]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/mm/dma-mapping.c
ARM: dma-mapping: fix nommu dma_alloc_coherent()
[net-next-2.6.git] / arch / arm / mm / dma-mapping.c
CommitLineData
1da177e4 1/*
0ddbccd1 2 * linux/arch/arm/mm/dma-mapping.c
1da177e4
LT
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/module.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/errno.h>
16#include <linux/list.h>
17#include <linux/init.h>
18#include <linux/device.h>
19#include <linux/dma-mapping.h>
20
23759dc6 21#include <asm/memory.h>
43377453 22#include <asm/highmem.h>
1da177e4 23#include <asm/cacheflush.h>
1da177e4 24#include <asm/tlbflush.h>
37134cd5
KH
25#include <asm/sizes.h>
26
27/* Sanity check size */
28#if (CONSISTENT_DMA_SIZE % SZ_2M)
29#error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
30#endif
1da177e4 31
1da177e4 32#define CONSISTENT_END (0xffe00000)
37134cd5
KH
33#define CONSISTENT_BASE (CONSISTENT_END - CONSISTENT_DMA_SIZE)
34
1da177e4 35#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
37134cd5
KH
36#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PGDIR_SHIFT)
37#define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PGDIR_SHIFT)
38
ab6494f0
CM
39static u64 get_coherent_dma_mask(struct device *dev)
40{
41 u64 mask = ISA_DMA_THRESHOLD;
42
43 if (dev) {
44 mask = dev->coherent_dma_mask;
45
46 /*
47 * Sanity check the DMA mask - it must be non-zero, and
48 * must be able to be satisfied by a DMA allocation.
49 */
50 if (mask == 0) {
51 dev_warn(dev, "coherent DMA mask is unset\n");
52 return 0;
53 }
54
55 if ((~mask) & ISA_DMA_THRESHOLD) {
56 dev_warn(dev, "coherent DMA mask %#llx is smaller "
57 "than system GFP_DMA mask %#llx\n",
58 mask, (unsigned long long)ISA_DMA_THRESHOLD);
59 return 0;
60 }
61 }
1da177e4 62
ab6494f0
CM
63 return mask;
64}
65
7a9a32a9
RK
66/*
67 * Allocate a DMA buffer for 'dev' of size 'size' using the
68 * specified gfp mask. Note that 'size' must be page aligned.
69 */
70static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
71{
72 unsigned long order = get_order(size);
73 struct page *page, *p, *e;
74 void *ptr;
75 u64 mask = get_coherent_dma_mask(dev);
76
77#ifdef CONFIG_DMA_API_DEBUG
78 u64 limit = (mask + 1) & ~mask;
79 if (limit && size >= limit) {
80 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
81 size, mask);
82 return NULL;
83 }
84#endif
85
86 if (!mask)
87 return NULL;
88
89 if (mask < 0xffffffffULL)
90 gfp |= GFP_DMA;
91
92 page = alloc_pages(gfp, order);
93 if (!page)
94 return NULL;
95
96 /*
97 * Now split the huge page and free the excess pages
98 */
99 split_page(page, order);
100 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
101 __free_page(p);
102
103 /*
104 * Ensure that the allocated pages are zeroed, and that any data
105 * lurking in the kernel direct-mapped region is invalidated.
106 */
107 ptr = page_address(page);
108 memset(ptr, 0, size);
109 dmac_flush_range(ptr, ptr + size);
110 outer_flush_range(__pa(ptr), __pa(ptr) + size);
111
112 return page;
113}
114
115/*
116 * Free a DMA buffer. 'size' must be page aligned.
117 */
118static void __dma_free_buffer(struct page *page, size_t size)
119{
120 struct page *e = page + (size >> PAGE_SHIFT);
121
122 while (page < e) {
123 __free_page(page);
124 page++;
125 }
126}
127
ab6494f0 128#ifdef CONFIG_MMU
1da177e4 129/*
37134cd5 130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
1da177e4 131 */
37134cd5 132static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
1da177e4 133
13ccf3ad 134#include "vmregion.h"
1da177e4 135
13ccf3ad
RK
136static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
1da177e4
LT
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
141};
142
1da177e4
LT
143#ifdef CONFIG_HUGETLB_PAGE
144#error ARM Coherent DMA allocator does not (yet) support huge TLB
145#endif
146
147static void *
f9e3214a 148__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
1da177e4
LT
149 pgprot_t prot)
150{
151 struct page *page;
13ccf3ad 152 struct arm_vmregion *c;
1da177e4 153
37134cd5 154 if (!consistent_pte[0]) {
1da177e4
LT
155 printk(KERN_ERR "%s: not initialised\n", __func__);
156 dump_stack();
157 return NULL;
158 }
159
1da177e4 160 size = PAGE_ALIGN(size);
1da177e4 161
7a9a32a9 162 page = __dma_alloc_buffer(dev, size, gfp);
1da177e4
LT
163 if (!page)
164 goto no_page;
165
1da177e4
LT
166 /*
167 * Allocate a virtual address in the consistent mapping region.
168 */
13ccf3ad 169 c = arm_vmregion_alloc(&consistent_head, size,
1da177e4
LT
170 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
171 if (c) {
37134cd5 172 pte_t *pte;
37134cd5
KH
173 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
174 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1da177e4 175
37134cd5 176 pte = consistent_pte[idx] + off;
1da177e4
LT
177 c->vm_pages = page;
178
179 /*
180 * Set the "dma handle"
181 */
182 *handle = page_to_dma(dev, page);
183
184 do {
185 BUG_ON(!pte_none(*pte));
186
1da177e4
LT
187 /*
188 * x86 does not mark the pages reserved...
189 */
190 SetPageReserved(page);
ad1ae2fe 191 set_pte_ext(pte, mk_pte(page, prot), 0);
1da177e4
LT
192 page++;
193 pte++;
37134cd5
KH
194 off++;
195 if (off >= PTRS_PER_PTE) {
196 off = 0;
197 pte = consistent_pte[++idx];
198 }
1da177e4
LT
199 } while (size -= PAGE_SIZE);
200
1da177e4
LT
201 return (void *)c->vm_start;
202 }
203
204 if (page)
7a9a32a9 205 __dma_free_buffer(page, size);
1da177e4
LT
206 no_page:
207 *handle = ~0;
208 return NULL;
209}
ab6494f0
CM
210#else /* !CONFIG_MMU */
211static void *
212__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
213 pgprot_t prot)
214{
04da5694 215 struct page *page;
ab6494f0 216
04da5694
RK
217 *handle = ~0;
218 size = PAGE_ALIGN(size);
ab6494f0 219
04da5694
RK
220 page = __dma_alloc_buffer(dev, size, gfp);
221 if (!page)
222 return NULL;
ab6494f0 223
04da5694
RK
224 *handle = page_to_dma(dev, page);
225 return page_address(page);
ab6494f0
CM
226}
227#endif /* CONFIG_MMU */
1da177e4
LT
228
229/*
230 * Allocate DMA-coherent memory space and return both the kernel remapped
231 * virtual and bus address for that space.
232 */
233void *
f9e3214a 234dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4 235{
1fe53268
DES
236 void *memory;
237
238 if (dma_alloc_from_coherent(dev, size, handle, &memory))
239 return memory;
240
23759dc6 241 if (arch_is_coherent()) {
3e82d012 242 struct page *page;
23759dc6 243
3e82d012
RK
244 page = __dma_alloc_buffer(dev, PAGE_ALIGN(size), gfp);
245 if (!page) {
246 *handle = ~0;
23759dc6 247 return NULL;
3e82d012 248 }
23759dc6 249
3e82d012
RK
250 *handle = page_to_dma(dev, page);
251 return page_address(page);
23759dc6
LB
252 }
253
1da177e4
LT
254 return __dma_alloc(dev, size, handle, gfp,
255 pgprot_noncached(pgprot_kernel));
256}
257EXPORT_SYMBOL(dma_alloc_coherent);
258
259/*
260 * Allocate a writecombining region, in much the same way as
261 * dma_alloc_coherent above.
262 */
263void *
f9e3214a 264dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
1da177e4
LT
265{
266 return __dma_alloc(dev, size, handle, gfp,
267 pgprot_writecombine(pgprot_kernel));
268}
269EXPORT_SYMBOL(dma_alloc_writecombine);
270
271static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
272 void *cpu_addr, dma_addr_t dma_addr, size_t size)
273{
ab6494f0
CM
274 int ret = -ENXIO;
275#ifdef CONFIG_MMU
13ccf3ad
RK
276 unsigned long user_size, kern_size;
277 struct arm_vmregion *c;
1da177e4
LT
278
279 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
280
13ccf3ad 281 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
282 if (c) {
283 unsigned long off = vma->vm_pgoff;
284
285 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
286
287 if (off < kern_size &&
288 user_size <= (kern_size - off)) {
1da177e4
LT
289 ret = remap_pfn_range(vma, vma->vm_start,
290 page_to_pfn(c->vm_pages) + off,
291 user_size << PAGE_SHIFT,
292 vma->vm_page_prot);
293 }
294 }
ab6494f0 295#endif /* CONFIG_MMU */
1da177e4
LT
296
297 return ret;
298}
299
300int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
301 void *cpu_addr, dma_addr_t dma_addr, size_t size)
302{
303 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
304 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
305}
306EXPORT_SYMBOL(dma_mmap_coherent);
307
308int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
309 void *cpu_addr, dma_addr_t dma_addr, size_t size)
310{
311 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
312 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
313}
314EXPORT_SYMBOL(dma_mmap_writecombine);
315
316/*
317 * free a page as defined by the above mapping.
5edf71ae 318 * Must not be called with IRQs disabled.
1da177e4 319 */
ab6494f0 320#ifdef CONFIG_MMU
1da177e4
LT
321void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
322{
13ccf3ad
RK
323 struct arm_vmregion *c;
324 unsigned long addr;
1da177e4 325 pte_t *ptep;
37134cd5
KH
326 int idx;
327 u32 off;
1da177e4 328
5edf71ae
RK
329 WARN_ON(irqs_disabled());
330
1fe53268
DES
331 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
332 return;
333
3e82d012
RK
334 size = PAGE_ALIGN(size);
335
23759dc6 336 if (arch_is_coherent()) {
3e82d012 337 __dma_free_buffer(dma_to_page(dev, handle), size);
23759dc6
LB
338 return;
339 }
340
13ccf3ad 341 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
1da177e4
LT
342 if (!c)
343 goto no_area;
344
345 if ((c->vm_end - c->vm_start) != size) {
346 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
347 __func__, c->vm_end - c->vm_start, size);
348 dump_stack();
349 size = c->vm_end - c->vm_start;
350 }
351
37134cd5
KH
352 idx = CONSISTENT_PTE_INDEX(c->vm_start);
353 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
354 ptep = consistent_pte[idx] + off;
1da177e4
LT
355 addr = c->vm_start;
356 do {
357 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
358 unsigned long pfn;
359
360 ptep++;
361 addr += PAGE_SIZE;
37134cd5
KH
362 off++;
363 if (off >= PTRS_PER_PTE) {
364 off = 0;
365 ptep = consistent_pte[++idx];
366 }
1da177e4
LT
367
368 if (!pte_none(pte) && pte_present(pte)) {
369 pfn = pte_pfn(pte);
370
371 if (pfn_valid(pfn)) {
372 struct page *page = pfn_to_page(pfn);
373
374 /*
375 * x86 does not mark the pages reserved...
376 */
377 ClearPageReserved(page);
1da177e4
LT
378 continue;
379 }
380 }
1da177e4
LT
381 printk(KERN_CRIT "%s: bad page in kernel page table\n",
382 __func__);
383 } while (size -= PAGE_SIZE);
384
385 flush_tlb_kernel_range(c->vm_start, c->vm_end);
386
13ccf3ad 387 arm_vmregion_free(&consistent_head, c);
7a9a32a9
RK
388
389 __dma_free_buffer(dma_to_page(dev, handle), size);
1da177e4
LT
390 return;
391
392 no_area:
1da177e4
LT
393 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
394 __func__, cpu_addr);
395 dump_stack();
396}
ab6494f0
CM
397#else /* !CONFIG_MMU */
398void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
399{
400 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
401 return;
04da5694 402 __dma_free_buffer(dma_to_page(dev, handle), PAGE_ALIGN(size));
ab6494f0
CM
403}
404#endif /* CONFIG_MMU */
1da177e4
LT
405EXPORT_SYMBOL(dma_free_coherent);
406
407/*
408 * Initialise the consistent memory allocation.
409 */
410static int __init consistent_init(void)
411{
ab6494f0
CM
412 int ret = 0;
413#ifdef CONFIG_MMU
1da177e4
LT
414 pgd_t *pgd;
415 pmd_t *pmd;
416 pte_t *pte;
ab6494f0 417 int i = 0;
37134cd5 418 u32 base = CONSISTENT_BASE;
1da177e4 419
1da177e4 420 do {
37134cd5
KH
421 pgd = pgd_offset(&init_mm, base);
422 pmd = pmd_alloc(&init_mm, pgd, base);
1da177e4
LT
423 if (!pmd) {
424 printk(KERN_ERR "%s: no pmd tables\n", __func__);
425 ret = -ENOMEM;
426 break;
427 }
428 WARN_ON(!pmd_none(*pmd));
429
37134cd5 430 pte = pte_alloc_kernel(pmd, base);
1da177e4
LT
431 if (!pte) {
432 printk(KERN_ERR "%s: no pte tables\n", __func__);
433 ret = -ENOMEM;
434 break;
435 }
436
37134cd5
KH
437 consistent_pte[i++] = pte;
438 base += (1 << PGDIR_SHIFT);
439 } while (base < CONSISTENT_END);
ab6494f0 440#endif /* !CONFIG_MMU */
1da177e4 441
1da177e4
LT
442 return ret;
443}
444
445core_initcall(consistent_init);
446
447/*
448 * Make an area consistent for devices.
105ef9a0
DW
449 * Note: Drivers should NOT use this function directly, as it will break
450 * platforms with CONFIG_DMABOUNCE.
451 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
1da177e4 452 */
84aa462e 453void dma_cache_maint(const void *start, size_t size, int direction)
1da177e4 454{
1522ac3e
RK
455 void (*inner_op)(const void *, const void *);
456 void (*outer_op)(unsigned long, unsigned long);
1da177e4 457
1522ac3e 458 BUG_ON(!virt_addr_valid(start) || !virt_addr_valid(start + size - 1));
953233dc 459
1da177e4
LT
460 switch (direction) {
461 case DMA_FROM_DEVICE: /* invalidate only */
1522ac3e
RK
462 inner_op = dmac_inv_range;
463 outer_op = outer_inv_range;
1da177e4
LT
464 break;
465 case DMA_TO_DEVICE: /* writeback only */
1522ac3e
RK
466 inner_op = dmac_clean_range;
467 outer_op = outer_clean_range;
1da177e4
LT
468 break;
469 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
1522ac3e
RK
470 inner_op = dmac_flush_range;
471 outer_op = outer_flush_range;
1da177e4
LT
472 break;
473 default:
474 BUG();
475 }
1522ac3e
RK
476
477 inner_op(start, start + size);
478 outer_op(__pa(start), __pa(start) + size);
1da177e4 479}
84aa462e 480EXPORT_SYMBOL(dma_cache_maint);
afd1a321 481
43377453
NP
482static void dma_cache_maint_contiguous(struct page *page, unsigned long offset,
483 size_t size, int direction)
484{
485 void *vaddr;
486 unsigned long paddr;
487 void (*inner_op)(const void *, const void *);
488 void (*outer_op)(unsigned long, unsigned long);
489
490 switch (direction) {
491 case DMA_FROM_DEVICE: /* invalidate only */
492 inner_op = dmac_inv_range;
493 outer_op = outer_inv_range;
494 break;
495 case DMA_TO_DEVICE: /* writeback only */
496 inner_op = dmac_clean_range;
497 outer_op = outer_clean_range;
498 break;
499 case DMA_BIDIRECTIONAL: /* writeback and invalidate */
500 inner_op = dmac_flush_range;
501 outer_op = outer_flush_range;
502 break;
503 default:
504 BUG();
505 }
506
507 if (!PageHighMem(page)) {
508 vaddr = page_address(page) + offset;
509 inner_op(vaddr, vaddr + size);
510 } else {
511 vaddr = kmap_high_get(page);
512 if (vaddr) {
513 vaddr += offset;
514 inner_op(vaddr, vaddr + size);
515 kunmap_high(page);
516 }
517 }
518
519 paddr = page_to_phys(page) + offset;
520 outer_op(paddr, paddr + size);
521}
522
523void dma_cache_maint_page(struct page *page, unsigned long offset,
524 size_t size, int dir)
525{
526 /*
527 * A single sg entry may refer to multiple physically contiguous
528 * pages. But we still need to process highmem pages individually.
529 * If highmem is not configured then the bulk of this loop gets
530 * optimized out.
531 */
532 size_t left = size;
533 do {
534 size_t len = left;
535 if (PageHighMem(page) && len + offset > PAGE_SIZE) {
536 if (offset >= PAGE_SIZE) {
537 page += offset / PAGE_SIZE;
538 offset %= PAGE_SIZE;
539 }
540 len = PAGE_SIZE - offset;
541 }
542 dma_cache_maint_contiguous(page, offset, len, dir);
543 offset = 0;
544 page++;
545 left -= len;
546 } while (left);
547}
548EXPORT_SYMBOL(dma_cache_maint_page);
549
afd1a321
RK
550/**
551 * dma_map_sg - map a set of SG buffers for streaming mode DMA
552 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
553 * @sg: list of buffers
554 * @nents: number of buffers to map
555 * @dir: DMA transfer direction
556 *
557 * Map a set of buffers described by scatterlist in streaming mode for DMA.
558 * This is the scatter-gather version of the dma_map_single interface.
559 * Here the scatter gather list elements are each tagged with the
560 * appropriate dma address and length. They are obtained via
561 * sg_dma_{address,length}.
562 *
563 * Device ownership issues as mentioned for dma_map_single are the same
564 * here.
565 */
566int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
567 enum dma_data_direction dir)
568{
569 struct scatterlist *s;
01135d92 570 int i, j;
afd1a321
RK
571
572 for_each_sg(sg, s, nents, i) {
01135d92
RK
573 s->dma_address = dma_map_page(dev, sg_page(s), s->offset,
574 s->length, dir);
575 if (dma_mapping_error(dev, s->dma_address))
576 goto bad_mapping;
afd1a321 577 }
afd1a321 578 return nents;
01135d92
RK
579
580 bad_mapping:
581 for_each_sg(sg, s, i, j)
582 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
583 return 0;
afd1a321
RK
584}
585EXPORT_SYMBOL(dma_map_sg);
586
587/**
588 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
589 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
590 * @sg: list of buffers
591 * @nents: number of buffers to unmap (returned from dma_map_sg)
592 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
593 *
594 * Unmap a set of streaming mode DMA translations. Again, CPU access
595 * rules concerning calls here are the same as for dma_unmap_single().
596 */
597void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
598 enum dma_data_direction dir)
599{
01135d92
RK
600 struct scatterlist *s;
601 int i;
602
603 for_each_sg(sg, s, nents, i)
604 dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
afd1a321
RK
605}
606EXPORT_SYMBOL(dma_unmap_sg);
607
608/**
609 * dma_sync_sg_for_cpu
610 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
611 * @sg: list of buffers
612 * @nents: number of buffers to map (returned from dma_map_sg)
613 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
614 */
615void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
616 int nents, enum dma_data_direction dir)
617{
618 struct scatterlist *s;
619 int i;
620
621 for_each_sg(sg, s, nents, i) {
309dbbab
RK
622 dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
623 sg_dma_len(s), dir);
afd1a321
RK
624 }
625}
626EXPORT_SYMBOL(dma_sync_sg_for_cpu);
627
628/**
629 * dma_sync_sg_for_device
630 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
631 * @sg: list of buffers
632 * @nents: number of buffers to map (returned from dma_map_sg)
633 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
634 */
635void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
636 int nents, enum dma_data_direction dir)
637{
638 struct scatterlist *s;
639 int i;
640
641 for_each_sg(sg, s, nents, i) {
2638b4db
RK
642 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
643 sg_dma_len(s), dir))
644 continue;
645
afd1a321 646 if (!arch_is_coherent())
43377453
NP
647 dma_cache_maint_page(sg_page(s), s->offset,
648 s->length, dir);
afd1a321
RK
649 }
650}
651EXPORT_SYMBOL(dma_sync_sg_for_device);