]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/mmu.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[net-next-2.6.git] / arch / arm / mm / mmu.c
CommitLineData
d111e8f9
RK
1/*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
ae8f1541 10#include <linux/module.h>
d111e8f9
RK
11#include <linux/kernel.h>
12#include <linux/errno.h>
13#include <linux/init.h>
d111e8f9
RK
14#include <linux/mman.h>
15#include <linux/nodemask.h>
2778f620 16#include <linux/memblock.h>
d907387c 17#include <linux/fs.h>
d111e8f9 18
0ba8b9b2 19#include <asm/cputype.h>
37efe642 20#include <asm/sections.h>
3f973e22 21#include <asm/cachetype.h>
d111e8f9
RK
22#include <asm/setup.h>
23#include <asm/sizes.h>
e616c591 24#include <asm/smp_plat.h>
d111e8f9 25#include <asm/tlb.h>
d73cd428 26#include <asm/highmem.h>
d111e8f9
RK
27
28#include <asm/mach/arch.h>
29#include <asm/mach/map.h>
30
31#include "mm.h"
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
d111e8f9
RK
35/*
36 * empty_zero_page is a special page that is used for
37 * zero-initialized data and COW.
38 */
39struct page *empty_zero_page;
3653f3ab 40EXPORT_SYMBOL(empty_zero_page);
d111e8f9
RK
41
42/*
43 * The pmd table for the upper-most set of pages.
44 */
45pmd_t *top_pmd;
46
ae8f1541
RK
47#define CPOLICY_UNCACHED 0
48#define CPOLICY_BUFFERED 1
49#define CPOLICY_WRITETHROUGH 2
50#define CPOLICY_WRITEBACK 3
51#define CPOLICY_WRITEALLOC 4
52
53static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
54static unsigned int ecc_mask __initdata = 0;
44b18693 55pgprot_t pgprot_user;
ae8f1541
RK
56pgprot_t pgprot_kernel;
57
44b18693 58EXPORT_SYMBOL(pgprot_user);
ae8f1541
RK
59EXPORT_SYMBOL(pgprot_kernel);
60
61struct cachepolicy {
62 const char policy[16];
63 unsigned int cr_mask;
64 unsigned int pmd;
65 unsigned int pte;
66};
67
68static struct cachepolicy cache_policies[] __initdata = {
69 {
70 .policy = "uncached",
71 .cr_mask = CR_W|CR_C,
72 .pmd = PMD_SECT_UNCACHED,
bb30f36f 73 .pte = L_PTE_MT_UNCACHED,
ae8f1541
RK
74 }, {
75 .policy = "buffered",
76 .cr_mask = CR_C,
77 .pmd = PMD_SECT_BUFFERED,
bb30f36f 78 .pte = L_PTE_MT_BUFFERABLE,
ae8f1541
RK
79 }, {
80 .policy = "writethrough",
81 .cr_mask = 0,
82 .pmd = PMD_SECT_WT,
bb30f36f 83 .pte = L_PTE_MT_WRITETHROUGH,
ae8f1541
RK
84 }, {
85 .policy = "writeback",
86 .cr_mask = 0,
87 .pmd = PMD_SECT_WB,
bb30f36f 88 .pte = L_PTE_MT_WRITEBACK,
ae8f1541
RK
89 }, {
90 .policy = "writealloc",
91 .cr_mask = 0,
92 .pmd = PMD_SECT_WBWA,
bb30f36f 93 .pte = L_PTE_MT_WRITEALLOC,
ae8f1541
RK
94 }
95};
96
97/*
6cbdc8c5 98 * These are useful for identifying cache coherency
ae8f1541
RK
99 * problems by allowing the cache or the cache and
100 * writebuffer to be turned off. (Note: the write
101 * buffer should not be on and the cache off).
102 */
2b0d8c25 103static int __init early_cachepolicy(char *p)
ae8f1541
RK
104{
105 int i;
106
107 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
108 int len = strlen(cache_policies[i].policy);
109
2b0d8c25 110 if (memcmp(p, cache_policies[i].policy, len) == 0) {
ae8f1541
RK
111 cachepolicy = i;
112 cr_alignment &= ~cache_policies[i].cr_mask;
113 cr_no_alignment &= ~cache_policies[i].cr_mask;
ae8f1541
RK
114 break;
115 }
116 }
117 if (i == ARRAY_SIZE(cache_policies))
118 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
4b46d641
RK
119 /*
120 * This restriction is partly to do with the way we boot; it is
121 * unpredictable to have memory mapped using two different sets of
122 * memory attributes (shared, type, and cache attribs). We can not
123 * change these attributes once the initial assembly has setup the
124 * page tables.
125 */
11179d8c
CM
126 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
127 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
128 cachepolicy = CPOLICY_WRITEBACK;
129 }
ae8f1541
RK
130 flush_cache_all();
131 set_cr(cr_alignment);
2b0d8c25 132 return 0;
ae8f1541 133}
2b0d8c25 134early_param("cachepolicy", early_cachepolicy);
ae8f1541 135
2b0d8c25 136static int __init early_nocache(char *__unused)
ae8f1541
RK
137{
138 char *p = "buffered";
139 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
140 early_cachepolicy(p);
141 return 0;
ae8f1541 142}
2b0d8c25 143early_param("nocache", early_nocache);
ae8f1541 144
2b0d8c25 145static int __init early_nowrite(char *__unused)
ae8f1541
RK
146{
147 char *p = "uncached";
148 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
2b0d8c25
JK
149 early_cachepolicy(p);
150 return 0;
ae8f1541 151}
2b0d8c25 152early_param("nowb", early_nowrite);
ae8f1541 153
2b0d8c25 154static int __init early_ecc(char *p)
ae8f1541 155{
2b0d8c25 156 if (memcmp(p, "on", 2) == 0)
ae8f1541 157 ecc_mask = PMD_PROTECTION;
2b0d8c25 158 else if (memcmp(p, "off", 3) == 0)
ae8f1541 159 ecc_mask = 0;
2b0d8c25 160 return 0;
ae8f1541 161}
2b0d8c25 162early_param("ecc", early_ecc);
ae8f1541
RK
163
164static int __init noalign_setup(char *__unused)
165{
166 cr_alignment &= ~CR_A;
167 cr_no_alignment &= ~CR_A;
168 set_cr(cr_alignment);
169 return 1;
170}
171__setup("noalign", noalign_setup);
172
255d1f86
RK
173#ifndef CONFIG_SMP
174void adjust_cr(unsigned long mask, unsigned long set)
175{
176 unsigned long flags;
177
178 mask &= ~CR_A;
179
180 set &= mask;
181
182 local_irq_save(flags);
183
184 cr_no_alignment = (cr_no_alignment & ~mask) | set;
185 cr_alignment = (cr_alignment & ~mask) | set;
186
187 set_cr((get_cr() & ~mask) | set);
188
189 local_irq_restore(flags);
190}
191#endif
192
0af92bef 193#define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
b1cce6b1 194#define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
0af92bef 195
b29e9f5e 196static struct mem_type mem_types[] = {
0af92bef 197 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
bb30f36f
RK
198 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
199 L_PTE_SHARED,
0af92bef 200 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 201 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
0af92bef
RK
202 .domain = DOMAIN_IO,
203 },
204 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
bb30f36f 205 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
0af92bef 206 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 207 .prot_sect = PROT_SECT_DEVICE,
0af92bef
RK
208 .domain = DOMAIN_IO,
209 },
210 [MT_DEVICE_CACHED] = { /* ioremap_cached */
bb30f36f 211 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
0af92bef
RK
212 .prot_l1 = PMD_TYPE_TABLE,
213 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
214 .domain = DOMAIN_IO,
215 },
1ad77a87 216 [MT_DEVICE_WC] = { /* ioremap_wc */
bb30f36f 217 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
0af92bef 218 .prot_l1 = PMD_TYPE_TABLE,
b1cce6b1 219 .prot_sect = PROT_SECT_DEVICE,
0af92bef 220 .domain = DOMAIN_IO,
ae8f1541 221 },
ebb4c658
RK
222 [MT_UNCACHED] = {
223 .prot_pte = PROT_PTE_DEVICE,
224 .prot_l1 = PMD_TYPE_TABLE,
225 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
226 .domain = DOMAIN_IO,
227 },
ae8f1541 228 [MT_CACHECLEAN] = {
9ef79635 229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
ae8f1541
RK
230 .domain = DOMAIN_KERNEL,
231 },
232 [MT_MINICLEAN] = {
9ef79635 233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
ae8f1541
RK
234 .domain = DOMAIN_KERNEL,
235 },
236 [MT_LOW_VECTORS] = {
237 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
238 L_PTE_EXEC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .domain = DOMAIN_USER,
241 },
242 [MT_HIGH_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_USER | L_PTE_EXEC,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_MEMORY] = {
f1a2481c 249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
7f58217b 250 L_PTE_WRITE | L_PTE_EXEC,
f1a2481c 251 .prot_l1 = PMD_TYPE_TABLE,
9ef79635 252 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
ae8f1541
RK
253 .domain = DOMAIN_KERNEL,
254 },
255 [MT_ROM] = {
9ef79635 256 .prot_sect = PMD_TYPE_SECT,
ae8f1541
RK
257 .domain = DOMAIN_KERNEL,
258 },
e4707dd3 259 [MT_MEMORY_NONCACHED] = {
f1a2481c 260 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
7f58217b 261 L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
f1a2481c 262 .prot_l1 = PMD_TYPE_TABLE,
e4707dd3
PW
263 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
264 .domain = DOMAIN_KERNEL,
265 },
cb9d7707 266 [MT_MEMORY_DTCM] = {
f444fce3
LW
267 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
268 L_PTE_WRITE,
269 .prot_l1 = PMD_TYPE_TABLE,
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 .domain = DOMAIN_KERNEL,
cb9d7707
LW
272 },
273 [MT_MEMORY_ITCM] = {
274 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
f444fce3 275 L_PTE_WRITE | L_PTE_EXEC,
cb9d7707 276 .prot_l1 = PMD_TYPE_TABLE,
f444fce3 277 .domain = DOMAIN_KERNEL,
cb9d7707 278 },
ae8f1541
RK
279};
280
b29e9f5e
RK
281const struct mem_type *get_mem_type(unsigned int type)
282{
283 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
284}
69d3a84a 285EXPORT_SYMBOL(get_mem_type);
b29e9f5e 286
ae8f1541
RK
287/*
288 * Adjust the PMD section entries according to the CPU in use.
289 */
290static void __init build_mem_type_table(void)
291{
292 struct cachepolicy *cp;
293 unsigned int cr = get_cr();
bb30f36f 294 unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
ae8f1541
RK
295 int cpu_arch = cpu_architecture();
296 int i;
297
11179d8c 298 if (cpu_arch < CPU_ARCH_ARMv6) {
ae8f1541 299#if defined(CONFIG_CPU_DCACHE_DISABLE)
11179d8c
CM
300 if (cachepolicy > CPOLICY_BUFFERED)
301 cachepolicy = CPOLICY_BUFFERED;
ae8f1541 302#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
11179d8c
CM
303 if (cachepolicy > CPOLICY_WRITETHROUGH)
304 cachepolicy = CPOLICY_WRITETHROUGH;
ae8f1541 305#endif
11179d8c 306 }
ae8f1541
RK
307 if (cpu_arch < CPU_ARCH_ARMv5) {
308 if (cachepolicy >= CPOLICY_WRITEALLOC)
309 cachepolicy = CPOLICY_WRITEBACK;
310 ecc_mask = 0;
311 }
f00ec48f
RK
312 if (is_smp())
313 cachepolicy = CPOLICY_WRITEALLOC;
ae8f1541 314
1ad77a87 315 /*
b1cce6b1
RK
316 * Strip out features not present on earlier architectures.
317 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
318 * without extended page tables don't have the 'Shared' bit.
1ad77a87 319 */
b1cce6b1
RK
320 if (cpu_arch < CPU_ARCH_ARMv5)
321 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
322 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
323 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
324 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
325 mem_types[i].prot_sect &= ~PMD_SECT_S;
ae8f1541
RK
326
327 /*
b1cce6b1
RK
328 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
329 * "update-able on write" bit on ARM610). However, Xscale and
330 * Xscale3 require this bit to be cleared.
ae8f1541 331 */
b1cce6b1 332 if (cpu_is_xscale() || cpu_is_xsc3()) {
9ef79635 333 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541 334 mem_types[i].prot_sect &= ~PMD_BIT4;
9ef79635
RK
335 mem_types[i].prot_l1 &= ~PMD_BIT4;
336 }
337 } else if (cpu_arch < CPU_ARCH_ARMv6) {
338 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
ae8f1541
RK
339 if (mem_types[i].prot_l1)
340 mem_types[i].prot_l1 |= PMD_BIT4;
9ef79635
RK
341 if (mem_types[i].prot_sect)
342 mem_types[i].prot_sect |= PMD_BIT4;
343 }
344 }
ae8f1541 345
b1cce6b1
RK
346 /*
347 * Mark the device areas according to the CPU/architecture.
348 */
349 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
350 if (!cpu_is_xsc3()) {
351 /*
352 * Mark device regions on ARMv6+ as execute-never
353 * to prevent speculative instruction fetches.
354 */
355 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
356 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
357 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
358 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
359 }
360 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
361 /*
362 * For ARMv7 with TEX remapping,
363 * - shared device is SXCB=1100
364 * - nonshared device is SXCB=0100
365 * - write combine device mem is SXCB=0001
366 * (Uncached Normal memory)
367 */
368 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
369 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
370 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
371 } else if (cpu_is_xsc3()) {
372 /*
373 * For Xscale3,
374 * - shared device is TEXCB=00101
375 * - nonshared device is TEXCB=01000
376 * - write combine device mem is TEXCB=00100
377 * (Inner/Outer Uncacheable in xsc3 parlance)
378 */
379 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
380 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
381 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
382 } else {
383 /*
384 * For ARMv6 and ARMv7 without TEX remapping,
385 * - shared device is TEXCB=00001
386 * - nonshared device is TEXCB=01000
387 * - write combine device mem is TEXCB=00100
388 * (Uncached Normal in ARMv6 parlance).
389 */
390 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
391 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
392 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
393 }
394 } else {
395 /*
396 * On others, write combining is "Uncached/Buffered"
397 */
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
399 }
400
401 /*
402 * Now deal with the memory-type mappings
403 */
ae8f1541 404 cp = &cache_policies[cachepolicy];
bb30f36f
RK
405 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
406
bb30f36f
RK
407 /*
408 * Only use write-through for non-SMP systems
409 */
f00ec48f 410 if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
bb30f36f 411 vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
ae8f1541
RK
412
413 /*
414 * Enable CPU-specific coherency if supported.
415 * (Only available on XSC3 at the moment.)
416 */
f1a2481c 417 if (arch_is_coherent() && cpu_is_xsc3()) {
b1cce6b1 418 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
f1a2481c
SS
419 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
420 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
421 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
422 }
ae8f1541
RK
423 /*
424 * ARMv6 and above have extended page tables.
425 */
426 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
ae8f1541
RK
427 /*
428 * Mark cache clean areas and XIP ROM read only
429 * from SVC mode and no access from userspace.
430 */
431 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
432 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
433 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
434
f00ec48f
RK
435 if (is_smp()) {
436 /*
437 * Mark memory with the "shared" attribute
438 * for SMP systems
439 */
440 user_pgprot |= L_PTE_SHARED;
441 kern_pgprot |= L_PTE_SHARED;
442 vecs_pgprot |= L_PTE_SHARED;
443 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
444 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
445 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
446 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
447 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
448 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
449 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
450 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
451 }
ae8f1541
RK
452 }
453
e4707dd3
PW
454 /*
455 * Non-cacheable Normal - intended for memory areas that must
456 * not cause dirty cache line writebacks when used
457 */
458 if (cpu_arch >= CPU_ARCH_ARMv6) {
459 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
460 /* Non-cacheable Normal is XCB = 001 */
461 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
462 PMD_SECT_BUFFERED;
463 } else {
464 /* For both ARMv6 and non-TEX-remapping ARMv7 */
465 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
466 PMD_SECT_TEX(1);
467 }
468 } else {
469 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
470 }
471
ae8f1541
RK
472 for (i = 0; i < 16; i++) {
473 unsigned long v = pgprot_val(protection_map[i]);
bb30f36f 474 protection_map[i] = __pgprot(v | user_pgprot);
ae8f1541
RK
475 }
476
bb30f36f
RK
477 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
478 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
ae8f1541 479
44b18693 480 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
ae8f1541 481 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
6dc995a3 482 L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
ae8f1541
RK
483
484 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
485 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
486 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
f1a2481c
SS
487 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
488 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
ae8f1541
RK
489 mem_types[MT_ROM].prot_sect |= cp->pmd;
490
491 switch (cp->pmd) {
492 case PMD_SECT_WT:
493 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
494 break;
495 case PMD_SECT_WB:
496 case PMD_SECT_WBWA:
497 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
498 break;
499 }
500 printk("Memory policy: ECC %sabled, Data cache %s\n",
501 ecc_mask ? "en" : "dis", cp->policy);
2497f0a8
RK
502
503 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
504 struct mem_type *t = &mem_types[i];
505 if (t->prot_l1)
506 t->prot_l1 |= PMD_DOMAIN(t->domain);
507 if (t->prot_sect)
508 t->prot_sect |= PMD_DOMAIN(t->domain);
509 }
ae8f1541
RK
510}
511
d907387c
CM
512#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
513pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
514 unsigned long size, pgprot_t vma_prot)
515{
516 if (!pfn_valid(pfn))
517 return pgprot_noncached(vma_prot);
518 else if (file->f_flags & O_SYNC)
519 return pgprot_writecombine(vma_prot);
520 return vma_prot;
521}
522EXPORT_SYMBOL(phys_mem_access_prot);
523#endif
524
ae8f1541
RK
525#define vectors_base() (vectors_high() ? 0xffff0000 : 0)
526
3abe9d33
RK
527static void __init *early_alloc(unsigned long sz)
528{
2778f620
RK
529 void *ptr = __va(memblock_alloc(sz, sz));
530 memset(ptr, 0, sz);
531 return ptr;
3abe9d33
RK
532}
533
4bb2e27d 534static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
ae8f1541 535{
24e6c699 536 if (pmd_none(*pmd)) {
4bb2e27d
RK
537 pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
538 __pmd_populate(pmd, __pa(pte) | prot);
24e6c699 539 }
4bb2e27d
RK
540 BUG_ON(pmd_bad(*pmd));
541 return pte_offset_kernel(pmd, addr);
542}
ae8f1541 543
4bb2e27d
RK
544static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
545 unsigned long end, unsigned long pfn,
546 const struct mem_type *type)
547{
548 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
24e6c699 549 do {
40d192b6 550 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
24e6c699
RK
551 pfn++;
552 } while (pte++, addr += PAGE_SIZE, addr != end);
ae8f1541
RK
553}
554
24e6c699
RK
555static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
556 unsigned long end, unsigned long phys,
557 const struct mem_type *type)
ae8f1541 558{
24e6c699 559 pmd_t *pmd = pmd_offset(pgd, addr);
ae8f1541 560
24e6c699
RK
561 /*
562 * Try a section mapping - end, addr and phys must all be aligned
563 * to a section boundary. Note that PMDs refer to the individual
564 * L1 entries, whereas PGDs refer to a group of L1 entries making
565 * up one logical pointer to an L2 table.
566 */
567 if (((addr | end | phys) & ~SECTION_MASK) == 0) {
568 pmd_t *p = pmd;
ae8f1541 569
24e6c699
RK
570 if (addr & SECTION_SIZE)
571 pmd++;
572
573 do {
574 *pmd = __pmd(phys | type->prot_sect);
575 phys += SECTION_SIZE;
576 } while (pmd++, addr += SECTION_SIZE, addr != end);
ae8f1541 577
24e6c699
RK
578 flush_pmd_entry(p);
579 } else {
580 /*
581 * No need to loop; pte's aren't interested in the
582 * individual L1 entries.
583 */
584 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
585 }
ae8f1541
RK
586}
587
4a56c1e4
RK
588static void __init create_36bit_mapping(struct map_desc *md,
589 const struct mem_type *type)
590{
591 unsigned long phys, addr, length, end;
592 pgd_t *pgd;
593
594 addr = md->virtual;
595 phys = (unsigned long)__pfn_to_phys(md->pfn);
596 length = PAGE_ALIGN(md->length);
597
598 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
599 printk(KERN_ERR "MM: CPU does not support supersection "
600 "mapping for 0x%08llx at 0x%08lx\n",
601 __pfn_to_phys((u64)md->pfn), addr);
602 return;
603 }
604
605 /* N.B. ARMv6 supersections are only defined to work with domain 0.
606 * Since domain assignments can in fact be arbitrary, the
607 * 'domain == 0' check below is required to insure that ARMv6
608 * supersections are only allocated for domain 0 regardless
609 * of the actual domain assignments in use.
610 */
611 if (type->domain) {
612 printk(KERN_ERR "MM: invalid domain in supersection "
613 "mapping for 0x%08llx at 0x%08lx\n",
614 __pfn_to_phys((u64)md->pfn), addr);
615 return;
616 }
617
618 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
619 printk(KERN_ERR "MM: cannot create mapping for "
620 "0x%08llx at 0x%08lx invalid alignment\n",
621 __pfn_to_phys((u64)md->pfn), addr);
622 return;
623 }
624
625 /*
626 * Shift bits [35:32] of address into bits [23:20] of PMD
627 * (See ARMv6 spec).
628 */
629 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
630
631 pgd = pgd_offset_k(addr);
632 end = addr + length;
633 do {
634 pmd_t *pmd = pmd_offset(pgd, addr);
635 int i;
636
637 for (i = 0; i < 16; i++)
638 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
639
640 addr += SUPERSECTION_SIZE;
641 phys += SUPERSECTION_SIZE;
642 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
643 } while (addr != end);
644}
645
ae8f1541
RK
646/*
647 * Create the page directory entries and any necessary
648 * page tables for the mapping specified by `md'. We
649 * are able to cope here with varying sizes and address
650 * offsets, and we take full advantage of sections and
651 * supersections.
652 */
a2227120 653static void __init create_mapping(struct map_desc *md)
ae8f1541 654{
24e6c699 655 unsigned long phys, addr, length, end;
d5c98176 656 const struct mem_type *type;
24e6c699 657 pgd_t *pgd;
ae8f1541
RK
658
659 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
660 printk(KERN_WARNING "BUG: not creating mapping for "
661 "0x%08llx at 0x%08lx in user region\n",
662 __pfn_to_phys((u64)md->pfn), md->virtual);
663 return;
664 }
665
666 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
667 md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
668 printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
669 "overlaps vmalloc space\n",
670 __pfn_to_phys((u64)md->pfn), md->virtual);
671 }
672
d5c98176 673 type = &mem_types[md->type];
ae8f1541
RK
674
675 /*
676 * Catch 36-bit addresses
677 */
4a56c1e4
RK
678 if (md->pfn >= 0x100000) {
679 create_36bit_mapping(md, type);
680 return;
ae8f1541
RK
681 }
682
7b9c7b4d 683 addr = md->virtual & PAGE_MASK;
24e6c699 684 phys = (unsigned long)__pfn_to_phys(md->pfn);
7b9c7b4d 685 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
ae8f1541 686
24e6c699 687 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
ae8f1541
RK
688 printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
689 "be mapped using pages, ignoring.\n",
24e6c699 690 __pfn_to_phys(md->pfn), addr);
ae8f1541
RK
691 return;
692 }
693
24e6c699
RK
694 pgd = pgd_offset_k(addr);
695 end = addr + length;
696 do {
697 unsigned long next = pgd_addr_end(addr, end);
ae8f1541 698
24e6c699 699 alloc_init_section(pgd, addr, next, phys, type);
ae8f1541 700
24e6c699
RK
701 phys += next - addr;
702 addr = next;
703 } while (pgd++, addr != end);
ae8f1541
RK
704}
705
706/*
707 * Create the architecture specific mappings
708 */
709void __init iotable_init(struct map_desc *io_desc, int nr)
710{
711 int i;
712
713 for (i = 0; i < nr; i++)
714 create_mapping(io_desc + i);
715}
716
79612395 717static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
6c5da7ac
RK
718
719/*
720 * vmalloc=size forces the vmalloc area to be exactly 'size'
721 * bytes. This can be used to increase (or decrease) the vmalloc
722 * area - the default is 128m.
723 */
2b0d8c25 724static int __init early_vmalloc(char *arg)
6c5da7ac 725{
79612395 726 unsigned long vmalloc_reserve = memparse(arg, NULL);
6c5da7ac
RK
727
728 if (vmalloc_reserve < SZ_16M) {
729 vmalloc_reserve = SZ_16M;
730 printk(KERN_WARNING
731 "vmalloc area too small, limiting to %luMB\n",
732 vmalloc_reserve >> 20);
733 }
9210807c
NP
734
735 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
736 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
737 printk(KERN_WARNING
738 "vmalloc area is too big, limiting to %luMB\n",
739 vmalloc_reserve >> 20);
740 }
79612395
RK
741
742 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
2b0d8c25 743 return 0;
6c5da7ac 744}
2b0d8c25 745early_param("vmalloc", early_vmalloc);
6c5da7ac 746
8df65168
RK
747static phys_addr_t lowmem_limit __initdata = 0;
748
4b5f32ce 749static void __init sanity_check_meminfo(void)
60296c71 750{
dde5828f 751 int i, j, highmem = 0;
60296c71 752
8df65168
RK
753 lowmem_limit = __pa(vmalloc_min - 1) + 1;
754 memblock_set_current_limit(lowmem_limit);
2778f620 755
4b5f32ce 756 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
a1bbaec0
NP
757 struct membank *bank = &meminfo.bank[j];
758 *bank = meminfo.bank[i];
60296c71 759
a1bbaec0 760#ifdef CONFIG_HIGHMEM
79612395 761 if (__va(bank->start) > vmalloc_min ||
dde5828f
RK
762 __va(bank->start) < (void *)PAGE_OFFSET)
763 highmem = 1;
764
765 bank->highmem = highmem;
766
a1bbaec0
NP
767 /*
768 * Split those memory banks which are partially overlapping
769 * the vmalloc area greatly simplifying things later.
770 */
79612395
RK
771 if (__va(bank->start) < vmalloc_min &&
772 bank->size > vmalloc_min - __va(bank->start)) {
a1bbaec0
NP
773 if (meminfo.nr_banks >= NR_BANKS) {
774 printk(KERN_CRIT "NR_BANKS too low, "
775 "ignoring high memory\n");
776 } else {
777 memmove(bank + 1, bank,
778 (meminfo.nr_banks - i) * sizeof(*bank));
779 meminfo.nr_banks++;
780 i++;
79612395
RK
781 bank[1].size -= vmalloc_min - __va(bank->start);
782 bank[1].start = __pa(vmalloc_min - 1) + 1;
dde5828f 783 bank[1].highmem = highmem = 1;
a1bbaec0
NP
784 j++;
785 }
79612395 786 bank->size = vmalloc_min - __va(bank->start);
a1bbaec0
NP
787 }
788#else
041d785f
RK
789 bank->highmem = highmem;
790
a1bbaec0
NP
791 /*
792 * Check whether this memory bank would entirely overlap
793 * the vmalloc area.
794 */
79612395 795 if (__va(bank->start) >= vmalloc_min ||
f0bba9f9 796 __va(bank->start) < (void *)PAGE_OFFSET) {
a1bbaec0
NP
797 printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
798 "(vmalloc region overlap).\n",
799 bank->start, bank->start + bank->size - 1);
800 continue;
801 }
60296c71 802
a1bbaec0
NP
803 /*
804 * Check whether this memory bank would partially overlap
805 * the vmalloc area.
806 */
79612395 807 if (__va(bank->start + bank->size) > vmalloc_min ||
a1bbaec0 808 __va(bank->start + bank->size) < __va(bank->start)) {
79612395 809 unsigned long newsize = vmalloc_min - __va(bank->start);
a1bbaec0
NP
810 printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
811 "to -%.8lx (vmalloc region overlap).\n",
812 bank->start, bank->start + bank->size - 1,
813 bank->start + newsize - 1);
814 bank->size = newsize;
815 }
816#endif
817 j++;
60296c71 818 }
e616c591
RK
819#ifdef CONFIG_HIGHMEM
820 if (highmem) {
821 const char *reason = NULL;
822
823 if (cache_is_vipt_aliasing()) {
824 /*
825 * Interactions between kmap and other mappings
826 * make highmem support with aliasing VIPT caches
827 * rather difficult.
828 */
829 reason = "with VIPT aliasing cache";
f00ec48f 830 } else if (is_smp() && tlb_ops_need_broadcast()) {
e616c591
RK
831 /*
832 * kmap_high needs to occasionally flush TLB entries,
833 * however, if the TLB entries need to be broadcast
834 * we may deadlock:
835 * kmap_high(irqs off)->flush_all_zero_pkmaps->
836 * flush_tlb_kernel_range->smp_call_function_many
837 * (must not be called with irqs off)
838 */
839 reason = "without hardware TLB ops broadcasting";
e616c591
RK
840 }
841 if (reason) {
842 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
843 reason);
844 while (j > 0 && meminfo.bank[j - 1].highmem)
845 j--;
846 }
847 }
848#endif
4b5f32ce 849 meminfo.nr_banks = j;
60296c71
LB
850}
851
4b5f32ce 852static inline void prepare_page_table(void)
d111e8f9
RK
853{
854 unsigned long addr;
8df65168 855 phys_addr_t end;
d111e8f9
RK
856
857 /*
858 * Clear out all the mappings below the kernel image.
859 */
ab4f2ee1 860 for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
d111e8f9
RK
861 pmd_clear(pmd_off_k(addr));
862
863#ifdef CONFIG_XIP_KERNEL
864 /* The XIP kernel is mapped in the module area -- skip over it */
37efe642 865 addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
d111e8f9
RK
866#endif
867 for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
868 pmd_clear(pmd_off_k(addr));
869
8df65168
RK
870 /*
871 * Find the end of the first block of lowmem.
872 */
873 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
874 if (end >= lowmem_limit)
875 end = lowmem_limit;
876
d111e8f9
RK
877 /*
878 * Clear out all the kernel space mappings, except for the first
879 * memory bank, up to the end of the vmalloc region.
880 */
8df65168 881 for (addr = __phys_to_virt(end);
d111e8f9
RK
882 addr < VMALLOC_END; addr += PGDIR_SIZE)
883 pmd_clear(pmd_off_k(addr));
884}
885
886/*
2778f620 887 * Reserve the special regions of memory
d111e8f9 888 */
2778f620 889void __init arm_mm_memblock_reserve(void)
d111e8f9 890{
d111e8f9
RK
891 /*
892 * Reserve the page tables. These are already in use,
893 * and can only be in node 0.
894 */
2778f620 895 memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
d111e8f9 896
d111e8f9
RK
897#ifdef CONFIG_SA1111
898 /*
899 * Because of the SA1111 DMA bug, we want to preserve our
900 * precious DMA-able memory...
901 */
2778f620 902 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
d111e8f9 903#endif
d111e8f9
RK
904}
905
906/*
907 * Set up device the mappings. Since we clear out the page tables for all
908 * mappings above VMALLOC_END, we will remove any debug device mappings.
909 * This means you have to be careful how you debug this function, or any
910 * called function. This means you can't use any function or debugging
911 * method which may touch any device, otherwise the kernel _will_ crash.
912 */
913static void __init devicemaps_init(struct machine_desc *mdesc)
914{
915 struct map_desc map;
916 unsigned long addr;
917 void *vectors;
918
919 /*
920 * Allocate the vector page early.
921 */
3abe9d33 922 vectors = early_alloc(PAGE_SIZE);
d111e8f9
RK
923
924 for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
925 pmd_clear(pmd_off_k(addr));
926
927 /*
928 * Map the kernel if it is XIP.
929 * It is always first in the modulearea.
930 */
931#ifdef CONFIG_XIP_KERNEL
932 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
ab4f2ee1 933 map.virtual = MODULES_VADDR;
37efe642 934 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
d111e8f9
RK
935 map.type = MT_ROM;
936 create_mapping(&map);
937#endif
938
939 /*
940 * Map the cache flushing regions.
941 */
942#ifdef FLUSH_BASE
943 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
944 map.virtual = FLUSH_BASE;
945 map.length = SZ_1M;
946 map.type = MT_CACHECLEAN;
947 create_mapping(&map);
948#endif
949#ifdef FLUSH_BASE_MINICACHE
950 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
951 map.virtual = FLUSH_BASE_MINICACHE;
952 map.length = SZ_1M;
953 map.type = MT_MINICLEAN;
954 create_mapping(&map);
955#endif
956
957 /*
958 * Create a mapping for the machine vectors at the high-vectors
959 * location (0xffff0000). If we aren't using high-vectors, also
960 * create a mapping at the low-vectors virtual address.
961 */
962 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
963 map.virtual = 0xffff0000;
964 map.length = PAGE_SIZE;
965 map.type = MT_HIGH_VECTORS;
966 create_mapping(&map);
967
968 if (!vectors_high()) {
969 map.virtual = 0;
970 map.type = MT_LOW_VECTORS;
971 create_mapping(&map);
972 }
973
974 /*
975 * Ask the machine support to map in the statically mapped devices.
976 */
977 if (mdesc->map_io)
978 mdesc->map_io();
979
980 /*
981 * Finally flush the caches and tlb to ensure that we're in a
982 * consistent state wrt the writebuffer. This also ensures that
983 * any write-allocated cache lines in the vector page are written
984 * back. After this point, we can start to touch devices again.
985 */
986 local_flush_tlb_all();
987 flush_cache_all();
988}
989
d73cd428
NP
990static void __init kmap_init(void)
991{
992#ifdef CONFIG_HIGHMEM
4bb2e27d
RK
993 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
994 PKMAP_BASE, _PAGE_KERNEL_TABLE);
d73cd428
NP
995#endif
996}
997
a2227120
RK
998static void __init map_lowmem(void)
999{
8df65168 1000 struct memblock_region *reg;
a2227120
RK
1001
1002 /* Map all the lowmem memory banks. */
8df65168
RK
1003 for_each_memblock(memory, reg) {
1004 phys_addr_t start = reg->base;
1005 phys_addr_t end = start + reg->size;
1006 struct map_desc map;
1007
1008 if (end > lowmem_limit)
1009 end = lowmem_limit;
1010 if (start >= end)
1011 break;
1012
1013 map.pfn = __phys_to_pfn(start);
1014 map.virtual = __phys_to_virt(start);
1015 map.length = end - start;
1016 map.type = MT_MEMORY;
a2227120 1017
8df65168 1018 create_mapping(&map);
a2227120
RK
1019 }
1020}
1021
d111e8f9
RK
1022/*
1023 * paging_init() sets up the page tables, initialises the zone memory
1024 * maps, and sets up the zero page, bad page and bad page tables.
1025 */
4b5f32ce 1026void __init paging_init(struct machine_desc *mdesc)
d111e8f9
RK
1027{
1028 void *zero_page;
1029
1030 build_mem_type_table();
4b5f32ce
NP
1031 sanity_check_meminfo();
1032 prepare_page_table();
a2227120 1033 map_lowmem();
d111e8f9 1034 devicemaps_init(mdesc);
d73cd428 1035 kmap_init();
d111e8f9
RK
1036
1037 top_pmd = pmd_off_k(0xffff0000);
1038
3abe9d33
RK
1039 /* allocate the zero page. */
1040 zero_page = early_alloc(PAGE_SIZE);
2778f620 1041
8d717a52 1042 bootmem_init();
2778f620 1043
d111e8f9 1044 empty_zero_page = virt_to_page(zero_page);
421fe93c 1045 __flush_dcache_page(NULL, empty_zero_page);
d111e8f9 1046}
ae8f1541
RK
1047
1048/*
1049 * In order to soft-boot, we need to insert a 1:1 mapping in place of
1050 * the user-mode pages. This will then ensure that we have predictable
1051 * results when turning the mmu off
1052 */
1053void setup_mm_for_reboot(char mode)
1054{
1055 unsigned long base_pmdval;
1056 pgd_t *pgd;
1057 int i;
1058
3f2d4f56
MW
1059 /*
1060 * We need to access to user-mode page tables here. For kernel threads
1061 * we don't have any user-mode mappings so we use the context that we
1062 * "borrowed".
1063 */
1064 pgd = current->active_mm->pgd;
ae8f1541
RK
1065
1066 base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
1067 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
1068 base_pmdval |= PMD_BIT4;
1069
1070 for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
1071 unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
1072 pmd_t *pmd;
1073
1074 pmd = pmd_off(pgd, i << PGDIR_SHIFT);
1075 pmd[0] = __pmd(pmdval);
1076 pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
1077 flush_pmd_entry(pmd);
1078 }
ad3e6c0b
TL
1079
1080 local_flush_tlb_all();
ae8f1541 1081}