]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/ia64/kernel/perfmon.c
[IA64] sync compat getdents
[net-next-2.6.git] / arch / ia64 / kernel / perfmon.c
CommitLineData
1da177e4
LT
1/*
2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
4 *
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
7 *
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
10 *
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
13 *
a1ecf7f6 14 * Copyright (C) 1999-2005 Hewlett Packard Co
1da177e4
LT
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
17 *
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
20 */
21
1da177e4
LT
22#include <linux/module.h>
23#include <linux/kernel.h>
24#include <linux/sched.h>
25#include <linux/interrupt.h>
26#include <linux/smp_lock.h>
27#include <linux/proc_fs.h>
28#include <linux/seq_file.h>
29#include <linux/init.h>
30#include <linux/vmalloc.h>
31#include <linux/mm.h>
32#include <linux/sysctl.h>
33#include <linux/list.h>
34#include <linux/file.h>
35#include <linux/poll.h>
36#include <linux/vfs.h>
a3bc0dbc 37#include <linux/smp.h>
1da177e4
LT
38#include <linux/pagemap.h>
39#include <linux/mount.h>
1da177e4 40#include <linux/bitops.h>
a9415644 41#include <linux/capability.h>
badf1662 42#include <linux/rcupdate.h>
60f1c444 43#include <linux/completion.h>
1da177e4
LT
44
45#include <asm/errno.h>
46#include <asm/intrinsics.h>
47#include <asm/page.h>
48#include <asm/perfmon.h>
49#include <asm/processor.h>
50#include <asm/signal.h>
51#include <asm/system.h>
52#include <asm/uaccess.h>
53#include <asm/delay.h>
54
55#ifdef CONFIG_PERFMON
56/*
57 * perfmon context state
58 */
59#define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60#define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61#define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62#define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
63
64#define PFM_INVALID_ACTIVATION (~0UL)
65
35589a8f
KA
66#define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67#define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
68
1da177e4
LT
69/*
70 * depth of message queue
71 */
72#define PFM_MAX_MSGS 32
73#define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
74
75/*
76 * type of a PMU register (bitmask).
77 * bitmask structure:
78 * bit0 : register implemented
79 * bit1 : end marker
80 * bit2-3 : reserved
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
84 * bit8-31: reserved
85 */
86#define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87#define PFM_REG_IMPL 0x1 /* register implemented */
88#define PFM_REG_END 0x2 /* end marker */
89#define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90#define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91#define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92#define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93#define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
94
95#define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96#define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
97
98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
99
100/* i assumed unsigned */
101#define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102#define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
103
104/* XXX: these assume that register i is implemented */
105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107#define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108#define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
109
110#define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111#define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112#define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113#define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
114
115#define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116#define PFM_NUM_DBRS IA64_NUM_DBG_REGS
117
118#define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119#define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120#define PFM_CTX_TASK(h) (h)->ctx_task
121
122#define PMU_PMC_OI 5 /* position of pmc.oi bit */
123
124/* XXX: does not support more than 64 PMDs */
125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
127
128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
129
130#define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131#define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132#define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133#define PFM_CODE_RR 0 /* requesting code range restriction */
134#define PFM_DATA_RR 1 /* requestion data range restriction */
135
136#define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137#define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138#define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
139
140#define RDEP(x) (1UL<<(x))
141
142/*
143 * context protection macros
144 * in SMP:
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
147 * in UP:
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 *
85d1fe09 150 * spin_lock_irqsave()/spin_unlock_irqrestore():
1da177e4
LT
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
153 *
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
159 */
160#define PROTECT_CTX(c, f) \
161 do { \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
165 } while(0)
166
167#define UNPROTECT_CTX(c, f) \
168 do { \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
171 } while(0)
172
173#define PROTECT_CTX_NOPRINT(c, f) \
174 do { \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
176 } while(0)
177
178
179#define UNPROTECT_CTX_NOPRINT(c, f) \
180 do { \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
182 } while(0)
183
184
185#define PROTECT_CTX_NOIRQ(c) \
186 do { \
187 spin_lock(&(c)->ctx_lock); \
188 } while(0)
189
190#define UNPROTECT_CTX_NOIRQ(c) \
191 do { \
192 spin_unlock(&(c)->ctx_lock); \
193 } while(0)
194
195
196#ifdef CONFIG_SMP
197
198#define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199#define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200#define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
201
202#else /* !CONFIG_SMP */
203#define SET_ACTIVATION(t) do {} while(0)
204#define GET_ACTIVATION(t) do {} while(0)
205#define INC_ACTIVATION(t) do {} while(0)
206#endif /* CONFIG_SMP */
207
208#define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209#define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210#define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
211
212#define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213#define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
214
215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
216
217/*
218 * cmp0 must be the value of pmc0
219 */
220#define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
221
222#define PFMFS_MAGIC 0xa0b4d889
223
224/*
225 * debugging
226 */
227#define PFM_DEBUGGING 1
228#ifdef PFM_DEBUGGING
229#define DPRINT(a) \
230 do { \
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
232 } while (0)
233
234#define DPRINT_ovfl(a) \
235 do { \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
237 } while (0)
238#endif
239
240/*
241 * 64-bit software counter structure
242 *
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
244 */
245typedef struct {
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
256} pfm_counter_t;
257
258/*
259 * context flags
260 */
261typedef struct {
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272} pfm_context_flags_t;
273
274#define PFM_TRAP_REASON_NONE 0x0 /* default value */
275#define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276#define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
277
278
279/*
280 * perfmon context: encapsulates all the state of a monitoring session
281 */
282
283typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
285
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
288
289 struct task_struct *ctx_task; /* task to which context is attached */
290
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
292
60f1c444 293 struct completion ctx_restart_done; /* use for blocking notification mode */
1da177e4
LT
294
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
298
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
302
35589a8f 303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
1da177e4
LT
304
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
309
35589a8f
KA
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
311
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
1da177e4
LT
314
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
316
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
320
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
323
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
328
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
331 int ctx_msgq_head;
332 int ctx_msgq_tail;
333 struct fasync_struct *ctx_async_queue;
334
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
336} pfm_context_t;
337
338/*
339 * magic number used to verify that structure is really
340 * a perfmon context
341 */
342#define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
343
344#define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
345
346#ifdef CONFIG_SMP
347#define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348#define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
349#else
350#define SET_LAST_CPU(ctx, v) do {} while(0)
351#define GET_LAST_CPU(ctx) do {} while(0)
352#endif
353
354
355#define ctx_fl_block ctx_flags.block
356#define ctx_fl_system ctx_flags.system
357#define ctx_fl_using_dbreg ctx_flags.using_dbreg
358#define ctx_fl_is_sampling ctx_flags.is_sampling
359#define ctx_fl_excl_idle ctx_flags.excl_idle
360#define ctx_fl_going_zombie ctx_flags.going_zombie
361#define ctx_fl_trap_reason ctx_flags.trap_reason
362#define ctx_fl_no_msg ctx_flags.no_msg
363#define ctx_fl_can_restart ctx_flags.can_restart
364
365#define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366#define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
367
368/*
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
371 */
372typedef struct {
373 spinlock_t pfs_lock; /* lock the structure */
374
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
380} pfm_session_t;
381
382/*
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
386 */
387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
388typedef struct {
389 unsigned int type;
390 int pm_pos;
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
397} pfm_reg_desc_t;
398
399/* assume cnum is a valid monitor */
400#define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
401
402/*
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
405 *
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
413 */
414typedef struct {
415 unsigned long ovfl_val; /* overflow value for counters */
416
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
419
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
424
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
433} pmu_config_t;
434/*
435 * PMU specific flags
436 */
437#define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
438
439/*
440 * debug register related type definitions
441 */
442typedef struct {
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
447} ibr_mask_reg_t;
448
449typedef struct {
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
455} dbr_mask_reg_t;
456
457typedef union {
458 unsigned long val;
459 ibr_mask_reg_t ibr;
460 dbr_mask_reg_t dbr;
461} dbreg_t;
462
463
464/*
465 * perfmon command descriptions
466 */
467typedef struct {
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
469 char *cmd_name;
470 int cmd_flags;
471 unsigned int cmd_narg;
472 size_t cmd_argsize;
473 int (*cmd_getsize)(void *arg, size_t *sz);
474} pfm_cmd_desc_t;
475
476#define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477#define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478#define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479#define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
480
481
482#define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483#define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484#define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485#define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486#define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
487
488#define PFM_CMD_ARG_MANY -1 /* cannot be zero */
489
1da177e4
LT
490typedef struct {
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
500} pfm_stats_t;
501
502/*
503 * perfmon internal variables
504 */
505static pfm_stats_t pfm_stats[NR_CPUS];
506static pfm_session_t pfm_sessions; /* global sessions information */
507
a9f6a0dd 508static DEFINE_SPINLOCK(pfm_alt_install_check);
a1ecf7f6
TL
509static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
510
1da177e4
LT
511static struct proc_dir_entry *perfmon_dir;
512static pfm_uuid_t pfm_null_uuid = {0,};
513
514static spinlock_t pfm_buffer_fmt_lock;
515static LIST_HEAD(pfm_buffer_fmt_list);
516
517static pmu_config_t *pmu_conf;
518
519/* sysctl() controls */
4944930a
SE
520pfm_sysctl_t pfm_sysctl;
521EXPORT_SYMBOL(pfm_sysctl);
1da177e4
LT
522
523static ctl_table pfm_ctl_table[]={
4e009901
EB
524 {
525 .ctl_name = CTL_UNNUMBERED,
526 .procname = "debug",
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
529 .mode = 0666,
530 .proc_handler = &proc_dointvec,
531 },
532 {
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
537 .mode = 0666,
538 .proc_handler = &proc_dointvec,
539 },
540 {
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
545 .mode = 0600,
546 .proc_handler = &proc_dointvec,
547 },
548 {
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
553 .mode = 0600,
554 .proc_handler = &proc_dointvec,
555 },
556 {}
1da177e4
LT
557};
558static ctl_table pfm_sysctl_dir[] = {
4e009901
EB
559 {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
562 .mode = 0755,
563 .child = pfm_ctl_table,
564 },
565 {}
1da177e4
LT
566};
567static ctl_table pfm_sysctl_root[] = {
4e009901
EB
568 {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
571 .mode = 0755,
572 .child = pfm_sysctl_dir,
573 },
574 {}
1da177e4
LT
575};
576static struct ctl_table_header *pfm_sysctl_header;
577
578static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
1da177e4
LT
579
580#define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581#define pfm_get_cpu_data(a,b) per_cpu(a, b)
582
583static inline void
584pfm_put_task(struct task_struct *task)
585{
586 if (task != current) put_task_struct(task);
587}
588
589static inline void
590pfm_set_task_notify(struct task_struct *task)
591{
592 struct thread_info *info;
593
594 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
595 set_bit(TIF_NOTIFY_RESUME, &info->flags);
596}
597
598static inline void
599pfm_clear_task_notify(void)
600{
601 clear_thread_flag(TIF_NOTIFY_RESUME);
602}
603
604static inline void
605pfm_reserve_page(unsigned long a)
606{
607 SetPageReserved(vmalloc_to_page((void *)a));
608}
609static inline void
610pfm_unreserve_page(unsigned long a)
611{
612 ClearPageReserved(vmalloc_to_page((void*)a));
613}
614
615static inline unsigned long
616pfm_protect_ctx_ctxsw(pfm_context_t *x)
617{
618 spin_lock(&(x)->ctx_lock);
619 return 0UL;
620}
621
24b8e0cc 622static inline void
1da177e4
LT
623pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
624{
625 spin_unlock(&(x)->ctx_lock);
626}
627
628static inline unsigned int
629pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
630{
631 return do_munmap(mm, addr, len);
632}
633
634static inline unsigned long
635pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
636{
637 return get_unmapped_area(file, addr, len, pgoff, flags);
638}
639
640
454e2398
DH
641static int
642pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
643 struct vfsmount *mnt)
1da177e4 644{
454e2398 645 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
1da177e4
LT
646}
647
648static struct file_system_type pfm_fs_type = {
649 .name = "pfmfs",
650 .get_sb = pfmfs_get_sb,
651 .kill_sb = kill_anon_super,
652};
653
654DEFINE_PER_CPU(unsigned long, pfm_syst_info);
655DEFINE_PER_CPU(struct task_struct *, pmu_owner);
656DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
657DEFINE_PER_CPU(unsigned long, pmu_activation_number);
fffcc150 658EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
1da177e4
LT
659
660
661/* forward declaration */
5dfe4c96 662static const struct file_operations pfm_file_ops;
1da177e4
LT
663
664/*
665 * forward declarations
666 */
667#ifndef CONFIG_SMP
668static void pfm_lazy_save_regs (struct task_struct *ta);
669#endif
670
671void dump_pmu_state(const char *);
672static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
673
674#include "perfmon_itanium.h"
675#include "perfmon_mckinley.h"
9179cb65 676#include "perfmon_montecito.h"
1da177e4
LT
677#include "perfmon_generic.h"
678
679static pmu_config_t *pmu_confs[]={
9179cb65 680 &pmu_conf_mont,
1da177e4
LT
681 &pmu_conf_mck,
682 &pmu_conf_ita,
683 &pmu_conf_gen, /* must be last */
684 NULL
685};
686
687
688static int pfm_end_notify_user(pfm_context_t *ctx);
689
690static inline void
691pfm_clear_psr_pp(void)
692{
693 ia64_rsm(IA64_PSR_PP);
694 ia64_srlz_i();
695}
696
697static inline void
698pfm_set_psr_pp(void)
699{
700 ia64_ssm(IA64_PSR_PP);
701 ia64_srlz_i();
702}
703
704static inline void
705pfm_clear_psr_up(void)
706{
707 ia64_rsm(IA64_PSR_UP);
708 ia64_srlz_i();
709}
710
711static inline void
712pfm_set_psr_up(void)
713{
714 ia64_ssm(IA64_PSR_UP);
715 ia64_srlz_i();
716}
717
718static inline unsigned long
719pfm_get_psr(void)
720{
721 unsigned long tmp;
722 tmp = ia64_getreg(_IA64_REG_PSR);
723 ia64_srlz_i();
724 return tmp;
725}
726
727static inline void
728pfm_set_psr_l(unsigned long val)
729{
730 ia64_setreg(_IA64_REG_PSR_L, val);
731 ia64_srlz_i();
732}
733
734static inline void
735pfm_freeze_pmu(void)
736{
737 ia64_set_pmc(0,1UL);
738 ia64_srlz_d();
739}
740
741static inline void
742pfm_unfreeze_pmu(void)
743{
744 ia64_set_pmc(0,0UL);
745 ia64_srlz_d();
746}
747
748static inline void
749pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
750{
751 int i;
752
753 for (i=0; i < nibrs; i++) {
754 ia64_set_ibr(i, ibrs[i]);
755 ia64_dv_serialize_instruction();
756 }
757 ia64_srlz_i();
758}
759
760static inline void
761pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
762{
763 int i;
764
765 for (i=0; i < ndbrs; i++) {
766 ia64_set_dbr(i, dbrs[i]);
767 ia64_dv_serialize_data();
768 }
769 ia64_srlz_d();
770}
771
772/*
773 * PMD[i] must be a counter. no check is made
774 */
775static inline unsigned long
776pfm_read_soft_counter(pfm_context_t *ctx, int i)
777{
778 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
779}
780
781/*
782 * PMD[i] must be a counter. no check is made
783 */
784static inline void
785pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
786{
787 unsigned long ovfl_val = pmu_conf->ovfl_val;
788
789 ctx->ctx_pmds[i].val = val & ~ovfl_val;
790 /*
791 * writing to unimplemented part is ignore, so we do not need to
792 * mask off top part
793 */
794 ia64_set_pmd(i, val & ovfl_val);
795}
796
797static pfm_msg_t *
798pfm_get_new_msg(pfm_context_t *ctx)
799{
800 int idx, next;
801
802 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
803
804 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
805 if (next == ctx->ctx_msgq_head) return NULL;
806
807 idx = ctx->ctx_msgq_tail;
808 ctx->ctx_msgq_tail = next;
809
810 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
811
812 return ctx->ctx_msgq+idx;
813}
814
815static pfm_msg_t *
816pfm_get_next_msg(pfm_context_t *ctx)
817{
818 pfm_msg_t *msg;
819
820 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
821
822 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
823
824 /*
825 * get oldest message
826 */
827 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
828
829 /*
830 * and move forward
831 */
832 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
833
834 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
835
836 return msg;
837}
838
839static void
840pfm_reset_msgq(pfm_context_t *ctx)
841{
842 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
843 DPRINT(("ctx=%p msgq reset\n", ctx));
844}
845
846static void *
847pfm_rvmalloc(unsigned long size)
848{
849 void *mem;
850 unsigned long addr;
851
852 size = PAGE_ALIGN(size);
853 mem = vmalloc(size);
854 if (mem) {
855 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
856 memset(mem, 0, size);
857 addr = (unsigned long)mem;
858 while (size > 0) {
859 pfm_reserve_page(addr);
860 addr+=PAGE_SIZE;
861 size-=PAGE_SIZE;
862 }
863 }
864 return mem;
865}
866
867static void
868pfm_rvfree(void *mem, unsigned long size)
869{
870 unsigned long addr;
871
872 if (mem) {
873 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
874 addr = (unsigned long) mem;
875 while ((long) size > 0) {
876 pfm_unreserve_page(addr);
877 addr+=PAGE_SIZE;
878 size-=PAGE_SIZE;
879 }
880 vfree(mem);
881 }
882 return;
883}
884
885static pfm_context_t *
886pfm_context_alloc(void)
887{
888 pfm_context_t *ctx;
889
890 /*
891 * allocate context descriptor
892 * must be able to free with interrupts disabled
893 */
52fd9108 894 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
1da177e4 895 if (ctx) {
1da177e4
LT
896 DPRINT(("alloc ctx @%p\n", ctx));
897 }
898 return ctx;
899}
900
901static void
902pfm_context_free(pfm_context_t *ctx)
903{
904 if (ctx) {
905 DPRINT(("free ctx @%p\n", ctx));
906 kfree(ctx);
907 }
908}
909
910static void
911pfm_mask_monitoring(struct task_struct *task)
912{
913 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
914 unsigned long mask, val, ovfl_mask;
915 int i;
916
917 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
918
919 ovfl_mask = pmu_conf->ovfl_val;
920 /*
921 * monitoring can only be masked as a result of a valid
922 * counter overflow. In UP, it means that the PMU still
923 * has an owner. Note that the owner can be different
924 * from the current task. However the PMU state belongs
925 * to the owner.
926 * In SMP, a valid overflow only happens when task is
927 * current. Therefore if we come here, we know that
928 * the PMU state belongs to the current task, therefore
929 * we can access the live registers.
930 *
931 * So in both cases, the live register contains the owner's
932 * state. We can ONLY touch the PMU registers and NOT the PSR.
933 *
35589a8f 934 * As a consequence to this call, the ctx->th_pmds[] array
1da177e4
LT
935 * contains stale information which must be ignored
936 * when context is reloaded AND monitoring is active (see
937 * pfm_restart).
938 */
939 mask = ctx->ctx_used_pmds[0];
940 for (i = 0; mask; i++, mask>>=1) {
941 /* skip non used pmds */
942 if ((mask & 0x1) == 0) continue;
943 val = ia64_get_pmd(i);
944
945 if (PMD_IS_COUNTING(i)) {
946 /*
947 * we rebuild the full 64 bit value of the counter
948 */
949 ctx->ctx_pmds[i].val += (val & ovfl_mask);
950 } else {
951 ctx->ctx_pmds[i].val = val;
952 }
953 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
954 i,
955 ctx->ctx_pmds[i].val,
956 val & ovfl_mask));
957 }
958 /*
959 * mask monitoring by setting the privilege level to 0
960 * we cannot use psr.pp/psr.up for this, it is controlled by
961 * the user
962 *
963 * if task is current, modify actual registers, otherwise modify
964 * thread save state, i.e., what will be restored in pfm_load_regs()
965 */
966 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
967 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
968 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
969 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
970 ctx->th_pmcs[i] &= ~0xfUL;
971 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
972 }
973 /*
974 * make all of this visible
975 */
976 ia64_srlz_d();
977}
978
979/*
980 * must always be done with task == current
981 *
982 * context must be in MASKED state when calling
983 */
984static void
985pfm_restore_monitoring(struct task_struct *task)
986{
987 pfm_context_t *ctx = PFM_GET_CTX(task);
1da177e4
LT
988 unsigned long mask, ovfl_mask;
989 unsigned long psr, val;
990 int i, is_system;
991
992 is_system = ctx->ctx_fl_system;
993 ovfl_mask = pmu_conf->ovfl_val;
994
995 if (task != current) {
996 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
997 return;
998 }
999 if (ctx->ctx_state != PFM_CTX_MASKED) {
1000 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1001 task->pid, current->pid, ctx->ctx_state);
1002 return;
1003 }
1004 psr = pfm_get_psr();
1005 /*
1006 * monitoring is masked via the PMC.
1007 * As we restore their value, we do not want each counter to
1008 * restart right away. We stop monitoring using the PSR,
1009 * restore the PMC (and PMD) and then re-establish the psr
1010 * as it was. Note that there can be no pending overflow at
1011 * this point, because monitoring was MASKED.
1012 *
1013 * system-wide session are pinned and self-monitoring
1014 */
1015 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1016 /* disable dcr pp */
1017 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1018 pfm_clear_psr_pp();
1019 } else {
1020 pfm_clear_psr_up();
1021 }
1022 /*
1023 * first, we restore the PMD
1024 */
1025 mask = ctx->ctx_used_pmds[0];
1026 for (i = 0; mask; i++, mask>>=1) {
1027 /* skip non used pmds */
1028 if ((mask & 0x1) == 0) continue;
1029
1030 if (PMD_IS_COUNTING(i)) {
1031 /*
1032 * we split the 64bit value according to
1033 * counter width
1034 */
1035 val = ctx->ctx_pmds[i].val & ovfl_mask;
1036 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1037 } else {
1038 val = ctx->ctx_pmds[i].val;
1039 }
1040 ia64_set_pmd(i, val);
1041
1042 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1043 i,
1044 ctx->ctx_pmds[i].val,
1045 val));
1046 }
1047 /*
1048 * restore the PMCs
1049 */
1050 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1051 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1052 if ((mask & 0x1) == 0UL) continue;
35589a8f
KA
1053 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1054 ia64_set_pmc(i, ctx->th_pmcs[i]);
1055 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1da177e4
LT
1056 }
1057 ia64_srlz_d();
1058
1059 /*
1060 * must restore DBR/IBR because could be modified while masked
1061 * XXX: need to optimize
1062 */
1063 if (ctx->ctx_fl_using_dbreg) {
1064 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1065 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1066 }
1067
1068 /*
1069 * now restore PSR
1070 */
1071 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1072 /* enable dcr pp */
1073 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1074 ia64_srlz_i();
1075 }
1076 pfm_set_psr_l(psr);
1077}
1078
1079static inline void
1080pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1081{
1082 int i;
1083
1084 ia64_srlz_d();
1085
1086 for (i=0; mask; i++, mask>>=1) {
1087 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1088 }
1089}
1090
1091/*
1092 * reload from thread state (used for ctxw only)
1093 */
1094static inline void
1095pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1096{
1097 int i;
1098 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1099
1100 for (i=0; mask; i++, mask>>=1) {
1101 if ((mask & 0x1) == 0) continue;
1102 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1103 ia64_set_pmd(i, val);
1104 }
1105 ia64_srlz_d();
1106}
1107
1108/*
1109 * propagate PMD from context to thread-state
1110 */
1111static inline void
1112pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1113{
1da177e4
LT
1114 unsigned long ovfl_val = pmu_conf->ovfl_val;
1115 unsigned long mask = ctx->ctx_all_pmds[0];
1116 unsigned long val;
1117 int i;
1118
1119 DPRINT(("mask=0x%lx\n", mask));
1120
1121 for (i=0; mask; i++, mask>>=1) {
1122
1123 val = ctx->ctx_pmds[i].val;
1124
1125 /*
1126 * We break up the 64 bit value into 2 pieces
1127 * the lower bits go to the machine state in the
1128 * thread (will be reloaded on ctxsw in).
1129 * The upper part stays in the soft-counter.
1130 */
1131 if (PMD_IS_COUNTING(i)) {
1132 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1133 val &= ovfl_val;
1134 }
35589a8f 1135 ctx->th_pmds[i] = val;
1da177e4
LT
1136
1137 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1138 i,
35589a8f 1139 ctx->th_pmds[i],
1da177e4
LT
1140 ctx->ctx_pmds[i].val));
1141 }
1142}
1143
1144/*
1145 * propagate PMC from context to thread-state
1146 */
1147static inline void
1148pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1149{
1da177e4
LT
1150 unsigned long mask = ctx->ctx_all_pmcs[0];
1151 int i;
1152
1153 DPRINT(("mask=0x%lx\n", mask));
1154
1155 for (i=0; mask; i++, mask>>=1) {
1156 /* masking 0 with ovfl_val yields 0 */
35589a8f
KA
1157 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1158 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1da177e4
LT
1159 }
1160}
1161
1162
1163
1164static inline void
1165pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1166{
1167 int i;
1168
1169 for (i=0; mask; i++, mask>>=1) {
1170 if ((mask & 0x1) == 0) continue;
1171 ia64_set_pmc(i, pmcs[i]);
1172 }
1173 ia64_srlz_d();
1174}
1175
1176static inline int
1177pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1178{
1179 return memcmp(a, b, sizeof(pfm_uuid_t));
1180}
1181
1182static inline int
1183pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1184{
1185 int ret = 0;
1186 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1187 return ret;
1188}
1189
1190static inline int
1191pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1192{
1193 int ret = 0;
1194 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1195 return ret;
1196}
1197
1198
1199static inline int
1200pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1201 int cpu, void *arg)
1202{
1203 int ret = 0;
1204 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1205 return ret;
1206}
1207
1208static inline int
1209pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1210 int cpu, void *arg)
1211{
1212 int ret = 0;
1213 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1214 return ret;
1215}
1216
1217static inline int
1218pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1219{
1220 int ret = 0;
1221 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1222 return ret;
1223}
1224
1225static inline int
1226pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1227{
1228 int ret = 0;
1229 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1230 return ret;
1231}
1232
1233static pfm_buffer_fmt_t *
1234__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1235{
1236 struct list_head * pos;
1237 pfm_buffer_fmt_t * entry;
1238
1239 list_for_each(pos, &pfm_buffer_fmt_list) {
1240 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1241 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1242 return entry;
1243 }
1244 return NULL;
1245}
1246
1247/*
1248 * find a buffer format based on its uuid
1249 */
1250static pfm_buffer_fmt_t *
1251pfm_find_buffer_fmt(pfm_uuid_t uuid)
1252{
1253 pfm_buffer_fmt_t * fmt;
1254 spin_lock(&pfm_buffer_fmt_lock);
1255 fmt = __pfm_find_buffer_fmt(uuid);
1256 spin_unlock(&pfm_buffer_fmt_lock);
1257 return fmt;
1258}
1259
1260int
1261pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1262{
1263 int ret = 0;
1264
1265 /* some sanity checks */
1266 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1267
1268 /* we need at least a handler */
1269 if (fmt->fmt_handler == NULL) return -EINVAL;
1270
1271 /*
1272 * XXX: need check validity of fmt_arg_size
1273 */
1274
1275 spin_lock(&pfm_buffer_fmt_lock);
1276
1277 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1278 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1279 ret = -EBUSY;
1280 goto out;
1281 }
1282 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1283 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1284
1285out:
1286 spin_unlock(&pfm_buffer_fmt_lock);
1287 return ret;
1288}
1289EXPORT_SYMBOL(pfm_register_buffer_fmt);
1290
1291int
1292pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1293{
1294 pfm_buffer_fmt_t *fmt;
1295 int ret = 0;
1296
1297 spin_lock(&pfm_buffer_fmt_lock);
1298
1299 fmt = __pfm_find_buffer_fmt(uuid);
1300 if (!fmt) {
1301 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1302 ret = -EINVAL;
1303 goto out;
1304 }
1305 list_del_init(&fmt->fmt_list);
1306 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1307
1308out:
1309 spin_unlock(&pfm_buffer_fmt_lock);
1310 return ret;
1311
1312}
1313EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1314
8df5a500
SE
1315extern void update_pal_halt_status(int);
1316
1da177e4
LT
1317static int
1318pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1319{
1320 unsigned long flags;
1321 /*
1322 * validy checks on cpu_mask have been done upstream
1323 */
1324 LOCK_PFS(flags);
1325
1326 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1327 pfm_sessions.pfs_sys_sessions,
1328 pfm_sessions.pfs_task_sessions,
1329 pfm_sessions.pfs_sys_use_dbregs,
1330 is_syswide,
1331 cpu));
1332
1333 if (is_syswide) {
1334 /*
1335 * cannot mix system wide and per-task sessions
1336 */
1337 if (pfm_sessions.pfs_task_sessions > 0UL) {
1338 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1339 pfm_sessions.pfs_task_sessions));
1340 goto abort;
1341 }
1342
1343 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1344
1345 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1346
1347 pfm_sessions.pfs_sys_session[cpu] = task;
1348
1349 pfm_sessions.pfs_sys_sessions++ ;
1350
1351 } else {
1352 if (pfm_sessions.pfs_sys_sessions) goto abort;
1353 pfm_sessions.pfs_task_sessions++;
1354 }
1355
1356 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1357 pfm_sessions.pfs_sys_sessions,
1358 pfm_sessions.pfs_task_sessions,
1359 pfm_sessions.pfs_sys_use_dbregs,
1360 is_syswide,
1361 cpu));
1362
8df5a500
SE
1363 /*
1364 * disable default_idle() to go to PAL_HALT
1365 */
1366 update_pal_halt_status(0);
1367
1da177e4
LT
1368 UNLOCK_PFS(flags);
1369
1370 return 0;
1371
1372error_conflict:
1373 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1374 pfm_sessions.pfs_sys_session[cpu]->pid,
a1ecf7f6 1375 cpu));
1da177e4
LT
1376abort:
1377 UNLOCK_PFS(flags);
1378
1379 return -EBUSY;
1380
1381}
1382
1383static int
1384pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1385{
1386 unsigned long flags;
1387 /*
1388 * validy checks on cpu_mask have been done upstream
1389 */
1390 LOCK_PFS(flags);
1391
1392 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1393 pfm_sessions.pfs_sys_sessions,
1394 pfm_sessions.pfs_task_sessions,
1395 pfm_sessions.pfs_sys_use_dbregs,
1396 is_syswide,
1397 cpu));
1398
1399
1400 if (is_syswide) {
1401 pfm_sessions.pfs_sys_session[cpu] = NULL;
1402 /*
1403 * would not work with perfmon+more than one bit in cpu_mask
1404 */
1405 if (ctx && ctx->ctx_fl_using_dbreg) {
1406 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1407 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1408 } else {
1409 pfm_sessions.pfs_sys_use_dbregs--;
1410 }
1411 }
1412 pfm_sessions.pfs_sys_sessions--;
1413 } else {
1414 pfm_sessions.pfs_task_sessions--;
1415 }
1416 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1417 pfm_sessions.pfs_sys_sessions,
1418 pfm_sessions.pfs_task_sessions,
1419 pfm_sessions.pfs_sys_use_dbregs,
1420 is_syswide,
1421 cpu));
1422
8df5a500
SE
1423 /*
1424 * if possible, enable default_idle() to go into PAL_HALT
1425 */
1426 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1427 update_pal_halt_status(1);
1428
1da177e4
LT
1429 UNLOCK_PFS(flags);
1430
1431 return 0;
1432}
1433
1434/*
1435 * removes virtual mapping of the sampling buffer.
1436 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1437 * a PROTECT_CTX() section.
1438 */
1439static int
1440pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1441{
1442 int r;
1443
1444 /* sanity checks */
1445 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1446 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1447 return -EINVAL;
1448 }
1449
1450 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1451
1452 /*
1453 * does the actual unmapping
1454 */
1455 down_write(&task->mm->mmap_sem);
1456
1457 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1458
1459 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1460
1461 up_write(&task->mm->mmap_sem);
1462 if (r !=0) {
1463 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1464 }
1465
1466 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1467
1468 return 0;
1469}
1470
1471/*
1472 * free actual physical storage used by sampling buffer
1473 */
1474#if 0
1475static int
1476pfm_free_smpl_buffer(pfm_context_t *ctx)
1477{
1478 pfm_buffer_fmt_t *fmt;
1479
1480 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1481
1482 /*
1483 * we won't use the buffer format anymore
1484 */
1485 fmt = ctx->ctx_buf_fmt;
1486
1487 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1488 ctx->ctx_smpl_hdr,
1489 ctx->ctx_smpl_size,
1490 ctx->ctx_smpl_vaddr));
1491
1492 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1493
1494 /*
1495 * free the buffer
1496 */
1497 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1498
1499 ctx->ctx_smpl_hdr = NULL;
1500 ctx->ctx_smpl_size = 0UL;
1501
1502 return 0;
1503
1504invalid_free:
1505 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1506 return -EINVAL;
1507}
1508#endif
1509
1510static inline void
1511pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1512{
1513 if (fmt == NULL) return;
1514
1515 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1516
1517}
1518
1519/*
1520 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1521 * no real gain from having the whole whorehouse mounted. So we don't need
1522 * any operations on the root directory. However, we need a non-trivial
1523 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1524 */
1525static struct vfsmount *pfmfs_mnt;
1526
1527static int __init
1528init_pfm_fs(void)
1529{
1530 int err = register_filesystem(&pfm_fs_type);
1531 if (!err) {
1532 pfmfs_mnt = kern_mount(&pfm_fs_type);
1533 err = PTR_ERR(pfmfs_mnt);
1534 if (IS_ERR(pfmfs_mnt))
1535 unregister_filesystem(&pfm_fs_type);
1536 else
1537 err = 0;
1538 }
1539 return err;
1540}
1541
1542static void __exit
1543exit_pfm_fs(void)
1544{
1545 unregister_filesystem(&pfm_fs_type);
1546 mntput(pfmfs_mnt);
1547}
1548
1549static ssize_t
1550pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1551{
1552 pfm_context_t *ctx;
1553 pfm_msg_t *msg;
1554 ssize_t ret;
1555 unsigned long flags;
1556 DECLARE_WAITQUEUE(wait, current);
1557 if (PFM_IS_FILE(filp) == 0) {
1558 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1559 return -EINVAL;
1560 }
1561
1562 ctx = (pfm_context_t *)filp->private_data;
1563 if (ctx == NULL) {
1564 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1565 return -EINVAL;
1566 }
1567
1568 /*
1569 * check even when there is no message
1570 */
1571 if (size < sizeof(pfm_msg_t)) {
1572 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1573 return -EINVAL;
1574 }
1575
1576 PROTECT_CTX(ctx, flags);
1577
1578 /*
1579 * put ourselves on the wait queue
1580 */
1581 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1582
1583
1584 for(;;) {
1585 /*
1586 * check wait queue
1587 */
1588
1589 set_current_state(TASK_INTERRUPTIBLE);
1590
1591 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1592
1593 ret = 0;
1594 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1595
1596 UNPROTECT_CTX(ctx, flags);
1597
1598 /*
1599 * check non-blocking read
1600 */
1601 ret = -EAGAIN;
1602 if(filp->f_flags & O_NONBLOCK) break;
1603
1604 /*
1605 * check pending signals
1606 */
1607 if(signal_pending(current)) {
1608 ret = -EINTR;
1609 break;
1610 }
1611 /*
1612 * no message, so wait
1613 */
1614 schedule();
1615
1616 PROTECT_CTX(ctx, flags);
1617 }
1618 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1619 set_current_state(TASK_RUNNING);
1620 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1621
1622 if (ret < 0) goto abort;
1623
1624 ret = -EINVAL;
1625 msg = pfm_get_next_msg(ctx);
1626 if (msg == NULL) {
1627 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1628 goto abort_locked;
1629 }
1630
4944930a 1631 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1da177e4
LT
1632
1633 ret = -EFAULT;
1634 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1635
1636abort_locked:
1637 UNPROTECT_CTX(ctx, flags);
1638abort:
1639 return ret;
1640}
1641
1642static ssize_t
1643pfm_write(struct file *file, const char __user *ubuf,
1644 size_t size, loff_t *ppos)
1645{
1646 DPRINT(("pfm_write called\n"));
1647 return -EINVAL;
1648}
1649
1650static unsigned int
1651pfm_poll(struct file *filp, poll_table * wait)
1652{
1653 pfm_context_t *ctx;
1654 unsigned long flags;
1655 unsigned int mask = 0;
1656
1657 if (PFM_IS_FILE(filp) == 0) {
1658 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1659 return 0;
1660 }
1661
1662 ctx = (pfm_context_t *)filp->private_data;
1663 if (ctx == NULL) {
1664 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1665 return 0;
1666 }
1667
1668
1669 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1670
1671 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1672
1673 PROTECT_CTX(ctx, flags);
1674
1675 if (PFM_CTXQ_EMPTY(ctx) == 0)
1676 mask = POLLIN | POLLRDNORM;
1677
1678 UNPROTECT_CTX(ctx, flags);
1679
1680 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1681
1682 return mask;
1683}
1684
1685static int
1686pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1687{
1688 DPRINT(("pfm_ioctl called\n"));
1689 return -EINVAL;
1690}
1691
1692/*
1693 * interrupt cannot be masked when coming here
1694 */
1695static inline int
1696pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1697{
1698 int ret;
1699
1700 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1701
1702 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1703 current->pid,
1704 fd,
1705 on,
1706 ctx->ctx_async_queue, ret));
1707
1708 return ret;
1709}
1710
1711static int
1712pfm_fasync(int fd, struct file *filp, int on)
1713{
1714 pfm_context_t *ctx;
1715 int ret;
1716
1717 if (PFM_IS_FILE(filp) == 0) {
1718 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1719 return -EBADF;
1720 }
1721
1722 ctx = (pfm_context_t *)filp->private_data;
1723 if (ctx == NULL) {
1724 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1725 return -EBADF;
1726 }
1727 /*
1728 * we cannot mask interrupts during this call because this may
1729 * may go to sleep if memory is not readily avalaible.
1730 *
1731 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1732 * done in caller. Serialization of this function is ensured by caller.
1733 */
1734 ret = pfm_do_fasync(fd, filp, ctx, on);
1735
1736
1737 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1738 fd,
1739 on,
1740 ctx->ctx_async_queue, ret));
1741
1742 return ret;
1743}
1744
1745#ifdef CONFIG_SMP
1746/*
1747 * this function is exclusively called from pfm_close().
1748 * The context is not protected at that time, nor are interrupts
1749 * on the remote CPU. That's necessary to avoid deadlocks.
1750 */
1751static void
1752pfm_syswide_force_stop(void *info)
1753{
1754 pfm_context_t *ctx = (pfm_context_t *)info;
6450578f 1755 struct pt_regs *regs = task_pt_regs(current);
1da177e4
LT
1756 struct task_struct *owner;
1757 unsigned long flags;
1758 int ret;
1759
1760 if (ctx->ctx_cpu != smp_processor_id()) {
1761 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1762 ctx->ctx_cpu,
1763 smp_processor_id());
1764 return;
1765 }
1766 owner = GET_PMU_OWNER();
1767 if (owner != ctx->ctx_task) {
1768 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1769 smp_processor_id(),
1770 owner->pid, ctx->ctx_task->pid);
1771 return;
1772 }
1773 if (GET_PMU_CTX() != ctx) {
1774 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1775 smp_processor_id(),
1776 GET_PMU_CTX(), ctx);
1777 return;
1778 }
1779
1780 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1781 /*
1782 * the context is already protected in pfm_close(), we simply
1783 * need to mask interrupts to avoid a PMU interrupt race on
1784 * this CPU
1785 */
1786 local_irq_save(flags);
1787
1788 ret = pfm_context_unload(ctx, NULL, 0, regs);
1789 if (ret) {
1790 DPRINT(("context_unload returned %d\n", ret));
1791 }
1792
1793 /*
1794 * unmask interrupts, PMU interrupts are now spurious here
1795 */
1796 local_irq_restore(flags);
1797}
1798
1799static void
1800pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1801{
1802 int ret;
1803
1804 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1805 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1806 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1807}
1808#endif /* CONFIG_SMP */
1809
1810/*
1811 * called for each close(). Partially free resources.
1812 * When caller is self-monitoring, the context is unloaded.
1813 */
1814static int
75e1fcc0 1815pfm_flush(struct file *filp, fl_owner_t id)
1da177e4
LT
1816{
1817 pfm_context_t *ctx;
1818 struct task_struct *task;
1819 struct pt_regs *regs;
1820 unsigned long flags;
1821 unsigned long smpl_buf_size = 0UL;
1822 void *smpl_buf_vaddr = NULL;
1823 int state, is_system;
1824
1825 if (PFM_IS_FILE(filp) == 0) {
1826 DPRINT(("bad magic for\n"));
1827 return -EBADF;
1828 }
1829
1830 ctx = (pfm_context_t *)filp->private_data;
1831 if (ctx == NULL) {
1832 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1833 return -EBADF;
1834 }
1835
1836 /*
1837 * remove our file from the async queue, if we use this mode.
1838 * This can be done without the context being protected. We come
1839 * here when the context has become unreacheable by other tasks.
1840 *
1841 * We may still have active monitoring at this point and we may
1842 * end up in pfm_overflow_handler(). However, fasync_helper()
1843 * operates with interrupts disabled and it cleans up the
1844 * queue. If the PMU handler is called prior to entering
1845 * fasync_helper() then it will send a signal. If it is
1846 * invoked after, it will find an empty queue and no
1847 * signal will be sent. In both case, we are safe
1848 */
1849 if (filp->f_flags & FASYNC) {
1850 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1851 pfm_do_fasync (-1, filp, ctx, 0);
1852 }
1853
1854 PROTECT_CTX(ctx, flags);
1855
1856 state = ctx->ctx_state;
1857 is_system = ctx->ctx_fl_system;
1858
1859 task = PFM_CTX_TASK(ctx);
6450578f 1860 regs = task_pt_regs(task);
1da177e4
LT
1861
1862 DPRINT(("ctx_state=%d is_current=%d\n",
1863 state,
1864 task == current ? 1 : 0));
1865
1866 /*
1867 * if state == UNLOADED, then task is NULL
1868 */
1869
1870 /*
1871 * we must stop and unload because we are losing access to the context.
1872 */
1873 if (task == current) {
1874#ifdef CONFIG_SMP
1875 /*
1876 * the task IS the owner but it migrated to another CPU: that's bad
1877 * but we must handle this cleanly. Unfortunately, the kernel does
1878 * not provide a mechanism to block migration (while the context is loaded).
1879 *
1880 * We need to release the resource on the ORIGINAL cpu.
1881 */
1882 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1883
1884 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1885 /*
1886 * keep context protected but unmask interrupt for IPI
1887 */
1888 local_irq_restore(flags);
1889
1890 pfm_syswide_cleanup_other_cpu(ctx);
1891
1892 /*
1893 * restore interrupt masking
1894 */
1895 local_irq_save(flags);
1896
1897 /*
1898 * context is unloaded at this point
1899 */
1900 } else
1901#endif /* CONFIG_SMP */
1902 {
1903
1904 DPRINT(("forcing unload\n"));
1905 /*
1906 * stop and unload, returning with state UNLOADED
1907 * and session unreserved.
1908 */
1909 pfm_context_unload(ctx, NULL, 0, regs);
1910
1911 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1912 }
1913 }
1914
1915 /*
1916 * remove virtual mapping, if any, for the calling task.
1917 * cannot reset ctx field until last user is calling close().
1918 *
1919 * ctx_smpl_vaddr must never be cleared because it is needed
1920 * by every task with access to the context
1921 *
1922 * When called from do_exit(), the mm context is gone already, therefore
1923 * mm is NULL, i.e., the VMA is already gone and we do not have to
1924 * do anything here
1925 */
1926 if (ctx->ctx_smpl_vaddr && current->mm) {
1927 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1928 smpl_buf_size = ctx->ctx_smpl_size;
1929 }
1930
1931 UNPROTECT_CTX(ctx, flags);
1932
1933 /*
1934 * if there was a mapping, then we systematically remove it
1935 * at this point. Cannot be done inside critical section
1936 * because some VM function reenables interrupts.
1937 *
1938 */
1939 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1940
1941 return 0;
1942}
1943/*
1944 * called either on explicit close() or from exit_files().
1945 * Only the LAST user of the file gets to this point, i.e., it is
1946 * called only ONCE.
1947 *
1948 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1949 * (fput()),i.e, last task to access the file. Nobody else can access the
1950 * file at this point.
1951 *
1952 * When called from exit_files(), the VMA has been freed because exit_mm()
1953 * is executed before exit_files().
1954 *
1955 * When called from exit_files(), the current task is not yet ZOMBIE but we
1956 * flush the PMU state to the context.
1957 */
1958static int
1959pfm_close(struct inode *inode, struct file *filp)
1960{
1961 pfm_context_t *ctx;
1962 struct task_struct *task;
1963 struct pt_regs *regs;
1964 DECLARE_WAITQUEUE(wait, current);
1965 unsigned long flags;
1966 unsigned long smpl_buf_size = 0UL;
1967 void *smpl_buf_addr = NULL;
1968 int free_possible = 1;
1969 int state, is_system;
1970
1971 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1972
1973 if (PFM_IS_FILE(filp) == 0) {
1974 DPRINT(("bad magic\n"));
1975 return -EBADF;
1976 }
1977
1978 ctx = (pfm_context_t *)filp->private_data;
1979 if (ctx == NULL) {
1980 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1981 return -EBADF;
1982 }
1983
1984 PROTECT_CTX(ctx, flags);
1985
1986 state = ctx->ctx_state;
1987 is_system = ctx->ctx_fl_system;
1988
1989 task = PFM_CTX_TASK(ctx);
6450578f 1990 regs = task_pt_regs(task);
1da177e4
LT
1991
1992 DPRINT(("ctx_state=%d is_current=%d\n",
1993 state,
1994 task == current ? 1 : 0));
1995
1996 /*
1997 * if task == current, then pfm_flush() unloaded the context
1998 */
1999 if (state == PFM_CTX_UNLOADED) goto doit;
2000
2001 /*
2002 * context is loaded/masked and task != current, we need to
2003 * either force an unload or go zombie
2004 */
2005
2006 /*
2007 * The task is currently blocked or will block after an overflow.
2008 * we must force it to wakeup to get out of the
2009 * MASKED state and transition to the unloaded state by itself.
2010 *
2011 * This situation is only possible for per-task mode
2012 */
2013 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2014
2015 /*
2016 * set a "partial" zombie state to be checked
2017 * upon return from down() in pfm_handle_work().
2018 *
2019 * We cannot use the ZOMBIE state, because it is checked
2020 * by pfm_load_regs() which is called upon wakeup from down().
2021 * In such case, it would free the context and then we would
2022 * return to pfm_handle_work() which would access the
2023 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2024 * but visible to pfm_handle_work().
2025 *
2026 * For some window of time, we have a zombie context with
2027 * ctx_state = MASKED and not ZOMBIE
2028 */
2029 ctx->ctx_fl_going_zombie = 1;
2030
2031 /*
2032 * force task to wake up from MASKED state
2033 */
60f1c444 2034 complete(&ctx->ctx_restart_done);
1da177e4
LT
2035
2036 DPRINT(("waking up ctx_state=%d\n", state));
2037
2038 /*
2039 * put ourself to sleep waiting for the other
2040 * task to report completion
2041 *
2042 * the context is protected by mutex, therefore there
2043 * is no risk of being notified of completion before
2044 * begin actually on the waitq.
2045 */
2046 set_current_state(TASK_INTERRUPTIBLE);
2047 add_wait_queue(&ctx->ctx_zombieq, &wait);
2048
2049 UNPROTECT_CTX(ctx, flags);
2050
2051 /*
2052 * XXX: check for signals :
2053 * - ok for explicit close
2054 * - not ok when coming from exit_files()
2055 */
2056 schedule();
2057
2058
2059 PROTECT_CTX(ctx, flags);
2060
2061
2062 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2063 set_current_state(TASK_RUNNING);
2064
2065 /*
2066 * context is unloaded at this point
2067 */
2068 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2069 }
2070 else if (task != current) {
2071#ifdef CONFIG_SMP
2072 /*
2073 * switch context to zombie state
2074 */
2075 ctx->ctx_state = PFM_CTX_ZOMBIE;
2076
2077 DPRINT(("zombie ctx for [%d]\n", task->pid));
2078 /*
2079 * cannot free the context on the spot. deferred until
2080 * the task notices the ZOMBIE state
2081 */
2082 free_possible = 0;
2083#else
2084 pfm_context_unload(ctx, NULL, 0, regs);
2085#endif
2086 }
2087
2088doit:
2089 /* reload state, may have changed during opening of critical section */
2090 state = ctx->ctx_state;
2091
2092 /*
2093 * the context is still attached to a task (possibly current)
2094 * we cannot destroy it right now
2095 */
2096
2097 /*
2098 * we must free the sampling buffer right here because
2099 * we cannot rely on it being cleaned up later by the
2100 * monitored task. It is not possible to free vmalloc'ed
2101 * memory in pfm_load_regs(). Instead, we remove the buffer
2102 * now. should there be subsequent PMU overflow originally
2103 * meant for sampling, the will be converted to spurious
2104 * and that's fine because the monitoring tools is gone anyway.
2105 */
2106 if (ctx->ctx_smpl_hdr) {
2107 smpl_buf_addr = ctx->ctx_smpl_hdr;
2108 smpl_buf_size = ctx->ctx_smpl_size;
2109 /* no more sampling */
2110 ctx->ctx_smpl_hdr = NULL;
2111 ctx->ctx_fl_is_sampling = 0;
2112 }
2113
2114 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2115 state,
2116 free_possible,
2117 smpl_buf_addr,
2118 smpl_buf_size));
2119
2120 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2121
2122 /*
2123 * UNLOADED that the session has already been unreserved.
2124 */
2125 if (state == PFM_CTX_ZOMBIE) {
2126 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2127 }
2128
2129 /*
2130 * disconnect file descriptor from context must be done
2131 * before we unlock.
2132 */
2133 filp->private_data = NULL;
2134
2135 /*
2136 * if we free on the spot, the context is now completely unreacheable
2137 * from the callers side. The monitored task side is also cut, so we
2138 * can freely cut.
2139 *
2140 * If we have a deferred free, only the caller side is disconnected.
2141 */
2142 UNPROTECT_CTX(ctx, flags);
2143
2144 /*
2145 * All memory free operations (especially for vmalloc'ed memory)
2146 * MUST be done with interrupts ENABLED.
2147 */
2148 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2149
2150 /*
2151 * return the memory used by the context
2152 */
2153 if (free_possible) pfm_context_free(ctx);
2154
2155 return 0;
2156}
2157
2158static int
2159pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2160{
2161 DPRINT(("pfm_no_open called\n"));
2162 return -ENXIO;
2163}
2164
2165
2166
5dfe4c96 2167static const struct file_operations pfm_file_ops = {
1da177e4
LT
2168 .llseek = no_llseek,
2169 .read = pfm_read,
2170 .write = pfm_write,
2171 .poll = pfm_poll,
2172 .ioctl = pfm_ioctl,
2173 .open = pfm_no_open, /* special open code to disallow open via /proc */
2174 .fasync = pfm_fasync,
2175 .release = pfm_close,
2176 .flush = pfm_flush
2177};
2178
2179static int
2180pfmfs_delete_dentry(struct dentry *dentry)
2181{
2182 return 1;
2183}
2184
2185static struct dentry_operations pfmfs_dentry_operations = {
2186 .d_delete = pfmfs_delete_dentry,
2187};
2188
2189
2190static int
2191pfm_alloc_fd(struct file **cfile)
2192{
2193 int fd, ret = 0;
2194 struct file *file = NULL;
2195 struct inode * inode;
2196 char name[32];
2197 struct qstr this;
2198
2199 fd = get_unused_fd();
2200 if (fd < 0) return -ENFILE;
2201
2202 ret = -ENFILE;
2203
2204 file = get_empty_filp();
2205 if (!file) goto out;
2206
2207 /*
2208 * allocate a new inode
2209 */
2210 inode = new_inode(pfmfs_mnt->mnt_sb);
2211 if (!inode) goto out;
2212
2213 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2214
2215 inode->i_mode = S_IFCHR|S_IRUGO;
2216 inode->i_uid = current->fsuid;
2217 inode->i_gid = current->fsgid;
2218
2219 sprintf(name, "[%lu]", inode->i_ino);
2220 this.name = name;
2221 this.len = strlen(name);
2222 this.hash = inode->i_ino;
2223
2224 ret = -ENOMEM;
2225
2226 /*
2227 * allocate a new dcache entry
2228 */
b66ffad9
JS
2229 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2230 if (!file->f_path.dentry) goto out;
1da177e4 2231
b66ffad9 2232 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
1da177e4 2233
b66ffad9
JS
2234 d_add(file->f_path.dentry, inode);
2235 file->f_path.mnt = mntget(pfmfs_mnt);
1da177e4
LT
2236 file->f_mapping = inode->i_mapping;
2237
2238 file->f_op = &pfm_file_ops;
2239 file->f_mode = FMODE_READ;
2240 file->f_flags = O_RDONLY;
2241 file->f_pos = 0;
2242
2243 /*
2244 * may have to delay until context is attached?
2245 */
2246 fd_install(fd, file);
2247
2248 /*
2249 * the file structure we will use
2250 */
2251 *cfile = file;
2252
2253 return fd;
2254out:
2255 if (file) put_filp(file);
2256 put_unused_fd(fd);
2257 return ret;
2258}
2259
2260static void
2261pfm_free_fd(int fd, struct file *file)
2262{
2263 struct files_struct *files = current->files;
4fb3a538 2264 struct fdtable *fdt;
1da177e4
LT
2265
2266 /*
2267 * there ie no fd_uninstall(), so we do it here
2268 */
2269 spin_lock(&files->file_lock);
4fb3a538 2270 fdt = files_fdtable(files);
badf1662 2271 rcu_assign_pointer(fdt->fd[fd], NULL);
1da177e4
LT
2272 spin_unlock(&files->file_lock);
2273
badf1662
DS
2274 if (file)
2275 put_filp(file);
1da177e4
LT
2276 put_unused_fd(fd);
2277}
2278
2279static int
2280pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2281{
2282 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2283
2284 while (size > 0) {
2285 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2286
2287
2288 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2289 return -ENOMEM;
2290
2291 addr += PAGE_SIZE;
2292 buf += PAGE_SIZE;
2293 size -= PAGE_SIZE;
2294 }
2295 return 0;
2296}
2297
2298/*
2299 * allocate a sampling buffer and remaps it into the user address space of the task
2300 */
2301static int
2302pfm_smpl_buffer_alloc(struct task_struct *task, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2303{
2304 struct mm_struct *mm = task->mm;
2305 struct vm_area_struct *vma = NULL;
2306 unsigned long size;
2307 void *smpl_buf;
2308
2309
2310 /*
2311 * the fixed header + requested size and align to page boundary
2312 */
2313 size = PAGE_ALIGN(rsize);
2314
2315 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2316
2317 /*
2318 * check requested size to avoid Denial-of-service attacks
2319 * XXX: may have to refine this test
2320 * Check against address space limit.
2321 *
2322 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2323 * return -ENOMEM;
2324 */
2325 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2326 return -ENOMEM;
2327
2328 /*
2329 * We do the easy to undo allocations first.
2330 *
2331 * pfm_rvmalloc(), clears the buffer, so there is no leak
2332 */
2333 smpl_buf = pfm_rvmalloc(size);
2334 if (smpl_buf == NULL) {
2335 DPRINT(("Can't allocate sampling buffer\n"));
2336 return -ENOMEM;
2337 }
2338
2339 DPRINT(("smpl_buf @%p\n", smpl_buf));
2340
2341 /* allocate vma */
c3762229 2342 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1da177e4
LT
2343 if (!vma) {
2344 DPRINT(("Cannot allocate vma\n"));
2345 goto error_kmem;
2346 }
1da177e4
LT
2347
2348 /*
2349 * partially initialize the vma for the sampling buffer
2350 */
2351 vma->vm_mm = mm;
2352 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2353 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2354
2355 /*
2356 * Now we have everything we need and we can initialize
2357 * and connect all the data structures
2358 */
2359
2360 ctx->ctx_smpl_hdr = smpl_buf;
2361 ctx->ctx_smpl_size = size; /* aligned size */
2362
2363 /*
2364 * Let's do the difficult operations next.
2365 *
2366 * now we atomically find some area in the address space and
2367 * remap the buffer in it.
2368 */
2369 down_write(&task->mm->mmap_sem);
2370
2371 /* find some free area in address space, must have mmap sem held */
2372 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2373 if (vma->vm_start == 0UL) {
2374 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2375 up_write(&task->mm->mmap_sem);
2376 goto error;
2377 }
2378 vma->vm_end = vma->vm_start + size;
2379 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2380
2381 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2382
2383 /* can only be applied to current task, need to have the mm semaphore held when called */
2384 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2385 DPRINT(("Can't remap buffer\n"));
2386 up_write(&task->mm->mmap_sem);
2387 goto error;
2388 }
2389
2390 /*
2391 * now insert the vma in the vm list for the process, must be
2392 * done with mmap lock held
2393 */
2394 insert_vm_struct(mm, vma);
2395
2396 mm->total_vm += size >> PAGE_SHIFT;
ab50b8ed
HD
2397 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2398 vma_pages(vma));
1da177e4
LT
2399 up_write(&task->mm->mmap_sem);
2400
2401 /*
2402 * keep track of user level virtual address
2403 */
2404 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2405 *(unsigned long *)user_vaddr = vma->vm_start;
2406
2407 return 0;
2408
2409error:
2410 kmem_cache_free(vm_area_cachep, vma);
2411error_kmem:
2412 pfm_rvfree(smpl_buf, size);
2413
2414 return -ENOMEM;
2415}
2416
2417/*
2418 * XXX: do something better here
2419 */
2420static int
2421pfm_bad_permissions(struct task_struct *task)
2422{
2423 /* inspired by ptrace_attach() */
2424 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2425 current->uid,
2426 current->gid,
2427 task->euid,
2428 task->suid,
2429 task->uid,
2430 task->egid,
2431 task->sgid));
2432
2433 return ((current->uid != task->euid)
2434 || (current->uid != task->suid)
2435 || (current->uid != task->uid)
2436 || (current->gid != task->egid)
2437 || (current->gid != task->sgid)
2438 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2439}
2440
2441static int
2442pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2443{
2444 int ctx_flags;
2445
2446 /* valid signal */
2447
2448 ctx_flags = pfx->ctx_flags;
2449
2450 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2451
2452 /*
2453 * cannot block in this mode
2454 */
2455 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2456 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2457 return -EINVAL;
2458 }
2459 } else {
2460 }
2461 /* probably more to add here */
2462
2463 return 0;
2464}
2465
2466static int
2467pfm_setup_buffer_fmt(struct task_struct *task, pfm_context_t *ctx, unsigned int ctx_flags,
2468 unsigned int cpu, pfarg_context_t *arg)
2469{
2470 pfm_buffer_fmt_t *fmt = NULL;
2471 unsigned long size = 0UL;
2472 void *uaddr = NULL;
2473 void *fmt_arg = NULL;
2474 int ret = 0;
2475#define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2476
2477 /* invoke and lock buffer format, if found */
2478 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2479 if (fmt == NULL) {
2480 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2481 return -EINVAL;
2482 }
2483
2484 /*
2485 * buffer argument MUST be contiguous to pfarg_context_t
2486 */
2487 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2488
2489 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2490
2491 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2492
2493 if (ret) goto error;
2494
2495 /* link buffer format and context */
2496 ctx->ctx_buf_fmt = fmt;
2497
2498 /*
2499 * check if buffer format wants to use perfmon buffer allocation/mapping service
2500 */
2501 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2502 if (ret) goto error;
2503
2504 if (size) {
2505 /*
2506 * buffer is always remapped into the caller's address space
2507 */
2508 ret = pfm_smpl_buffer_alloc(current, ctx, size, &uaddr);
2509 if (ret) goto error;
2510
2511 /* keep track of user address of buffer */
2512 arg->ctx_smpl_vaddr = uaddr;
2513 }
2514 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2515
2516error:
2517 return ret;
2518}
2519
2520static void
2521pfm_reset_pmu_state(pfm_context_t *ctx)
2522{
2523 int i;
2524
2525 /*
2526 * install reset values for PMC.
2527 */
2528 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2529 if (PMC_IS_IMPL(i) == 0) continue;
2530 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2531 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2532 }
2533 /*
2534 * PMD registers are set to 0UL when the context in memset()
2535 */
2536
2537 /*
2538 * On context switched restore, we must restore ALL pmc and ALL pmd even
2539 * when they are not actively used by the task. In UP, the incoming process
2540 * may otherwise pick up left over PMC, PMD state from the previous process.
2541 * As opposed to PMD, stale PMC can cause harm to the incoming
2542 * process because they may change what is being measured.
2543 * Therefore, we must systematically reinstall the entire
2544 * PMC state. In SMP, the same thing is possible on the
2545 * same CPU but also on between 2 CPUs.
2546 *
2547 * The problem with PMD is information leaking especially
2548 * to user level when psr.sp=0
2549 *
2550 * There is unfortunately no easy way to avoid this problem
2551 * on either UP or SMP. This definitively slows down the
2552 * pfm_load_regs() function.
2553 */
2554
2555 /*
2556 * bitmask of all PMCs accessible to this context
2557 *
2558 * PMC0 is treated differently.
2559 */
2560 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2561
2562 /*
2563 * bitmask of all PMDs that are accesible to this context
2564 */
2565 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2566
2567 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2568
2569 /*
2570 * useful in case of re-enable after disable
2571 */
2572 ctx->ctx_used_ibrs[0] = 0UL;
2573 ctx->ctx_used_dbrs[0] = 0UL;
2574}
2575
2576static int
2577pfm_ctx_getsize(void *arg, size_t *sz)
2578{
2579 pfarg_context_t *req = (pfarg_context_t *)arg;
2580 pfm_buffer_fmt_t *fmt;
2581
2582 *sz = 0;
2583
2584 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2585
2586 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2587 if (fmt == NULL) {
2588 DPRINT(("cannot find buffer format\n"));
2589 return -EINVAL;
2590 }
2591 /* get just enough to copy in user parameters */
2592 *sz = fmt->fmt_arg_size;
2593 DPRINT(("arg_size=%lu\n", *sz));
2594
2595 return 0;
2596}
2597
2598
2599
2600/*
2601 * cannot attach if :
2602 * - kernel task
2603 * - task not owned by caller
2604 * - task incompatible with context mode
2605 */
2606static int
2607pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2608{
2609 /*
2610 * no kernel task or task not owner by caller
2611 */
2612 if (task->mm == NULL) {
2613 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2614 return -EPERM;
2615 }
2616 if (pfm_bad_permissions(task)) {
2617 DPRINT(("no permission to attach to [%d]\n", task->pid));
2618 return -EPERM;
2619 }
2620 /*
2621 * cannot block in self-monitoring mode
2622 */
2623 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2624 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2625 return -EINVAL;
2626 }
2627
2628 if (task->exit_state == EXIT_ZOMBIE) {
2629 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2630 return -EBUSY;
2631 }
2632
2633 /*
2634 * always ok for self
2635 */
2636 if (task == current) return 0;
2637
2638 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2639 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2640 return -EBUSY;
2641 }
2642 /*
2643 * make sure the task is off any CPU
2644 */
2645 wait_task_inactive(task);
2646
2647 /* more to come... */
2648
2649 return 0;
2650}
2651
2652static int
2653pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2654{
2655 struct task_struct *p = current;
2656 int ret;
2657
2658 /* XXX: need to add more checks here */
2659 if (pid < 2) return -EPERM;
2660
2661 if (pid != current->pid) {
2662
2663 read_lock(&tasklist_lock);
2664
2665 p = find_task_by_pid(pid);
2666
2667 /* make sure task cannot go away while we operate on it */
2668 if (p) get_task_struct(p);
2669
2670 read_unlock(&tasklist_lock);
2671
2672 if (p == NULL) return -ESRCH;
2673 }
2674
2675 ret = pfm_task_incompatible(ctx, p);
2676 if (ret == 0) {
2677 *task = p;
2678 } else if (p != current) {
2679 pfm_put_task(p);
2680 }
2681 return ret;
2682}
2683
2684
2685
2686static int
2687pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2688{
2689 pfarg_context_t *req = (pfarg_context_t *)arg;
2690 struct file *filp;
2691 int ctx_flags;
2692 int ret;
2693
2694 /* let's check the arguments first */
2695 ret = pfarg_is_sane(current, req);
2696 if (ret < 0) return ret;
2697
2698 ctx_flags = req->ctx_flags;
2699
2700 ret = -ENOMEM;
2701
2702 ctx = pfm_context_alloc();
2703 if (!ctx) goto error;
2704
2705 ret = pfm_alloc_fd(&filp);
2706 if (ret < 0) goto error_file;
2707
2708 req->ctx_fd = ctx->ctx_fd = ret;
2709
2710 /*
2711 * attach context to file
2712 */
2713 filp->private_data = ctx;
2714
2715 /*
2716 * does the user want to sample?
2717 */
2718 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2719 ret = pfm_setup_buffer_fmt(current, ctx, ctx_flags, 0, req);
2720 if (ret) goto buffer_error;
2721 }
2722
2723 /*
2724 * init context protection lock
2725 */
2726 spin_lock_init(&ctx->ctx_lock);
2727
2728 /*
2729 * context is unloaded
2730 */
2731 ctx->ctx_state = PFM_CTX_UNLOADED;
2732
2733 /*
2734 * initialization of context's flags
2735 */
2736 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2737 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2738 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2739 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2740 /*
2741 * will move to set properties
2742 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2743 */
2744
2745 /*
2746 * init restart semaphore to locked
2747 */
60f1c444 2748 init_completion(&ctx->ctx_restart_done);
1da177e4
LT
2749
2750 /*
2751 * activation is used in SMP only
2752 */
2753 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2754 SET_LAST_CPU(ctx, -1);
2755
2756 /*
2757 * initialize notification message queue
2758 */
2759 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2760 init_waitqueue_head(&ctx->ctx_msgq_wait);
2761 init_waitqueue_head(&ctx->ctx_zombieq);
2762
2763 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2764 ctx,
2765 ctx_flags,
2766 ctx->ctx_fl_system,
2767 ctx->ctx_fl_block,
2768 ctx->ctx_fl_excl_idle,
2769 ctx->ctx_fl_no_msg,
2770 ctx->ctx_fd));
2771
2772 /*
2773 * initialize soft PMU state
2774 */
2775 pfm_reset_pmu_state(ctx);
2776
2777 return 0;
2778
2779buffer_error:
2780 pfm_free_fd(ctx->ctx_fd, filp);
2781
2782 if (ctx->ctx_buf_fmt) {
2783 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2784 }
2785error_file:
2786 pfm_context_free(ctx);
2787
2788error:
2789 return ret;
2790}
2791
2792static inline unsigned long
2793pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2794{
2795 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2796 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2797 extern unsigned long carta_random32 (unsigned long seed);
2798
2799 if (reg->flags & PFM_REGFL_RANDOM) {
2800 new_seed = carta_random32(old_seed);
2801 val -= (old_seed & mask); /* counter values are negative numbers! */
2802 if ((mask >> 32) != 0)
2803 /* construct a full 64-bit random value: */
2804 new_seed |= carta_random32(old_seed >> 32) << 32;
2805 reg->seed = new_seed;
2806 }
2807 reg->lval = val;
2808 return val;
2809}
2810
2811static void
2812pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2813{
2814 unsigned long mask = ovfl_regs[0];
2815 unsigned long reset_others = 0UL;
2816 unsigned long val;
2817 int i;
2818
2819 /*
2820 * now restore reset value on sampling overflowed counters
2821 */
2822 mask >>= PMU_FIRST_COUNTER;
2823 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2824
2825 if ((mask & 0x1UL) == 0UL) continue;
2826
2827 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2828 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2829
2830 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2831 }
2832
2833 /*
2834 * Now take care of resetting the other registers
2835 */
2836 for(i = 0; reset_others; i++, reset_others >>= 1) {
2837
2838 if ((reset_others & 0x1) == 0) continue;
2839
2840 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2841
2842 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2843 is_long_reset ? "long" : "short", i, val));
2844 }
2845}
2846
2847static void
2848pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2849{
2850 unsigned long mask = ovfl_regs[0];
2851 unsigned long reset_others = 0UL;
2852 unsigned long val;
2853 int i;
2854
2855 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2856
2857 if (ctx->ctx_state == PFM_CTX_MASKED) {
2858 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2859 return;
2860 }
2861
2862 /*
2863 * now restore reset value on sampling overflowed counters
2864 */
2865 mask >>= PMU_FIRST_COUNTER;
2866 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2867
2868 if ((mask & 0x1UL) == 0UL) continue;
2869
2870 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2871 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2872
2873 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2874
2875 pfm_write_soft_counter(ctx, i, val);
2876 }
2877
2878 /*
2879 * Now take care of resetting the other registers
2880 */
2881 for(i = 0; reset_others; i++, reset_others >>= 1) {
2882
2883 if ((reset_others & 0x1) == 0) continue;
2884
2885 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2886
2887 if (PMD_IS_COUNTING(i)) {
2888 pfm_write_soft_counter(ctx, i, val);
2889 } else {
2890 ia64_set_pmd(i, val);
2891 }
2892 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2893 is_long_reset ? "long" : "short", i, val));
2894 }
2895 ia64_srlz_d();
2896}
2897
2898static int
2899pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2900{
1da177e4
LT
2901 struct task_struct *task;
2902 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2903 unsigned long value, pmc_pm;
2904 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2905 unsigned int cnum, reg_flags, flags, pmc_type;
2906 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2907 int is_monitor, is_counting, state;
2908 int ret = -EINVAL;
2909 pfm_reg_check_t wr_func;
2910#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2911
2912 state = ctx->ctx_state;
2913 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2914 is_system = ctx->ctx_fl_system;
2915 task = ctx->ctx_task;
2916 impl_pmds = pmu_conf->impl_pmds[0];
2917
2918 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2919
2920 if (is_loaded) {
1da177e4
LT
2921 /*
2922 * In system wide and when the context is loaded, access can only happen
2923 * when the caller is running on the CPU being monitored by the session.
2924 * It does not have to be the owner (ctx_task) of the context per se.
2925 */
2926 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2927 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2928 return -EBUSY;
2929 }
2930 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2931 }
2932 expert_mode = pfm_sysctl.expert_mode;
2933
2934 for (i = 0; i < count; i++, req++) {
2935
2936 cnum = req->reg_num;
2937 reg_flags = req->reg_flags;
2938 value = req->reg_value;
2939 smpl_pmds = req->reg_smpl_pmds[0];
2940 reset_pmds = req->reg_reset_pmds[0];
2941 flags = 0;
2942
2943
2944 if (cnum >= PMU_MAX_PMCS) {
2945 DPRINT(("pmc%u is invalid\n", cnum));
2946 goto error;
2947 }
2948
2949 pmc_type = pmu_conf->pmc_desc[cnum].type;
2950 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2951 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2952 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2953
2954 /*
2955 * we reject all non implemented PMC as well
2956 * as attempts to modify PMC[0-3] which are used
2957 * as status registers by the PMU
2958 */
2959 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2960 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2961 goto error;
2962 }
2963 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2964 /*
2965 * If the PMC is a monitor, then if the value is not the default:
2966 * - system-wide session: PMCx.pm=1 (privileged monitor)
2967 * - per-task : PMCx.pm=0 (user monitor)
2968 */
2969 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2970 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2971 cnum,
2972 pmc_pm,
2973 is_system));
2974 goto error;
2975 }
2976
2977 if (is_counting) {
2978 /*
2979 * enforce generation of overflow interrupt. Necessary on all
2980 * CPUs.
2981 */
2982 value |= 1 << PMU_PMC_OI;
2983
2984 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2985 flags |= PFM_REGFL_OVFL_NOTIFY;
2986 }
2987
2988 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2989
2990 /* verify validity of smpl_pmds */
2991 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2992 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2993 goto error;
2994 }
2995
2996 /* verify validity of reset_pmds */
2997 if ((reset_pmds & impl_pmds) != reset_pmds) {
2998 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2999 goto error;
3000 }
3001 } else {
3002 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
3003 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3004 goto error;
3005 }
3006 /* eventid on non-counting monitors are ignored */
3007 }
3008
3009 /*
3010 * execute write checker, if any
3011 */
3012 if (likely(expert_mode == 0 && wr_func)) {
3013 ret = (*wr_func)(task, ctx, cnum, &value, regs);
3014 if (ret) goto error;
3015 ret = -EINVAL;
3016 }
3017
3018 /*
3019 * no error on this register
3020 */
3021 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3022
3023 /*
3024 * Now we commit the changes to the software state
3025 */
3026
3027 /*
3028 * update overflow information
3029 */
3030 if (is_counting) {
3031 /*
3032 * full flag update each time a register is programmed
3033 */
3034 ctx->ctx_pmds[cnum].flags = flags;
3035
3036 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3037 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3038 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3039
3040 /*
3041 * Mark all PMDS to be accessed as used.
3042 *
3043 * We do not keep track of PMC because we have to
3044 * systematically restore ALL of them.
3045 *
3046 * We do not update the used_monitors mask, because
3047 * if we have not programmed them, then will be in
3048 * a quiescent state, therefore we will not need to
3049 * mask/restore then when context is MASKED.
3050 */
3051 CTX_USED_PMD(ctx, reset_pmds);
3052 CTX_USED_PMD(ctx, smpl_pmds);
3053 /*
3054 * make sure we do not try to reset on
3055 * restart because we have established new values
3056 */
3057 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3058 }
3059 /*
3060 * Needed in case the user does not initialize the equivalent
3061 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3062 * possible leak here.
3063 */
3064 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3065
3066 /*
3067 * keep track of the monitor PMC that we are using.
3068 * we save the value of the pmc in ctx_pmcs[] and if
3069 * the monitoring is not stopped for the context we also
3070 * place it in the saved state area so that it will be
3071 * picked up later by the context switch code.
3072 *
3073 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3074 *
35589a8f 3075 * The value in th_pmcs[] may be modified on overflow, i.e., when
1da177e4
LT
3076 * monitoring needs to be stopped.
3077 */
3078 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3079
3080 /*
3081 * update context state
3082 */
3083 ctx->ctx_pmcs[cnum] = value;
3084
3085 if (is_loaded) {
3086 /*
3087 * write thread state
3088 */
35589a8f 3089 if (is_system == 0) ctx->th_pmcs[cnum] = value;
1da177e4
LT
3090
3091 /*
3092 * write hardware register if we can
3093 */
3094 if (can_access_pmu) {
3095 ia64_set_pmc(cnum, value);
3096 }
3097#ifdef CONFIG_SMP
3098 else {
3099 /*
3100 * per-task SMP only here
3101 *
3102 * we are guaranteed that the task is not running on the other CPU,
3103 * we indicate that this PMD will need to be reloaded if the task
3104 * is rescheduled on the CPU it ran last on.
3105 */
3106 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3107 }
3108#endif
3109 }
3110
3111 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3112 cnum,
3113 value,
3114 is_loaded,
3115 can_access_pmu,
3116 flags,
3117 ctx->ctx_all_pmcs[0],
3118 ctx->ctx_used_pmds[0],
3119 ctx->ctx_pmds[cnum].eventid,
3120 smpl_pmds,
3121 reset_pmds,
3122 ctx->ctx_reload_pmcs[0],
3123 ctx->ctx_used_monitors[0],
3124 ctx->ctx_ovfl_regs[0]));
3125 }
3126
3127 /*
3128 * make sure the changes are visible
3129 */
3130 if (can_access_pmu) ia64_srlz_d();
3131
3132 return 0;
3133error:
3134 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3135 return ret;
3136}
3137
3138static int
3139pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3140{
1da177e4
LT
3141 struct task_struct *task;
3142 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3143 unsigned long value, hw_value, ovfl_mask;
3144 unsigned int cnum;
3145 int i, can_access_pmu = 0, state;
3146 int is_counting, is_loaded, is_system, expert_mode;
3147 int ret = -EINVAL;
3148 pfm_reg_check_t wr_func;
3149
3150
3151 state = ctx->ctx_state;
3152 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3153 is_system = ctx->ctx_fl_system;
3154 ovfl_mask = pmu_conf->ovfl_val;
3155 task = ctx->ctx_task;
3156
3157 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3158
3159 /*
3160 * on both UP and SMP, we can only write to the PMC when the task is
3161 * the owner of the local PMU.
3162 */
3163 if (likely(is_loaded)) {
1da177e4
LT
3164 /*
3165 * In system wide and when the context is loaded, access can only happen
3166 * when the caller is running on the CPU being monitored by the session.
3167 * It does not have to be the owner (ctx_task) of the context per se.
3168 */
3169 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3170 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3171 return -EBUSY;
3172 }
3173 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3174 }
3175 expert_mode = pfm_sysctl.expert_mode;
3176
3177 for (i = 0; i < count; i++, req++) {
3178
3179 cnum = req->reg_num;
3180 value = req->reg_value;
3181
3182 if (!PMD_IS_IMPL(cnum)) {
3183 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3184 goto abort_mission;
3185 }
3186 is_counting = PMD_IS_COUNTING(cnum);
3187 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3188
3189 /*
3190 * execute write checker, if any
3191 */
3192 if (unlikely(expert_mode == 0 && wr_func)) {
3193 unsigned long v = value;
3194
3195 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3196 if (ret) goto abort_mission;
3197
3198 value = v;
3199 ret = -EINVAL;
3200 }
3201
3202 /*
3203 * no error on this register
3204 */
3205 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3206
3207 /*
3208 * now commit changes to software state
3209 */
3210 hw_value = value;
3211
3212 /*
3213 * update virtualized (64bits) counter
3214 */
3215 if (is_counting) {
3216 /*
3217 * write context state
3218 */
3219 ctx->ctx_pmds[cnum].lval = value;
3220
3221 /*
3222 * when context is load we use the split value
3223 */
3224 if (is_loaded) {
3225 hw_value = value & ovfl_mask;
3226 value = value & ~ovfl_mask;
3227 }
3228 }
3229 /*
3230 * update reset values (not just for counters)
3231 */
3232 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3233 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3234
3235 /*
3236 * update randomization parameters (not just for counters)
3237 */
3238 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3239 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3240
3241 /*
3242 * update context value
3243 */
3244 ctx->ctx_pmds[cnum].val = value;
3245
3246 /*
3247 * Keep track of what we use
3248 *
3249 * We do not keep track of PMC because we have to
3250 * systematically restore ALL of them.
3251 */
3252 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3253
3254 /*
3255 * mark this PMD register used as well
3256 */
3257 CTX_USED_PMD(ctx, RDEP(cnum));
3258
3259 /*
3260 * make sure we do not try to reset on
3261 * restart because we have established new values
3262 */
3263 if (is_counting && state == PFM_CTX_MASKED) {
3264 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3265 }
3266
3267 if (is_loaded) {
3268 /*
3269 * write thread state
3270 */
35589a8f 3271 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
1da177e4
LT
3272
3273 /*
3274 * write hardware register if we can
3275 */
3276 if (can_access_pmu) {
3277 ia64_set_pmd(cnum, hw_value);
3278 } else {
3279#ifdef CONFIG_SMP
3280 /*
3281 * we are guaranteed that the task is not running on the other CPU,
3282 * we indicate that this PMD will need to be reloaded if the task
3283 * is rescheduled on the CPU it ran last on.
3284 */
3285 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3286#endif
3287 }
3288 }
3289
3290 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3291 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3292 cnum,
3293 value,
3294 is_loaded,
3295 can_access_pmu,
3296 hw_value,
3297 ctx->ctx_pmds[cnum].val,
3298 ctx->ctx_pmds[cnum].short_reset,
3299 ctx->ctx_pmds[cnum].long_reset,
3300 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3301 ctx->ctx_pmds[cnum].seed,
3302 ctx->ctx_pmds[cnum].mask,
3303 ctx->ctx_used_pmds[0],
3304 ctx->ctx_pmds[cnum].reset_pmds[0],
3305 ctx->ctx_reload_pmds[0],
3306 ctx->ctx_all_pmds[0],
3307 ctx->ctx_ovfl_regs[0]));
3308 }
3309
3310 /*
3311 * make changes visible
3312 */
3313 if (can_access_pmu) ia64_srlz_d();
3314
3315 return 0;
3316
3317abort_mission:
3318 /*
3319 * for now, we have only one possibility for error
3320 */
3321 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3322 return ret;
3323}
3324
3325/*
3326 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3327 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3328 * interrupt is delivered during the call, it will be kept pending until we leave, making
3329 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3330 * guaranteed to return consistent data to the user, it may simply be old. It is not
3331 * trivial to treat the overflow while inside the call because you may end up in
3332 * some module sampling buffer code causing deadlocks.
3333 */
3334static int
3335pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3336{
1da177e4
LT
3337 struct task_struct *task;
3338 unsigned long val = 0UL, lval, ovfl_mask, sval;
3339 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3340 unsigned int cnum, reg_flags = 0;
3341 int i, can_access_pmu = 0, state;
3342 int is_loaded, is_system, is_counting, expert_mode;
3343 int ret = -EINVAL;
3344 pfm_reg_check_t rd_func;
3345
3346 /*
3347 * access is possible when loaded only for
3348 * self-monitoring tasks or in UP mode
3349 */
3350
3351 state = ctx->ctx_state;
3352 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3353 is_system = ctx->ctx_fl_system;
3354 ovfl_mask = pmu_conf->ovfl_val;
3355 task = ctx->ctx_task;
3356
3357 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3358
3359 if (likely(is_loaded)) {
1da177e4
LT
3360 /*
3361 * In system wide and when the context is loaded, access can only happen
3362 * when the caller is running on the CPU being monitored by the session.
3363 * It does not have to be the owner (ctx_task) of the context per se.
3364 */
3365 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3366 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3367 return -EBUSY;
3368 }
3369 /*
3370 * this can be true when not self-monitoring only in UP
3371 */
3372 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3373
3374 if (can_access_pmu) ia64_srlz_d();
3375 }
3376 expert_mode = pfm_sysctl.expert_mode;
3377
3378 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3379 is_loaded,
3380 can_access_pmu,
3381 state));
3382
3383 /*
3384 * on both UP and SMP, we can only read the PMD from the hardware register when
3385 * the task is the owner of the local PMU.
3386 */
3387
3388 for (i = 0; i < count; i++, req++) {
3389
3390 cnum = req->reg_num;
3391 reg_flags = req->reg_flags;
3392
3393 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3394 /*
3395 * we can only read the register that we use. That includes
3396 * the one we explicitely initialize AND the one we want included
3397 * in the sampling buffer (smpl_regs).
3398 *
3399 * Having this restriction allows optimization in the ctxsw routine
3400 * without compromising security (leaks)
3401 */
3402 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3403
3404 sval = ctx->ctx_pmds[cnum].val;
3405 lval = ctx->ctx_pmds[cnum].lval;
3406 is_counting = PMD_IS_COUNTING(cnum);
3407
3408 /*
3409 * If the task is not the current one, then we check if the
3410 * PMU state is still in the local live register due to lazy ctxsw.
3411 * If true, then we read directly from the registers.
3412 */
3413 if (can_access_pmu){
3414 val = ia64_get_pmd(cnum);
3415 } else {
3416 /*
3417 * context has been saved
3418 * if context is zombie, then task does not exist anymore.
3419 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3420 */
35589a8f 3421 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
1da177e4
LT
3422 }
3423 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3424
3425 if (is_counting) {
3426 /*
3427 * XXX: need to check for overflow when loaded
3428 */
3429 val &= ovfl_mask;
3430 val += sval;
3431 }
3432
3433 /*
3434 * execute read checker, if any
3435 */
3436 if (unlikely(expert_mode == 0 && rd_func)) {
3437 unsigned long v = val;
3438 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3439 if (ret) goto error;
3440 val = v;
3441 ret = -EINVAL;
3442 }
3443
3444 PFM_REG_RETFLAG_SET(reg_flags, 0);
3445
3446 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3447
3448 /*
3449 * update register return value, abort all if problem during copy.
3450 * we only modify the reg_flags field. no check mode is fine because
3451 * access has been verified upfront in sys_perfmonctl().
3452 */
3453 req->reg_value = val;
3454 req->reg_flags = reg_flags;
3455 req->reg_last_reset_val = lval;
3456 }
3457
3458 return 0;
3459
3460error:
3461 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3462 return ret;
3463}
3464
3465int
3466pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3467{
3468 pfm_context_t *ctx;
3469
3470 if (req == NULL) return -EINVAL;
3471
3472 ctx = GET_PMU_CTX();
3473
3474 if (ctx == NULL) return -EINVAL;
3475
3476 /*
3477 * for now limit to current task, which is enough when calling
3478 * from overflow handler
3479 */
3480 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3481
3482 return pfm_write_pmcs(ctx, req, nreq, regs);
3483}
3484EXPORT_SYMBOL(pfm_mod_write_pmcs);
3485
3486int
3487pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3488{
3489 pfm_context_t *ctx;
3490
3491 if (req == NULL) return -EINVAL;
3492
3493 ctx = GET_PMU_CTX();
3494
3495 if (ctx == NULL) return -EINVAL;
3496
3497 /*
3498 * for now limit to current task, which is enough when calling
3499 * from overflow handler
3500 */
3501 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3502
3503 return pfm_read_pmds(ctx, req, nreq, regs);
3504}
3505EXPORT_SYMBOL(pfm_mod_read_pmds);
3506
3507/*
3508 * Only call this function when a process it trying to
3509 * write the debug registers (reading is always allowed)
3510 */
3511int
3512pfm_use_debug_registers(struct task_struct *task)
3513{
3514 pfm_context_t *ctx = task->thread.pfm_context;
3515 unsigned long flags;
3516 int ret = 0;
3517
3518 if (pmu_conf->use_rr_dbregs == 0) return 0;
3519
3520 DPRINT(("called for [%d]\n", task->pid));
3521
3522 /*
3523 * do it only once
3524 */
3525 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3526
3527 /*
3528 * Even on SMP, we do not need to use an atomic here because
3529 * the only way in is via ptrace() and this is possible only when the
3530 * process is stopped. Even in the case where the ctxsw out is not totally
3531 * completed by the time we come here, there is no way the 'stopped' process
3532 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3533 * So this is always safe.
3534 */
3535 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3536
3537 LOCK_PFS(flags);
3538
3539 /*
3540 * We cannot allow setting breakpoints when system wide monitoring
3541 * sessions are using the debug registers.
3542 */
3543 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3544 ret = -1;
3545 else
3546 pfm_sessions.pfs_ptrace_use_dbregs++;
3547
3548 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3549 pfm_sessions.pfs_ptrace_use_dbregs,
3550 pfm_sessions.pfs_sys_use_dbregs,
3551 task->pid, ret));
3552
3553 UNLOCK_PFS(flags);
3554
3555 return ret;
3556}
3557
3558/*
3559 * This function is called for every task that exits with the
3560 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3561 * able to use the debug registers for debugging purposes via
3562 * ptrace(). Therefore we know it was not using them for
3563 * perfmormance monitoring, so we only decrement the number
3564 * of "ptraced" debug register users to keep the count up to date
3565 */
3566int
3567pfm_release_debug_registers(struct task_struct *task)
3568{
3569 unsigned long flags;
3570 int ret;
3571
3572 if (pmu_conf->use_rr_dbregs == 0) return 0;
3573
3574 LOCK_PFS(flags);
3575 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3576 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3577 ret = -1;
3578 } else {
3579 pfm_sessions.pfs_ptrace_use_dbregs--;
3580 ret = 0;
3581 }
3582 UNLOCK_PFS(flags);
3583
3584 return ret;
3585}
3586
3587static int
3588pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3589{
3590 struct task_struct *task;
3591 pfm_buffer_fmt_t *fmt;
3592 pfm_ovfl_ctrl_t rst_ctrl;
3593 int state, is_system;
3594 int ret = 0;
3595
3596 state = ctx->ctx_state;
3597 fmt = ctx->ctx_buf_fmt;
3598 is_system = ctx->ctx_fl_system;
3599 task = PFM_CTX_TASK(ctx);
3600
3601 switch(state) {
3602 case PFM_CTX_MASKED:
3603 break;
3604 case PFM_CTX_LOADED:
3605 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3606 /* fall through */
3607 case PFM_CTX_UNLOADED:
3608 case PFM_CTX_ZOMBIE:
3609 DPRINT(("invalid state=%d\n", state));
3610 return -EBUSY;
3611 default:
3612 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3613 return -EINVAL;
3614 }
3615
3616 /*
3617 * In system wide and when the context is loaded, access can only happen
3618 * when the caller is running on the CPU being monitored by the session.
3619 * It does not have to be the owner (ctx_task) of the context per se.
3620 */
3621 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3622 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3623 return -EBUSY;
3624 }
3625
3626 /* sanity check */
3627 if (unlikely(task == NULL)) {
3628 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3629 return -EINVAL;
3630 }
3631
3632 if (task == current || is_system) {
3633
3634 fmt = ctx->ctx_buf_fmt;
3635
3636 DPRINT(("restarting self %d ovfl=0x%lx\n",
3637 task->pid,
3638 ctx->ctx_ovfl_regs[0]));
3639
3640 if (CTX_HAS_SMPL(ctx)) {
3641
3642 prefetch(ctx->ctx_smpl_hdr);
3643
3644 rst_ctrl.bits.mask_monitoring = 0;
3645 rst_ctrl.bits.reset_ovfl_pmds = 0;
3646
3647 if (state == PFM_CTX_LOADED)
3648 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3649 else
3650 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3651 } else {
3652 rst_ctrl.bits.mask_monitoring = 0;
3653 rst_ctrl.bits.reset_ovfl_pmds = 1;
3654 }
3655
3656 if (ret == 0) {
3657 if (rst_ctrl.bits.reset_ovfl_pmds)
3658 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3659
3660 if (rst_ctrl.bits.mask_monitoring == 0) {
3661 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3662
3663 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3664 } else {
3665 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3666
3667 // cannot use pfm_stop_monitoring(task, regs);
3668 }
3669 }
3670 /*
3671 * clear overflowed PMD mask to remove any stale information
3672 */
3673 ctx->ctx_ovfl_regs[0] = 0UL;
3674
3675 /*
3676 * back to LOADED state
3677 */
3678 ctx->ctx_state = PFM_CTX_LOADED;
3679
3680 /*
3681 * XXX: not really useful for self monitoring
3682 */
3683 ctx->ctx_fl_can_restart = 0;
3684
3685 return 0;
3686 }
3687
3688 /*
3689 * restart another task
3690 */
3691
3692 /*
3693 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3694 * one is seen by the task.
3695 */
3696 if (state == PFM_CTX_MASKED) {
3697 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3698 /*
3699 * will prevent subsequent restart before this one is
3700 * seen by other task
3701 */
3702 ctx->ctx_fl_can_restart = 0;
3703 }
3704
3705 /*
3706 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3707 * the task is blocked or on its way to block. That's the normal
3708 * restart path. If the monitoring is not masked, then the task
3709 * can be actively monitoring and we cannot directly intervene.
3710 * Therefore we use the trap mechanism to catch the task and
3711 * force it to reset the buffer/reset PMDs.
3712 *
3713 * if non-blocking, then we ensure that the task will go into
3714 * pfm_handle_work() before returning to user mode.
3715 *
3716 * We cannot explicitely reset another task, it MUST always
3717 * be done by the task itself. This works for system wide because
3718 * the tool that is controlling the session is logically doing
3719 * "self-monitoring".
3720 */
3721 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3722 DPRINT(("unblocking [%d] \n", task->pid));
60f1c444 3723 complete(&ctx->ctx_restart_done);
1da177e4
LT
3724 } else {
3725 DPRINT(("[%d] armed exit trap\n", task->pid));
3726
3727 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3728
3729 PFM_SET_WORK_PENDING(task, 1);
3730
3731 pfm_set_task_notify(task);
3732
3733 /*
3734 * XXX: send reschedule if task runs on another CPU
3735 */
3736 }
3737 return 0;
3738}
3739
3740static int
3741pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3742{
3743 unsigned int m = *(unsigned int *)arg;
3744
3745 pfm_sysctl.debug = m == 0 ? 0 : 1;
3746
1da177e4
LT
3747 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3748
3749 if (m == 0) {
3750 memset(pfm_stats, 0, sizeof(pfm_stats));
3751 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3752 }
3753 return 0;
3754}
3755
3756/*
3757 * arg can be NULL and count can be zero for this function
3758 */
3759static int
3760pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3761{
3762 struct thread_struct *thread = NULL;
3763 struct task_struct *task;
3764 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3765 unsigned long flags;
3766 dbreg_t dbreg;
3767 unsigned int rnum;
3768 int first_time;
3769 int ret = 0, state;
3770 int i, can_access_pmu = 0;
3771 int is_system, is_loaded;
3772
3773 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3774
3775 state = ctx->ctx_state;
3776 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3777 is_system = ctx->ctx_fl_system;
3778 task = ctx->ctx_task;
3779
3780 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3781
3782 /*
3783 * on both UP and SMP, we can only write to the PMC when the task is
3784 * the owner of the local PMU.
3785 */
3786 if (is_loaded) {
3787 thread = &task->thread;
3788 /*
3789 * In system wide and when the context is loaded, access can only happen
3790 * when the caller is running on the CPU being monitored by the session.
3791 * It does not have to be the owner (ctx_task) of the context per se.
3792 */
3793 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3794 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3795 return -EBUSY;
3796 }
3797 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3798 }
3799
3800 /*
3801 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3802 * ensuring that no real breakpoint can be installed via this call.
3803 *
3804 * IMPORTANT: regs can be NULL in this function
3805 */
3806
3807 first_time = ctx->ctx_fl_using_dbreg == 0;
3808
3809 /*
3810 * don't bother if we are loaded and task is being debugged
3811 */
3812 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3813 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3814 return -EBUSY;
3815 }
3816
3817 /*
3818 * check for debug registers in system wide mode
3819 *
3820 * If though a check is done in pfm_context_load(),
3821 * we must repeat it here, in case the registers are
3822 * written after the context is loaded
3823 */
3824 if (is_loaded) {
3825 LOCK_PFS(flags);
3826
3827 if (first_time && is_system) {
3828 if (pfm_sessions.pfs_ptrace_use_dbregs)
3829 ret = -EBUSY;
3830 else
3831 pfm_sessions.pfs_sys_use_dbregs++;
3832 }
3833 UNLOCK_PFS(flags);
3834 }
3835
3836 if (ret != 0) return ret;
3837
3838 /*
3839 * mark ourself as user of the debug registers for
3840 * perfmon purposes.
3841 */
3842 ctx->ctx_fl_using_dbreg = 1;
3843
3844 /*
3845 * clear hardware registers to make sure we don't
3846 * pick up stale state.
3847 *
3848 * for a system wide session, we do not use
3849 * thread.dbr, thread.ibr because this process
3850 * never leaves the current CPU and the state
3851 * is shared by all processes running on it
3852 */
3853 if (first_time && can_access_pmu) {
3854 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3855 for (i=0; i < pmu_conf->num_ibrs; i++) {
3856 ia64_set_ibr(i, 0UL);
3857 ia64_dv_serialize_instruction();
3858 }
3859 ia64_srlz_i();
3860 for (i=0; i < pmu_conf->num_dbrs; i++) {
3861 ia64_set_dbr(i, 0UL);
3862 ia64_dv_serialize_data();
3863 }
3864 ia64_srlz_d();
3865 }
3866
3867 /*
3868 * Now install the values into the registers
3869 */
3870 for (i = 0; i < count; i++, req++) {
3871
3872 rnum = req->dbreg_num;
3873 dbreg.val = req->dbreg_value;
3874
3875 ret = -EINVAL;
3876
3877 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3878 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3879 rnum, dbreg.val, mode, i, count));
3880
3881 goto abort_mission;
3882 }
3883
3884 /*
3885 * make sure we do not install enabled breakpoint
3886 */
3887 if (rnum & 0x1) {
3888 if (mode == PFM_CODE_RR)
3889 dbreg.ibr.ibr_x = 0;
3890 else
3891 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3892 }
3893
3894 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3895
3896 /*
3897 * Debug registers, just like PMC, can only be modified
3898 * by a kernel call. Moreover, perfmon() access to those
3899 * registers are centralized in this routine. The hardware
3900 * does not modify the value of these registers, therefore,
3901 * if we save them as they are written, we can avoid having
3902 * to save them on context switch out. This is made possible
3903 * by the fact that when perfmon uses debug registers, ptrace()
3904 * won't be able to modify them concurrently.
3905 */
3906 if (mode == PFM_CODE_RR) {
3907 CTX_USED_IBR(ctx, rnum);
3908
3909 if (can_access_pmu) {
3910 ia64_set_ibr(rnum, dbreg.val);
3911 ia64_dv_serialize_instruction();
3912 }
3913
3914 ctx->ctx_ibrs[rnum] = dbreg.val;
3915
3916 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3917 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3918 } else {
3919 CTX_USED_DBR(ctx, rnum);
3920
3921 if (can_access_pmu) {
3922 ia64_set_dbr(rnum, dbreg.val);
3923 ia64_dv_serialize_data();
3924 }
3925 ctx->ctx_dbrs[rnum] = dbreg.val;
3926
3927 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3928 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3929 }
3930 }
3931
3932 return 0;
3933
3934abort_mission:
3935 /*
3936 * in case it was our first attempt, we undo the global modifications
3937 */
3938 if (first_time) {
3939 LOCK_PFS(flags);
3940 if (ctx->ctx_fl_system) {
3941 pfm_sessions.pfs_sys_use_dbregs--;
3942 }
3943 UNLOCK_PFS(flags);
3944 ctx->ctx_fl_using_dbreg = 0;
3945 }
3946 /*
3947 * install error return flag
3948 */
3949 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3950
3951 return ret;
3952}
3953
3954static int
3955pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3956{
3957 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3958}
3959
3960static int
3961pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3962{
3963 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3964}
3965
3966int
3967pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3968{
3969 pfm_context_t *ctx;
3970
3971 if (req == NULL) return -EINVAL;
3972
3973 ctx = GET_PMU_CTX();
3974
3975 if (ctx == NULL) return -EINVAL;
3976
3977 /*
3978 * for now limit to current task, which is enough when calling
3979 * from overflow handler
3980 */
3981 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3982
3983 return pfm_write_ibrs(ctx, req, nreq, regs);
3984}
3985EXPORT_SYMBOL(pfm_mod_write_ibrs);
3986
3987int
3988pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3989{
3990 pfm_context_t *ctx;
3991
3992 if (req == NULL) return -EINVAL;
3993
3994 ctx = GET_PMU_CTX();
3995
3996 if (ctx == NULL) return -EINVAL;
3997
3998 /*
3999 * for now limit to current task, which is enough when calling
4000 * from overflow handler
4001 */
4002 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
4003
4004 return pfm_write_dbrs(ctx, req, nreq, regs);
4005}
4006EXPORT_SYMBOL(pfm_mod_write_dbrs);
4007
4008
4009static int
4010pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4011{
4012 pfarg_features_t *req = (pfarg_features_t *)arg;
4013
4014 req->ft_version = PFM_VERSION;
4015 return 0;
4016}
4017
4018static int
4019pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4020{
4021 struct pt_regs *tregs;
4022 struct task_struct *task = PFM_CTX_TASK(ctx);
4023 int state, is_system;
4024
4025 state = ctx->ctx_state;
4026 is_system = ctx->ctx_fl_system;
4027
4028 /*
4029 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4030 */
4031 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4032
4033 /*
4034 * In system wide and when the context is loaded, access can only happen
4035 * when the caller is running on the CPU being monitored by the session.
4036 * It does not have to be the owner (ctx_task) of the context per se.
4037 */
4038 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4039 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4040 return -EBUSY;
4041 }
4042 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4043 PFM_CTX_TASK(ctx)->pid,
4044 state,
4045 is_system));
4046 /*
4047 * in system mode, we need to update the PMU directly
4048 * and the user level state of the caller, which may not
4049 * necessarily be the creator of the context.
4050 */
4051 if (is_system) {
4052 /*
4053 * Update local PMU first
4054 *
4055 * disable dcr pp
4056 */
4057 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4058 ia64_srlz_i();
4059
4060 /*
4061 * update local cpuinfo
4062 */
4063 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4064
4065 /*
4066 * stop monitoring, does srlz.i
4067 */
4068 pfm_clear_psr_pp();
4069
4070 /*
4071 * stop monitoring in the caller
4072 */
4073 ia64_psr(regs)->pp = 0;
4074
4075 return 0;
4076 }
4077 /*
4078 * per-task mode
4079 */
4080
4081 if (task == current) {
4082 /* stop monitoring at kernel level */
4083 pfm_clear_psr_up();
4084
4085 /*
4086 * stop monitoring at the user level
4087 */
4088 ia64_psr(regs)->up = 0;
4089 } else {
6450578f 4090 tregs = task_pt_regs(task);
1da177e4
LT
4091
4092 /*
4093 * stop monitoring at the user level
4094 */
4095 ia64_psr(tregs)->up = 0;
4096
4097 /*
4098 * monitoring disabled in kernel at next reschedule
4099 */
4100 ctx->ctx_saved_psr_up = 0;
4101 DPRINT(("task=[%d]\n", task->pid));
4102 }
4103 return 0;
4104}
4105
4106
4107static int
4108pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4109{
4110 struct pt_regs *tregs;
4111 int state, is_system;
4112
4113 state = ctx->ctx_state;
4114 is_system = ctx->ctx_fl_system;
4115
4116 if (state != PFM_CTX_LOADED) return -EINVAL;
4117
4118 /*
4119 * In system wide and when the context is loaded, access can only happen
4120 * when the caller is running on the CPU being monitored by the session.
4121 * It does not have to be the owner (ctx_task) of the context per se.
4122 */
4123 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4124 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4125 return -EBUSY;
4126 }
4127
4128 /*
4129 * in system mode, we need to update the PMU directly
4130 * and the user level state of the caller, which may not
4131 * necessarily be the creator of the context.
4132 */
4133 if (is_system) {
4134
4135 /*
4136 * set user level psr.pp for the caller
4137 */
4138 ia64_psr(regs)->pp = 1;
4139
4140 /*
4141 * now update the local PMU and cpuinfo
4142 */
4143 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4144
4145 /*
4146 * start monitoring at kernel level
4147 */
4148 pfm_set_psr_pp();
4149
4150 /* enable dcr pp */
4151 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4152 ia64_srlz_i();
4153
4154 return 0;
4155 }
4156
4157 /*
4158 * per-process mode
4159 */
4160
4161 if (ctx->ctx_task == current) {
4162
4163 /* start monitoring at kernel level */
4164 pfm_set_psr_up();
4165
4166 /*
4167 * activate monitoring at user level
4168 */
4169 ia64_psr(regs)->up = 1;
4170
4171 } else {
6450578f 4172 tregs = task_pt_regs(ctx->ctx_task);
1da177e4
LT
4173
4174 /*
4175 * start monitoring at the kernel level the next
4176 * time the task is scheduled
4177 */
4178 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4179
4180 /*
4181 * activate monitoring at user level
4182 */
4183 ia64_psr(tregs)->up = 1;
4184 }
4185 return 0;
4186}
4187
4188static int
4189pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4190{
4191 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4192 unsigned int cnum;
4193 int i;
4194 int ret = -EINVAL;
4195
4196 for (i = 0; i < count; i++, req++) {
4197
4198 cnum = req->reg_num;
4199
4200 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4201
4202 req->reg_value = PMC_DFL_VAL(cnum);
4203
4204 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4205
4206 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4207 }
4208 return 0;
4209
4210abort_mission:
4211 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4212 return ret;
4213}
4214
4215static int
4216pfm_check_task_exist(pfm_context_t *ctx)
4217{
4218 struct task_struct *g, *t;
4219 int ret = -ESRCH;
4220
4221 read_lock(&tasklist_lock);
4222
4223 do_each_thread (g, t) {
4224 if (t->thread.pfm_context == ctx) {
4225 ret = 0;
4226 break;
4227 }
4228 } while_each_thread (g, t);
4229
4230 read_unlock(&tasklist_lock);
4231
4232 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4233
4234 return ret;
4235}
4236
4237static int
4238pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4239{
4240 struct task_struct *task;
4241 struct thread_struct *thread;
4242 struct pfm_context_t *old;
4243 unsigned long flags;
4244#ifndef CONFIG_SMP
4245 struct task_struct *owner_task = NULL;
4246#endif
4247 pfarg_load_t *req = (pfarg_load_t *)arg;
4248 unsigned long *pmcs_source, *pmds_source;
4249 int the_cpu;
4250 int ret = 0;
4251 int state, is_system, set_dbregs = 0;
4252
4253 state = ctx->ctx_state;
4254 is_system = ctx->ctx_fl_system;
4255 /*
4256 * can only load from unloaded or terminated state
4257 */
4258 if (state != PFM_CTX_UNLOADED) {
4259 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4260 req->load_pid,
4261 ctx->ctx_state));
a5a70b75 4262 return -EBUSY;
1da177e4
LT
4263 }
4264
4265 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4266
4267 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4268 DPRINT(("cannot use blocking mode on self\n"));
4269 return -EINVAL;
4270 }
4271
4272 ret = pfm_get_task(ctx, req->load_pid, &task);
4273 if (ret) {
4274 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4275 return ret;
4276 }
4277
4278 ret = -EINVAL;
4279
4280 /*
4281 * system wide is self monitoring only
4282 */
4283 if (is_system && task != current) {
4284 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4285 req->load_pid));
4286 goto error;
4287 }
4288
4289 thread = &task->thread;
4290
4291 ret = 0;
4292 /*
4293 * cannot load a context which is using range restrictions,
4294 * into a task that is being debugged.
4295 */
4296 if (ctx->ctx_fl_using_dbreg) {
4297 if (thread->flags & IA64_THREAD_DBG_VALID) {
4298 ret = -EBUSY;
4299 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4300 goto error;
4301 }
4302 LOCK_PFS(flags);
4303
4304 if (is_system) {
4305 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4306 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4307 ret = -EBUSY;
4308 } else {
4309 pfm_sessions.pfs_sys_use_dbregs++;
4310 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4311 set_dbregs = 1;
4312 }
4313 }
4314
4315 UNLOCK_PFS(flags);
4316
4317 if (ret) goto error;
4318 }
4319
4320 /*
4321 * SMP system-wide monitoring implies self-monitoring.
4322 *
4323 * The programming model expects the task to
4324 * be pinned on a CPU throughout the session.
4325 * Here we take note of the current CPU at the
4326 * time the context is loaded. No call from
4327 * another CPU will be allowed.
4328 *
4329 * The pinning via shed_setaffinity()
4330 * must be done by the calling task prior
4331 * to this call.
4332 *
4333 * systemwide: keep track of CPU this session is supposed to run on
4334 */
4335 the_cpu = ctx->ctx_cpu = smp_processor_id();
4336
4337 ret = -EBUSY;
4338 /*
4339 * now reserve the session
4340 */
4341 ret = pfm_reserve_session(current, is_system, the_cpu);
4342 if (ret) goto error;
4343
4344 /*
4345 * task is necessarily stopped at this point.
4346 *
4347 * If the previous context was zombie, then it got removed in
4348 * pfm_save_regs(). Therefore we should not see it here.
4349 * If we see a context, then this is an active context
4350 *
4351 * XXX: needs to be atomic
4352 */
4353 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4354 thread->pfm_context, ctx));
4355
6bf11e8c 4356 ret = -EBUSY;
1da177e4
LT
4357 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4358 if (old != NULL) {
4359 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4360 goto error_unres;
4361 }
4362
4363 pfm_reset_msgq(ctx);
4364
4365 ctx->ctx_state = PFM_CTX_LOADED;
4366
4367 /*
4368 * link context to task
4369 */
4370 ctx->ctx_task = task;
4371
4372 if (is_system) {
4373 /*
4374 * we load as stopped
4375 */
4376 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4377 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4378
4379 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4380 } else {
4381 thread->flags |= IA64_THREAD_PM_VALID;
4382 }
4383
4384 /*
4385 * propagate into thread-state
4386 */
4387 pfm_copy_pmds(task, ctx);
4388 pfm_copy_pmcs(task, ctx);
4389
35589a8f
KA
4390 pmcs_source = ctx->th_pmcs;
4391 pmds_source = ctx->th_pmds;
1da177e4
LT
4392
4393 /*
4394 * always the case for system-wide
4395 */
4396 if (task == current) {
4397
4398 if (is_system == 0) {
4399
4400 /* allow user level control */
4401 ia64_psr(regs)->sp = 0;
4402 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4403
4404 SET_LAST_CPU(ctx, smp_processor_id());
4405 INC_ACTIVATION();
4406 SET_ACTIVATION(ctx);
4407#ifndef CONFIG_SMP
4408 /*
4409 * push the other task out, if any
4410 */
4411 owner_task = GET_PMU_OWNER();
4412 if (owner_task) pfm_lazy_save_regs(owner_task);
4413#endif
4414 }
4415 /*
4416 * load all PMD from ctx to PMU (as opposed to thread state)
4417 * restore all PMC from ctx to PMU
4418 */
4419 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4420 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4421
4422 ctx->ctx_reload_pmcs[0] = 0UL;
4423 ctx->ctx_reload_pmds[0] = 0UL;
4424
4425 /*
4426 * guaranteed safe by earlier check against DBG_VALID
4427 */
4428 if (ctx->ctx_fl_using_dbreg) {
4429 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4430 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4431 }
4432 /*
4433 * set new ownership
4434 */
4435 SET_PMU_OWNER(task, ctx);
4436
4437 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4438 } else {
4439 /*
4440 * when not current, task MUST be stopped, so this is safe
4441 */
6450578f 4442 regs = task_pt_regs(task);
1da177e4
LT
4443
4444 /* force a full reload */
4445 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4446 SET_LAST_CPU(ctx, -1);
4447
4448 /* initial saved psr (stopped) */
4449 ctx->ctx_saved_psr_up = 0UL;
4450 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4451 }
4452
4453 ret = 0;
4454
4455error_unres:
4456 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4457error:
4458 /*
4459 * we must undo the dbregs setting (for system-wide)
4460 */
4461 if (ret && set_dbregs) {
4462 LOCK_PFS(flags);
4463 pfm_sessions.pfs_sys_use_dbregs--;
4464 UNLOCK_PFS(flags);
4465 }
4466 /*
4467 * release task, there is now a link with the context
4468 */
4469 if (is_system == 0 && task != current) {
4470 pfm_put_task(task);
4471
4472 if (ret == 0) {
4473 ret = pfm_check_task_exist(ctx);
4474 if (ret) {
4475 ctx->ctx_state = PFM_CTX_UNLOADED;
4476 ctx->ctx_task = NULL;
4477 }
4478 }
4479 }
4480 return ret;
4481}
4482
4483/*
4484 * in this function, we do not need to increase the use count
4485 * for the task via get_task_struct(), because we hold the
4486 * context lock. If the task were to disappear while having
4487 * a context attached, it would go through pfm_exit_thread()
4488 * which also grabs the context lock and would therefore be blocked
4489 * until we are here.
4490 */
4491static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4492
4493static int
4494pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4495{
4496 struct task_struct *task = PFM_CTX_TASK(ctx);
4497 struct pt_regs *tregs;
4498 int prev_state, is_system;
4499 int ret;
4500
4501 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4502
4503 prev_state = ctx->ctx_state;
4504 is_system = ctx->ctx_fl_system;
4505
4506 /*
4507 * unload only when necessary
4508 */
4509 if (prev_state == PFM_CTX_UNLOADED) {
4510 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4511 return 0;
4512 }
4513
4514 /*
4515 * clear psr and dcr bits
4516 */
4517 ret = pfm_stop(ctx, NULL, 0, regs);
4518 if (ret) return ret;
4519
4520 ctx->ctx_state = PFM_CTX_UNLOADED;
4521
4522 /*
4523 * in system mode, we need to update the PMU directly
4524 * and the user level state of the caller, which may not
4525 * necessarily be the creator of the context.
4526 */
4527 if (is_system) {
4528
4529 /*
4530 * Update cpuinfo
4531 *
4532 * local PMU is taken care of in pfm_stop()
4533 */
4534 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4535 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4536
4537 /*
4538 * save PMDs in context
4539 * release ownership
4540 */
4541 pfm_flush_pmds(current, ctx);
4542
4543 /*
4544 * at this point we are done with the PMU
4545 * so we can unreserve the resource.
4546 */
4547 if (prev_state != PFM_CTX_ZOMBIE)
4548 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4549
4550 /*
4551 * disconnect context from task
4552 */
4553 task->thread.pfm_context = NULL;
4554 /*
4555 * disconnect task from context
4556 */
4557 ctx->ctx_task = NULL;
4558
4559 /*
4560 * There is nothing more to cleanup here.
4561 */
4562 return 0;
4563 }
4564
4565 /*
4566 * per-task mode
4567 */
6450578f 4568 tregs = task == current ? regs : task_pt_regs(task);
1da177e4
LT
4569
4570 if (task == current) {
4571 /*
4572 * cancel user level control
4573 */
4574 ia64_psr(regs)->sp = 1;
4575
4576 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4577 }
4578 /*
4579 * save PMDs to context
4580 * release ownership
4581 */
4582 pfm_flush_pmds(task, ctx);
4583
4584 /*
4585 * at this point we are done with the PMU
4586 * so we can unreserve the resource.
4587 *
4588 * when state was ZOMBIE, we have already unreserved.
4589 */
4590 if (prev_state != PFM_CTX_ZOMBIE)
4591 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4592
4593 /*
4594 * reset activation counter and psr
4595 */
4596 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4597 SET_LAST_CPU(ctx, -1);
4598
4599 /*
4600 * PMU state will not be restored
4601 */
4602 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4603
4604 /*
4605 * break links between context and task
4606 */
4607 task->thread.pfm_context = NULL;
4608 ctx->ctx_task = NULL;
4609
4610 PFM_SET_WORK_PENDING(task, 0);
4611
4612 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4613 ctx->ctx_fl_can_restart = 0;
4614 ctx->ctx_fl_going_zombie = 0;
4615
4616 DPRINT(("disconnected [%d] from context\n", task->pid));
4617
4618 return 0;
4619}
4620
4621
4622/*
4623 * called only from exit_thread(): task == current
4624 * we come here only if current has a context attached (loaded or masked)
4625 */
4626void
4627pfm_exit_thread(struct task_struct *task)
4628{
4629 pfm_context_t *ctx;
4630 unsigned long flags;
6450578f 4631 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
4632 int ret, state;
4633 int free_ok = 0;
4634
4635 ctx = PFM_GET_CTX(task);
4636
4637 PROTECT_CTX(ctx, flags);
4638
4639 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4640
4641 state = ctx->ctx_state;
4642 switch(state) {
4643 case PFM_CTX_UNLOADED:
4644 /*
4645 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4646 * be in unloaded state
4647 */
4648 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4649 break;
4650 case PFM_CTX_LOADED:
4651 case PFM_CTX_MASKED:
4652 ret = pfm_context_unload(ctx, NULL, 0, regs);
4653 if (ret) {
4654 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4655 }
4656 DPRINT(("ctx unloaded for current state was %d\n", state));
4657
4658 pfm_end_notify_user(ctx);
4659 break;
4660 case PFM_CTX_ZOMBIE:
4661 ret = pfm_context_unload(ctx, NULL, 0, regs);
4662 if (ret) {
4663 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4664 }
4665 free_ok = 1;
4666 break;
4667 default:
4668 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4669 break;
4670 }
4671 UNPROTECT_CTX(ctx, flags);
4672
4673 { u64 psr = pfm_get_psr();
4674 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4675 BUG_ON(GET_PMU_OWNER());
4676 BUG_ON(ia64_psr(regs)->up);
4677 BUG_ON(ia64_psr(regs)->pp);
4678 }
4679
4680 /*
4681 * All memory free operations (especially for vmalloc'ed memory)
4682 * MUST be done with interrupts ENABLED.
4683 */
4684 if (free_ok) pfm_context_free(ctx);
4685}
4686
4687/*
4688 * functions MUST be listed in the increasing order of their index (see permfon.h)
4689 */
4690#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4691#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4692#define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4693#define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4694#define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4695
4696static pfm_cmd_desc_t pfm_cmd_tab[]={
4697/* 0 */PFM_CMD_NONE,
4698/* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4699/* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4700/* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4701/* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4702/* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4703/* 6 */PFM_CMD_NONE,
4704/* 7 */PFM_CMD_NONE,
4705/* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4706/* 9 */PFM_CMD_NONE,
4707/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4708/* 11 */PFM_CMD_NONE,
4709/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4710/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4711/* 14 */PFM_CMD_NONE,
4712/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4713/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4714/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4715/* 18 */PFM_CMD_NONE,
4716/* 19 */PFM_CMD_NONE,
4717/* 20 */PFM_CMD_NONE,
4718/* 21 */PFM_CMD_NONE,
4719/* 22 */PFM_CMD_NONE,
4720/* 23 */PFM_CMD_NONE,
4721/* 24 */PFM_CMD_NONE,
4722/* 25 */PFM_CMD_NONE,
4723/* 26 */PFM_CMD_NONE,
4724/* 27 */PFM_CMD_NONE,
4725/* 28 */PFM_CMD_NONE,
4726/* 29 */PFM_CMD_NONE,
4727/* 30 */PFM_CMD_NONE,
4728/* 31 */PFM_CMD_NONE,
4729/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4730/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4731};
4732#define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4733
4734static int
4735pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4736{
4737 struct task_struct *task;
4738 int state, old_state;
4739
4740recheck:
4741 state = ctx->ctx_state;
4742 task = ctx->ctx_task;
4743
4744 if (task == NULL) {
4745 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4746 return 0;
4747 }
4748
4749 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4750 ctx->ctx_fd,
4751 state,
4752 task->pid,
4753 task->state, PFM_CMD_STOPPED(cmd)));
4754
4755 /*
4756 * self-monitoring always ok.
4757 *
4758 * for system-wide the caller can either be the creator of the
4759 * context (to one to which the context is attached to) OR
4760 * a task running on the same CPU as the session.
4761 */
4762 if (task == current || ctx->ctx_fl_system) return 0;
4763
4764 /*
a5a70b75 4765 * we are monitoring another thread
1da177e4 4766 */
a5a70b75 4767 switch(state) {
4768 case PFM_CTX_UNLOADED:
4769 /*
4770 * if context is UNLOADED we are safe to go
4771 */
4772 return 0;
4773 case PFM_CTX_ZOMBIE:
4774 /*
4775 * no command can operate on a zombie context
4776 */
4777 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4778 return -EINVAL;
4779 case PFM_CTX_MASKED:
4780 /*
4781 * PMU state has been saved to software even though
4782 * the thread may still be running.
4783 */
4784 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
1da177e4
LT
4785 }
4786
4787 /*
4788 * context is LOADED or MASKED. Some commands may need to have
4789 * the task stopped.
4790 *
4791 * We could lift this restriction for UP but it would mean that
4792 * the user has no guarantee the task would not run between
4793 * two successive calls to perfmonctl(). That's probably OK.
4794 * If this user wants to ensure the task does not run, then
4795 * the task must be stopped.
4796 */
4797 if (PFM_CMD_STOPPED(cmd)) {
4798 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4799 DPRINT(("[%d] task not in stopped state\n", task->pid));
4800 return -EBUSY;
4801 }
4802 /*
4803 * task is now stopped, wait for ctxsw out
4804 *
4805 * This is an interesting point in the code.
4806 * We need to unprotect the context because
4807 * the pfm_save_regs() routines needs to grab
4808 * the same lock. There are danger in doing
4809 * this because it leaves a window open for
4810 * another task to get access to the context
4811 * and possibly change its state. The one thing
4812 * that is not possible is for the context to disappear
4813 * because we are protected by the VFS layer, i.e.,
4814 * get_fd()/put_fd().
4815 */
4816 old_state = state;
4817
4818 UNPROTECT_CTX(ctx, flags);
4819
4820 wait_task_inactive(task);
4821
4822 PROTECT_CTX(ctx, flags);
4823
4824 /*
4825 * we must recheck to verify if state has changed
4826 */
4827 if (ctx->ctx_state != old_state) {
4828 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4829 goto recheck;
4830 }
4831 }
4832 return 0;
4833}
4834
4835/*
4836 * system-call entry point (must return long)
4837 */
4838asmlinkage long
4839sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4840{
4841 struct file *file = NULL;
4842 pfm_context_t *ctx = NULL;
4843 unsigned long flags = 0UL;
4844 void *args_k = NULL;
4845 long ret; /* will expand int return types */
4846 size_t base_sz, sz, xtra_sz = 0;
4847 int narg, completed_args = 0, call_made = 0, cmd_flags;
4848 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4849 int (*getsize)(void *arg, size_t *sz);
4850#define PFM_MAX_ARGSIZE 4096
4851
4852 /*
4853 * reject any call if perfmon was disabled at initialization
4854 */
4855 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4856
4857 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4858 DPRINT(("invalid cmd=%d\n", cmd));
4859 return -EINVAL;
4860 }
4861
4862 func = pfm_cmd_tab[cmd].cmd_func;
4863 narg = pfm_cmd_tab[cmd].cmd_narg;
4864 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4865 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4866 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4867
4868 if (unlikely(func == NULL)) {
4869 DPRINT(("invalid cmd=%d\n", cmd));
4870 return -EINVAL;
4871 }
4872
4873 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4874 PFM_CMD_NAME(cmd),
4875 cmd,
4876 narg,
4877 base_sz,
4878 count));
4879
4880 /*
4881 * check if number of arguments matches what the command expects
4882 */
4883 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4884 return -EINVAL;
4885
4886restart_args:
4887 sz = xtra_sz + base_sz*count;
4888 /*
4889 * limit abuse to min page size
4890 */
4891 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4892 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4893 return -E2BIG;
4894 }
4895
4896 /*
4897 * allocate default-sized argument buffer
4898 */
4899 if (likely(count && args_k == NULL)) {
4900 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4901 if (args_k == NULL) return -ENOMEM;
4902 }
4903
4904 ret = -EFAULT;
4905
4906 /*
4907 * copy arguments
4908 *
4909 * assume sz = 0 for command without parameters
4910 */
4911 if (sz && copy_from_user(args_k, arg, sz)) {
4912 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4913 goto error_args;
4914 }
4915
4916 /*
4917 * check if command supports extra parameters
4918 */
4919 if (completed_args == 0 && getsize) {
4920 /*
4921 * get extra parameters size (based on main argument)
4922 */
4923 ret = (*getsize)(args_k, &xtra_sz);
4924 if (ret) goto error_args;
4925
4926 completed_args = 1;
4927
4928 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4929
4930 /* retry if necessary */
4931 if (likely(xtra_sz)) goto restart_args;
4932 }
4933
4934 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4935
4936 ret = -EBADF;
4937
4938 file = fget(fd);
4939 if (unlikely(file == NULL)) {
4940 DPRINT(("invalid fd %d\n", fd));
4941 goto error_args;
4942 }
4943 if (unlikely(PFM_IS_FILE(file) == 0)) {
4944 DPRINT(("fd %d not related to perfmon\n", fd));
4945 goto error_args;
4946 }
4947
4948 ctx = (pfm_context_t *)file->private_data;
4949 if (unlikely(ctx == NULL)) {
4950 DPRINT(("no context for fd %d\n", fd));
4951 goto error_args;
4952 }
4953 prefetch(&ctx->ctx_state);
4954
4955 PROTECT_CTX(ctx, flags);
4956
4957 /*
4958 * check task is stopped
4959 */
4960 ret = pfm_check_task_state(ctx, cmd, flags);
4961 if (unlikely(ret)) goto abort_locked;
4962
4963skip_fd:
6450578f 4964 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
1da177e4
LT
4965
4966 call_made = 1;
4967
4968abort_locked:
4969 if (likely(ctx)) {
4970 DPRINT(("context unlocked\n"));
4971 UNPROTECT_CTX(ctx, flags);
1da177e4
LT
4972 }
4973
4974 /* copy argument back to user, if needed */
4975 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4976
4977error_args:
b8444d00
SE
4978 if (file)
4979 fput(file);
4980
b2325fe1 4981 kfree(args_k);
1da177e4
LT
4982
4983 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4984
4985 return ret;
4986}
4987
4988static void
4989pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4990{
4991 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4992 pfm_ovfl_ctrl_t rst_ctrl;
4993 int state;
4994 int ret = 0;
4995
4996 state = ctx->ctx_state;
4997 /*
4998 * Unlock sampling buffer and reset index atomically
4999 * XXX: not really needed when blocking
5000 */
5001 if (CTX_HAS_SMPL(ctx)) {
5002
5003 rst_ctrl.bits.mask_monitoring = 0;
5004 rst_ctrl.bits.reset_ovfl_pmds = 0;
5005
5006 if (state == PFM_CTX_LOADED)
5007 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5008 else
5009 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5010 } else {
5011 rst_ctrl.bits.mask_monitoring = 0;
5012 rst_ctrl.bits.reset_ovfl_pmds = 1;
5013 }
5014
5015 if (ret == 0) {
5016 if (rst_ctrl.bits.reset_ovfl_pmds) {
5017 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5018 }
5019 if (rst_ctrl.bits.mask_monitoring == 0) {
5020 DPRINT(("resuming monitoring\n"));
5021 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5022 } else {
5023 DPRINT(("stopping monitoring\n"));
5024 //pfm_stop_monitoring(current, regs);
5025 }
5026 ctx->ctx_state = PFM_CTX_LOADED;
5027 }
5028}
5029
5030/*
5031 * context MUST BE LOCKED when calling
5032 * can only be called for current
5033 */
5034static void
5035pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5036{
5037 int ret;
5038
5039 DPRINT(("entering for [%d]\n", current->pid));
5040
5041 ret = pfm_context_unload(ctx, NULL, 0, regs);
5042 if (ret) {
5043 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5044 }
5045
5046 /*
5047 * and wakeup controlling task, indicating we are now disconnected
5048 */
5049 wake_up_interruptible(&ctx->ctx_zombieq);
5050
5051 /*
5052 * given that context is still locked, the controlling
5053 * task will only get access when we return from
5054 * pfm_handle_work().
5055 */
5056}
5057
5058static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4944930a
SE
5059 /*
5060 * pfm_handle_work() can be called with interrupts enabled
5061 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5062 * call may sleep, therefore we must re-enable interrupts
5063 * to avoid deadlocks. It is safe to do so because this function
5064 * is called ONLY when returning to user level (PUStk=1), in which case
5065 * there is no risk of kernel stack overflow due to deep
5066 * interrupt nesting.
5067 */
1da177e4
LT
5068void
5069pfm_handle_work(void)
5070{
5071 pfm_context_t *ctx;
5072 struct pt_regs *regs;
4944930a 5073 unsigned long flags, dummy_flags;
1da177e4
LT
5074 unsigned long ovfl_regs;
5075 unsigned int reason;
5076 int ret;
5077
5078 ctx = PFM_GET_CTX(current);
5079 if (ctx == NULL) {
5080 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5081 return;
5082 }
5083
5084 PROTECT_CTX(ctx, flags);
5085
5086 PFM_SET_WORK_PENDING(current, 0);
5087
5088 pfm_clear_task_notify();
5089
6450578f 5090 regs = task_pt_regs(current);
1da177e4
LT
5091
5092 /*
5093 * extract reason for being here and clear
5094 */
5095 reason = ctx->ctx_fl_trap_reason;
5096 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5097 ovfl_regs = ctx->ctx_ovfl_regs[0];
5098
5099 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5100
5101 /*
5102 * must be done before we check for simple-reset mode
5103 */
5104 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5105
5106
5107 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5108 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5109
4944930a
SE
5110 /*
5111 * restore interrupt mask to what it was on entry.
5112 * Could be enabled/diasbled.
5113 */
1da177e4
LT
5114 UNPROTECT_CTX(ctx, flags);
5115
4944930a
SE
5116 /*
5117 * force interrupt enable because of down_interruptible()
5118 */
1da177e4
LT
5119 local_irq_enable();
5120
5121 DPRINT(("before block sleeping\n"));
5122
5123 /*
5124 * may go through without blocking on SMP systems
5125 * if restart has been received already by the time we call down()
5126 */
60f1c444 5127 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
1da177e4
LT
5128
5129 DPRINT(("after block sleeping ret=%d\n", ret));
5130
5131 /*
4944930a
SE
5132 * lock context and mask interrupts again
5133 * We save flags into a dummy because we may have
5134 * altered interrupts mask compared to entry in this
5135 * function.
1da177e4 5136 */
4944930a 5137 PROTECT_CTX(ctx, dummy_flags);
1da177e4
LT
5138
5139 /*
5140 * we need to read the ovfl_regs only after wake-up
5141 * because we may have had pfm_write_pmds() in between
5142 * and that can changed PMD values and therefore
5143 * ovfl_regs is reset for these new PMD values.
5144 */
5145 ovfl_regs = ctx->ctx_ovfl_regs[0];
5146
5147 if (ctx->ctx_fl_going_zombie) {
5148do_zombie:
5149 DPRINT(("context is zombie, bailing out\n"));
5150 pfm_context_force_terminate(ctx, regs);
5151 goto nothing_to_do;
5152 }
5153 /*
5154 * in case of interruption of down() we don't restart anything
5155 */
5156 if (ret < 0) goto nothing_to_do;
5157
5158skip_blocking:
5159 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5160 ctx->ctx_ovfl_regs[0] = 0UL;
5161
5162nothing_to_do:
4944930a
SE
5163 /*
5164 * restore flags as they were upon entry
5165 */
1da177e4
LT
5166 UNPROTECT_CTX(ctx, flags);
5167}
5168
5169static int
5170pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5171{
5172 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5173 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5174 return 0;
5175 }
5176
5177 DPRINT(("waking up somebody\n"));
5178
5179 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5180
5181 /*
5182 * safe, we are not in intr handler, nor in ctxsw when
5183 * we come here
5184 */
5185 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5186
5187 return 0;
5188}
5189
5190static int
5191pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5192{
5193 pfm_msg_t *msg = NULL;
5194
5195 if (ctx->ctx_fl_no_msg == 0) {
5196 msg = pfm_get_new_msg(ctx);
5197 if (msg == NULL) {
5198 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5199 return -1;
5200 }
5201
5202 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5203 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5204 msg->pfm_ovfl_msg.msg_active_set = 0;
5205 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5206 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5207 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5208 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5209 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5210 }
5211
5212 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5213 msg,
5214 ctx->ctx_fl_no_msg,
5215 ctx->ctx_fd,
5216 ovfl_pmds));
5217
5218 return pfm_notify_user(ctx, msg);
5219}
5220
5221static int
5222pfm_end_notify_user(pfm_context_t *ctx)
5223{
5224 pfm_msg_t *msg;
5225
5226 msg = pfm_get_new_msg(ctx);
5227 if (msg == NULL) {
5228 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5229 return -1;
5230 }
5231 /* no leak */
5232 memset(msg, 0, sizeof(*msg));
5233
5234 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5235 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5236 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5237
5238 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5239 msg,
5240 ctx->ctx_fl_no_msg,
5241 ctx->ctx_fd));
5242
5243 return pfm_notify_user(ctx, msg);
5244}
5245
5246/*
5247 * main overflow processing routine.
5248 * it can be called from the interrupt path or explicitely during the context switch code
5249 */
5250static void
5251pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5252{
5253 pfm_ovfl_arg_t *ovfl_arg;
5254 unsigned long mask;
5255 unsigned long old_val, ovfl_val, new_val;
5256 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5257 unsigned long tstamp;
5258 pfm_ovfl_ctrl_t ovfl_ctrl;
5259 unsigned int i, has_smpl;
5260 int must_notify = 0;
5261
5262 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5263
5264 /*
5265 * sanity test. Should never happen
5266 */
5267 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5268
5269 tstamp = ia64_get_itc();
5270 mask = pmc0 >> PMU_FIRST_COUNTER;
5271 ovfl_val = pmu_conf->ovfl_val;
5272 has_smpl = CTX_HAS_SMPL(ctx);
5273
5274 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5275 "used_pmds=0x%lx\n",
5276 pmc0,
5277 task ? task->pid: -1,
5278 (regs ? regs->cr_iip : 0),
5279 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5280 ctx->ctx_used_pmds[0]));
5281
5282
5283 /*
5284 * first we update the virtual counters
5285 * assume there was a prior ia64_srlz_d() issued
5286 */
5287 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5288
5289 /* skip pmd which did not overflow */
5290 if ((mask & 0x1) == 0) continue;
5291
5292 /*
5293 * Note that the pmd is not necessarily 0 at this point as qualified events
5294 * may have happened before the PMU was frozen. The residual count is not
5295 * taken into consideration here but will be with any read of the pmd via
5296 * pfm_read_pmds().
5297 */
5298 old_val = new_val = ctx->ctx_pmds[i].val;
5299 new_val += 1 + ovfl_val;
5300 ctx->ctx_pmds[i].val = new_val;
5301
5302 /*
5303 * check for overflow condition
5304 */
5305 if (likely(old_val > new_val)) {
5306 ovfl_pmds |= 1UL << i;
5307 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5308 }
5309
5310 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5311 i,
5312 new_val,
5313 old_val,
5314 ia64_get_pmd(i) & ovfl_val,
5315 ovfl_pmds,
5316 ovfl_notify));
5317 }
5318
5319 /*
5320 * there was no 64-bit overflow, nothing else to do
5321 */
5322 if (ovfl_pmds == 0UL) return;
5323
5324 /*
5325 * reset all control bits
5326 */
5327 ovfl_ctrl.val = 0;
5328 reset_pmds = 0UL;
5329
5330 /*
5331 * if a sampling format module exists, then we "cache" the overflow by
5332 * calling the module's handler() routine.
5333 */
5334 if (has_smpl) {
5335 unsigned long start_cycles, end_cycles;
5336 unsigned long pmd_mask;
5337 int j, k, ret = 0;
5338 int this_cpu = smp_processor_id();
5339
5340 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5341 ovfl_arg = &ctx->ctx_ovfl_arg;
5342
5343 prefetch(ctx->ctx_smpl_hdr);
5344
5345 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5346
5347 mask = 1UL << i;
5348
5349 if ((pmd_mask & 0x1) == 0) continue;
5350
5351 ovfl_arg->ovfl_pmd = (unsigned char )i;
5352 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5353 ovfl_arg->active_set = 0;
5354 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5355 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5356
5357 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5358 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5359 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5360
5361 /*
5362 * copy values of pmds of interest. Sampling format may copy them
5363 * into sampling buffer.
5364 */
5365 if (smpl_pmds) {
5366 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5367 if ((smpl_pmds & 0x1) == 0) continue;
5368 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5369 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5370 }
5371 }
5372
5373 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5374
5375 start_cycles = ia64_get_itc();
5376
5377 /*
5378 * call custom buffer format record (handler) routine
5379 */
5380 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5381
5382 end_cycles = ia64_get_itc();
5383
5384 /*
5385 * For those controls, we take the union because they have
5386 * an all or nothing behavior.
5387 */
5388 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5389 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5390 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5391 /*
5392 * build the bitmask of pmds to reset now
5393 */
5394 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5395
5396 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5397 }
5398 /*
5399 * when the module cannot handle the rest of the overflows, we abort right here
5400 */
5401 if (ret && pmd_mask) {
5402 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5403 pmd_mask<<PMU_FIRST_COUNTER));
5404 }
5405 /*
5406 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5407 */
5408 ovfl_pmds &= ~reset_pmds;
5409 } else {
5410 /*
5411 * when no sampling module is used, then the default
5412 * is to notify on overflow if requested by user
5413 */
5414 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5415 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5416 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5417 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5418 /*
5419 * if needed, we reset all overflowed pmds
5420 */
5421 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5422 }
5423
5424 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5425
5426 /*
5427 * reset the requested PMD registers using the short reset values
5428 */
5429 if (reset_pmds) {
5430 unsigned long bm = reset_pmds;
5431 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5432 }
5433
5434 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5435 /*
5436 * keep track of what to reset when unblocking
5437 */
5438 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5439
5440 /*
5441 * check for blocking context
5442 */
5443 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5444
5445 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5446
5447 /*
5448 * set the perfmon specific checking pending work for the task
5449 */
5450 PFM_SET_WORK_PENDING(task, 1);
5451
5452 /*
5453 * when coming from ctxsw, current still points to the
5454 * previous task, therefore we must work with task and not current.
5455 */
5456 pfm_set_task_notify(task);
5457 }
5458 /*
5459 * defer until state is changed (shorten spin window). the context is locked
5460 * anyway, so the signal receiver would come spin for nothing.
5461 */
5462 must_notify = 1;
5463 }
5464
5465 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5466 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5467 PFM_GET_WORK_PENDING(task),
5468 ctx->ctx_fl_trap_reason,
5469 ovfl_pmds,
5470 ovfl_notify,
5471 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5472 /*
5473 * in case monitoring must be stopped, we toggle the psr bits
5474 */
5475 if (ovfl_ctrl.bits.mask_monitoring) {
5476 pfm_mask_monitoring(task);
5477 ctx->ctx_state = PFM_CTX_MASKED;
5478 ctx->ctx_fl_can_restart = 1;
5479 }
5480
5481 /*
5482 * send notification now
5483 */
5484 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5485
5486 return;
5487
5488sanity_check:
5489 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5490 smp_processor_id(),
5491 task ? task->pid : -1,
5492 pmc0);
5493 return;
5494
5495stop_monitoring:
5496 /*
5497 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5498 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5499 * come here as zombie only if the task is the current task. In which case, we
5500 * can access the PMU hardware directly.
5501 *
5502 * Note that zombies do have PM_VALID set. So here we do the minimal.
5503 *
5504 * In case the context was zombified it could not be reclaimed at the time
5505 * the monitoring program exited. At this point, the PMU reservation has been
5506 * returned, the sampiing buffer has been freed. We must convert this call
5507 * into a spurious interrupt. However, we must also avoid infinite overflows
5508 * by stopping monitoring for this task. We can only come here for a per-task
5509 * context. All we need to do is to stop monitoring using the psr bits which
5510 * are always task private. By re-enabling secure montioring, we ensure that
5511 * the monitored task will not be able to re-activate monitoring.
5512 * The task will eventually be context switched out, at which point the context
5513 * will be reclaimed (that includes releasing ownership of the PMU).
5514 *
5515 * So there might be a window of time where the number of per-task session is zero
5516 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5517 * context. This is safe because if a per-task session comes in, it will push this one
5518 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5519 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5520 * also push our zombie context out.
5521 *
5522 * Overall pretty hairy stuff....
5523 */
5524 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5525 pfm_clear_psr_up();
5526 ia64_psr(regs)->up = 0;
5527 ia64_psr(regs)->sp = 1;
5528 return;
5529}
5530
5531static int
5532pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5533{
5534 struct task_struct *task;
5535 pfm_context_t *ctx;
5536 unsigned long flags;
5537 u64 pmc0;
5538 int this_cpu = smp_processor_id();
5539 int retval = 0;
5540
5541 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5542
5543 /*
5544 * srlz.d done before arriving here
5545 */
5546 pmc0 = ia64_get_pmc(0);
5547
5548 task = GET_PMU_OWNER();
5549 ctx = GET_PMU_CTX();
5550
5551 /*
5552 * if we have some pending bits set
5553 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5554 */
5555 if (PMC0_HAS_OVFL(pmc0) && task) {
5556 /*
5557 * we assume that pmc0.fr is always set here
5558 */
5559
5560 /* sanity check */
5561 if (!ctx) goto report_spurious1;
5562
5563 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5564 goto report_spurious2;
5565
5566 PROTECT_CTX_NOPRINT(ctx, flags);
5567
5568 pfm_overflow_handler(task, ctx, pmc0, regs);
5569
5570 UNPROTECT_CTX_NOPRINT(ctx, flags);
5571
5572 } else {
5573 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5574 retval = -1;
5575 }
5576 /*
5577 * keep it unfrozen at all times
5578 */
5579 pfm_unfreeze_pmu();
5580
5581 return retval;
5582
5583report_spurious1:
5584 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5585 this_cpu, task->pid);
5586 pfm_unfreeze_pmu();
5587 return -1;
5588report_spurious2:
5589 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5590 this_cpu,
5591 task->pid);
5592 pfm_unfreeze_pmu();
5593 return -1;
5594}
5595
5596static irqreturn_t
3bbe486b 5597pfm_interrupt_handler(int irq, void *arg)
1da177e4
LT
5598{
5599 unsigned long start_cycles, total_cycles;
5600 unsigned long min, max;
5601 int this_cpu;
5602 int ret;
3bbe486b 5603 struct pt_regs *regs = get_irq_regs();
1da177e4
LT
5604
5605 this_cpu = get_cpu();
a1ecf7f6
TL
5606 if (likely(!pfm_alt_intr_handler)) {
5607 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5608 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
1da177e4 5609
a1ecf7f6 5610 start_cycles = ia64_get_itc();
1da177e4 5611
a1ecf7f6 5612 ret = pfm_do_interrupt_handler(irq, arg, regs);
1da177e4 5613
a1ecf7f6 5614 total_cycles = ia64_get_itc();
1da177e4 5615
a1ecf7f6
TL
5616 /*
5617 * don't measure spurious interrupts
5618 */
5619 if (likely(ret == 0)) {
5620 total_cycles -= start_cycles;
1da177e4 5621
a1ecf7f6
TL
5622 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5623 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
1da177e4 5624
a1ecf7f6
TL
5625 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5626 }
5627 }
5628 else {
5629 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
1da177e4 5630 }
a1ecf7f6 5631
1da177e4
LT
5632 put_cpu_no_resched();
5633 return IRQ_HANDLED;
5634}
5635
5636/*
5637 * /proc/perfmon interface, for debug only
5638 */
5639
5640#define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5641
5642static void *
5643pfm_proc_start(struct seq_file *m, loff_t *pos)
5644{
5645 if (*pos == 0) {
5646 return PFM_PROC_SHOW_HEADER;
5647 }
5648
5649 while (*pos <= NR_CPUS) {
5650 if (cpu_online(*pos - 1)) {
5651 return (void *)*pos;
5652 }
5653 ++*pos;
5654 }
5655 return NULL;
5656}
5657
5658static void *
5659pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5660{
5661 ++*pos;
5662 return pfm_proc_start(m, pos);
5663}
5664
5665static void
5666pfm_proc_stop(struct seq_file *m, void *v)
5667{
5668}
5669
5670static void
5671pfm_proc_show_header(struct seq_file *m)
5672{
5673 struct list_head * pos;
5674 pfm_buffer_fmt_t * entry;
5675 unsigned long flags;
5676
5677 seq_printf(m,
5678 "perfmon version : %u.%u\n"
5679 "model : %s\n"
5680 "fastctxsw : %s\n"
5681 "expert mode : %s\n"
5682 "ovfl_mask : 0x%lx\n"
5683 "PMU flags : 0x%x\n",
5684 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5685 pmu_conf->pmu_name,
5686 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5687 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5688 pmu_conf->ovfl_val,
5689 pmu_conf->flags);
5690
5691 LOCK_PFS(flags);
5692
5693 seq_printf(m,
5694 "proc_sessions : %u\n"
5695 "sys_sessions : %u\n"
5696 "sys_use_dbregs : %u\n"
5697 "ptrace_use_dbregs : %u\n",
5698 pfm_sessions.pfs_task_sessions,
5699 pfm_sessions.pfs_sys_sessions,
5700 pfm_sessions.pfs_sys_use_dbregs,
5701 pfm_sessions.pfs_ptrace_use_dbregs);
5702
5703 UNLOCK_PFS(flags);
5704
5705 spin_lock(&pfm_buffer_fmt_lock);
5706
5707 list_for_each(pos, &pfm_buffer_fmt_list) {
5708 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5709 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5710 entry->fmt_uuid[0],
5711 entry->fmt_uuid[1],
5712 entry->fmt_uuid[2],
5713 entry->fmt_uuid[3],
5714 entry->fmt_uuid[4],
5715 entry->fmt_uuid[5],
5716 entry->fmt_uuid[6],
5717 entry->fmt_uuid[7],
5718 entry->fmt_uuid[8],
5719 entry->fmt_uuid[9],
5720 entry->fmt_uuid[10],
5721 entry->fmt_uuid[11],
5722 entry->fmt_uuid[12],
5723 entry->fmt_uuid[13],
5724 entry->fmt_uuid[14],
5725 entry->fmt_uuid[15],
5726 entry->fmt_name);
5727 }
5728 spin_unlock(&pfm_buffer_fmt_lock);
5729
5730}
5731
5732static int
5733pfm_proc_show(struct seq_file *m, void *v)
5734{
5735 unsigned long psr;
5736 unsigned int i;
5737 int cpu;
5738
5739 if (v == PFM_PROC_SHOW_HEADER) {
5740 pfm_proc_show_header(m);
5741 return 0;
5742 }
5743
5744 /* show info for CPU (v - 1) */
5745
5746 cpu = (long)v - 1;
5747 seq_printf(m,
5748 "CPU%-2d overflow intrs : %lu\n"
5749 "CPU%-2d overflow cycles : %lu\n"
5750 "CPU%-2d overflow min : %lu\n"
5751 "CPU%-2d overflow max : %lu\n"
5752 "CPU%-2d smpl handler calls : %lu\n"
5753 "CPU%-2d smpl handler cycles : %lu\n"
5754 "CPU%-2d spurious intrs : %lu\n"
5755 "CPU%-2d replay intrs : %lu\n"
5756 "CPU%-2d syst_wide : %d\n"
5757 "CPU%-2d dcr_pp : %d\n"
5758 "CPU%-2d exclude idle : %d\n"
5759 "CPU%-2d owner : %d\n"
5760 "CPU%-2d context : %p\n"
5761 "CPU%-2d activations : %lu\n",
5762 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5763 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5764 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5765 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5766 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5767 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5768 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5769 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5770 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5771 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5772 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5773 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5774 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5775 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5776
5777 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5778
5779 psr = pfm_get_psr();
5780
5781 ia64_srlz_d();
5782
5783 seq_printf(m,
5784 "CPU%-2d psr : 0x%lx\n"
5785 "CPU%-2d pmc0 : 0x%lx\n",
5786 cpu, psr,
5787 cpu, ia64_get_pmc(0));
5788
5789 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5790 if (PMC_IS_COUNTING(i) == 0) continue;
5791 seq_printf(m,
5792 "CPU%-2d pmc%u : 0x%lx\n"
5793 "CPU%-2d pmd%u : 0x%lx\n",
5794 cpu, i, ia64_get_pmc(i),
5795 cpu, i, ia64_get_pmd(i));
5796 }
5797 }
5798 return 0;
5799}
5800
5801struct seq_operations pfm_seq_ops = {
5802 .start = pfm_proc_start,
5803 .next = pfm_proc_next,
5804 .stop = pfm_proc_stop,
5805 .show = pfm_proc_show
5806};
5807
5808static int
5809pfm_proc_open(struct inode *inode, struct file *file)
5810{
5811 return seq_open(file, &pfm_seq_ops);
5812}
5813
5814
5815/*
5816 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5817 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5818 * is active or inactive based on mode. We must rely on the value in
5819 * local_cpu_data->pfm_syst_info
5820 */
5821void
5822pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5823{
5824 struct pt_regs *regs;
5825 unsigned long dcr;
5826 unsigned long dcr_pp;
5827
5828 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5829
5830 /*
5831 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5832 * on every CPU, so we can rely on the pid to identify the idle task.
5833 */
5834 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
6450578f 5835 regs = task_pt_regs(task);
1da177e4
LT
5836 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5837 return;
5838 }
5839 /*
5840 * if monitoring has started
5841 */
5842 if (dcr_pp) {
5843 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5844 /*
5845 * context switching in?
5846 */
5847 if (is_ctxswin) {
5848 /* mask monitoring for the idle task */
5849 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5850 pfm_clear_psr_pp();
5851 ia64_srlz_i();
5852 return;
5853 }
5854 /*
5855 * context switching out
5856 * restore monitoring for next task
5857 *
5858 * Due to inlining this odd if-then-else construction generates
5859 * better code.
5860 */
5861 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5862 pfm_set_psr_pp();
5863 ia64_srlz_i();
5864 }
5865}
5866
5867#ifdef CONFIG_SMP
5868
5869static void
5870pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5871{
5872 struct task_struct *task = ctx->ctx_task;
5873
5874 ia64_psr(regs)->up = 0;
5875 ia64_psr(regs)->sp = 1;
5876
5877 if (GET_PMU_OWNER() == task) {
5878 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5879 SET_PMU_OWNER(NULL, NULL);
5880 }
5881
5882 /*
5883 * disconnect the task from the context and vice-versa
5884 */
5885 PFM_SET_WORK_PENDING(task, 0);
5886
5887 task->thread.pfm_context = NULL;
5888 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5889
5890 DPRINT(("force cleanup for [%d]\n", task->pid));
5891}
5892
5893
5894/*
5895 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5896 */
5897void
5898pfm_save_regs(struct task_struct *task)
5899{
5900 pfm_context_t *ctx;
1da177e4
LT
5901 unsigned long flags;
5902 u64 psr;
5903
5904
5905 ctx = PFM_GET_CTX(task);
5906 if (ctx == NULL) return;
1da177e4
LT
5907
5908 /*
5909 * we always come here with interrupts ALREADY disabled by
5910 * the scheduler. So we simply need to protect against concurrent
5911 * access, not CPU concurrency.
5912 */
5913 flags = pfm_protect_ctx_ctxsw(ctx);
5914
5915 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
6450578f 5916 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
5917
5918 pfm_clear_psr_up();
5919
5920 pfm_force_cleanup(ctx, regs);
5921
5922 BUG_ON(ctx->ctx_smpl_hdr);
5923
5924 pfm_unprotect_ctx_ctxsw(ctx, flags);
5925
5926 pfm_context_free(ctx);
5927 return;
5928 }
5929
5930 /*
5931 * save current PSR: needed because we modify it
5932 */
5933 ia64_srlz_d();
5934 psr = pfm_get_psr();
5935
5936 BUG_ON(psr & (IA64_PSR_I));
5937
5938 /*
5939 * stop monitoring:
5940 * This is the last instruction which may generate an overflow
5941 *
5942 * We do not need to set psr.sp because, it is irrelevant in kernel.
5943 * It will be restored from ipsr when going back to user level
5944 */
5945 pfm_clear_psr_up();
5946
5947 /*
5948 * keep a copy of psr.up (for reload)
5949 */
5950 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5951
5952 /*
5953 * release ownership of this PMU.
5954 * PM interrupts are masked, so nothing
5955 * can happen.
5956 */
5957 SET_PMU_OWNER(NULL, NULL);
5958
5959 /*
5960 * we systematically save the PMD as we have no
5961 * guarantee we will be schedule at that same
5962 * CPU again.
5963 */
35589a8f 5964 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
5965
5966 /*
5967 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5968 * we will need it on the restore path to check
5969 * for pending overflow.
5970 */
35589a8f 5971 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
5972
5973 /*
5974 * unfreeze PMU if had pending overflows
5975 */
35589a8f 5976 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
5977
5978 /*
5979 * finally, allow context access.
5980 * interrupts will still be masked after this call.
5981 */
5982 pfm_unprotect_ctx_ctxsw(ctx, flags);
5983}
5984
5985#else /* !CONFIG_SMP */
5986void
5987pfm_save_regs(struct task_struct *task)
5988{
5989 pfm_context_t *ctx;
5990 u64 psr;
5991
5992 ctx = PFM_GET_CTX(task);
5993 if (ctx == NULL) return;
5994
5995 /*
5996 * save current PSR: needed because we modify it
5997 */
5998 psr = pfm_get_psr();
5999
6000 BUG_ON(psr & (IA64_PSR_I));
6001
6002 /*
6003 * stop monitoring:
6004 * This is the last instruction which may generate an overflow
6005 *
6006 * We do not need to set psr.sp because, it is irrelevant in kernel.
6007 * It will be restored from ipsr when going back to user level
6008 */
6009 pfm_clear_psr_up();
6010
6011 /*
6012 * keep a copy of psr.up (for reload)
6013 */
6014 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6015}
6016
6017static void
6018pfm_lazy_save_regs (struct task_struct *task)
6019{
6020 pfm_context_t *ctx;
1da177e4
LT
6021 unsigned long flags;
6022
6023 { u64 psr = pfm_get_psr();
6024 BUG_ON(psr & IA64_PSR_UP);
6025 }
6026
6027 ctx = PFM_GET_CTX(task);
1da177e4
LT
6028
6029 /*
6030 * we need to mask PMU overflow here to
6031 * make sure that we maintain pmc0 until
6032 * we save it. overflow interrupts are
6033 * treated as spurious if there is no
6034 * owner.
6035 *
6036 * XXX: I don't think this is necessary
6037 */
6038 PROTECT_CTX(ctx,flags);
6039
6040 /*
6041 * release ownership of this PMU.
6042 * must be done before we save the registers.
6043 *
6044 * after this call any PMU interrupt is treated
6045 * as spurious.
6046 */
6047 SET_PMU_OWNER(NULL, NULL);
6048
6049 /*
6050 * save all the pmds we use
6051 */
35589a8f 6052 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
1da177e4
LT
6053
6054 /*
6055 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6056 * it is needed to check for pended overflow
6057 * on the restore path
6058 */
35589a8f 6059 ctx->th_pmcs[0] = ia64_get_pmc(0);
1da177e4
LT
6060
6061 /*
6062 * unfreeze PMU if had pending overflows
6063 */
35589a8f 6064 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
1da177e4
LT
6065
6066 /*
6067 * now get can unmask PMU interrupts, they will
6068 * be treated as purely spurious and we will not
6069 * lose any information
6070 */
6071 UNPROTECT_CTX(ctx,flags);
6072}
6073#endif /* CONFIG_SMP */
6074
6075#ifdef CONFIG_SMP
6076/*
6077 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6078 */
6079void
6080pfm_load_regs (struct task_struct *task)
6081{
6082 pfm_context_t *ctx;
1da177e4
LT
6083 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6084 unsigned long flags;
6085 u64 psr, psr_up;
6086 int need_irq_resend;
6087
6088 ctx = PFM_GET_CTX(task);
6089 if (unlikely(ctx == NULL)) return;
6090
6091 BUG_ON(GET_PMU_OWNER());
6092
1da177e4
LT
6093 /*
6094 * possible on unload
6095 */
35589a8f 6096 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
1da177e4
LT
6097
6098 /*
6099 * we always come here with interrupts ALREADY disabled by
6100 * the scheduler. So we simply need to protect against concurrent
6101 * access, not CPU concurrency.
6102 */
6103 flags = pfm_protect_ctx_ctxsw(ctx);
6104 psr = pfm_get_psr();
6105
6106 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6107
6108 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6109 BUG_ON(psr & IA64_PSR_I);
6110
6111 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6450578f 6112 struct pt_regs *regs = task_pt_regs(task);
1da177e4
LT
6113
6114 BUG_ON(ctx->ctx_smpl_hdr);
6115
6116 pfm_force_cleanup(ctx, regs);
6117
6118 pfm_unprotect_ctx_ctxsw(ctx, flags);
6119
6120 /*
6121 * this one (kmalloc'ed) is fine with interrupts disabled
6122 */
6123 pfm_context_free(ctx);
6124
6125 return;
6126 }
6127
6128 /*
6129 * we restore ALL the debug registers to avoid picking up
6130 * stale state.
6131 */
6132 if (ctx->ctx_fl_using_dbreg) {
6133 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6134 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6135 }
6136 /*
6137 * retrieve saved psr.up
6138 */
6139 psr_up = ctx->ctx_saved_psr_up;
6140
6141 /*
6142 * if we were the last user of the PMU on that CPU,
6143 * then nothing to do except restore psr
6144 */
6145 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6146
6147 /*
6148 * retrieve partial reload masks (due to user modifications)
6149 */
6150 pmc_mask = ctx->ctx_reload_pmcs[0];
6151 pmd_mask = ctx->ctx_reload_pmds[0];
6152
6153 } else {
6154 /*
6155 * To avoid leaking information to the user level when psr.sp=0,
6156 * we must reload ALL implemented pmds (even the ones we don't use).
6157 * In the kernel we only allow PFM_READ_PMDS on registers which
6158 * we initialized or requested (sampling) so there is no risk there.
6159 */
6160 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6161
6162 /*
6163 * ALL accessible PMCs are systematically reloaded, unused registers
6164 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6165 * up stale configuration.
6166 *
6167 * PMC0 is never in the mask. It is always restored separately.
6168 */
6169 pmc_mask = ctx->ctx_all_pmcs[0];
6170 }
6171 /*
6172 * when context is MASKED, we will restore PMC with plm=0
6173 * and PMD with stale information, but that's ok, nothing
6174 * will be captured.
6175 *
6176 * XXX: optimize here
6177 */
35589a8f
KA
6178 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6179 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6180
6181 /*
6182 * check for pending overflow at the time the state
6183 * was saved.
6184 */
35589a8f 6185 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6186 /*
6187 * reload pmc0 with the overflow information
6188 * On McKinley PMU, this will trigger a PMU interrupt
6189 */
35589a8f 6190 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4 6191 ia64_srlz_d();
35589a8f 6192 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6193
6194 /*
6195 * will replay the PMU interrupt
6196 */
c0ad90a3 6197 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6198
6199 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6200 }
6201
6202 /*
6203 * we just did a reload, so we reset the partial reload fields
6204 */
6205 ctx->ctx_reload_pmcs[0] = 0UL;
6206 ctx->ctx_reload_pmds[0] = 0UL;
6207
6208 SET_LAST_CPU(ctx, smp_processor_id());
6209
6210 /*
6211 * dump activation value for this PMU
6212 */
6213 INC_ACTIVATION();
6214 /*
6215 * record current activation for this context
6216 */
6217 SET_ACTIVATION(ctx);
6218
6219 /*
6220 * establish new ownership.
6221 */
6222 SET_PMU_OWNER(task, ctx);
6223
6224 /*
6225 * restore the psr.up bit. measurement
6226 * is active again.
6227 * no PMU interrupt can happen at this point
6228 * because we still have interrupts disabled.
6229 */
6230 if (likely(psr_up)) pfm_set_psr_up();
6231
6232 /*
6233 * allow concurrent access to context
6234 */
6235 pfm_unprotect_ctx_ctxsw(ctx, flags);
6236}
6237#else /* !CONFIG_SMP */
6238/*
6239 * reload PMU state for UP kernels
6240 * in 2.5 we come here with interrupts disabled
6241 */
6242void
6243pfm_load_regs (struct task_struct *task)
6244{
1da177e4
LT
6245 pfm_context_t *ctx;
6246 struct task_struct *owner;
6247 unsigned long pmd_mask, pmc_mask;
6248 u64 psr, psr_up;
6249 int need_irq_resend;
6250
6251 owner = GET_PMU_OWNER();
6252 ctx = PFM_GET_CTX(task);
1da177e4
LT
6253 psr = pfm_get_psr();
6254
6255 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6256 BUG_ON(psr & IA64_PSR_I);
6257
6258 /*
6259 * we restore ALL the debug registers to avoid picking up
6260 * stale state.
6261 *
6262 * This must be done even when the task is still the owner
6263 * as the registers may have been modified via ptrace()
6264 * (not perfmon) by the previous task.
6265 */
6266 if (ctx->ctx_fl_using_dbreg) {
6267 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6268 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6269 }
6270
6271 /*
6272 * retrieved saved psr.up
6273 */
6274 psr_up = ctx->ctx_saved_psr_up;
6275 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6276
6277 /*
6278 * short path, our state is still there, just
6279 * need to restore psr and we go
6280 *
6281 * we do not touch either PMC nor PMD. the psr is not touched
6282 * by the overflow_handler. So we are safe w.r.t. to interrupt
6283 * concurrency even without interrupt masking.
6284 */
6285 if (likely(owner == task)) {
6286 if (likely(psr_up)) pfm_set_psr_up();
6287 return;
6288 }
6289
6290 /*
6291 * someone else is still using the PMU, first push it out and
6292 * then we'll be able to install our stuff !
6293 *
6294 * Upon return, there will be no owner for the current PMU
6295 */
6296 if (owner) pfm_lazy_save_regs(owner);
6297
6298 /*
6299 * To avoid leaking information to the user level when psr.sp=0,
6300 * we must reload ALL implemented pmds (even the ones we don't use).
6301 * In the kernel we only allow PFM_READ_PMDS on registers which
6302 * we initialized or requested (sampling) so there is no risk there.
6303 */
6304 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6305
6306 /*
6307 * ALL accessible PMCs are systematically reloaded, unused registers
6308 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6309 * up stale configuration.
6310 *
6311 * PMC0 is never in the mask. It is always restored separately
6312 */
6313 pmc_mask = ctx->ctx_all_pmcs[0];
6314
35589a8f
KA
6315 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6316 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
1da177e4
LT
6317
6318 /*
6319 * check for pending overflow at the time the state
6320 * was saved.
6321 */
35589a8f 6322 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
1da177e4
LT
6323 /*
6324 * reload pmc0 with the overflow information
6325 * On McKinley PMU, this will trigger a PMU interrupt
6326 */
35589a8f 6327 ia64_set_pmc(0, ctx->th_pmcs[0]);
1da177e4
LT
6328 ia64_srlz_d();
6329
35589a8f 6330 ctx->th_pmcs[0] = 0UL;
1da177e4
LT
6331
6332 /*
6333 * will replay the PMU interrupt
6334 */
c0ad90a3 6335 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
1da177e4
LT
6336
6337 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6338 }
6339
6340 /*
6341 * establish new ownership.
6342 */
6343 SET_PMU_OWNER(task, ctx);
6344
6345 /*
6346 * restore the psr.up bit. measurement
6347 * is active again.
6348 * no PMU interrupt can happen at this point
6349 * because we still have interrupts disabled.
6350 */
6351 if (likely(psr_up)) pfm_set_psr_up();
6352}
6353#endif /* CONFIG_SMP */
6354
6355/*
6356 * this function assumes monitoring is stopped
6357 */
6358static void
6359pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6360{
6361 u64 pmc0;
6362 unsigned long mask2, val, pmd_val, ovfl_val;
6363 int i, can_access_pmu = 0;
6364 int is_self;
6365
6366 /*
6367 * is the caller the task being monitored (or which initiated the
6368 * session for system wide measurements)
6369 */
6370 is_self = ctx->ctx_task == task ? 1 : 0;
6371
6372 /*
6373 * can access PMU is task is the owner of the PMU state on the current CPU
6374 * or if we are running on the CPU bound to the context in system-wide mode
6375 * (that is not necessarily the task the context is attached to in this mode).
6376 * In system-wide we always have can_access_pmu true because a task running on an
6377 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6378 */
6379 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6380 if (can_access_pmu) {
6381 /*
6382 * Mark the PMU as not owned
6383 * This will cause the interrupt handler to do nothing in case an overflow
6384 * interrupt was in-flight
6385 * This also guarantees that pmc0 will contain the final state
6386 * It virtually gives us full control on overflow processing from that point
6387 * on.
6388 */
6389 SET_PMU_OWNER(NULL, NULL);
6390 DPRINT(("releasing ownership\n"));
6391
6392 /*
6393 * read current overflow status:
6394 *
6395 * we are guaranteed to read the final stable state
6396 */
6397 ia64_srlz_d();
6398 pmc0 = ia64_get_pmc(0); /* slow */
6399
6400 /*
6401 * reset freeze bit, overflow status information destroyed
6402 */
6403 pfm_unfreeze_pmu();
6404 } else {
35589a8f 6405 pmc0 = ctx->th_pmcs[0];
1da177e4
LT
6406 /*
6407 * clear whatever overflow status bits there were
6408 */
35589a8f 6409 ctx->th_pmcs[0] = 0;
1da177e4
LT
6410 }
6411 ovfl_val = pmu_conf->ovfl_val;
6412 /*
6413 * we save all the used pmds
6414 * we take care of overflows for counting PMDs
6415 *
6416 * XXX: sampling situation is not taken into account here
6417 */
6418 mask2 = ctx->ctx_used_pmds[0];
6419
6420 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6421
6422 for (i = 0; mask2; i++, mask2>>=1) {
6423
6424 /* skip non used pmds */
6425 if ((mask2 & 0x1) == 0) continue;
6426
6427 /*
6428 * can access PMU always true in system wide mode
6429 */
35589a8f 6430 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
1da177e4
LT
6431
6432 if (PMD_IS_COUNTING(i)) {
6433 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6434 task->pid,
6435 i,
6436 ctx->ctx_pmds[i].val,
6437 val & ovfl_val));
6438
6439 /*
6440 * we rebuild the full 64 bit value of the counter
6441 */
6442 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6443
6444 /*
6445 * now everything is in ctx_pmds[] and we need
6446 * to clear the saved context from save_regs() such that
6447 * pfm_read_pmds() gets the correct value
6448 */
6449 pmd_val = 0UL;
6450
6451 /*
6452 * take care of overflow inline
6453 */
6454 if (pmc0 & (1UL << i)) {
6455 val += 1 + ovfl_val;
6456 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6457 }
6458 }
6459
6460 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6461
35589a8f 6462 if (is_self) ctx->th_pmds[i] = pmd_val;
1da177e4
LT
6463
6464 ctx->ctx_pmds[i].val = val;
6465 }
6466}
6467
6468static struct irqaction perfmon_irqaction = {
6469 .handler = pfm_interrupt_handler,
121a4226 6470 .flags = IRQF_DISABLED,
1da177e4
LT
6471 .name = "perfmon"
6472};
6473
a1ecf7f6
TL
6474static void
6475pfm_alt_save_pmu_state(void *data)
6476{
6477 struct pt_regs *regs;
6478
6450578f 6479 regs = task_pt_regs(current);
a1ecf7f6
TL
6480
6481 DPRINT(("called\n"));
6482
6483 /*
6484 * should not be necessary but
6485 * let's take not risk
6486 */
6487 pfm_clear_psr_up();
6488 pfm_clear_psr_pp();
6489 ia64_psr(regs)->pp = 0;
6490
6491 /*
6492 * This call is required
6493 * May cause a spurious interrupt on some processors
6494 */
6495 pfm_freeze_pmu();
6496
6497 ia64_srlz_d();
6498}
6499
6500void
6501pfm_alt_restore_pmu_state(void *data)
6502{
6503 struct pt_regs *regs;
6504
6450578f 6505 regs = task_pt_regs(current);
a1ecf7f6
TL
6506
6507 DPRINT(("called\n"));
6508
6509 /*
6510 * put PMU back in state expected
6511 * by perfmon
6512 */
6513 pfm_clear_psr_up();
6514 pfm_clear_psr_pp();
6515 ia64_psr(regs)->pp = 0;
6516
6517 /*
6518 * perfmon runs with PMU unfrozen at all times
6519 */
6520 pfm_unfreeze_pmu();
6521
6522 ia64_srlz_d();
6523}
6524
6525int
6526pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6527{
6528 int ret, i;
6529 int reserve_cpu;
6530
6531 /* some sanity checks */
6532 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6533
6534 /* do the easy test first */
6535 if (pfm_alt_intr_handler) return -EBUSY;
6536
6537 /* one at a time in the install or remove, just fail the others */
6538 if (!spin_trylock(&pfm_alt_install_check)) {
6539 return -EBUSY;
6540 }
6541
6542 /* reserve our session */
6543 for_each_online_cpu(reserve_cpu) {
6544 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6545 if (ret) goto cleanup_reserve;
6546 }
6547
6548 /* save the current system wide pmu states */
6549 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6550 if (ret) {
6551 DPRINT(("on_each_cpu() failed: %d\n", ret));
6552 goto cleanup_reserve;
6553 }
6554
6555 /* officially change to the alternate interrupt handler */
6556 pfm_alt_intr_handler = hdl;
6557
6558 spin_unlock(&pfm_alt_install_check);
6559
6560 return 0;
6561
6562cleanup_reserve:
6563 for_each_online_cpu(i) {
6564 /* don't unreserve more than we reserved */
6565 if (i >= reserve_cpu) break;
6566
6567 pfm_unreserve_session(NULL, 1, i);
6568 }
6569
6570 spin_unlock(&pfm_alt_install_check);
6571
6572 return ret;
6573}
6574EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6575
6576int
6577pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6578{
6579 int i;
6580 int ret;
6581
6582 if (hdl == NULL) return -EINVAL;
6583
6584 /* cannot remove someone else's handler! */
6585 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6586
6587 /* one at a time in the install or remove, just fail the others */
6588 if (!spin_trylock(&pfm_alt_install_check)) {
6589 return -EBUSY;
6590 }
6591
6592 pfm_alt_intr_handler = NULL;
6593
6594 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6595 if (ret) {
6596 DPRINT(("on_each_cpu() failed: %d\n", ret));
6597 }
6598
6599 for_each_online_cpu(i) {
6600 pfm_unreserve_session(NULL, 1, i);
6601 }
6602
6603 spin_unlock(&pfm_alt_install_check);
6604
6605 return 0;
6606}
6607EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6608
1da177e4
LT
6609/*
6610 * perfmon initialization routine, called from the initcall() table
6611 */
6612static int init_pfm_fs(void);
6613
6614static int __init
6615pfm_probe_pmu(void)
6616{
6617 pmu_config_t **p;
6618 int family;
6619
6620 family = local_cpu_data->family;
6621 p = pmu_confs;
6622
6623 while(*p) {
6624 if ((*p)->probe) {
6625 if ((*p)->probe() == 0) goto found;
6626 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6627 goto found;
6628 }
6629 p++;
6630 }
6631 return -1;
6632found:
6633 pmu_conf = *p;
6634 return 0;
6635}
6636
5dfe4c96 6637static const struct file_operations pfm_proc_fops = {
1da177e4
LT
6638 .open = pfm_proc_open,
6639 .read = seq_read,
6640 .llseek = seq_lseek,
6641 .release = seq_release,
6642};
6643
6644int __init
6645pfm_init(void)
6646{
6647 unsigned int n, n_counters, i;
6648
6649 printk("perfmon: version %u.%u IRQ %u\n",
6650 PFM_VERSION_MAJ,
6651 PFM_VERSION_MIN,
6652 IA64_PERFMON_VECTOR);
6653
6654 if (pfm_probe_pmu()) {
6655 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6656 local_cpu_data->family);
6657 return -ENODEV;
6658 }
6659
6660 /*
6661 * compute the number of implemented PMD/PMC from the
6662 * description tables
6663 */
6664 n = 0;
6665 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6666 if (PMC_IS_IMPL(i) == 0) continue;
6667 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6668 n++;
6669 }
6670 pmu_conf->num_pmcs = n;
6671
6672 n = 0; n_counters = 0;
6673 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6674 if (PMD_IS_IMPL(i) == 0) continue;
6675 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6676 n++;
6677 if (PMD_IS_COUNTING(i)) n_counters++;
6678 }
6679 pmu_conf->num_pmds = n;
6680 pmu_conf->num_counters = n_counters;
6681
6682 /*
6683 * sanity checks on the number of debug registers
6684 */
6685 if (pmu_conf->use_rr_dbregs) {
6686 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6687 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6688 pmu_conf = NULL;
6689 return -1;
6690 }
6691 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6692 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6693 pmu_conf = NULL;
6694 return -1;
6695 }
6696 }
6697
6698 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6699 pmu_conf->pmu_name,
6700 pmu_conf->num_pmcs,
6701 pmu_conf->num_pmds,
6702 pmu_conf->num_counters,
6703 ffz(pmu_conf->ovfl_val));
6704
6705 /* sanity check */
35589a8f 6706 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
1da177e4
LT
6707 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6708 pmu_conf = NULL;
6709 return -1;
6710 }
6711
6712 /*
6713 * create /proc/perfmon (mostly for debugging purposes)
6714 */
6715 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6716 if (perfmon_dir == NULL) {
6717 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6718 pmu_conf = NULL;
6719 return -1;
6720 }
6721 /*
6722 * install customized file operations for /proc/perfmon entry
6723 */
6724 perfmon_dir->proc_fops = &pfm_proc_fops;
6725
6726 /*
6727 * create /proc/sys/kernel/perfmon (for debugging purposes)
6728 */
0b4d4147 6729 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
1da177e4
LT
6730
6731 /*
6732 * initialize all our spinlocks
6733 */
6734 spin_lock_init(&pfm_sessions.pfs_lock);
6735 spin_lock_init(&pfm_buffer_fmt_lock);
6736
6737 init_pfm_fs();
6738
6739 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6740
6741 return 0;
6742}
6743
6744__initcall(pfm_init);
6745
6746/*
6747 * this function is called before pfm_init()
6748 */
6749void
6750pfm_init_percpu (void)
6751{
ff741906 6752 static int first_time=1;
1da177e4
LT
6753 /*
6754 * make sure no measurement is active
6755 * (may inherit programmed PMCs from EFI).
6756 */
6757 pfm_clear_psr_pp();
6758 pfm_clear_psr_up();
6759
6760 /*
6761 * we run with the PMU not frozen at all times
6762 */
6763 pfm_unfreeze_pmu();
6764
ff741906 6765 if (first_time) {
1da177e4 6766 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
ff741906
AR
6767 first_time=0;
6768 }
1da177e4
LT
6769
6770 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6771 ia64_srlz_d();
6772}
6773
6774/*
6775 * used for debug purposes only
6776 */
6777void
6778dump_pmu_state(const char *from)
6779{
6780 struct task_struct *task;
1da177e4
LT
6781 struct pt_regs *regs;
6782 pfm_context_t *ctx;
6783 unsigned long psr, dcr, info, flags;
6784 int i, this_cpu;
6785
6786 local_irq_save(flags);
6787
6788 this_cpu = smp_processor_id();
6450578f 6789 regs = task_pt_regs(current);
1da177e4
LT
6790 info = PFM_CPUINFO_GET();
6791 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6792
6793 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6794 local_irq_restore(flags);
6795 return;
6796 }
6797
6798 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6799 this_cpu,
6800 from,
6801 current->pid,
6802 regs->cr_iip,
6803 current->comm);
6804
6805 task = GET_PMU_OWNER();
6806 ctx = GET_PMU_CTX();
6807
6808 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6809
6810 psr = pfm_get_psr();
6811
6812 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6813 this_cpu,
6814 ia64_get_pmc(0),
6815 psr & IA64_PSR_PP ? 1 : 0,
6816 psr & IA64_PSR_UP ? 1 : 0,
6817 dcr & IA64_DCR_PP ? 1 : 0,
6818 info,
6819 ia64_psr(regs)->up,
6820 ia64_psr(regs)->pp);
6821
6822 ia64_psr(regs)->up = 0;
6823 ia64_psr(regs)->pp = 0;
6824
1da177e4
LT
6825 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6826 if (PMC_IS_IMPL(i) == 0) continue;
35589a8f 6827 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
1da177e4
LT
6828 }
6829
6830 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6831 if (PMD_IS_IMPL(i) == 0) continue;
35589a8f 6832 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
1da177e4
LT
6833 }
6834
6835 if (ctx) {
6836 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6837 this_cpu,
6838 ctx->ctx_state,
6839 ctx->ctx_smpl_vaddr,
6840 ctx->ctx_smpl_hdr,
6841 ctx->ctx_msgq_head,
6842 ctx->ctx_msgq_tail,
6843 ctx->ctx_saved_psr_up);
6844 }
6845 local_irq_restore(flags);
6846}
6847
6848/*
6849 * called from process.c:copy_thread(). task is new child.
6850 */
6851void
6852pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6853{
6854 struct thread_struct *thread;
6855
6856 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6857
6858 thread = &task->thread;
6859
6860 /*
6861 * cut links inherited from parent (current)
6862 */
6863 thread->pfm_context = NULL;
6864
6865 PFM_SET_WORK_PENDING(task, 0);
6866
6867 /*
6868 * the psr bits are already set properly in copy_threads()
6869 */
6870}
6871#else /* !CONFIG_PERFMON */
6872asmlinkage long
6873sys_perfmonctl (int fd, int cmd, void *arg, int count)
6874{
6875 return -ENOSYS;
6876}
6877#endif /* CONFIG_PERFMON */