execute write checker, if any
3148 */
3149 if (unlikely(expert_mode == 0 && wr_func)) {
3150 unsigned long v = value;
3151
3152 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3153 if (ret) goto abort_mission;
3154
3155 value = v;
3156 ret = -EINVAL;
3157 }
3158
3159 /*
3160 * no error on this register
3161 */
3162 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3163
3164 /*
3165 * now commit changes to software state
3166 */
3167 hw_value = value;
3168
3169 /*
3170 * update virtualized (64bits) counter
3171 */
3172 if (is_counting) {
3173 /*
3174 * write context state
3175 */
3176 ctx->ctx_pmds[cnum].lval = value;
3177
3178 /*
3179 * when context is load we use the split value
3180 */
3181 if (is_loaded) {
3182 hw_value = value & ovfl_mask;
3183 value = value & ~ovfl_mask;
3184 }
3185 }
3186 /*
3187 * update reset values (not just for counters)
3188 */
3189 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3190 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3191
3192 /*
3193 * update randomization parameters (not just for counters)
3194 */
3195 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3196 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3197
3198 /*
3199 * update context value
3200 */
3201 ctx->ctx_pmds[cnum].val = value;
3202
3203 /*
3204 * Keep track of what we use
3205 *
3206 * We do not keep track of PMC because we have to
3207 * systematically restore ALL of them.
3208 */
3209 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3210
3211 /*
3212 * mark this PMD register used as well
3213 */
3214 CTX_USED_PMD(ctx, RDEP(cnum));
3215
3216 /*
3217 * make sure we do not try to reset on
3218 * restart because we have established new values
3219 */
3220 if (is_counting && state == PFM_CTX_MASKED) {
3221 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3222 }
3223
3224 if (is_loaded) {
3225 /*
3226 * write thread state
3227 */
3228 if (is_system == 0) thread->pmds[cnum] = hw_value;
3229
3230 /*
3231 * write hardware register if we can
3232 */
3233 if (can_access_pmu) {
3234 ia64_set_pmd(cnum, hw_value);
3235 } else {
3236#ifdef CONFIG_SMP
3237 /*
3238 * we are guaranteed that the task is not running on the other CPU,
3239 * we indicate that this PMD will need to be reloaded if the task
3240 * is rescheduled on the CPU it ran last on.
3241 */
3242 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3243#endif
3244 }
3245 }
3246
3247 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3248 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3249 cnum,
3250 value,
3251 is_loaded,
3252 can_access_pmu,
3253 hw_value,
3254 ctx->ctx_pmds[cnum].val,
3255 ctx->ctx_pmds[cnum].short_reset,
3256 ctx->ctx_pmds[cnum].long_reset,
3257 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3258 ctx->ctx_pmds[cnum].seed,
3259 ctx->ctx_pmds[cnum].mask,
3260 ctx->ctx_used_pmds[0],
3261 ctx->ctx_pmds[cnum].reset_pmds[0],
3262 ctx->ctx_reload_pmds[0],
3263 ctx->ctx_all_pmds[0],
3264 ctx->ctx_ovfl_regs[0]));
3265 }
3266
3267 /*
3268 * make changes visible
3269 */
3270 if (can_access_pmu) ia64_srlz_d();
3271
3272 return 0;
3273
3274abort_mission:
3275 /*
3276 * for now, we have only one possibility for error
3277 */
3278 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3279 return ret;
3280}
3281
3282/*
3283 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3284 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3285 * interrupt is delivered during the call, it will be kept pending until we leave, making
3286 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3287 * guaranteed to return consistent data to the user, it may simply be old. It is not
3288 * trivial to treat the overflow while inside the call because you may end up in
3289 * some module sampling buffer code causing deadlocks.
3290 */
3291static int
3292pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3293{
3294 struct thread_struct *thread = NULL;
3295 struct task_struct *task;
3296 unsigned long val = 0UL, lval, ovfl_mask, sval;
3297 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3298 unsigned int cnum, reg_flags = 0;
3299 int i, can_access_pmu = 0, state;
3300 int is_loaded, is_system, is_counting, expert_mode;
3301 int ret = -EINVAL;
3302 pfm_reg_check_t rd_func;
3303
3304 /*
3305 * access is possible when loaded only for
3306 * self-monitoring tasks or in UP mode
3307 */
3308
3309 state = ctx->ctx_state;
3310 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3311 is_system = ctx->ctx_fl_system;
3312 ovfl_mask = pmu_conf->ovfl_val;
3313 task = ctx->ctx_task;
3314
3315 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3316
3317 if (likely(is_loaded)) {
3318 thread = &task->thread;
3319 /*
3320 * In system wide and when the context is loaded, access can only happen
3321 * when the caller is running on the CPU being monitored by the session.
3322 * It does not have to be the owner (ctx_task) of the context per se.
3323 */
3324 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3325 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3326 return -EBUSY;
3327 }
3328 /*
3329 * this can be true when not self-monitoring only in UP
3330 */
3331 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3332
3333 if (can_access_pmu) ia64_srlz_d();
3334 }
3335 expert_mode = pfm_sysctl.expert_mode;
3336
3337 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3338 is_loaded,
3339 can_access_pmu,
3340 state));
3341
3342 /*
3343 * on both UP and SMP, we can only read the PMD from the hardware register when
3344 * the task is the owner of the local PMU.
3345 */
3346
3347 for (i = 0; i < count; i++, req++) {
3348
3349 cnum = req->reg_num;
3350 reg_flags = req->reg_flags;
3351
3352 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3353 /*
3354 * we can only read the register that we use. That includes
3355 * the one we explicitely initialize AND the one we want included
3356 * in the sampling buffer (smpl_regs).
3357 *
3358 * Having this restriction allows optimization in the ctxsw routine
3359 * without compromising security (leaks)
3360 */
3361 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3362
3363 sval = ctx->ctx_pmds[cnum].val;
3364 lval = ctx->ctx_pmds[cnum].lval;
3365 is_counting = PMD_IS_COUNTING(cnum);
3366
3367 /*
3368 * If the task is not the current one, then we check if the
3369 * PMU state is still in the local live register due to lazy ctxsw.
3370 * If true, then we read directly from the registers.
3371 */
3372 if (can_access_pmu){
3373 val = ia64_get_pmd(cnum);
3374 } else {
3375 /*
3376 * context has been saved
3377 * if context is zombie, then task does not exist anymore.
3378 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3379 */
3380 val = is_loaded ? thread->pmds[cnum] : 0UL;
3381 }
3382 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3383
3384 if (is_counting) {
3385 /*
3386 * XXX: need to check for overflow when loaded
3387 */
3388 val &= ovfl_mask;
3389 val += sval;
3390 }
3391
3392 /*
3393 * execute read checker, if any
3394 */
3395 if (unlikely(expert_mode == 0 && rd_func)) {
3396 unsigned long v = val;
3397 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3398 if (ret) goto error;
3399 val = v;
3400 ret = -EINVAL;
3401 }
3402
3403 PFM_REG_RETFLAG_SET(reg_flags, 0);
3404
3405 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3406
3407 /*
3408 * update register return value, abort all if problem during copy.
3409 * we only modify the reg_flags field. no check mode is fine because
3410 * access has been verified upfront in sys_perfmonctl().
3411 */
3412 req->reg_value = val;
3413 req->reg_flags = reg_flags;
3414 req->reg_last_reset_val = lval;
3415 }
3416
3417 return 0;
3418
3419error:
3420 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3421 return ret;
3422}
3423
3424int
3425pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3426{
3427 pfm_context_t *ctx;
3428
3429 if (req == NULL) return -EINVAL;
3430
3431 ctx = GET_PMU_CTX();
3432
3433 if (ctx == NULL) return -EINVAL;
3434
3435 /*
3436 * for now limit to current task, which is enough when calling
3437 * from overflow handler
3438 */
3439 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3440
3441 return pfm_write_pmcs(ctx, req, nreq, regs);
3442}
3443EXPORT_SYMBOL(pfm_mod_write_pmcs);
3444
3445int
3446pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3447{
3448 pfm_context_t *ctx;
3449
3450 if (req == NULL) return -EINVAL;
3451
3452 ctx = GET_PMU_CTX();
3453
3454 if (ctx == NULL) return -EINVAL;
3455
3456 /*
3457 * for now limit to current task, which is enough when calling
3458 * from overflow handler
3459 */
3460 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3461
3462 return pfm_read_pmds(ctx, req, nreq, regs);
3463}
3464EXPORT_SYMBOL(pfm_mod_read_pmds);
3465
3466/*
3467 * Only call this function when a process it trying to
3468 * write the debug registers (reading is always allowed)
3469 */
3470int
3471pfm_use_debug_registers(struct task_struct *task)
3472{
3473 pfm_context_t *ctx = task->thread.pfm_context;
3474 unsigned long flags;
3475 int ret = 0;
3476
3477 if (pmu_conf->use_rr_dbregs == 0) return 0;
3478
3479 DPRINT(("called for [%d]\n", task->pid));
3480
3481 /*
3482 * do it only once
3483 */
3484 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3485
3486 /*
3487 * Even on SMP, we do not need to use an atomic here because
3488 * the only way in is via ptrace() and this is possible only when the
3489 * process is stopped. Even in the case where the ctxsw out is not totally
3490 * completed by the time we come here, there is no way the 'stopped' process
3491 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3492 * So this is always safe.
3493 */
3494 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3495
3496 LOCK_PFS(flags);
3497
3498 /*
3499 * We cannot allow setting breakpoints when system wide monitoring
3500 * sessions are using the debug registers.
3501 */
3502 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3503 ret = -1;
3504 else
3505 pfm_sessions.pfs_ptrace_use_dbregs++;
3506
3507 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3508 pfm_sessions.pfs_ptrace_use_dbregs,
3509 pfm_sessions.pfs_sys_use_dbregs,
3510 task->pid, ret));
3511
3512 UNLOCK_PFS(flags);
3513
3514 return ret;
3515}
3516
3517/*
3518 * This function is called for every task that exits with the
3519 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3520 * able to use the debug registers for debugging purposes via
3521 * ptrace(). Therefore we know it was not using them for
3522 * perfmormance monitoring, so we only decrement the number
3523 * of "ptraced" debug register users to keep the count up to date
3524 */
3525int
3526pfm_release_debug_registers(struct task_struct *task)
3527{
3528 unsigned long flags;
3529 int ret;
3530
3531 if (pmu_conf->use_rr_dbregs == 0) return 0;
3532
3533 LOCK_PFS(flags);
3534 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3535 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3536 ret = -1;
3537 } else {
3538 pfm_sessions.pfs_ptrace_use_dbregs--;
3539 ret = 0;
3540 }
3541 UNLOCK_PFS(flags);
3542
3543 return ret;
3544}
3545
3546static int
3547pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3548{
3549 struct task_struct *task;
3550 pfm_buffer_fmt_t *fmt;
3551 pfm_ovfl_ctrl_t rst_ctrl;
3552 int state, is_system;
3553 int ret = 0;
3554
3555 state = ctx->ctx_state;
3556 fmt = ctx->ctx_buf_fmt;
3557 is_system = ctx->ctx_fl_system;
3558 task = PFM_CTX_TASK(ctx);
3559
3560 switch(state) {
3561 case PFM_CTX_MASKED:
3562 break;
3563 case PFM_CTX_LOADED:
3564 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3565 /* fall through */
3566 case PFM_CTX_UNLOADED:
3567 case PFM_CTX_ZOMBIE:
3568 DPRINT(("invalid state=%d\n", state));
3569 return -EBUSY;
3570 default:
3571 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3572 return -EINVAL;
3573 }
3574
3575 /*
3576 * In system wide and when the context is loaded, access can only happen
3577 * when the caller is running on the CPU being monitored by the session.
3578 * It does not have to be the owner (ctx_task) of the context per se.
3579 */
3580 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3581 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3582 return -EBUSY;
3583 }
3584
3585 /* sanity check */
3586 if (unlikely(task == NULL)) {
3587 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3588 return -EINVAL;
3589 }
3590
3591 if (task == current || is_system) {
3592
3593 fmt = ctx->ctx_buf_fmt;
3594
3595 DPRINT(("restarting self %d ovfl=0x%lx\n",
3596 task->pid,
3597 ctx->ctx_ovfl_regs[0]));
3598
3599 if (CTX_HAS_SMPL(ctx)) {
3600
3601 prefetch(ctx->ctx_smpl_hdr);
3602
3603 rst_ctrl.bits.mask_monitoring = 0;
3604 rst_ctrl.bits.reset_ovfl_pmds = 0;
3605
3606 if (state == PFM_CTX_LOADED)
3607 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3608 else
3609 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3610 } else {
3611 rst_ctrl.bits.mask_monitoring = 0;
3612 rst_ctrl.bits.reset_ovfl_pmds = 1;
3613 }
3614
3615 if (ret == 0) {
3616 if (rst_ctrl.bits.reset_ovfl_pmds)
3617 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3618
3619 if (rst_ctrl.bits.mask_monitoring == 0) {
3620 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3621
3622 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3623 } else {
3624 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3625
3626 // cannot use pfm_stop_monitoring(task, regs);
3627 }
3628 }
3629 /*
3630 * clear overflowed PMD mask to remove any stale information
3631 */
3632 ctx->ctx_ovfl_regs[0] = 0UL;
3633
3634 /*
3635 * back to LOADED state
3636 */
3637 ctx->ctx_state = PFM_CTX_LOADED;
3638
3639 /*
3640 * XXX: not really useful for self monitoring
3641 */
3642 ctx->ctx_fl_can_restart = 0;
3643
3644 return 0;
3645 }
3646
3647 /*
3648 * restart another task
3649 */
3650
3651 /*
3652 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3653 * one is seen by the task.
3654 */
3655 if (state == PFM_CTX_MASKED) {
3656 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3657 /*
3658 * will prevent subsequent restart before this one is
3659 * seen by other task
3660 */
3661 ctx->ctx_fl_can_restart = 0;
3662 }
3663
3664 /*
3665 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3666 * the task is blocked or on its way to block. That's the normal
3667 * restart path. If the monitoring is not masked, then the task
3668 * can be actively monitoring and we cannot directly intervene.
3669 * Therefore we use the trap mechanism to catch the task and
3670 * force it to reset the buffer/reset PMDs.
3671 *
3672 * if non-blocking, then we ensure that the task will go into
3673 * pfm_handle_work() before returning to user mode.
3674 *
3675 * We cannot explicitely reset another task, it MUST always
3676 * be done by the task itself. This works for system wide because
3677 * the tool that is controlling the session is logically doing
3678 * "self-monitoring".
3679 */
3680 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3681 DPRINT(("unblocking [%d] \n", task->pid));
3682 up(&ctx->ctx_restart_sem);
3683 } else {
3684 DPRINT(("[%d] armed exit trap\n", task->pid));
3685
3686 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3687
3688 PFM_SET_WORK_PENDING(task, 1);
3689
3690 pfm_set_task_notify(task);
3691
3692 /*
3693 * XXX: send reschedule if task runs on another CPU
3694 */
3695 }
3696 return 0;
3697}
3698
3699static int
3700pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3701{
3702 unsigned int m = *(unsigned int *)arg;
3703
3704 pfm_sysctl.debug = m == 0 ? 0 : 1;
3705
1da177e4
LT
3706 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3707
3708 if (m == 0) {
3709 memset(pfm_stats, 0, sizeof(pfm_stats));
3710 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3711 }
3712 return 0;
3713}
3714
3715/*
3716 * arg can be NULL and count can be zero for this function
3717 */
3718static int
3719pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3720{
3721 struct thread_struct *thread = NULL;
3722 struct task_struct *task;
3723 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3724 unsigned long flags;
3725 dbreg_t dbreg;
3726 unsigned int rnum;
3727 int first_time;
3728 int ret = 0, state;
3729 int i, can_access_pmu = 0;
3730 int is_system, is_loaded;
3731
3732 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3733
3734 state = ctx->ctx_state;
3735 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3736 is_system = ctx->ctx_fl_system;
3737 task = ctx->ctx_task;
3738
3739 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3740
3741 /*
3742 * on both UP and SMP, we can only write to the PMC when the task is
3743 * the owner of the local PMU.
3744 */
3745 if (is_loaded) {
3746 thread = &task->thread;
3747 /*
3748 * In system wide and when the context is loaded, access can only happen
3749 * when the caller is running on the CPU being monitored by the session.
3750 * It does not have to be the owner (ctx_task) of the context per se.
3751 */
3752 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3753 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3754 return -EBUSY;
3755 }
3756 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3757 }
3758
3759 /*
3760 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3761 * ensuring that no real breakpoint can be installed via this call.
3762 *
3763 * IMPORTANT: regs can be NULL in this function
3764 */
3765
3766 first_time = ctx->ctx_fl_using_dbreg == 0;
3767
3768 /*
3769 * don't bother if we are loaded and task is being debugged
3770 */
3771 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3772 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3773 return -EBUSY;
3774 }
3775
3776 /*
3777 * check for debug registers in system wide mode
3778 *
3779 * If though a check is done in pfm_context_load(),
3780 * we must repeat it here, in case the registers are
3781 * written after the context is loaded
3782 */
3783 if (is_loaded) {
3784 LOCK_PFS(flags);
3785
3786 if (first_time && is_system) {
3787 if (pfm_sessions.pfs_ptrace_use_dbregs)
3788 ret = -EBUSY;
3789 else
3790 pfm_sessions.pfs_sys_use_dbregs++;
3791 }
3792 UNLOCK_PFS(flags);
3793 }
3794
3795 if (ret != 0) return ret;
3796
3797 /*
3798 * mark ourself as user of the debug registers for
3799 * perfmon purposes.
3800 */
3801 ctx->ctx_fl_using_dbreg = 1;
3802
3803 /*
3804 * clear hardware registers to make sure we don't
3805 * pick up stale state.
3806 *
3807 * for a system wide session, we do not use
3808 * thread.dbr, thread.ibr because this process
3809 * never leaves the current CPU and the state
3810 * is shared by all processes running on it
3811 */
3812 if (first_time && can_access_pmu) {
3813 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3814 for (i=0; i < pmu_conf->num_ibrs; i++) {
3815 ia64_set_ibr(i, 0UL);
3816 ia64_dv_serialize_instruction();
3817 }
3818 ia64_srlz_i();
3819 for (i=0; i < pmu_conf->num_dbrs; i++) {
3820 ia64_set_dbr(i, 0UL);
3821 ia64_dv_serialize_data();
3822 }
3823 ia64_srlz_d();
3824 }
3825
3826 /*
3827 * Now install the values into the registers
3828 */
3829 for (i = 0; i < count; i++, req++) {
3830
3831 rnum = req->dbreg_num;
3832 dbreg.val = req->dbreg_value;
3833
3834 ret = -EINVAL;
3835
3836 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3837 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3838 rnum, dbreg.val, mode, i, count));
3839
3840 goto abort_mission;
3841 }
3842
3843 /*
3844 * make sure we do not install enabled breakpoint
3845 */
3846 if (rnum & 0x1) {
3847 if (mode == PFM_CODE_RR)
3848 dbreg.ibr.ibr_x = 0;
3849 else
3850 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3851 }
3852
3853 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3854
3855 /*
3856 * Debug registers, just like PMC, can only be modified
3857 * by a kernel call. Moreover, perfmon() access to those
3858 * registers are centralized in this routine. The hardware
3859 * does not modify the value of these registers, therefore,
3860 * if we save them as they are written, we can avoid having
3861 * to save them on context switch out. This is made possible
3862 * by the fact that when perfmon uses debug registers, ptrace()
3863 * won't be able to modify them concurrently.
3864 */
3865 if (mode == PFM_CODE_RR) {
3866 CTX_USED_IBR(ctx, rnum);
3867
3868 if (can_access_pmu) {
3869 ia64_set_ibr(rnum, dbreg.val);
3870 ia64_dv_serialize_instruction();
3871 }
3872
3873 ctx->ctx_ibrs[rnum] = dbreg.val;
3874
3875 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3876 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3877 } else {
3878 CTX_USED_DBR(ctx, rnum);
3879
3880 if (can_access_pmu) {
3881 ia64_set_dbr(rnum, dbreg.val);
3882 ia64_dv_serialize_data();
3883 }
3884 ctx->ctx_dbrs[rnum] = dbreg.val;
3885
3886 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3887 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3888 }
3889 }
3890
3891 return 0;
3892
3893abort_mission:
3894 /*
3895 * in case it was our first attempt, we undo the global modifications
3896 */
3897 if (first_time) {
3898 LOCK_PFS(flags);
3899 if (ctx->ctx_fl_system) {
3900 pfm_sessions.pfs_sys_use_dbregs--;
3901 }
3902 UNLOCK_PFS(flags);
3903 ctx->ctx_fl_using_dbreg = 0;
3904 }
3905 /*
3906 * install error return flag
3907 */
3908 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3909
3910 return ret;
3911}
3912
3913static int
3914pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3915{
3916 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3917}
3918
3919static int
3920pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3921{
3922 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3923}
3924
3925int
3926pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3927{
3928 pfm_context_t *ctx;
3929
3930 if (req == NULL) return -EINVAL;
3931
3932 ctx = GET_PMU_CTX();
3933
3934 if (ctx == NULL) return -EINVAL;
3935
3936 /*
3937 * for now limit to current task, which is enough when calling
3938 * from overflow handler
3939 */
3940 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3941
3942 return pfm_write_ibrs(ctx, req, nreq, regs);
3943}
3944EXPORT_SYMBOL(pfm_mod_write_ibrs);
3945
3946int
3947pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3948{
3949 pfm_context_t *ctx;
3950
3951 if (req == NULL) return -EINVAL;
3952
3953 ctx = GET_PMU_CTX();
3954
3955 if (ctx == NULL) return -EINVAL;
3956
3957 /*
3958 * for now limit to current task, which is enough when calling
3959 * from overflow handler
3960 */
3961 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3962
3963 return pfm_write_dbrs(ctx, req, nreq, regs);
3964}
3965EXPORT_SYMBOL(pfm_mod_write_dbrs);
3966
3967
3968static int
3969pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3970{
3971 pfarg_features_t *req = (pfarg_features_t *)arg;
3972
3973 req->ft_version = PFM_VERSION;
3974 return 0;
3975}
3976
3977static int
3978pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3979{
3980 struct pt_regs *tregs;
3981 struct task_struct *task = PFM_CTX_TASK(ctx);
3982 int state, is_system;
3983
3984 state = ctx->ctx_state;
3985 is_system = ctx->ctx_fl_system;
3986
3987 /*
3988 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3989 */
3990 if (state == PFM_CTX_UNLOADED) return -EINVAL;
3991
3992 /*
3993 * In system wide and when the context is loaded, access can only happen
3994 * when the caller is running on the CPU being monitored by the session.
3995 * It does not have to be the owner (ctx_task) of the context per se.
3996 */
3997 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3998 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3999 return -EBUSY;
4000 }
4001 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4002 PFM_CTX_TASK(ctx)->pid,
4003 state,
4004 is_system));
4005 /*
4006 * in system mode, we need to update the PMU directly
4007 * and the user level state of the caller, which may not
4008 * necessarily be the creator of the context.
4009 */
4010 if (is_system) {
4011 /*
4012 * Update local PMU first
4013 *
4014 * disable dcr pp
4015 */
4016 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4017 ia64_srlz_i();
4018
4019 /*
4020 * update local cpuinfo
4021 */
4022 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4023
4024 /*
4025 * stop monitoring, does srlz.i
4026 */
4027 pfm_clear_psr_pp();
4028
4029 /*
4030 * stop monitoring in the caller
4031 */
4032 ia64_psr(regs)->pp = 0;
4033
4034 return 0;
4035 }
4036 /*
4037 * per-task mode
4038 */
4039
4040 if (task == current) {
4041 /* stop monitoring at kernel level */
4042 pfm_clear_psr_up();
4043
4044 /*
4045 * stop monitoring at the user level
4046 */
4047 ia64_psr(regs)->up = 0;
4048 } else {
4049 tregs = ia64_task_regs(task);
4050
4051 /*
4052 * stop monitoring at the user level
4053 */
4054 ia64_psr(tregs)->up = 0;
4055
4056 /*
4057 * monitoring disabled in kernel at next reschedule
4058 */
4059 ctx->ctx_saved_psr_up = 0;
4060 DPRINT(("task=[%d]\n", task->pid));
4061 }
4062 return 0;
4063}
4064
4065
4066static int
4067pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4068{
4069 struct pt_regs *tregs;
4070 int state, is_system;
4071
4072 state = ctx->ctx_state;
4073 is_system = ctx->ctx_fl_system;
4074
4075 if (state != PFM_CTX_LOADED) return -EINVAL;
4076
4077 /*
4078 * In system wide and when the context is loaded, access can only happen
4079 * when the caller is running on the CPU being monitored by the session.
4080 * It does not have to be the owner (ctx_task) of the context per se.
4081 */
4082 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4083 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4084 return -EBUSY;
4085 }
4086
4087 /*
4088 * in system mode, we need to update the PMU directly
4089 * and the user level state of the caller, which may not
4090 * necessarily be the creator of the context.
4091 */
4092 if (is_system) {
4093
4094 /*
4095 * set user level psr.pp for the caller
4096 */
4097 ia64_psr(regs)->pp = 1;
4098
4099 /*
4100 * now update the local PMU and cpuinfo
4101 */
4102 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4103
4104 /*
4105 * start monitoring at kernel level
4106 */
4107 pfm_set_psr_pp();
4108
4109 /* enable dcr pp */
4110 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4111 ia64_srlz_i();
4112
4113 return 0;
4114 }
4115
4116 /*
4117 * per-process mode
4118 */
4119
4120 if (ctx->ctx_task == current) {
4121
4122 /* start monitoring at kernel level */
4123 pfm_set_psr_up();
4124
4125 /*
4126 * activate monitoring at user level
4127 */
4128 ia64_psr(regs)->up = 1;
4129
4130 } else {
4131 tregs = ia64_task_regs(ctx->ctx_task);
4132
4133 /*
4134 * start monitoring at the kernel level the next
4135 * time the task is scheduled
4136 */
4137 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4138
4139 /*
4140 * activate monitoring at user level
4141 */
4142 ia64_psr(tregs)->up = 1;
4143 }
4144 return 0;
4145}
4146
4147static int
4148pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4149{
4150 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4151 unsigned int cnum;
4152 int i;
4153 int ret = -EINVAL;
4154
4155 for (i = 0; i < count; i++, req++) {
4156
4157 cnum = req->reg_num;
4158
4159 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4160
4161 req->reg_value = PMC_DFL_VAL(cnum);
4162
4163 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4164
4165 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4166 }
4167 return 0;
4168
4169abort_mission:
4170 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4171 return ret;
4172}
4173
4174static int
4175pfm_check_task_exist(pfm_context_t *ctx)
4176{
4177 struct task_struct *g, *t;
4178 int ret = -ESRCH;
4179
4180 read_lock(&tasklist_lock);
4181
4182 do_each_thread (g, t) {
4183 if (t->thread.pfm_context == ctx) {
4184 ret = 0;
4185 break;
4186 }
4187 } while_each_thread (g, t);
4188
4189 read_unlock(&tasklist_lock);
4190
4191 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4192
4193 return ret;
4194}
4195
4196static int
4197pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4198{
4199 struct task_struct *task;
4200 struct thread_struct *thread;
4201 struct pfm_context_t *old;
4202 unsigned long flags;
4203#ifndef CONFIG_SMP
4204 struct task_struct *owner_task = NULL;
4205#endif
4206 pfarg_load_t *req = (pfarg_load_t *)arg;
4207 unsigned long *pmcs_source, *pmds_source;
4208 int the_cpu;
4209 int ret = 0;
4210 int state, is_system, set_dbregs = 0;
4211
4212 state = ctx->ctx_state;
4213 is_system = ctx->ctx_fl_system;
4214 /*
4215 * can only load from unloaded or terminated state
4216 */
4217 if (state != PFM_CTX_UNLOADED) {
4218 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4219 req->load_pid,
4220 ctx->ctx_state));
a5a70b75 4221 return -EBUSY;
1da177e4
LT
4222 }
4223
4224 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4225
4226 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4227 DPRINT(("cannot use blocking mode on self\n"));
4228 return -EINVAL;
4229 }
4230
4231 ret = pfm_get_task(ctx, req->load_pid, &task);
4232 if (ret) {
4233 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4234 return ret;
4235 }
4236
4237 ret = -EINVAL;
4238
4239 /*
4240 * system wide is self monitoring only
4241 */
4242 if (is_system && task != current) {
4243 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4244 req->load_pid));
4245 goto error;
4246 }
4247
4248 thread = &task->thread;
4249
4250 ret = 0;
4251 /*
4252 * cannot load a context which is using range restrictions,
4253 * into a task that is being debugged.
4254 */
4255 if (ctx->ctx_fl_using_dbreg) {
4256 if (thread->flags & IA64_THREAD_DBG_VALID) {
4257 ret = -EBUSY;
4258 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4259 goto error;
4260 }
4261 LOCK_PFS(flags);
4262
4263 if (is_system) {
4264 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4265 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4266 ret = -EBUSY;
4267 } else {
4268 pfm_sessions.pfs_sys_use_dbregs++;
4269 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4270 set_dbregs = 1;
4271 }
4272 }
4273
4274 UNLOCK_PFS(flags);
4275
4276 if (ret) goto error;
4277 }
4278
4279 /*
4280 * SMP system-wide monitoring implies self-monitoring.
4281 *
4282 * The programming model expects the task to
4283 * be pinned on a CPU throughout the session.
4284 * Here we take note of the current CPU at the
4285 * time the context is loaded. No call from
4286 * another CPU will be allowed.
4287 *
4288 * The pinning via shed_setaffinity()
4289 * must be done by the calling task prior
4290 * to this call.
4291 *
4292 * systemwide: keep track of CPU this session is supposed to run on
4293 */
4294 the_cpu = ctx->ctx_cpu = smp_processor_id();
4295
4296 ret = -EBUSY;
4297 /*
4298 * now reserve the session
4299 */
4300 ret = pfm_reserve_session(current, is_system, the_cpu);
4301 if (ret) goto error;
4302
4303 /*
4304 * task is necessarily stopped at this point.
4305 *
4306 * If the previous context was zombie, then it got removed in
4307 * pfm_save_regs(). Therefore we should not see it here.
4308 * If we see a context, then this is an active context
4309 *
4310 * XXX: needs to be atomic
4311 */
4312 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4313 thread->pfm_context, ctx));
4314
4315 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4316 if (old != NULL) {
4317 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4318 goto error_unres;
4319 }
4320
4321 pfm_reset_msgq(ctx);
4322
4323 ctx->ctx_state = PFM_CTX_LOADED;
4324
4325 /*
4326 * link context to task
4327 */
4328 ctx->ctx_task = task;
4329
4330 if (is_system) {
4331 /*
4332 * we load as stopped
4333 */
4334 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4335 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4336
4337 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4338 } else {
4339 thread->flags |= IA64_THREAD_PM_VALID;
4340 }
4341
4342 /*
4343 * propagate into thread-state
4344 */
4345 pfm_copy_pmds(task, ctx);
4346 pfm_copy_pmcs(task, ctx);
4347
4348 pmcs_source = thread->pmcs;
4349 pmds_source = thread->pmds;
4350
4351 /*
4352 * always the case for system-wide
4353 */
4354 if (task == current) {
4355
4356 if (is_system == 0) {
4357
4358 /* allow user level control */
4359 ia64_psr(regs)->sp = 0;
4360 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4361
4362 SET_LAST_CPU(ctx, smp_processor_id());
4363 INC_ACTIVATION();
4364 SET_ACTIVATION(ctx);
4365#ifndef CONFIG_SMP
4366 /*
4367 * push the other task out, if any
4368 */
4369 owner_task = GET_PMU_OWNER();
4370 if (owner_task) pfm_lazy_save_regs(owner_task);
4371#endif
4372 }
4373 /*
4374 * load all PMD from ctx to PMU (as opposed to thread state)
4375 * restore all PMC from ctx to PMU
4376 */
4377 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4378 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4379
4380 ctx->ctx_reload_pmcs[0] = 0UL;
4381 ctx->ctx_reload_pmds[0] = 0UL;
4382
4383 /*
4384 * guaranteed safe by earlier check against DBG_VALID
4385 */
4386 if (ctx->ctx_fl_using_dbreg) {
4387 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4388 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4389 }
4390 /*
4391 * set new ownership
4392 */
4393 SET_PMU_OWNER(task, ctx);
4394
4395 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4396 } else {
4397 /*
4398 * when not current, task MUST be stopped, so this is safe
4399 */
4400 regs = ia64_task_regs(task);
4401
4402 /* force a full reload */
4403 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4404 SET_LAST_CPU(ctx, -1);
4405
4406 /* initial saved psr (stopped) */
4407 ctx->ctx_saved_psr_up = 0UL;
4408 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4409 }
4410
4411 ret = 0;
4412
4413error_unres:
4414 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4415error:
4416 /*
4417 * we must undo the dbregs setting (for system-wide)
4418 */
4419 if (ret && set_dbregs) {
4420 LOCK_PFS(flags);
4421 pfm_sessions.pfs_sys_use_dbregs--;
4422 UNLOCK_PFS(flags);
4423 }
4424 /*
4425 * release task, there is now a link with the context
4426 */
4427 if (is_system == 0 && task != current) {
4428 pfm_put_task(task);
4429
4430 if (ret == 0) {
4431 ret = pfm_check_task_exist(ctx);
4432 if (ret) {
4433 ctx->ctx_state = PFM_CTX_UNLOADED;
4434 ctx->ctx_task = NULL;
4435 }
4436 }
4437 }
4438 return ret;
4439}
4440
4441/*
4442 * in this function, we do not need to increase the use count
4443 * for the task via get_task_struct(), because we hold the
4444 * context lock. If the task were to disappear while having
4445 * a context attached, it would go through pfm_exit_thread()
4446 * which also grabs the context lock and would therefore be blocked
4447 * until we are here.
4448 */
4449static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4450
4451static int
4452pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4453{
4454 struct task_struct *task = PFM_CTX_TASK(ctx);
4455 struct pt_regs *tregs;
4456 int prev_state, is_system;
4457 int ret;
4458
4459 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4460
4461 prev_state = ctx->ctx_state;
4462 is_system = ctx->ctx_fl_system;
4463
4464 /*
4465 * unload only when necessary
4466 */
4467 if (prev_state == PFM_CTX_UNLOADED) {
4468 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4469 return 0;
4470 }
4471
4472 /*
4473 * clear psr and dcr bits
4474 */
4475 ret = pfm_stop(ctx, NULL, 0, regs);
4476 if (ret) return ret;
4477
4478 ctx->ctx_state = PFM_CTX_UNLOADED;
4479
4480 /*
4481 * in system mode, we need to update the PMU directly
4482 * and the user level state of the caller, which may not
4483 * necessarily be the creator of the context.
4484 */
4485 if (is_system) {
4486
4487 /*
4488 * Update cpuinfo
4489 *
4490 * local PMU is taken care of in pfm_stop()
4491 */
4492 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4493 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4494
4495 /*
4496 * save PMDs in context
4497 * release ownership
4498 */
4499 pfm_flush_pmds(current, ctx);
4500
4501 /*
4502 * at this point we are done with the PMU
4503 * so we can unreserve the resource.
4504 */
4505 if (prev_state != PFM_CTX_ZOMBIE)
4506 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4507
4508 /*
4509 * disconnect context from task
4510 */
4511 task->thread.pfm_context = NULL;
4512 /*
4513 * disconnect task from context
4514 */
4515 ctx->ctx_task = NULL;
4516
4517 /*
4518 * There is nothing more to cleanup here.
4519 */
4520 return 0;
4521 }
4522
4523 /*
4524 * per-task mode
4525 */
4526 tregs = task == current ? regs : ia64_task_regs(task);
4527
4528 if (task == current) {
4529 /*
4530 * cancel user level control
4531 */
4532 ia64_psr(regs)->sp = 1;
4533
4534 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4535 }
4536 /*
4537 * save PMDs to context
4538 * release ownership
4539 */
4540 pfm_flush_pmds(task, ctx);
4541
4542 /*
4543 * at this point we are done with the PMU
4544 * so we can unreserve the resource.
4545 *
4546 * when state was ZOMBIE, we have already unreserved.
4547 */
4548 if (prev_state != PFM_CTX_ZOMBIE)
4549 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4550
4551 /*
4552 * reset activation counter and psr
4553 */
4554 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4555 SET_LAST_CPU(ctx, -1);
4556
4557 /*
4558 * PMU state will not be restored
4559 */
4560 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4561
4562 /*
4563 * break links between context and task
4564 */
4565 task->thread.pfm_context = NULL;
4566 ctx->ctx_task = NULL;
4567
4568 PFM_SET_WORK_PENDING(task, 0);
4569
4570 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4571 ctx->ctx_fl_can_restart = 0;
4572 ctx->ctx_fl_going_zombie = 0;
4573
4574 DPRINT(("disconnected [%d] from context\n", task->pid));
4575
4576 return 0;
4577}
4578
4579
4580/*
4581 * called only from exit_thread(): task == current
4582 * we come here only if current has a context attached (loaded or masked)
4583 */
4584void
4585pfm_exit_thread(struct task_struct *task)
4586{
4587 pfm_context_t *ctx;
4588 unsigned long flags;
4589 struct pt_regs *regs = ia64_task_regs(task);
4590 int ret, state;
4591 int free_ok = 0;
4592
4593 ctx = PFM_GET_CTX(task);
4594
4595 PROTECT_CTX(ctx, flags);
4596
4597 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4598
4599 state = ctx->ctx_state;
4600 switch(state) {
4601 case PFM_CTX_UNLOADED:
4602 /*
4603 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4604 * be in unloaded state
4605 */
4606 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4607 break;
4608 case PFM_CTX_LOADED:
4609 case PFM_CTX_MASKED:
4610 ret = pfm_context_unload(ctx, NULL, 0, regs);
4611 if (ret) {
4612 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4613 }
4614 DPRINT(("ctx unloaded for current state was %d\n", state));
4615
4616 pfm_end_notify_user(ctx);
4617 break;
4618 case PFM_CTX_ZOMBIE:
4619 ret = pfm_context_unload(ctx, NULL, 0, regs);
4620 if (ret) {
4621 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4622 }
4623 free_ok = 1;
4624 break;
4625 default:
4626 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4627 break;
4628 }
4629 UNPROTECT_CTX(ctx, flags);
4630
4631 { u64 psr = pfm_get_psr();
4632 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4633 BUG_ON(GET_PMU_OWNER());
4634 BUG_ON(ia64_psr(regs)->up);
4635 BUG_ON(ia64_psr(regs)->pp);
4636 }
4637
4638 /*
4639 * All memory free operations (especially for vmalloc'ed memory)
4640 * MUST be done with interrupts ENABLED.
4641 */
4642 if (free_ok) pfm_context_free(ctx);
4643}
4644
4645/*
4646 * functions MUST be listed in the increasing order of their index (see permfon.h)
4647 */
4648#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4649#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4650#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4651#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4652#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4653
4654static pfm_cmd_desc_t pfm_cmd_tab[]={
4655/* 0 */PFM_CMD_NONE,
4656/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4657/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4658/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4659/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4660/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4661/* 6 */PFM_CMD_NONE,
4662/* 7 */PFM_CMD_NONE,
4663/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4664/* 9 */PFM_CMD_NONE,
4665/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4666/* 11 */PFM_CMD_NONE,
4667/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4668/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4669/* 14 */PFM_CMD_NONE,
4670/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4671/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4672/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4673/* 18 */PFM_CMD_NONE,
4674/* 19 */PFM_CMD_NONE,
4675/* 20 */PFM_CMD_NONE,
4676/* 21 */PFM_CMD_NONE,
4677/* 22 */PFM_CMD_NONE,
4678/* 23 */PFM_CMD_NONE,
4679/* 24 */PFM_CMD_NONE,
4680/* 25 */PFM_CMD_NONE,
4681/* 26 */PFM_CMD_NONE,
4682/* 27 */PFM_CMD_NONE,
4683/* 28 */PFM_CMD_NONE,
4684/* 29 */PFM_CMD_NONE,
4685/* 30 */PFM_CMD_NONE,
4686/* 31 */PFM_CMD_NONE,
4687/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4688/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4689};
4690#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4691
4692static int
4693pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4694{
4695 struct task_struct *task;
4696 int state, old_state;
4697
4698recheck:
4699 state = ctx->ctx_state;
4700 task = ctx->ctx_task;
4701
4702 if (task == NULL) {
4703 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4704 return 0;
4705 }
4706
4707 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4708 ctx->ctx_fd,
4709 state,
4710 task->pid,
4711 task->state, PFM_CMD_STOPPED(cmd)));
4712
4713 /*
4714 * self-monitoring always ok.
4715 *
4716 * for system-wide the caller can either be the creator of the
4717 * context (to one to which the context is attached to) OR
4718 * a task running on the same CPU as the session.
4719 */
4720 if (task == current || ctx->ctx_fl_system) return 0;
4721
4722 /*
a5a70b75 4723 * we are monitoring another thread
1da177e4 4724 */
a5a70b75 4725 switch(state) {
4726 case PFM_CTX_UNLOADED:
4727 /*
4728 * if context is UNLOADED we are safe to go
4729 */
4730 return 0;
4731 case PFM_CTX_ZOMBIE:
4732 /*
4733 * no command can operate on a zombie context
4734 */
4735 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4736 return -EINVAL;
4737 case PFM_CTX_MASKED:
4738 /*
4739 * PMU state has been saved to software even though
4740 * the thread may still be running.
4741 */
4742 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4743 }
4744
4745 /*
4746 * context is LOADED or MASKED. Some commands may need to have
4747 * the task stopped.
4748 *
4749 * We could lift this restriction for UP but it would mean that
4750 * the user has no guarantee the task would not run between
4751 * two successive calls to perfmonctl(). That's probably OK.
4752 * If this user wants to ensure the task does not run, then
4753 * the task must be stopped.
4754 */
4755 if (PFM_CMD_STOPPED(cmd)) {
4756 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4757 DPRINT(("[%d] task not in stopped state\n", task->pid));
4758 return -EBUSY;
4759 }
4760 /*
4761 * task is now stopped, wait for ctxsw out
4762 *
4763 * This is an interesting point in the code.
4764 * We need to unprotect the context because
4765 * the pfm_save_regs() routines needs to grab
4766 * the same lock. There are danger in doing
4767 * this because it leaves a window open for
4768 * another task to get access to the context
4769 * and possibly change its state. The one thing
4770 * that is not possible is for the context to disappear
4771 * because we are protected by the VFS layer, i.e.,
4772 * get_fd()/put_fd().
4773 */
4774 old_state = state;
4775
4776 UNPROTECT_CTX(ctx, flags);
4777
4778 wait_task_inactive(task);
4779
4780 PROTECT_CTX(ctx, flags);
4781
4782 /*
4783 * we must recheck to verify if state has changed
4784 */
4785 if (ctx->ctx_state != old_state) {
4786 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4787 goto recheck;
4788 }
4789 }
4790 return 0;
4791}
4792
4793/*
4794 * system-call entry point (must return long)
4795 */
4796asmlinkage long
4797sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4798{
4799 struct file *file = NULL;
4800 pfm_context_t *ctx = NULL;
4801 unsigned long flags = 0UL;
4802 void *args_k = NULL;
4803 long ret; /* will expand int return types */
4804 size_t base_sz, sz, xtra_sz = 0;
4805 int narg, completed_args = 0, call_made = 0, cmd_flags;
4806 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4807 int (*getsize)(void *arg, size_t *sz);
4808#define PFM_MAX_ARGSIZE 4096
4809
4810 /*
4811 * reject any call if perfmon was disabled at initialization
4812 */
4813 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4814
4815 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4816 DPRINT(("invalid cmd=%d\n", cmd));
4817 return -EINVAL;
4818 }
4819
4820 func = pfm_cmd_tab[cmd].cmd_func;
4821 narg = pfm_cmd_tab[cmd].cmd_narg;
4822 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4823 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4824 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4825
4826 if (unlikely(func == NULL)) {
4827 DPRINT(("invalid cmd=%d\n", cmd));
4828 return -EINVAL;
4829 }
4830
4831 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4832 PFM_CMD_NAME(cmd),
4833 cmd,
4834 narg,
4835 base_sz,
4836 count));
4837
4838 /*
4839 * check if number of arguments matches what the command expects
4840 */
4841 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4842 return -EINVAL;
4843
4844restart_args:
4845 sz = xtra_sz + base_sz*count;
4846 /*
4847 * limit abuse to min page size
4848 */
4849 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4850 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4851 return -E2BIG;
4852 }
4853
4854 /*
4855 * allocate default-sized argument buffer
4856 */
4857 if (likely(count && args_k == NULL)) {
4858 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4859 if (args_k == NULL) return -ENOMEM;
4860 }
4861
4862 ret = -EFAULT;
4863
4864 /*
4865 * copy arguments
4866 *
4867 * assume sz = 0 for command without parameters
4868 */
4869 if (sz && copy_from_user(args_k, arg, sz)) {
4870 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4871 goto error_args;
4872 }
4873
4874 /*
4875 * check if command supports extra parameters
4876 */
4877 if (completed_args == 0 && getsize) {
4878 /*
4879 * get extra parameters size (based on main argument)
4880 */
4881 ret = (*getsize)(args_k, &xtra_sz);
4882 if (ret) goto error_args;
4883
4884 completed_args = 1;
4885
4886 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4887
4888 /* retry if necessary */
4889 if (likely(xtra_sz)) goto restart_args;
4890 }
4891
4892 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4893
4894 ret = -EBADF;
4895
4896 file = fget(fd);
4897 if (unlikely(file == NULL)) {
4898 DPRINT(("invalid fd %d\n", fd));
4899 goto error_args;
4900 }
4901 if (unlikely(PFM_IS_FILE(file) == 0)) {
4902 DPRINT(("fd %d not related to perfmon\n", fd));
4903 goto error_args;
4904 }
4905
4906 ctx = (pfm_context_t *)file->private_data;
4907 if (unlikely(ctx == NULL)) {
4908 DPRINT(("no context for fd %d\n", fd));
4909 goto error_args;
4910 }
4911 prefetch(&ctx->ctx_state);
4912
4913 PROTECT_CTX(ctx, flags);
4914
4915 /*
4916 * check task is stopped
4917 */
4918 ret = pfm_check_task_state(ctx, cmd, flags);
4919 if (unlikely(ret)) goto abort_locked;
4920
4921skip_fd:
4922 ret = (*func)(ctx, args_k, count, ia64_task_regs(current));
4923
4924 call_made = 1;
4925
4926abort_locked:
4927 if (likely(ctx)) {
4928 DPRINT(("context unlocked\n"));
4929 UNPROTECT_CTX(ctx, flags);
4930 fput(file);
4931 }
4932
4933 /* copy argument back to user, if needed */
4934 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4935
4936error_args:
4937 if (args_k) kfree(args_k);
4938
4939 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4940
4941 return ret;
4942}
4943
4944static void
4945pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4946{
4947 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4948 pfm_ovfl_ctrl_t rst_ctrl;
4949 int state;
4950 int ret = 0;
4951
4952 state = ctx->ctx_state;
4953 /*
4954 * Unlock sampling buffer and reset index atomically
4955 * XXX: not really needed when blocking
4956 */
4957 if (CTX_HAS_SMPL(ctx)) {
4958
4959 rst_ctrl.bits.mask_monitoring = 0;
4960 rst_ctrl.bits.reset_ovfl_pmds = 0;
4961
4962 if (state == PFM_CTX_LOADED)
4963 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4964 else
4965 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4966 } else {
4967 rst_ctrl.bits.mask_monitoring = 0;
4968 rst_ctrl.bits.reset_ovfl_pmds = 1;
4969 }
4970
4971 if (ret == 0) {
4972 if (rst_ctrl.bits.reset_ovfl_pmds) {
4973 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4974 }
4975 if (rst_ctrl.bits.mask_monitoring == 0) {
4976 DPRINT(("resuming monitoring\n"));
4977 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4978 } else {
4979 DPRINT(("stopping monitoring\n"));
4980 //pfm_stop_monitoring(current, regs);
4981 }
4982 ctx->ctx_state = PFM_CTX_LOADED;
4983 }
4984}
4985
4986/*
4987 * context MUST BE LOCKED when calling
4988 * can only be called for current
4989 */
4990static void
4991pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4992{
4993 int ret;
4994
4995 DPRINT(("entering for [%d]\n", current->pid));
4996
4997 ret = pfm_context_unload(ctx, NULL, 0, regs);
4998 if (ret) {
4999 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5000 }
5001
5002 /*
5003 * and wakeup controlling task, indicating we are now disconnected
5004 */
5005 wake_up_interruptible(&ctx->ctx_zombieq);
5006
5007 /*
5008 * given that context is still locked, the controlling
5009 * task will only get access when we return from
5010 * pfm_handle_work().
5011 */
5012}
5013
5014static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5015 /*
5016 * pfm_handle_work() can be called with interrupts enabled
5017 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5018 * call may sleep, therefore we must re-enable interrupts
5019 * to avoid deadlocks. It is safe to do so because this function
5020 * is called ONLY when returning to user level (PUStk=1), in which case
5021 * there is no risk of kernel stack overflow due to deep
5022 * interrupt nesting.
5023 */
1da177e4
LT
5024void
5025pfm_handle_work(void)
5026{
5027 pfm_context_t *ctx;
5028 struct pt_regs *regs;
4944930a 5029 unsigned long flags, dummy_flags;
1da177e4
LT
5030 unsigned long ovfl_regs;
5031 unsigned int reason;
5032 int ret;
5033
5034 ctx = PFM_GET_CTX(current);
5035 if (ctx == NULL) {
5036 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5037 return;
5038 }
5039
5040 PROTECT_CTX(ctx, flags);
5041
5042 PFM_SET_WORK_PENDING(current, 0);
5043
5044 pfm_clear_task_notify();
5045
5046 regs = ia64_task_regs(current);
5047
5048 /*
5049 * extract reason for being here and clear
5050 */
5051 reason = ctx->ctx_fl_trap_reason;
5052 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5053 ovfl_regs = ctx->ctx_ovfl_regs[0];
5054
5055 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5056
5057 /*
5058 * must be done before we check for simple-reset mode
5059 */
5060 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5061
5062
5063 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5064 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5065
4944930a
SE
5066 /*
5067 * restore interrupt mask to what it was on entry.
5068 * Could be enabled/diasbled.
5069 */
1da177e4
LT
5070 UNPROTECT_CTX(ctx, flags);
5071
4944930a
SE
5072 /*
5073 * force interrupt enable because of down_interruptible()
5074 */
1da177e4
LT
5075 local_irq_enable();
5076
5077 DPRINT(("before block sleeping\n"));
5078
5079 /*
5080 * may go through without blocking on SMP systems
5081 * if restart has been received already by the time we call down()
5082 */
5083 ret = down_interruptible(&ctx->ctx_restart_sem);
5084
5085 DPRINT(("after block sleeping ret=%d\n", ret));
5086
5087 /*
4944930a
SE
5088 * lock context and mask interrupts again
5089 * We save flags into a dummy because we may have
5090 * altered interrupts mask compared to entry in this
5091 * function.
1da177e4 5092 */
4944930a 5093 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5094
5095 /*
5096 * we need to read the ovfl_regs only after wake-up
5097 * because we may have had pfm_write_pmds() in between
5098 * and that can changed PMD values and therefore
5099 * ovfl_regs is reset for these new PMD values.
5100 */
5101 ovfl_regs = ctx->ctx_ovfl_regs[0];
5102
5103 if (ctx->ctx_fl_going_zombie) {
5104do_zombie:
5105 DPRINT(("context is zombie, bailing out\n"));
5106 pfm_context_force_terminate(ctx, regs);
5107 goto nothing_to_do;
5108 }
5109 /*
5110 * in case of interruption of down() we don't restart anything
5111 */
5112 if (ret < 0) goto nothing_to_do;
5113
5114skip_blocking:
5115 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5116 ctx->ctx_ovfl_regs[0] = 0UL;
5117
5118nothing_to_do:
4944930a
SE
5119 /*
5120 * restore flags as they were upon entry
5121 */
1da177e4
LT
5122 UNPROTECT_CTX(ctx, flags);
5123}
5124
5125static int
5126pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5127{
5128 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5129 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5130 return 0;
5131 }
5132
5133 DPRINT(("waking up somebody\n"));
5134
5135 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5136
5137 /*
5138 * safe, we are not in intr handler, nor in ctxsw when
5139 * we come here
5140 */
5141 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5142
5143 return 0;
5144}
5145
5146static int
5147pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5148{
5149 pfm_msg_t *msg = NULL;
5150
5151 if (ctx->ctx_fl_no_msg == 0) {
5152 msg = pfm_get_new_msg(ctx);
5153 if (msg == NULL) {
5154 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5155 return -1;
5156 }
5157
5158 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5159 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5160 msg->pfm_ovfl_msg.msg_active_set = 0;
5161 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5162 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5163 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5164 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5165 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5166 }
5167
5168 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5169 msg,
5170 ctx->ctx_fl_no_msg,
5171 ctx->ctx_fd,
5172 ovfl_pmds));
5173
5174 return pfm_notify_user(ctx, msg);
5175}
5176
5177static int
5178pfm_end_notify_user(pfm_context_t *ctx)
5179{
5180 pfm_msg_t *msg;
5181
5182 msg = pfm_get_new_msg(ctx);
5183 if (msg == NULL) {
5184 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5185 return -1;
5186 }
5187 /* no leak */
5188 memset(msg, 0, sizeof(*msg));
5189
5190 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5191 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5192 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5193
5194 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5195 msg,
5196 ctx->ctx_fl_no_msg,
5197 ctx->ctx_fd));
5198
5199 return pfm_notify_user(ctx, msg);
5200}
5201
5202/*
5203 * main overflow processing routine.
5204 * it can be called from the interrupt path or explicitely during the context switch code
5205 */
5206static void
5207pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5208{
5209 pfm_ovfl_arg_t *ovfl_arg;
5210 unsigned long mask;
5211 unsigned long old_val, ovfl_val, new_val;
5212 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5213 unsigned long tstamp;
5214 pfm_ovfl_ctrl_t ovfl_ctrl;
5215 unsigned int i, has_smpl;
5216 int must_notify = 0;
5217
5218 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5219
5220 /*
5221 * sanity test. Should never happen
5222 */
5223 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5224
5225 tstamp = ia64_get_itc();
5226 mask = pmc0 >> PMU_FIRST_COUNTER;
5227 ovfl_val = pmu_conf->ovfl_val;
5228 has_smpl = CTX_HAS_SMPL(ctx);
5229
5230 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5231 "used_pmds=0x%lx\n",
5232 pmc0,
5233 task ? task->pid: -1,
5234 (regs ? regs->cr_iip : 0),
5235 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5236 ctx->ctx_used_pmds[0]));
5237
5238
5239 /*
5240 * first we update the virtual counters
5241 * assume there was a prior ia64_srlz_d() issued
5242 */
5243 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5244
5245 /* skip pmd which did not overflow */
5246 if ((mask & 0x1) == 0) continue;
5247
5248 /*
5249 * Note that the pmd is not necessarily 0 at this point as qualified events
5250 * may have happened before the PMU was frozen. The residual count is not
5251 * taken into consideration here but will be with any read of the pmd via
5252 * pfm_read_pmds().
5253 */
5254 old_val = new_val = ctx->ctx_pmds[i].val;
5255 new_val += 1 + ovfl_val;
5256 ctx->ctx_pmds[i].val = new_val;
5257
5258 /*
5259 * check for overflow condition
5260 */
5261 if (likely(old_val > new_val)) {
5262 ovfl_pmds |= 1UL << i;
5263 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5264 }
5265
5266 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5267 i,
5268 new_val,
5269 old_val,
5270 ia64_get_pmd(i) & ovfl_val,
5271 ovfl_pmds,
5272 ovfl_notify));
5273 }
5274
5275 /*
5276 * there was no 64-bit overflow, nothing else to do
5277 */
5278 if (ovfl_pmds == 0UL) return;
5279
5280 /*
5281 * reset all control bits
5282 */
5283 ovfl_ctrl.val = 0;
5284 reset_pmds = 0UL;
5285
5286 /*
5287 * if a sampling format module exists, then we "cache" the overflow by
5288 * calling the module's handler() routine.
5289 */
5290 if (has_smpl) {
5291 unsigned long start_cycles, end_cycles;
5292 unsigned long pmd_mask;
5293 int j, k, ret = 0;
5294 int this_cpu = smp_processor_id();
5295
5296 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5297 ovfl_arg = &ctx->ctx_ovfl_arg;
5298
5299 prefetch(ctx->ctx_smpl_hdr);
5300
5301 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5302
5303 mask = 1UL << i;
5304
5305 if ((pmd_mask & 0x1) == 0) continue;
5306
5307 ovfl_arg->ovfl_pmd = (unsigned char )i;
5308 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5309 ovfl_arg->active_set = 0;
5310 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5311 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5312
5313 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5314 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5315 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5316
5317 /*
5318 * copy values of pmds of interest. Sampling format may copy them
5319 * into sampling buffer.
5320 */
5321 if (smpl_pmds) {
5322 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5323 if ((smpl_pmds & 0x1) == 0) continue;
5324 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5325 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5326 }
5327 }
5328
5329 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5330
5331 start_cycles = ia64_get_itc();
5332
5333 /*
5334 * call custom buffer format record (handler) routine
5335 */
5336 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5337
5338 end_cycles = ia64_get_itc();
5339
5340 /*
5341 * For those controls, we take the union because they have
5342 * an all or nothing behavior.
5343 */
5344 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5345 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5346 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5347 /*
5348 * build the bitmask of pmds to reset now
5349 */
5350 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5351
5352 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5353 }
5354 /*
5355 * when the module cannot handle the rest of the overflows, we abort right here
5356 */
5357 if (ret && pmd_mask) {
5358 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5359 pmd_mask<<PMU_FIRST_COUNTER));
5360 }
5361 /*
5362 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5363 */
5364 ovfl_pmds &= ~reset_pmds;
5365 } else {
5366 /*
5367 * when no sampling module is used, then the default
5368 * is to notify on overflow if requested by user
5369 */
5370 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5371 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5372 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5373 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5374 /*
5375 * if needed, we reset all overflowed pmds
5376 */
5377 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5378 }
5379
5380 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5381
5382 /*
5383 * reset the requested PMD registers using the short reset values
5384 */
5385 if (reset_pmds) {
5386 unsigned long bm = reset_pmds;
5387 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5388 }
5389
5390 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5391 /*
5392 * keep track of what to reset when unblocking
5393 */
5394 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5395
5396 /*
5397 * check for blocking context
5398 */
5399 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5400
5401 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5402
5403 /*
5404 * set the perfmon specific checking pending work for the task
5405 */
5406 PFM_SET_WORK_PENDING(task, 1);
5407
5408 /*
5409 * when coming from ctxsw, current still points to the
5410 * previous task, therefore we must work with task and not current.
5411 */
5412 pfm_set_task_notify(task);
5413 }
5414 /*
5415 * defer until state is changed (shorten spin window). the context is locked
5416 * anyway, so the signal receiver would come spin for nothing.
5417 */
5418 must_notify = 1;
5419 }
5420
5421 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5422 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5423 PFM_GET_WORK_PENDING(task),
5424 ctx->ctx_fl_trap_reason,
5425 ovfl_pmds,
5426 ovfl_notify,
5427 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5428 /*
5429 * in case monitoring must be stopped, we toggle the psr bits
5430 */
5431 if (ovfl_ctrl.bits.mask_monitoring) {
5432 pfm_mask_monitoring(task);
5433 ctx->ctx_state = PFM_CTX_MASKED;
5434 ctx->ctx_fl_can_restart = 1;
5435 }
5436
5437 /*
5438 * send notification now
5439 */
5440 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5441
5442 return;
5443
5444sanity_check:
5445 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5446 smp_processor_id(),
5447 task ? task->pid : -1,
5448 pmc0);
5449 return;
5450
5451stop_monitoring:
5452 /*
5453 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5454 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5455 * come here as zombie only if the task is the current task. In which case, we
5456 * can access the PMU hardware directly.
5457 *
5458 * Note that zombies do have PM_VALID set. So here we do the minimal.
5459 *
5460 * In case the context was zombified it could not be reclaimed at the time
5461 * the monitoring program exited. At this point, the PMU reservation has been
5462 * returned, the sampiing buffer has been freed. We must convert this call
5463 * into a spurious interrupt. However, we must also avoid infinite overflows
5464 * by stopping monitoring for this task. We can only come here for a per-task
5465 * context. All we need to do is to stop monitoring using the psr bits which
5466 * are always task private. By re-enabling secure montioring, we ensure that
5467 * the monitored task will not be able to re-activate monitoring.
5468 * The task will eventually be context switched out, at which point the context
5469 * will be reclaimed (that includes releasing ownership of the PMU).
5470 *
5471 * So there might be a window of time where the number of per-task session is zero
5472 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5473 * context. This is safe because if a per-task session comes in, it will push this one
5474 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5475 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5476 * also push our zombie context out.
5477 *
5478 * Overall pretty hairy stuff....
5479 */
5480 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5481 pfm_clear_psr_up();
5482 ia64_psr(regs)->up = 0;
5483 ia64_psr(regs)->sp = 1;
5484 return;
5485}
5486
5487static int
5488pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5489{
5490 struct task_struct *task;
5491 pfm_context_t *ctx;
5492 unsigned long flags;
5493 u64 pmc0;
5494 int this_cpu = smp_processor_id();
5495 int retval = 0;
5496
5497 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5498
5499 /*
5500 * srlz.d done before arriving here
5501 */
5502 pmc0 = ia64_get_pmc(0);
5503
5504 task = GET_PMU_OWNER();
5505 ctx = GET_PMU_CTX();
5506
5507 /*
5508 * if we have some pending bits set
5509 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5510 */
5511 if (PMC0_HAS_OVFL(pmc0) && task) {
5512 /*
5513 * we assume that pmc0.fr is always set here
5514 */
5515
5516 /* sanity check */
5517 if (!ctx) goto report_spurious1;
5518
5519 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5520 goto report_spurious2;
5521
5522 PROTECT_CTX_NOPRINT(ctx, flags);
5523
5524 pfm_overflow_handler(task, ctx, pmc0, regs);
5525
5526 UNPROTECT_CTX_NOPRINT(ctx, flags);
5527
5528 } else {
5529 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5530 retval = -1;
5531 }
5532 /*
5533 * keep it unfrozen at all times
5534 */
5535 pfm_unfreeze_pmu();
5536
5537 return retval;
5538
5539report_spurious1:
5540 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5541 this_cpu, task->pid);
5542 pfm_unfreeze_pmu();
5543 return -1;
5544report_spurious2:
5545 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5546 this_cpu,
5547 task->pid);
5548 pfm_unfreeze_pmu();
5549 return -1;
5550}
5551
5552static irqreturn_t
5553pfm_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5554{
5555 unsigned long start_cycles, total_cycles;
5556 unsigned long min, max;
5557 int this_cpu;
5558 int ret;
5559
5560 this_cpu = get_cpu();
a1ecf7f6
TL
5561 if (likely(!pfm_alt_intr_handler)) {
5562 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5563 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5564
a1ecf7f6 5565 start_cycles = ia64_get_itc();
1da177e4 5566
a1ecf7f6 5567 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5568
a1ecf7f6 5569 total_cycles = ia64_get_itc();
1da177e4 5570
a1ecf7f6
TL
5571 /*
5572 * don't measure spurious interrupts
5573 */
5574 if (likely(ret == 0)) {
5575 total_cycles -= start_cycles;
1da177e4 5576
a1ecf7f6
TL
5577 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5578 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5579
a1ecf7f6
TL
5580 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5581 }
5582 }
5583 else {
5584 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5585 }
a1ecf7f6 5586
1da177e4
LT
5587 put_cpu_no_resched();
5588 return IRQ_HANDLED;
5589}
5590
5591/*
5592 * /proc/perfmon interface, for debug only
5593 */
5594
5595#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5596
5597static void *
5598pfm_proc_start(struct seq_file *m, loff_t *pos)
5599{
5600 if (*pos == 0) {
5601 return PFM_PROC_SHOW_HEADER;
5602 }
5603
5604 while (*pos <= NR_CPUS) {
5605 if (cpu_online(*pos - 1)) {
5606 return (void *)*pos;
5607 }
5608 ++*pos;
5609 }
5610 return NULL;
5611}
5612
5613static void *
5614pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5615{
5616 ++*pos;
5617 return pfm_proc_start(m, pos);
5618}
5619
5620static void
5621pfm_proc_stop(struct seq_file *m, void *v)
5622{
5623}
5624
5625static void
5626pfm_proc_show_header(struct seq_file *m)
5627{
5628 struct list_head * pos;
5629 pfm_buffer_fmt_t * entry;
5630 unsigned long flags;
5631
5632 seq_printf(m,
5633 "perfmon version : %u.%u\n"
5634 "model : %s\n"
5635 "fastctxsw : %s\n"
5636 "expert mode : %s\n"
5637 "ovfl_mask : 0x%lx\n"
5638 "PMU flags : 0x%x\n",
5639 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5640 pmu_conf->pmu_name,
5641 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5642 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5643 pmu_conf->ovfl_val,
5644 pmu_conf->flags);
5645
5646 LOCK_PFS(flags);
5647
5648 seq_printf(m,
5649 "proc_sessions : %u\n"
5650 "sys_sessions : %u\n"
5651 "sys_use_dbregs : %u\n"
5652 "ptrace_use_dbregs : %u\n",
5653 pfm_sessions.pfs_task_sessions,
5654 pfm_sessions.pfs_sys_sessions,
5655 pfm_sessions.pfs_sys_use_dbregs,
5656 pfm_sessions.pfs_ptrace_use_dbregs);
5657
5658 UNLOCK_PFS(flags);
5659
5660 spin_lock(&pfm_buffer_fmt_lock);
5661
5662 list_for_each(pos, &pfm_buffer_fmt_list) {
5663 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5664 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5665 entry->fmt_uuid[0],
5666 entry->fmt_uuid[1],
5667 entry->fmt_uuid[2],
5668 entry->fmt_uuid[3],
5669 entry->fmt_uuid[4],
5670 entry->fmt_uuid[5],
5671 entry->fmt_uuid[6],
5672 entry->fmt_uuid[7],
5673 entry->fmt_uuid[8],
5674 entry->fmt_uuid[9],
5675 entry->fmt_uuid[10],
5676 entry->fmt_uuid[11],
5677 entry->fmt_uuid[12],
5678 entry->fmt_uuid[13],
5679 entry->fmt_uuid[14],
5680 entry->fmt_uuid[15],
5681 entry->fmt_name);
5682 }
5683 spin_unlock(&pfm_buffer_fmt_lock);
5684
5685}
5686
5687static int
5688pfm_proc_show(struct seq_file *m, void *v)
5689{
5690 unsigned long psr;
5691 unsigned int i;
5692 int cpu;
5693
5694 if (v == PFM_PROC_SHOW_HEADER) {
5695 pfm_proc_show_header(m);
5696 return 0;
5697 }
5698
5699 /* show info for CPU (v - 1) */
5700
5701 cpu = (long)v - 1;
5702 seq_printf(m,
5703 "CPU%-2d overflow intrs : %lu\n"
5704 "CPU%-2d overflow cycles : %lu\n"
5705 "CPU%-2d overflow min : %lu\n"
5706 "CPU%-2d overflow max : %lu\n"
5707 "CPU%-2d smpl handler calls : %lu\n"
5708 "CPU%-2d smpl handler cycles : %lu\n"
5709 "CPU%-2d spurious intrs : %lu\n"
5710 "CPU%-2d replay intrs : %lu\n"
5711 "CPU%-2d syst_wide : %d\n"
5712 "CPU%-2d dcr_pp : %d\n"
5713 "CPU%-2d exclude idle : %d\n"
5714 "CPU%-2d owner : %d\n"
5715 "CPU%-2d context : %p\n"
5716 "CPU%-2d activations : %lu\n",
5717 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5718 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5719 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5720 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5721 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5722 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5723 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5724 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5725 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5726 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5727 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5728 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5729 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5730 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5731
5732 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5733
5734 psr = pfm_get_psr();
5735
5736 ia64_srlz_d();
5737
5738 seq_printf(m,
5739 "CPU%-2d psr : 0x%lx\n"
5740 "CPU%-2d pmc0 : 0x%lx\n",
5741 cpu, psr,
5742 cpu, ia64_get_pmc(0));
5743
5744 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5745 if (PMC_IS_COUNTING(i) == 0) continue;
5746 seq_printf(m,
5747 "CPU%-2d pmc%u : 0x%lx\n"
5748 "CPU%-2d pmd%u : 0x%lx\n",
5749 cpu, i, ia64_get_pmc(i),
5750 cpu, i, ia64_get_pmd(i));
5751 }
5752 }
5753 return 0;
5754}
5755
5756struct seq_operations pfm_seq_ops = {
5757 .start = pfm_proc_start,
5758 .next = pfm_proc_next,
5759 .stop = pfm_proc_stop,
5760 .show = pfm_proc_show
5761};
5762
5763static int
5764pfm_proc_open(struct inode *inode, struct file *file)
5765{
5766 return seq_open(file, &pfm_seq_ops);
5767}
5768
5769
5770/*
5771 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5772 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5773 * is active or inactive based on mode. We must rely on the value in
5774 * local_cpu_data->pfm_syst_info
5775 */
5776void
5777pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5778{
5779 struct pt_regs *regs;
5780 unsigned long dcr;
5781 unsigned long dcr_pp;
5782
5783 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5784
5785 /*
5786 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5787 * on every CPU, so we can rely on the pid to identify the idle task.
5788 */
5789 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5790 regs = ia64_task_regs(task);
5791 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5792 return;
5793 }
5794 /*
5795 * if monitoring has started
5796 */
5797 if (dcr_pp) {
5798 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5799 /*
5800 * context switching in?
5801 */
5802 if (is_ctxswin) {
5803 /* mask monitoring for the idle task */
5804 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5805 pfm_clear_psr_pp();
5806 ia64_srlz_i();
5807 return;
5808 }
5809 /*
5810 * context switching out
5811 * restore monitoring for next task
5812 *
5813 * Due to inlining this odd if-then-else construction generates
5814 * better code.
5815 */
5816 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5817 pfm_set_psr_pp();
5818 ia64_srlz_i();
5819 }
5820}
5821
5822#ifdef CONFIG_SMP
5823
5824static void
5825pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5826{
5827 struct task_struct *task = ctx->ctx_task;
5828
5829 ia64_psr(regs)->up = 0;
5830 ia64_psr(regs)->sp = 1;
5831
5832 if (GET_PMU_OWNER() == task) {
5833 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5834 SET_PMU_OWNER(NULL, NULL);
5835 }
5836
5837 /*
5838 * disconnect the task from the context and vice-versa
5839 */
5840 PFM_SET_WORK_PENDING(task, 0);
5841
5842 task->thread.pfm_context = NULL;
5843 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5844
5845 DPRINT(("force cleanup for [%d]\n", task->pid));
5846}
5847
5848
5849/*
5850 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5851 */
5852void
5853pfm_save_regs(struct task_struct *task)
5854{
5855 pfm_context_t *ctx;
5856 struct thread_struct *t;
5857 unsigned long flags;
5858 u64 psr;
5859
5860
5861 ctx = PFM_GET_CTX(task);
5862 if (ctx == NULL) return;
5863 t = &task->thread;
5864
5865 /*
5866 * we always come here with interrupts ALREADY disabled by
5867 * the scheduler. So we simply need to protect against concurrent
5868 * access, not CPU concurrency.
5869 */
5870 flags = pfm_protect_ctx_ctxsw(ctx);
5871
5872 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5873 struct pt_regs *regs = ia64_task_regs(task);
5874
5875 pfm_clear_psr_up();
5876
5877 pfm_force_cleanup(ctx, regs);
5878
5879 BUG_ON(ctx->ctx_smpl_hdr);
5880
5881 pfm_unprotect_ctx_ctxsw(ctx, flags);
5882
5883 pfm_context_free(ctx);
5884 return;
5885 }
5886
5887 /*
5888 * save current PSR: needed because we modify it
5889 */
5890 ia64_srlz_d();
5891 psr = pfm_get_psr();
5892
5893 BUG_ON(psr & (IA64_PSR_I));
5894
5895 /*
5896 * stop monitoring:
5897 * This is the last instruction which may generate an overflow
5898 *
5899 * We do not need to set psr.sp because, it is irrelevant in kernel.
5900 * It will be restored from ipsr when going back to user level
5901 */
5902 pfm_clear_psr_up();
5903
5904 /*
5905 * keep a copy of psr.up (for reload)
5906 */
5907 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5908
5909 /*
5910 * release ownership of this PMU.
5911 * PM interrupts are masked, so nothing
5912 * can happen.
5913 */
5914 SET_PMU_OWNER(NULL, NULL);
5915
5916 /*
5917 * we systematically save the PMD as we have no
5918 * guarantee we will be schedule at that same
5919 * CPU again.
5920 */
5921 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
5922
5923 /*
5924 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5925 * we will need it on the restore path to check
5926 * for pending overflow.
5927 */
5928 t->pmcs[0] = ia64_get_pmc(0);
5929
5930 /*
5931 * unfreeze PMU if had pending overflows
5932 */
5933 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5934
5935 /*
5936 * finally, allow context access.
5937 * interrupts will still be masked after this call.
5938 */
5939 pfm_unprotect_ctx_ctxsw(ctx, flags);
5940}
5941
5942#else /* !CONFIG_SMP */
5943void
5944pfm_save_regs(struct task_struct *task)
5945{
5946 pfm_context_t *ctx;
5947 u64 psr;
5948
5949 ctx = PFM_GET_CTX(task);
5950 if (ctx == NULL) return;
5951
5952 /*
5953 * save current PSR: needed because we modify it
5954 */
5955 psr = pfm_get_psr();
5956
5957 BUG_ON(psr & (IA64_PSR_I));
5958
5959 /*
5960 * stop monitoring:
5961 * This is the last instruction which may generate an overflow
5962 *
5963 * We do not need to set psr.sp because, it is irrelevant in kernel.
5964 * It will be restored from ipsr when going back to user level
5965 */
5966 pfm_clear_psr_up();
5967
5968 /*
5969 * keep a copy of psr.up (for reload)
5970 */
5971 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5972}
5973
5974static void
5975pfm_lazy_save_regs (struct task_struct *task)
5976{
5977 pfm_context_t *ctx;
5978 struct thread_struct *t;
5979 unsigned long flags;
5980
5981 { u64 psr = pfm_get_psr();
5982 BUG_ON(psr & IA64_PSR_UP);
5983 }
5984
5985 ctx = PFM_GET_CTX(task);
5986 t = &task->thread;
5987
5988 /*
5989 * we need to mask PMU overflow here to
5990 * make sure that we maintain pmc0 until
5991 * we save it. overflow interrupts are
5992 * treated as spurious if there is no
5993 * owner.
5994 *
5995 * XXX: I don't think this is necessary
5996 */
5997 PROTECT_CTX(ctx,flags);
5998
5999 /*
6000 * release ownership of this PMU.
6001 * must be done before we save the registers.
6002 *
6003 * after this call any PMU interrupt is treated
6004 * as spurious.
6005 */
6006 SET_PMU_OWNER(NULL, NULL);
6007
6008 /*
6009 * save all the pmds we use
6010 */
6011 pfm_save_pmds(t->pmds, ctx->ctx_used_pmds[0]);
6012
6013 /*
6014 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6015 * it is needed to check for pended overflow
6016 * on the restore path
6017 */
6018 t->pmcs[0] = ia64_get_pmc(0);
6019
6020 /*
6021 * unfreeze PMU if had pending overflows
6022 */
6023 if (t->pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6024
6025 /*
6026 * now get can unmask PMU interrupts, they will
6027 * be treated as purely spurious and we will not
6028 * lose any information
6029 */
6030 UNPROTECT_CTX(ctx,flags);
6031}
6032#endif /* CONFIG_SMP */
6033
6034#ifdef CONFIG_SMP
6035/*
6036 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6037 */
6038void
6039pfm_load_regs (struct task_struct *task)
6040{
6041 pfm_context_t *ctx;
6042 struct thread_struct *t;
6043 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6044 unsigned long flags;
6045 u64 psr, psr_up;
6046 int need_irq_resend;
6047
6048 ctx = PFM_GET_CTX(task);
6049 if (unlikely(ctx == NULL)) return;
6050
6051 BUG_ON(GET_PMU_OWNER());
6052
6053 t = &task->thread;
6054 /*
6055 * possible on unload
6056 */
6057 if (unlikely((t->flags & IA64_THREAD_PM_VALID) == 0)) return;
6058
6059 /*
6060 * we always come here with interrupts ALREADY disabled by
6061 * the scheduler. So we simply need to protect against concurrent
6062 * access, not CPU concurrency.
6063 */
6064 flags = pfm_protect_ctx_ctxsw(ctx);
6065 psr = pfm_get_psr();
6066
6067 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6068
6069 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6070 BUG_ON(psr & IA64_PSR_I);
6071
6072 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6073 struct pt_regs *regs = ia64_task_regs(task);
6074
6075 BUG_ON(ctx->ctx_smpl_hdr);
6076
6077 pfm_force_cleanup(ctx, regs);
6078
6079 pfm_unprotect_ctx_ctxsw(ctx, flags);
6080
6081 /*
6082 * this one (kmalloc'ed) is fine with interrupts disabled
6083 */
6084 pfm_context_free(ctx);
6085
6086 return;
6087 }
6088
6089 /*
6090 * we restore ALL the debug registers to avoid picking up
6091 * stale state.
6092 */
6093 if (ctx->ctx_fl_using_dbreg) {
6094 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6095 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6096 }
6097 /*
6098 * retrieve saved psr.up
6099 */
6100 psr_up = ctx->ctx_saved_psr_up;
6101
6102 /*
6103 * if we were the last user of the PMU on that CPU,
6104 * then nothing to do except restore psr
6105 */
6106 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6107
6108 /*
6109 * retrieve partial reload masks (due to user modifications)
6110 */
6111 pmc_mask = ctx->ctx_reload_pmcs[0];
6112 pmd_mask = ctx->ctx_reload_pmds[0];
6113
6114 } else {
6115 /*
6116 * To avoid leaking information to the user level when psr.sp=0,
6117 * we must reload ALL implemented pmds (even the ones we don't use).
6118 * In the kernel we only allow PFM_READ_PMDS on registers which
6119 * we initialized or requested (sampling) so there is no risk there.
6120 */
6121 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6122
6123 /*
6124 * ALL accessible PMCs are systematically reloaded, unused registers
6125 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6126 * up stale configuration.
6127 *
6128 * PMC0 is never in the mask. It is always restored separately.
6129 */
6130 pmc_mask = ctx->ctx_all_pmcs[0];
6131 }
6132 /*
6133 * when context is MASKED, we will restore PMC with plm=0
6134 * and PMD with stale information, but that's ok, nothing
6135 * will be captured.
6136 *
6137 * XXX: optimize here
6138 */
6139 if (pmd_mask) pfm_restore_pmds(t->pmds, pmd_mask);
6140 if (pmc_mask) pfm_restore_pmcs(t->pmcs, pmc_mask);
6141
6142 /*
6143 * check for pending overflow at the time the state
6144 * was saved.
6145 */
6146 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6147 /*
6148 * reload pmc0 with the overflow information
6149 * On McKinley PMU, this will trigger a PMU interrupt
6150 */
6151 ia64_set_pmc(0, t->pmcs[0]);
6152 ia64_srlz_d();
6153 t->pmcs[0] = 0UL;
6154
6155 /*
6156 * will replay the PMU interrupt
6157 */
6158 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6159
6160 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6161 }
6162
6163 /*
6164 * we just did a reload, so we reset the partial reload fields
6165 */
6166 ctx->ctx_reload_pmcs[0] = 0UL;
6167 ctx->ctx_reload_pmds[0] = 0UL;
6168
6169 SET_LAST_CPU(ctx, smp_processor_id());
6170
6171 /*
6172 * dump activation value for this PMU
6173 */
6174 INC_ACTIVATION();
6175 /*
6176 * record current activation for this context
6177 */
6178 SET_ACTIVATION(ctx);
6179
6180 /*
6181 * establish new ownership.
6182 */
6183 SET_PMU_OWNER(task, ctx);
6184
6185 /*
6186 * restore the psr.up bit. measurement
6187 * is active again.
6188 * no PMU interrupt can happen at this point
6189 * because we still have interrupts disabled.
6190 */
6191 if (likely(psr_up)) pfm_set_psr_up();
6192
6193 /*
6194 * allow concurrent access to context
6195 */
6196 pfm_unprotect_ctx_ctxsw(ctx, flags);
6197}
6198#else /* !CONFIG_SMP */
6199/*
6200 * reload PMU state for UP kernels
6201 * in 2.5 we come here with interrupts disabled
6202 */
6203void
6204pfm_load_regs (struct task_struct *task)
6205{
6206 struct thread_struct *t;
6207 pfm_context_t *ctx;
6208 struct task_struct *owner;
6209 unsigned long pmd_mask, pmc_mask;
6210 u64 psr, psr_up;
6211 int need_irq_resend;
6212
6213 owner = GET_PMU_OWNER();
6214 ctx = PFM_GET_CTX(task);
6215 t = &task->thread;
6216 psr = pfm_get_psr();
6217
6218 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6219 BUG_ON(psr & IA64_PSR_I);
6220
6221 /*
6222 * we restore ALL the debug registers to avoid picking up
6223 * stale state.
6224 *
6225 * This must be done even when the task is still the owner
6226 * as the registers may have been modified via ptrace()
6227 * (not perfmon) by the previous task.
6228 */
6229 if (ctx->ctx_fl_using_dbreg) {
6230 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6231 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6232 }
6233
6234 /*
6235 * retrieved saved psr.up
6236 */
6237 psr_up = ctx->ctx_saved_psr_up;
6238 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6239
6240 /*
6241 * short path, our state is still there, just
6242 * need to restore psr and we go
6243 *
6244 * we do not touch either PMC nor PMD. the psr is not touched
6245 * by the overflow_handler. So we are safe w.r.t. to interrupt
6246 * concurrency even without interrupt masking.
6247 */
6248 if (likely(owner == task)) {
6249 if (likely(psr_up)) pfm_set_psr_up();
6250 return;
6251 }
6252
6253 /*
6254 * someone else is still using the PMU, first push it out and
6255 * then we'll be able to install our stuff !
6256 *
6257 * Upon return, there will be no owner for the current PMU
6258 */
6259 if (owner) pfm_lazy_save_regs(owner);
6260
6261 /*
6262 * To avoid leaking information to the user level when psr.sp=0,
6263 * we must reload ALL implemented pmds (even the ones we don't use).
6264 * In the kernel we only allow PFM_READ_PMDS on registers which
6265 * we initialized or requested (sampling) so there is no risk there.
6266 */
6267 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6268
6269 /*
6270 * ALL accessible PMCs are systematically reloaded, unused registers
6271 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6272 * up stale configuration.
6273 *
6274 * PMC0 is never in the mask. It is always restored separately
6275 */
6276 pmc_mask = ctx->ctx_all_pmcs[0];
6277
6278 pfm_restore_pmds(t->pmds, pmd_mask);
6279 pfm_restore_pmcs(t->pmcs, pmc_mask);
6280
6281 /*
6282 * check for pending overflow at the time the state
6283 * was saved.
6284 */
6285 if (unlikely(PMC0_HAS_OVFL(t->pmcs[0]))) {
6286 /*
6287 * reload pmc0 with the overflow information
6288 * On McKinley PMU, this will trigger a PMU interrupt
6289 */
6290 ia64_set_pmc(0, t->pmcs[0]);
6291 ia64_srlz_d();
6292
6293 t->pmcs[0] = 0UL;
6294
6295 /*
6296 * will replay the PMU interrupt
6297 */
6298 if (need_irq_resend) hw_resend_irq(NULL, IA64_PERFMON_VECTOR);
6299
6300 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6301 }
6302
6303 /*
6304 * establish new ownership.
6305 */
6306 SET_PMU_OWNER(task, ctx);
6307
6308 /*
6309 * restore the psr.up bit. measurement
6310 * is active again.
6311 * no PMU interrupt can happen at this point
6312 * because we still have interrupts disabled.
6313 */
6314 if (likely(psr_up)) pfm_set_psr_up();
6315}
6316#endif /* CONFIG_SMP */
6317
6318/*
6319 * this function assumes monitoring is stopped
6320 */
6321static void
6322pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6323{
6324 u64 pmc0;
6325 unsigned long mask2, val, pmd_val, ovfl_val;
6326 int i, can_access_pmu = 0;
6327 int is_self;
6328
6329 /*
6330 * is the caller the task being monitored (or which initiated the
6331 * session for system wide measurements)
6332 */
6333 is_self = ctx->ctx_task == task ? 1 : 0;
6334
6335 /*
6336 * can access PMU is task is the owner of the PMU state on the current CPU
6337 * or if we are running on the CPU bound to the context in system-wide mode
6338 * (that is not necessarily the task the context is attached to in this mode).
6339 * In system-wide we always have can_access_pmu true because a task running on an
6340 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6341 */
6342 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6343 if (can_access_pmu) {
6344 /*
6345 * Mark the PMU as not owned
6346 * This will cause the interrupt handler to do nothing in case an overflow
6347 * interrupt was in-flight
6348 * This also guarantees that pmc0 will contain the final state
6349 * It virtually gives us full control on overflow processing from that point
6350 * on.
6351 */
6352 SET_PMU_OWNER(NULL, NULL);
6353 DPRINT(("releasing ownership\n"));
6354
6355 /*
6356 * read current overflow status:
6357 *
6358 * we are guaranteed to read the final stable state
6359 */
6360 ia64_srlz_d();
6361 pmc0 = ia64_get_pmc(0); /* slow */
6362
6363 /*
6364 * reset freeze bit, overflow status information destroyed
6365 */
6366 pfm_unfreeze_pmu();
6367 } else {
6368 pmc0 = task->thread.pmcs[0];
6369 /*
6370 * clear whatever overflow status bits there were
6371 */
6372 task->thread.pmcs[0] = 0;
6373 }
6374 ovfl_val = pmu_conf->ovfl_val;
6375 /*
6376 * we save all the used pmds
6377 * we take care of overflows for counting PMDs
6378 *
6379 * XXX: sampling situation is not taken into account here
6380 */
6381 mask2 = ctx->ctx_used_pmds[0];
6382
6383 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6384
6385 for (i = 0; mask2; i++, mask2>>=1) {
6386
6387 /* skip non used pmds */
6388 if ((mask2 & 0x1) == 0) continue;
6389
6390 /*
6391 * can access PMU always true in system wide mode
6392 */
6393 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : task->thread.pmds[i];
6394
6395 if (PMD_IS_COUNTING(i)) {
6396 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6397 task->pid,
6398 i,
6399 ctx->ctx_pmds[i].val,
6400 val & ovfl_val));
6401
6402 /*
6403 * we rebuild the full 64 bit value of the counter
6404 */
6405 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6406
6407 /*
6408 * now everything is in ctx_pmds[] and we need
6409 * to clear the saved context from save_regs() such that
6410 * pfm_read_pmds() gets the correct value
6411 */
6412 pmd_val = 0UL;
6413
6414 /*
6415 * take care of overflow inline
6416 */
6417 if (pmc0 & (1UL << i)) {
6418 val += 1 + ovfl_val;
6419 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6420 }
6421 }
6422
6423 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6424
6425 if (is_self) task->thread.pmds[i] = pmd_val;
6426
6427 ctx->ctx_pmds[i].val = val;
6428 }
6429}
6430
6431static struct irqaction perfmon_irqaction = {
6432 .handler = pfm_interrupt_handler,
6433 .flags = SA_INTERRUPT,
6434 .name = "perfmon"
6435};
6436
a1ecf7f6
TL
6437static void
6438pfm_alt_save_pmu_state(void *data)
6439{
6440 struct pt_regs *regs;
6441
6442 regs = ia64_task_regs(current);
6443
6444 DPRINT(("called\n"));
6445
6446 /*
6447 * should not be necessary but
6448 * let's take not risk
6449 */
6450 pfm_clear_psr_up();
6451 pfm_clear_psr_pp();
6452 ia64_psr(regs)->pp = 0;
6453
6454 /*
6455 * This call is required
6456 * May cause a spurious interrupt on some processors
6457 */
6458 pfm_freeze_pmu();
6459
6460 ia64_srlz_d();
6461}
6462
6463void
6464pfm_alt_restore_pmu_state(void *data)
6465{
6466 struct pt_regs *regs;
6467
6468 regs = ia64_task_regs(current);
6469
6470 DPRINT(("called\n"));
6471
6472 /*
6473 * put PMU back in state expected
6474 * by perfmon
6475 */
6476 pfm_clear_psr_up();
6477 pfm_clear_psr_pp();
6478 ia64_psr(regs)->pp = 0;
6479
6480 /*
6481 * perfmon runs with PMU unfrozen at all times
6482 */
6483 pfm_unfreeze_pmu();
6484
6485 ia64_srlz_d();
6486}
6487
6488int
6489pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6490{
6491 int ret, i;
6492 int reserve_cpu;
6493
6494 /* some sanity checks */
6495 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6496
6497 /* do the easy test first */
6498 if (pfm_alt_intr_handler) return -EBUSY;
6499
6500 /* one at a time in the install or remove, just fail the others */
6501 if (!spin_trylock(&pfm_alt_install_check)) {
6502 return -EBUSY;
6503 }
6504
6505 /* reserve our session */
6506 for_each_online_cpu(reserve_cpu) {
6507 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6508 if (ret) goto cleanup_reserve;
6509 }
6510
6511 /* save the current system wide pmu states */
6512 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6513 if (ret) {
6514 DPRINT(("on_each_cpu() failed: %d\n", ret));
6515 goto cleanup_reserve;
6516 }
6517
6518 /* officially change to the alternate interrupt handler */
6519 pfm_alt_intr_handler = hdl;
6520
6521 spin_unlock(&pfm_alt_install_check);
6522
6523 return 0;
6524
6525cleanup_reserve:
6526 for_each_online_cpu(i) {
6527 /* don't unreserve more than we reserved */
6528 if (i >= reserve_cpu) break;
6529
6530 pfm_unreserve_session(NULL, 1, i);
6531 }
6532
6533 spin_unlock(&pfm_alt_install_check);
6534
6535 return ret;
6536}
6537EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6538
6539int
6540pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6541{
6542 int i;
6543 int ret;
6544
6545 if (hdl == NULL) return -EINVAL;
6546
6547 /* cannot remove someone else's handler! */
6548 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6549
6550 /* one at a time in the install or remove, just fail the others */
6551 if (!spin_trylock(&pfm_alt_install_check)) {
6552 return -EBUSY;
6553 }
6554
6555 pfm_alt_intr_handler = NULL;
6556
6557 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6558 if (ret) {
6559 DPRINT(("on_each_cpu() failed: %d\n", ret));
6560 }
6561
6562 for_each_online_cpu(i) {
6563 pfm_unreserve_session(NULL, 1, i);
6564 }
6565
6566 spin_unlock(&pfm_alt_install_check);
6567
6568 return 0;
6569}
6570EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6571
1da177e4
LT
6572/*
6573 * perfmon initialization routine, called from the initcall() table
6574 */
6575static int init_pfm_fs(void);
6576
6577static int __init
6578pfm_probe_pmu(void)
6579{
6580 pmu_config_t **p;
6581 int family;
6582
6583 family = local_cpu_data->family;
6584 p = pmu_confs;
6585
6586 while(*p) {
6587 if ((*p)->probe) {
6588 if ((*p)->probe() == 0) goto found;
6589 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6590 goto found;
6591 }
6592 p++;
6593 }
6594 return -1;
6595found:
6596 pmu_conf = *p;
6597 return 0;
6598}
6599
6600static struct file_operations pfm_proc_fops = {
6601 .open = pfm_proc_open,
6602 .read = seq_read,
6603 .llseek = seq_lseek,
6604 .release = seq_release,
6605};
6606
6607int __init
6608pfm_init(void)
6609{
6610 unsigned int n, n_counters, i;
6611
6612 printk("perfmon: version %u.%u IRQ %u\n",
6613 PFM_VERSION_MAJ,
6614 PFM_VERSION_MIN,
6615 IA64_PERFMON_VECTOR);
6616
6617 if (pfm_probe_pmu()) {
6618 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6619 local_cpu_data->family);
6620 return -ENODEV;
6621 }
6622
6623 /*
6624 * compute the number of implemented PMD/PMC from the
6625 * description tables
6626 */
6627 n = 0;
6628 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6629 if (PMC_IS_IMPL(i) == 0) continue;
6630 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6631 n++;
6632 }
6633 pmu_conf->num_pmcs = n;
6634
6635 n = 0; n_counters = 0;
6636 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6637 if (PMD_IS_IMPL(i) == 0) continue;
6638 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6639 n++;
6640 if (PMD_IS_COUNTING(i)) n_counters++;
6641 }
6642 pmu_conf->num_pmds = n;
6643 pmu_conf->num_counters = n_counters;
6644
6645 /*
6646 * sanity checks on the number of debug registers
6647 */
6648 if (pmu_conf->use_rr_dbregs) {
6649 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6650 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6651 pmu_conf = NULL;
6652 return -1;
6653 }
6654 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6655 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6656 pmu_conf = NULL;
6657 return -1;
6658 }
6659 }
6660
6661 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6662 pmu_conf->pmu_name,
6663 pmu_conf->num_pmcs,
6664 pmu_conf->num_pmds,
6665 pmu_conf->num_counters,
6666 ffz(pmu_conf->ovfl_val));
6667
6668 /* sanity check */
6669 if (pmu_conf->num_pmds >= IA64_NUM_PMD_REGS || pmu_conf->num_pmcs >= IA64_NUM_PMC_REGS) {
6670 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6671 pmu_conf = NULL;
6672 return -1;
6673 }
6674
6675 /*
6676 * create /proc/perfmon (mostly for debugging purposes)
6677 */
6678 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6679 if (perfmon_dir == NULL) {
6680 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6681 pmu_conf = NULL;
6682 return -1;
6683 }
6684 /*
6685 * install customized file operations for /proc/perfmon entry
6686 */
6687 perfmon_dir->proc_fops = &pfm_proc_fops;
6688
6689 /*
6690 * create /proc/sys/kernel/perfmon (for debugging purposes)
6691 */
6692 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root, 0);
6693
6694 /*
6695 * initialize all our spinlocks
6696 */
6697 spin_lock_init(&pfm_sessions.pfs_lock);
6698 spin_lock_init(&pfm_buffer_fmt_lock);
6699
6700 init_pfm_fs();
6701
6702 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6703
6704 return 0;
6705}
6706
6707__initcall(pfm_init);
6708
6709/*
6710 * this function is called before pfm_init()
6711 */
6712void
6713pfm_init_percpu (void)
6714{
6715 /*
6716 * make sure no measurement is active
6717 * (may inherit programmed PMCs from EFI).
6718 */
6719 pfm_clear_psr_pp();
6720 pfm_clear_psr_up();
6721
6722 /*
6723 * we run with the PMU not frozen at all times
6724 */
6725 pfm_unfreeze_pmu();
6726
6727 if (smp_processor_id() == 0)
6728 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6729
6730 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6731 ia64_srlz_d();
6732}
6733
6734/*
6735 * used for debug purposes only
6736 */
6737void
6738dump_pmu_state(const char *from)
6739{
6740 struct task_struct *task;
6741 struct thread_struct *t;
6742 struct pt_regs *regs;
6743 pfm_context_t *ctx;
6744 unsigned long psr, dcr, info, flags;
6745 int i, this_cpu;
6746
6747 local_irq_save(flags);
6748
6749 this_cpu = smp_processor_id();
6750 regs = ia64_task_regs(current);
6751 info = PFM_CPUINFO_GET();
6752 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6753
6754 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6755 local_irq_restore(flags);
6756 return;
6757 }
6758
6759 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6760 this_cpu,
6761 from,
6762 current->pid,
6763 regs->cr_iip,
6764 current->comm);
6765
6766 task = GET_PMU_OWNER();
6767 ctx = GET_PMU_CTX();
6768
6769 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6770
6771 psr = pfm_get_psr();
6772
6773 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6774 this_cpu,
6775 ia64_get_pmc(0),
6776 psr & IA64_PSR_PP ? 1 : 0,
6777 psr & IA64_PSR_UP ? 1 : 0,
6778 dcr & IA64_DCR_PP ? 1 : 0,
6779 info,
6780 ia64_psr(regs)->up,
6781 ia64_psr(regs)->pp);
6782
6783 ia64_psr(regs)->up = 0;
6784 ia64_psr(regs)->pp = 0;
6785
6786 t = &current->thread;
6787
6788 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6789 if (PMC_IS_IMPL(i) == 0) continue;
6790 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, t->pmcs[i]);
6791 }
6792
6793 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6794 if (PMD_IS_IMPL(i) == 0) continue;
6795 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, t->pmds[i]);
6796 }
6797
6798 if (ctx) {
6799 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6800 this_cpu,
6801 ctx->ctx_state,
6802 ctx->ctx_smpl_vaddr,
6803 ctx->ctx_smpl_hdr,
6804 ctx->ctx_msgq_head,
6805 ctx->ctx_msgq_tail,
6806 ctx->ctx_saved_psr_up);
6807 }
6808 local_irq_restore(flags);
6809}
6810
6811/*
6812 * called from process.c:copy_thread(). task is new child.
6813 */
6814void
6815pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6816{
6817 struct thread_struct *thread;
6818
6819 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6820
6821 thread = &task->thread;
6822
6823 /*
6824 * cut links inherited from parent (current)
6825 */
6826 thread->pfm_context = NULL;
6827
6828 PFM_SET_WORK_PENDING(task, 0);
6829
6830 /*
6831 * the psr bits are already set properly in copy_threads()
6832 */
6833}
6834#else /* !CONFIG_PERFMON */
6835asmlinkage long
6836sys_perfmonctl (int fd, int cmd, void *arg, int count)
6837{
6838 return -ENOSYS;
6839}
6840#endif /* CONFIG_PERFMON */