]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/arm/kernel/kprobes-decode.c
Merge branch 'fix/hda' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[net-next-2.6.git] / arch / arm / kernel / kprobes-decode.c
CommitLineData
35aa1df4
QB
1/*
2 * arch/arm/kernel/kprobes-decode.c
3 *
4 * Copyright (C) 2006, 2007 Motorola Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
14 */
15
16/*
17 * We do not have hardware single-stepping on ARM, This
18 * effort is further complicated by the ARM not having a
19 * "next PC" register. Instructions that change the PC
20 * can't be safely single-stepped in a MP environment, so
21 * we have a lot of work to do:
22 *
23 * In the prepare phase:
24 * *) If it is an instruction that does anything
25 * with the CPU mode, we reject it for a kprobe.
26 * (This is out of laziness rather than need. The
27 * instructions could be simulated.)
28 *
29 * *) Otherwise, decode the instruction rewriting its
30 * registers to take fixed, ordered registers and
31 * setting a handler for it to run the instruction.
32 *
33 * In the execution phase by an instruction's handler:
34 *
35 * *) If the PC is written to by the instruction, the
36 * instruction must be fully simulated in software.
37 * If it is a conditional instruction, the handler
38 * will use insn[0] to copy its condition code to
39 * set r0 to 1 and insn[1] to "mov pc, lr" to return.
40 *
41 * *) Otherwise, a modified form of the instruction is
42 * directly executed. Its handler calls the
43 * instruction in insn[0]. In insn[1] is a
44 * "mov pc, lr" to return.
45 *
46 * Before calling, load up the reordered registers
47 * from the original instruction's registers. If one
48 * of the original input registers is the PC, compute
49 * and adjust the appropriate input register.
50 *
51 * After call completes, copy the output registers to
52 * the original instruction's original registers.
53 *
54 * We don't use a real breakpoint instruction since that
55 * would have us in the kernel go from SVC mode to SVC
56 * mode losing the link register. Instead we use an
57 * undefined instruction. To simplify processing, the
58 * undefined instruction used for kprobes must be reserved
59 * exclusively for kprobes use.
60 *
61 * TODO: ifdef out some instruction decoding based on architecture.
62 */
63
64#include <linux/kernel.h>
65#include <linux/kprobes.h>
66
67#define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
68
69#define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
70
71#define PSR_fs (PSR_f|PSR_s)
72
73#define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
74#define SET_R0_TRUE_INSTRUCTION 0xe3a00001 /* mov r0, #1 */
75
76#define truecc_insn(insn) (((insn) & 0xf0000000) | \
77 (SET_R0_TRUE_INSTRUCTION & 0x0fffffff))
78
79typedef long (insn_0arg_fn_t)(void);
80typedef long (insn_1arg_fn_t)(long);
81typedef long (insn_2arg_fn_t)(long, long);
82typedef long (insn_3arg_fn_t)(long, long, long);
83typedef long (insn_4arg_fn_t)(long, long, long, long);
84typedef long long (insn_llret_0arg_fn_t)(void);
85typedef long long (insn_llret_3arg_fn_t)(long, long, long);
86typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
87
88union reg_pair {
89 long long dr;
90#ifdef __LITTLE_ENDIAN
91 struct { long r0, r1; };
92#else
93 struct { long r1, r0; };
94#endif
95};
96
97/*
98 * For STR and STM instructions, an ARM core may choose to use either
99 * a +8 or a +12 displacement from the current instruction's address.
100 * Whichever value is chosen for a given core, it must be the same for
101 * both instructions and may not change. This function measures it.
102 */
103
104static int str_pc_offset;
105
106static void __init find_str_pc_offset(void)
107{
108 int addr, scratch, ret;
109
110 __asm__ (
111 "sub %[ret], pc, #4 \n\t"
112 "str pc, %[addr] \n\t"
113 "ldr %[scr], %[addr] \n\t"
114 "sub %[ret], %[scr], %[ret] \n\t"
115 : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
116
117 str_pc_offset = ret;
118}
119
120/*
121 * The insnslot_?arg_r[w]flags() functions below are to keep the
122 * msr -> *fn -> mrs instruction sequences indivisible so that
123 * the state of the CPSR flags aren't inadvertently modified
124 * just before or just after the call.
125 */
126
127static inline long __kprobes
128insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
129{
130 register long ret asm("r0");
131
132 __asm__ __volatile__ (
133 "msr cpsr_fs, %[cpsr] \n\t"
134 "mov lr, pc \n\t"
135 "mov pc, %[fn] \n\t"
136 : "=r" (ret)
137 : [cpsr] "r" (cpsr), [fn] "r" (fn)
138 : "lr", "cc"
139 );
140 return ret;
141}
142
143static inline long long __kprobes
144insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
145{
146 register long ret0 asm("r0");
147 register long ret1 asm("r1");
148 union reg_pair fnr;
149
150 __asm__ __volatile__ (
151 "msr cpsr_fs, %[cpsr] \n\t"
152 "mov lr, pc \n\t"
153 "mov pc, %[fn] \n\t"
154 : "=r" (ret0), "=r" (ret1)
155 : [cpsr] "r" (cpsr), [fn] "r" (fn)
156 : "lr", "cc"
157 );
158 fnr.r0 = ret0;
159 fnr.r1 = ret1;
160 return fnr.dr;
161}
162
163static inline long __kprobes
164insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
165{
166 register long rr0 asm("r0") = r0;
167 register long ret asm("r0");
168
169 __asm__ __volatile__ (
170 "msr cpsr_fs, %[cpsr] \n\t"
171 "mov lr, pc \n\t"
172 "mov pc, %[fn] \n\t"
173 : "=r" (ret)
174 : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
175 : "lr", "cc"
176 );
177 return ret;
178}
179
180static inline long __kprobes
181insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
182{
183 register long rr0 asm("r0") = r0;
184 register long rr1 asm("r1") = r1;
185 register long ret asm("r0");
186
187 __asm__ __volatile__ (
188 "msr cpsr_fs, %[cpsr] \n\t"
189 "mov lr, pc \n\t"
190 "mov pc, %[fn] \n\t"
191 : "=r" (ret)
192 : "0" (rr0), "r" (rr1),
193 [cpsr] "r" (cpsr), [fn] "r" (fn)
194 : "lr", "cc"
195 );
196 return ret;
197}
198
199static inline long __kprobes
200insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
201{
202 register long rr0 asm("r0") = r0;
203 register long rr1 asm("r1") = r1;
204 register long rr2 asm("r2") = r2;
205 register long ret asm("r0");
206
207 __asm__ __volatile__ (
208 "msr cpsr_fs, %[cpsr] \n\t"
209 "mov lr, pc \n\t"
210 "mov pc, %[fn] \n\t"
211 : "=r" (ret)
212 : "0" (rr0), "r" (rr1), "r" (rr2),
213 [cpsr] "r" (cpsr), [fn] "r" (fn)
214 : "lr", "cc"
215 );
216 return ret;
217}
218
219static inline long long __kprobes
220insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
221 insn_llret_3arg_fn_t *fn)
222{
223 register long rr0 asm("r0") = r0;
224 register long rr1 asm("r1") = r1;
225 register long rr2 asm("r2") = r2;
226 register long ret0 asm("r0");
227 register long ret1 asm("r1");
228 union reg_pair fnr;
229
230 __asm__ __volatile__ (
231 "msr cpsr_fs, %[cpsr] \n\t"
232 "mov lr, pc \n\t"
233 "mov pc, %[fn] \n\t"
234 : "=r" (ret0), "=r" (ret1)
235 : "0" (rr0), "r" (rr1), "r" (rr2),
236 [cpsr] "r" (cpsr), [fn] "r" (fn)
237 : "lr", "cc"
238 );
239 fnr.r0 = ret0;
240 fnr.r1 = ret1;
241 return fnr.dr;
242}
243
244static inline long __kprobes
245insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
246 insn_4arg_fn_t *fn)
247{
248 register long rr0 asm("r0") = r0;
249 register long rr1 asm("r1") = r1;
250 register long rr2 asm("r2") = r2;
251 register long rr3 asm("r3") = r3;
252 register long ret asm("r0");
253
254 __asm__ __volatile__ (
255 "msr cpsr_fs, %[cpsr] \n\t"
256 "mov lr, pc \n\t"
257 "mov pc, %[fn] \n\t"
258 : "=r" (ret)
259 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
260 [cpsr] "r" (cpsr), [fn] "r" (fn)
261 : "lr", "cc"
262 );
263 return ret;
264}
265
266static inline long __kprobes
267insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
268{
269 register long rr0 asm("r0") = r0;
270 register long ret asm("r0");
271 long oldcpsr = *cpsr;
272 long newcpsr;
273
274 __asm__ __volatile__ (
275 "msr cpsr_fs, %[oldcpsr] \n\t"
276 "mov lr, pc \n\t"
277 "mov pc, %[fn] \n\t"
278 "mrs %[newcpsr], cpsr \n\t"
279 : "=r" (ret), [newcpsr] "=r" (newcpsr)
280 : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
281 : "lr", "cc"
282 );
283 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
284 return ret;
285}
286
287static inline long __kprobes
288insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
289{
290 register long rr0 asm("r0") = r0;
291 register long rr1 asm("r1") = r1;
292 register long ret asm("r0");
293 long oldcpsr = *cpsr;
294 long newcpsr;
295
296 __asm__ __volatile__ (
297 "msr cpsr_fs, %[oldcpsr] \n\t"
298 "mov lr, pc \n\t"
299 "mov pc, %[fn] \n\t"
300 "mrs %[newcpsr], cpsr \n\t"
301 : "=r" (ret), [newcpsr] "=r" (newcpsr)
302 : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
303 : "lr", "cc"
304 );
305 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
306 return ret;
307}
308
309static inline long __kprobes
310insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
311 insn_3arg_fn_t *fn)
312{
313 register long rr0 asm("r0") = r0;
314 register long rr1 asm("r1") = r1;
315 register long rr2 asm("r2") = r2;
316 register long ret asm("r0");
317 long oldcpsr = *cpsr;
318 long newcpsr;
319
320 __asm__ __volatile__ (
321 "msr cpsr_fs, %[oldcpsr] \n\t"
322 "mov lr, pc \n\t"
323 "mov pc, %[fn] \n\t"
324 "mrs %[newcpsr], cpsr \n\t"
325 : "=r" (ret), [newcpsr] "=r" (newcpsr)
326 : "0" (rr0), "r" (rr1), "r" (rr2),
327 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
328 : "lr", "cc"
329 );
330 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
331 return ret;
332}
333
334static inline long __kprobes
335insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
336 insn_4arg_fn_t *fn)
337{
338 register long rr0 asm("r0") = r0;
339 register long rr1 asm("r1") = r1;
340 register long rr2 asm("r2") = r2;
341 register long rr3 asm("r3") = r3;
342 register long ret asm("r0");
343 long oldcpsr = *cpsr;
344 long newcpsr;
345
346 __asm__ __volatile__ (
347 "msr cpsr_fs, %[oldcpsr] \n\t"
348 "mov lr, pc \n\t"
349 "mov pc, %[fn] \n\t"
350 "mrs %[newcpsr], cpsr \n\t"
351 : "=r" (ret), [newcpsr] "=r" (newcpsr)
352 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
353 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
354 : "lr", "cc"
355 );
356 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
357 return ret;
358}
359
360static inline long long __kprobes
361insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
362 insn_llret_4arg_fn_t *fn)
363{
364 register long rr0 asm("r0") = r0;
365 register long rr1 asm("r1") = r1;
366 register long rr2 asm("r2") = r2;
367 register long rr3 asm("r3") = r3;
368 register long ret0 asm("r0");
369 register long ret1 asm("r1");
370 long oldcpsr = *cpsr;
371 long newcpsr;
372 union reg_pair fnr;
373
374 __asm__ __volatile__ (
375 "msr cpsr_fs, %[oldcpsr] \n\t"
376 "mov lr, pc \n\t"
377 "mov pc, %[fn] \n\t"
378 "mrs %[newcpsr], cpsr \n\t"
379 : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
380 : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
381 [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
382 : "lr", "cc"
383 );
384 *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
385 fnr.r0 = ret0;
386 fnr.r1 = ret1;
387 return fnr.dr;
388}
389
390/*
391 * To avoid the complications of mimicing single-stepping on a
392 * processor without a Next-PC or a single-step mode, and to
393 * avoid having to deal with the side-effects of boosting, we
394 * simulate or emulate (almost) all ARM instructions.
395 *
396 * "Simulation" is where the instruction's behavior is duplicated in
397 * C code. "Emulation" is where the original instruction is rewritten
398 * and executed, often by altering its registers.
399 *
400 * By having all behavior of the kprobe'd instruction completed before
401 * returning from the kprobe_handler(), all locks (scheduler and
402 * interrupt) can safely be released. There is no need for secondary
403 * breakpoints, no race with MP or preemptable kernels, nor having to
404 * clean up resources counts at a later time impacting overall system
405 * performance. By rewriting the instruction, only the minimum registers
406 * need to be loaded and saved back optimizing performance.
407 *
408 * Calling the insnslot_*_rwflags version of a function doesn't hurt
409 * anything even when the CPSR flags aren't updated by the
410 * instruction. It's just a little slower in return for saving
411 * a little space by not having a duplicate function that doesn't
412 * update the flags. (The same optimization can be said for
413 * instructions that do or don't perform register writeback)
414 * Also, instructions can either read the flags, only write the
415 * flags, or read and write the flags. To save combinations
416 * rather than for sheer performance, flag functions just assume
417 * read and write of flags.
418 */
419
420static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
421{
422 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
423 kprobe_opcode_t insn = p->opcode;
424 long iaddr = (long)p->addr;
425 int disp = branch_displacement(insn);
426
427 if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
428 return;
429
430 if (insn & (1 << 24))
431 regs->ARM_lr = iaddr + 4;
432
433 regs->ARM_pc = iaddr + 8 + disp;
434}
435
436static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
437{
438 kprobe_opcode_t insn = p->opcode;
439 long iaddr = (long)p->addr;
440 int disp = branch_displacement(insn);
441
442 regs->ARM_lr = iaddr + 4;
443 regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
444 regs->ARM_cpsr |= PSR_T_BIT;
445}
446
447static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
448{
449 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
450 kprobe_opcode_t insn = p->opcode;
451 int rm = insn & 0xf;
452 long rmv = regs->uregs[rm];
453
454 if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
455 return;
456
457 if (insn & (1 << 5))
458 regs->ARM_lr = (long)p->addr + 4;
459
460 regs->ARM_pc = rmv & ~0x1;
461 regs->ARM_cpsr &= ~PSR_T_BIT;
462 if (rmv & 0x1)
463 regs->ARM_cpsr |= PSR_T_BIT;
464}
465
466static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
467{
468 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
469 kprobe_opcode_t insn = p->opcode;
470 int rn = (insn >> 16) & 0xf;
471 int lbit = insn & (1 << 20);
472 int wbit = insn & (1 << 21);
473 int ubit = insn & (1 << 23);
474 int pbit = insn & (1 << 24);
475 long *addr = (long *)regs->uregs[rn];
476 int reg_bit_vector;
477 int reg_count;
478
479 if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
480 return;
481
482 reg_count = 0;
483 reg_bit_vector = insn & 0xffff;
484 while (reg_bit_vector) {
485 reg_bit_vector &= (reg_bit_vector - 1);
486 ++reg_count;
487 }
488
489 if (!ubit)
490 addr -= reg_count;
2d4b6c9a 491 addr += (!pbit == !ubit);
35aa1df4
QB
492
493 reg_bit_vector = insn & 0xffff;
494 while (reg_bit_vector) {
495 int reg = __ffs(reg_bit_vector);
496 reg_bit_vector &= (reg_bit_vector - 1);
497 if (lbit)
498 regs->uregs[reg] = *addr++;
499 else
500 *addr++ = regs->uregs[reg];
501 }
502
503 if (wbit) {
504 if (!ubit)
505 addr -= reg_count;
2d4b6c9a 506 addr -= (!pbit == !ubit);
35aa1df4
QB
507 regs->uregs[rn] = (long)addr;
508 }
509}
510
511static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
512{
513 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
514
515 if (!insnslot_1arg_rflags(0, regs->ARM_cpsr, i_fn))
516 return;
517
518 regs->ARM_pc = (long)p->addr + str_pc_offset;
519 simulate_ldm1stm1(p, regs);
520 regs->ARM_pc = (long)p->addr + 4;
521}
522
523static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
524{
525 regs->uregs[12] = regs->uregs[13];
526}
527
528static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
529{
530 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
531 kprobe_opcode_t insn = p->opcode;
532 int rn = (insn >> 16) & 0xf;
533 long rnv = regs->uregs[rn];
534
535 /* Save Rn in case of writeback. */
536 regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
537}
538
539static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
540{
541 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
542 kprobe_opcode_t insn = p->opcode;
543 int rd = (insn >> 12) & 0xf;
544 int rn = (insn >> 16) & 0xf;
545 int rm = insn & 0xf; /* rm may be invalid, don't care. */
546
547 /* Not following the C calling convention here, so need asm(). */
548 __asm__ __volatile__ (
549 "ldr r0, %[rn] \n\t"
550 "ldr r1, %[rm] \n\t"
551 "msr cpsr_fs, %[cpsr]\n\t"
552 "mov lr, pc \n\t"
553 "mov pc, %[i_fn] \n\t"
554 "str r0, %[rn] \n\t" /* in case of writeback */
555 "str r2, %[rd0] \n\t"
556 "str r3, %[rd1] \n\t"
557 : [rn] "+m" (regs->uregs[rn]),
558 [rd0] "=m" (regs->uregs[rd]),
559 [rd1] "=m" (regs->uregs[rd+1])
560 : [rm] "m" (regs->uregs[rm]),
561 [cpsr] "r" (regs->ARM_cpsr),
562 [i_fn] "r" (i_fn)
563 : "r0", "r1", "r2", "r3", "lr", "cc"
564 );
565}
566
567static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
568{
569 insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
570 kprobe_opcode_t insn = p->opcode;
571 int rd = (insn >> 12) & 0xf;
572 int rn = (insn >> 16) & 0xf;
573 int rm = insn & 0xf;
574 long rnv = regs->uregs[rn];
575 long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
576
577 regs->uregs[rn] = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
578 regs->uregs[rd+1],
579 regs->ARM_cpsr, i_fn);
580}
581
582static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
583{
584 insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
585 kprobe_opcode_t insn = p->opcode;
0ebe25f9 586 long ppc = (long)p->addr + 8;
35aa1df4
QB
587 union reg_pair fnr;
588 int rd = (insn >> 12) & 0xf;
589 int rn = (insn >> 16) & 0xf;
590 int rm = insn & 0xf;
591 long rdv;
0ebe25f9
NP
592 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
593 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
35aa1df4
QB
594 long cpsr = regs->ARM_cpsr;
595
596 fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
597 regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
598 rdv = fnr.r1;
599
600 if (rd == 15) {
601#if __LINUX_ARM_ARCH__ >= 5
602 cpsr &= ~PSR_T_BIT;
603 if (rdv & 0x1)
604 cpsr |= PSR_T_BIT;
605 regs->ARM_cpsr = cpsr;
606 rdv &= ~0x1;
607#else
608 rdv &= ~0x2;
609#endif
610 }
611 regs->uregs[rd] = rdv;
612}
613
614static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
615{
616 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
617 kprobe_opcode_t insn = p->opcode;
618 long iaddr = (long)p->addr;
619 int rd = (insn >> 12) & 0xf;
620 int rn = (insn >> 16) & 0xf;
621 int rm = insn & 0xf;
622 long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
623 long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
624 long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
625
626 /* Save Rn in case of writeback. */
627 regs->uregs[rn] =
628 insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
629}
630
631static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
632{
633 insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
634 kprobe_opcode_t insn = p->opcode;
635 union reg_pair fnr;
636 int rd = (insn >> 12) & 0xf;
637 int rn = (insn >> 16) & 0xf;
638
639 fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
640 regs->uregs[rn] = fnr.r0;
641 regs->uregs[rd] = fnr.r1;
642}
643
644static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
645{
646 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
647 kprobe_opcode_t insn = p->opcode;
648 int rd = (insn >> 12) & 0xf;
649 int rn = (insn >> 16) & 0xf;
650 long rnv = regs->uregs[rn];
651 long rdv = regs->uregs[rd];
652
653 insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
654}
655
656static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
657{
658 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
659 kprobe_opcode_t insn = p->opcode;
660 int rd = (insn >> 12) & 0xf;
661 int rm = insn & 0xf;
662 long rmv = regs->uregs[rm];
663
664 /* Writes Q flag */
665 regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
666}
667
668static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
669{
670 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
671 kprobe_opcode_t insn = p->opcode;
672 int rd = (insn >> 12) & 0xf;
673 int rn = (insn >> 16) & 0xf;
674 int rm = insn & 0xf;
675 long rnv = regs->uregs[rn];
676 long rmv = regs->uregs[rm];
677
678 /* Reads GE bits */
679 regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
680}
681
682static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
683{
684 insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
685
686 insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
687}
688
689static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
690{
691 insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
692 kprobe_opcode_t insn = p->opcode;
693 int rd = (insn >> 12) & 0xf;
694
695 regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
696}
697
698static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
699{
700 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
701 kprobe_opcode_t insn = p->opcode;
702 int ird = (insn >> 12) & 0xf;
703
704 insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
705}
706
707static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
708{
709 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
710 kprobe_opcode_t insn = p->opcode;
711 int rn = (insn >> 16) & 0xf;
712 long rnv = regs->uregs[rn];
713
714 insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
715}
716
717static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
718{
719 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
720 kprobe_opcode_t insn = p->opcode;
721 int rd = (insn >> 12) & 0xf;
722 int rm = insn & 0xf;
723 long rmv = regs->uregs[rm];
724
725 regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
726}
727
728static void __kprobes
729emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
730{
731 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
732 kprobe_opcode_t insn = p->opcode;
733 int rd = (insn >> 12) & 0xf;
734 int rn = (insn >> 16) & 0xf;
735 int rm = insn & 0xf;
736 long rnv = regs->uregs[rn];
737 long rmv = regs->uregs[rm];
738
739 regs->uregs[rd] =
740 insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
741}
742
743static void __kprobes
744emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
745{
746 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
747 kprobe_opcode_t insn = p->opcode;
748 int rd = (insn >> 16) & 0xf;
749 int rn = (insn >> 12) & 0xf;
750 int rs = (insn >> 8) & 0xf;
751 int rm = insn & 0xf;
752 long rnv = regs->uregs[rn];
753 long rsv = regs->uregs[rs];
754 long rmv = regs->uregs[rm];
755
756 regs->uregs[rd] =
757 insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
758}
759
760static void __kprobes
761emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
762{
763 insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
764 kprobe_opcode_t insn = p->opcode;
765 int rd = (insn >> 16) & 0xf;
766 int rs = (insn >> 8) & 0xf;
767 int rm = insn & 0xf;
768 long rsv = regs->uregs[rs];
769 long rmv = regs->uregs[rm];
770
771 regs->uregs[rd] =
772 insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
773}
774
775static void __kprobes
776emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
777{
778 insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
779 kprobe_opcode_t insn = p->opcode;
780 union reg_pair fnr;
781 int rdhi = (insn >> 16) & 0xf;
782 int rdlo = (insn >> 12) & 0xf;
783 int rs = (insn >> 8) & 0xf;
784 int rm = insn & 0xf;
785 long rsv = regs->uregs[rs];
786 long rmv = regs->uregs[rm];
787
788 fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
789 regs->uregs[rdlo], rsv, rmv,
790 &regs->ARM_cpsr, i_fn);
791 regs->uregs[rdhi] = fnr.r0;
792 regs->uregs[rdlo] = fnr.r1;
793}
794
795static void __kprobes
796emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
797{
798 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
799 kprobe_opcode_t insn = p->opcode;
800 int rd = (insn >> 12) & 0xf;
801 int rn = (insn >> 16) & 0xf;
802 long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
803
804 regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
805}
806
807static void __kprobes
808emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
809{
810 insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
811 kprobe_opcode_t insn = p->opcode;
812 int rd = (insn >> 12) & 0xf;
813 int rn = (insn >> 16) & 0xf;
814 long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
815
816 regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
817}
818
819static void __kprobes
820emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
821{
822 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
823 kprobe_opcode_t insn = p->opcode;
824 long ppc = (long)p->addr + 8;
825 int rd = (insn >> 12) & 0xf;
826 int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
827 int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
828 int rm = insn & 0xf;
829 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
830 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
831 long rsv = regs->uregs[rs];
832
833 regs->uregs[rd] =
834 insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
835}
836
837static void __kprobes
838emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
839{
840 insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
841 kprobe_opcode_t insn = p->opcode;
842 long ppc = (long)p->addr + 8;
843 int rd = (insn >> 12) & 0xf;
844 int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
845 int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
846 int rm = insn & 0xf;
847 long rnv = (rn == 15) ? ppc : regs->uregs[rn];
848 long rmv = (rm == 15) ? ppc : regs->uregs[rm];
849 long rsv = regs->uregs[rs];
850
851 regs->uregs[rd] =
852 insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
853}
854
855static enum kprobe_insn __kprobes
856prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
857{
858 int ibit = (insn & (1 << 26)) ? 25 : 22;
859
860 insn &= 0xfff00fff;
861 insn |= 0x00001000; /* Rn = r0, Rd = r1 */
862 if (insn & (1 << ibit)) {
863 insn &= ~0xf;
864 insn |= 2; /* Rm = r2 */
865 }
866 asi->insn[0] = insn;
867 asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
868 return INSN_GOOD;
869}
870
871static enum kprobe_insn __kprobes
872prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
873{
874 insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
875 asi->insn[0] = insn;
876 asi->insn_handler = emulate_rd12rm0;
877 return INSN_GOOD;
878}
879
880static enum kprobe_insn __kprobes
881prep_emulate_rd12(kprobe_opcode_t insn, struct arch_specific_insn *asi)
882{
883 insn &= 0xffff0fff; /* Rd = r0 */
884 asi->insn[0] = insn;
885 asi->insn_handler = emulate_rd12;
886 return INSN_GOOD;
887}
888
889static enum kprobe_insn __kprobes
890prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
891 struct arch_specific_insn *asi)
892{
893 insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
894 insn |= 0x00000001; /* Rm = r1 */
895 asi->insn[0] = insn;
896 asi->insn_handler = emulate_rd12rn16rm0_rwflags;
897 return INSN_GOOD;
898}
899
900static enum kprobe_insn __kprobes
901prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
902 struct arch_specific_insn *asi)
903{
904 insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
905 insn |= 0x00000001; /* Rm = r1 */
906 asi->insn[0] = insn;
907 asi->insn_handler = emulate_rd16rs8rm0_rwflags;
908 return INSN_GOOD;
909}
910
911static enum kprobe_insn __kprobes
912prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
913 struct arch_specific_insn *asi)
914{
915 insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
916 insn |= 0x00000102; /* Rs = r1, Rm = r2 */
917 asi->insn[0] = insn;
918 asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
919 return INSN_GOOD;
920}
921
922static enum kprobe_insn __kprobes
923prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
924 struct arch_specific_insn *asi)
925{
926 insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
927 insn |= 0x00001203; /* Rs = r2, Rm = r3 */
928 asi->insn[0] = insn;
929 asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
930 return INSN_GOOD;
931}
932
933/*
934 * For the instruction masking and comparisons in all the "space_*"
935 * functions below, Do _not_ rearrange the order of tests unless
936 * you're very, very sure of what you are doing. For the sake of
937 * efficiency, the masks for some tests sometimes assume other test
938 * have been done prior to them so the number of patterns to test
939 * for an instruction set can be as broad as possible to reduce the
940 * number of tests needed.
941 */
942
943static enum kprobe_insn __kprobes
944space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
945{
946 /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
947 /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
948 /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
949 if ((insn & 0xfff30020) == 0xf1020000 ||
950 (insn & 0xfe500f00) == 0xf8100a00 ||
951 (insn & 0xfe5f0f00) == 0xf84d0500)
952 return INSN_REJECTED;
953
954 /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
955 if ((insn & 0xfd700000) == 0xf4500000) {
956 insn &= 0xfff0ffff; /* Rn = r0 */
957 asi->insn[0] = insn;
958 asi->insn_handler = emulate_rn16;
959 return INSN_GOOD;
960 }
961
962 /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
963 if ((insn & 0xfe000000) == 0xfa000000) {
964 asi->insn_handler = simulate_blx1;
965 return INSN_GOOD_NO_SLOT;
966 }
967
968 /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
969 /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
970 if ((insn & 0xffff00f0) == 0xf1010000 ||
971 (insn & 0xff000010) == 0xfe000000) {
972 asi->insn[0] = insn;
973 asi->insn_handler = emulate_none;
974 return INSN_GOOD;
975 }
976
977 /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
978 /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
979 if ((insn & 0xffe00000) == 0xfc400000) {
980 insn &= 0xfff00fff; /* Rn = r0 */
981 insn |= 0x00001000; /* Rd = r1 */
982 asi->insn[0] = insn;
983 asi->insn_handler =
984 (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
985 return INSN_GOOD;
986 }
987
988 /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
989 /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
990 if ((insn & 0xfe000000) == 0xfc000000) {
991 insn &= 0xfff0ffff; /* Rn = r0 */
992 asi->insn[0] = insn;
993 asi->insn_handler = emulate_ldcstc;
994 return INSN_GOOD;
995 }
996
997 /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
998 /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
999 insn &= 0xffff0fff; /* Rd = r0 */
1000 asi->insn[0] = insn;
1001 asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
1002 return INSN_GOOD;
1003}
1004
1005static enum kprobe_insn __kprobes
1006space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1007{
1008 /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
1009 if ((insn & 0x0f900010) == 0x01000000) {
1010
1011 /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
1012 /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
1013 if ((insn & 0x0ff000f0) == 0x01200020 ||
1014 (insn & 0x0fb000f0) == 0x01200000)
1015 return INSN_REJECTED;
1016
1017 /* MRS : cccc 0001 0x00 xxxx xxxx xxxx 0000 xxxx */
1018 if ((insn & 0x0fb00010) == 0x01000000)
1019 return prep_emulate_rd12(insn, asi);
1020
1021 /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
1022 if ((insn & 0x0ff00090) == 0x01400080)
1023 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1024
1025 /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
1026 /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
1027 if ((insn & 0x0ff000b0) == 0x012000a0 ||
1028 (insn & 0x0ff00090) == 0x01600080)
1029 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1030
1031 /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
1032 /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 0x00 xxxx : Q */
1033 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1034
1035 }
1036
1037 /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
1038 else if ((insn & 0x0f900090) == 0x01000010) {
1039
1040 /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
1041 if ((insn & 0xfff000f0) == 0xe1200070)
1042 return INSN_REJECTED;
1043
1044 /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
1045 /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
1046 if ((insn & 0x0ff000d0) == 0x01200010) {
1047 asi->insn[0] = truecc_insn(insn);
1048 asi->insn_handler = simulate_blx2bx;
1049 return INSN_GOOD;
1050 }
1051
1052 /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
1053 if ((insn & 0x0ff000f0) == 0x01600010)
1054 return prep_emulate_rd12rm0(insn, asi);
1055
1056 /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
1057 /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
1058 /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
1059 /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
1060 return prep_emulate_rd12rn16rm0_wflags(insn, asi);
1061 }
1062
1063 /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
1064 else if ((insn & 0x0f000090) == 0x00000090) {
1065
1066 /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
1067 /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
1068 /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
1069 /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
1070 /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
1071 /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
1072 /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
1073 /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
1074 /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
1075 /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
1076 /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
1077 /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
1078 /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
1079 if ((insn & 0x0fe000f0) == 0x00000090) {
1080 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1081 } else if ((insn & 0x0fe000f0) == 0x00200090) {
1082 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1083 } else {
1084 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1085 }
1086 }
1087
1088 /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
1089 else if ((insn & 0x0e000090) == 0x00000090) {
1090
1091 /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
1092 /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
1093 /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
1094 /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
1095 /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
1096 /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
1097 /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
1098 /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
1099 /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
1100 /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
1101 if ((insn & 0x0fb000f0) == 0x01000090) {
1102 /* SWP/SWPB */
1103 return prep_emulate_rd12rn16rm0_wflags(insn, asi);
1104 } else if ((insn & 0x0e1000d0) == 0x00000d0) {
1105 /* STRD/LDRD */
1106 insn &= 0xfff00fff;
1107 insn |= 0x00002000; /* Rn = r0, Rd = r2 */
1108 if (insn & (1 << 22)) {
1109 /* I bit */
1110 insn &= ~0xf;
1111 insn |= 1; /* Rm = r1 */
1112 }
1113 asi->insn[0] = insn;
1114 asi->insn_handler =
1115 (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
1116 return INSN_GOOD;
1117 }
1118
1119 return prep_emulate_ldr_str(insn, asi);
1120 }
1121
1122 /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
1123
1124 /*
1125 * ALU op with S bit and Rd == 15 :
1126 * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
1127 */
1128 if ((insn & 0x0e10f000) == 0x0010f000)
1129 return INSN_REJECTED;
1130
1131 /*
1132 * "mov ip, sp" is the most common kprobe'd instruction by far.
1133 * Check and optimize for it explicitly.
1134 */
1135 if (insn == 0xe1a0c00d) {
1136 asi->insn_handler = simulate_mov_ipsp;
1137 return INSN_GOOD_NO_SLOT;
1138 }
1139
1140 /*
1141 * Data processing: Immediate-shift / Register-shift
1142 * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
1143 * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
1144 * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
1145 * *S (bit 20) updates condition codes
1146 * ADC/SBC/RSC reads the C flag
1147 */
1148 insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
1149 insn |= 0x00000001; /* Rm = r1 */
1150 if (insn & 0x010) {
1151 insn &= 0xfffff0ff; /* register shift */
1152 insn |= 0x00000200; /* Rs = r2 */
1153 }
1154 asi->insn[0] = insn;
1155 asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
1156 emulate_alu_rwflags : emulate_alu_rflags;
1157 return INSN_GOOD;
1158}
1159
1160static enum kprobe_insn __kprobes
1161space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1162{
1163 /*
1164 * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
1165 * Undef : cccc 0011 0x00 xxxx xxxx xxxx xxxx xxxx
1166 * ALU op with S bit and Rd == 15 :
1167 * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
1168 */
1169 if ((insn & 0x0f900000) == 0x03200000 || /* MSR & Undef */
1170 (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
1171 return INSN_REJECTED;
1172
1173 /*
1174 * Data processing: 32-bit Immediate
1175 * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
1176 * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
1177 * *S (bit 20) updates condition codes
1178 * ADC/SBC/RSC reads the C flag
1179 */
a3fd133c 1180 insn &= 0xfff00fff; /* Rn = r0, Rd = r0 */
35aa1df4
QB
1181 asi->insn[0] = insn;
1182 asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
1183 emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
1184 return INSN_GOOD;
1185}
1186
1187static enum kprobe_insn __kprobes
1188space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1189{
1190 /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
1191 if ((insn & 0x0ff000f0) == 0x068000b0) {
1192 insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
1193 insn |= 0x00000001; /* Rm = r1 */
1194 asi->insn[0] = insn;
1195 asi->insn_handler = emulate_sel;
1196 return INSN_GOOD;
1197 }
1198
1199 /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
1200 /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
1201 /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
1202 /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
1203 if ((insn & 0x0fa00030) == 0x06a00010 ||
1204 (insn & 0x0fb000f0) == 0x06a00030) {
1205 insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
1206 asi->insn[0] = insn;
1207 asi->insn_handler = emulate_sat;
1208 return INSN_GOOD;
1209 }
1210
1211 /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
1212 /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
1213 /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
1214 if ((insn & 0x0ff00070) == 0x06b00030 ||
1215 (insn & 0x0ff000f0) == 0x06f000b0)
1216 return prep_emulate_rd12rm0(insn, asi);
1217
1218 /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
1219 /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
1220 /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
1221 /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
1222 /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
1223 /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
1224 /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
1225 /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
1226 /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
1227 /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
1228 /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
1229 /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
1230 /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
1231 /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
1232 /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
1233 /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
1234 /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
1235 /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
1236 /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
1237 /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
1238 /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
1239 /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
1240 /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
1241 /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
1242 /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
1243 /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
1244 /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
1245 /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
1246 /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
1247 /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
1248 /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
1249 /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
1250 /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
1251 /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
1252 /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
1253 /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
1254 /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
1255 /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
1256 /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
1257 /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
1258 /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
1259 /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
1260 /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
1261 /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
1262 /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
1263 return prep_emulate_rd12rn16rm0_wflags(insn, asi);
1264}
1265
1266static enum kprobe_insn __kprobes
1267space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1268{
1269 /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
1270 if ((insn & 0x0ff000f0) == 0x03f000f0)
1271 return INSN_REJECTED;
1272
1273 /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
1274 /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
1275 if ((insn & 0x0ff000f0) == 0x07800010)
1276 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1277
1278 /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
1279 /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
1280 if ((insn & 0x0ff00090) == 0x07400010)
1281 return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
1282
1283 /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
1284 /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
1285 /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
1286 /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
1287 if ((insn & 0x0ff00090) == 0x07000010 ||
1288 (insn & 0x0ff000d0) == 0x07500010 ||
1289 (insn & 0x0ff000d0) == 0x075000d0)
1290 return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
1291
1292 /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
1293 /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
1294 /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
1295 return prep_emulate_rd16rs8rm0_wflags(insn, asi);
1296}
1297
1298static enum kprobe_insn __kprobes
1299space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1300{
1301 /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
1302 /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
1303 /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
1304 /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
1305 /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
1306 /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
1307 /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
1308 /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
1309 return prep_emulate_ldr_str(insn, asi);
1310}
1311
1312static enum kprobe_insn __kprobes
1313space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1314{
1315 /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
1316 /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
1317 if ((insn & 0x0e708000) == 0x85000000 ||
1318 (insn & 0x0e508000) == 0x85010000)
1319 return INSN_REJECTED;
1320
1321 /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
1322 /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
1323 asi->insn[0] = truecc_insn(insn);
1324 asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
1325 simulate_stm1_pc : simulate_ldm1stm1;
1326 return INSN_GOOD;
1327}
1328
1329static enum kprobe_insn __kprobes
1330space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1331{
1332 /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
1333 /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
1334 asi->insn[0] = truecc_insn(insn);
1335 asi->insn_handler = simulate_bbl;
1336 return INSN_GOOD;
1337}
1338
1339static enum kprobe_insn __kprobes
1340space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1341{
1342 /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
1343 /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
1344 insn &= 0xfff00fff;
1345 insn |= 0x00001000; /* Rn = r0, Rd = r1 */
1346 asi->insn[0] = insn;
1347 asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
1348 return INSN_GOOD;
1349}
1350
1351static enum kprobe_insn __kprobes
1352space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1353{
1354 /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
1355 /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
1356 insn &= 0xfff0ffff; /* Rn = r0 */
1357 asi->insn[0] = insn;
1358 asi->insn_handler = emulate_ldcstc;
1359 return INSN_GOOD;
1360}
1361
1362static enum kprobe_insn __kprobes
1363space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1364{
1365 /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
1366 /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
1367 if ((insn & 0xfff000f0) == 0xe1200070 ||
1368 (insn & 0x0f000000) == 0x0f000000)
1369 return INSN_REJECTED;
1370
1371 /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
1372 if ((insn & 0x0f000010) == 0x0e000000) {
1373 asi->insn[0] = insn;
1374 asi->insn_handler = emulate_none;
1375 return INSN_GOOD;
1376 }
1377
1378 /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
1379 /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
1380 insn &= 0xffff0fff; /* Rd = r0 */
1381 asi->insn[0] = insn;
1382 asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
1383 return INSN_GOOD;
1384}
1385
1386/* Return:
1387 * INSN_REJECTED If instruction is one not allowed to kprobe,
1388 * INSN_GOOD If instruction is supported and uses instruction slot,
1389 * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
1390 *
1391 * For instructions we don't want to kprobe (INSN_REJECTED return result):
1392 * These are generally ones that modify the processor state making
1393 * them "hard" to simulate such as switches processor modes or
1394 * make accesses in alternate modes. Any of these could be simulated
1395 * if the work was put into it, but low return considering they
1396 * should also be very rare.
1397 */
1398enum kprobe_insn __kprobes
1399arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
1400{
1401 asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
1402
1403 if ((insn & 0xf0000000) == 0xf0000000) {
1404
1405 return space_1111(insn, asi);
1406
1407 } else if ((insn & 0x0e000000) == 0x00000000) {
1408
1409 return space_cccc_000x(insn, asi);
1410
1411 } else if ((insn & 0x0e000000) == 0x02000000) {
1412
1413 return space_cccc_001x(insn, asi);
1414
1415 } else if ((insn & 0x0f000010) == 0x06000010) {
1416
1417 return space_cccc_0110__1(insn, asi);
1418
1419 } else if ((insn & 0x0f000010) == 0x07000010) {
1420
1421 return space_cccc_0111__1(insn, asi);
1422
1423 } else if ((insn & 0x0c000000) == 0x04000000) {
1424
1425 return space_cccc_01xx(insn, asi);
1426
1427 } else if ((insn & 0x0e000000) == 0x08000000) {
1428
1429 return space_cccc_100x(insn, asi);
1430
1431 } else if ((insn & 0x0e000000) == 0x0a000000) {
1432
1433 return space_cccc_101x(insn, asi);
1434
1435 } else if ((insn & 0x0fe00000) == 0x0c400000) {
1436
1437 return space_cccc_1100_010x(insn, asi);
1438
1439 } else if ((insn & 0x0e000000) == 0x0c400000) {
1440
1441 return space_cccc_110x(insn, asi);
1442
1443 }
1444
1445 return space_cccc_111x(insn, asi);
1446}
1447
1448void __init arm_kprobe_decode_init(void)
1449{
1450 find_str_pc_offset();
1451}
1452
1453
1454/*
1455 * All ARM instructions listed below.
1456 *
1457 * Instructions and their general purpose registers are given.
1458 * If a particular register may not use R15, it is prefixed with a "!".
1459 * If marked with a "*" means the value returned by reading R15
1460 * is implementation defined.
1461 *
1462 * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
1463 * TST: Rd, Rn, Rm, !Rs
1464 * BX: Rm
1465 * BLX(2): !Rm
1466 * BX: Rm (R15 legal, but discouraged)
1467 * BXJ: !Rm,
1468 * CLZ: !Rd, !Rm
1469 * CPY: Rd, Rm
1470 * LDC/2,STC/2 immediate offset & unindex: Rn
1471 * LDC/2,STC/2 immediate pre/post-indexed: !Rn
1472 * LDM(1/3): !Rn, register_list
1473 * LDM(2): !Rn, !register_list
1474 * LDR,STR,PLD immediate offset: Rd, Rn
1475 * LDR,STR,PLD register offset: Rd, Rn, !Rm
1476 * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
1477 * LDR,STR immediate pre/post-indexed: Rd, !Rn
1478 * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
1479 * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
1480 * LDRB,STRB immediate offset: !Rd, Rn
1481 * LDRB,STRB register offset: !Rd, Rn, !Rm
1482 * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
1483 * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
1484 * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
1485 * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
1486 * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
1487 * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
1488 * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
1489 * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
1490 * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
1491 * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
1492 * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
1493 * LDREX: !Rd, !Rn
1494 * MCR/2: !Rd
1495 * MCRR/2,MRRC/2: !Rd, !Rn
1496 * MLA: !Rd, !Rn, !Rm, !Rs
1497 * MOV: Rd
1498 * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
1499 * MRS,MSR: !Rd
1500 * MUL: !Rd, !Rm, !Rs
1501 * PKH{BT,TB}: !Rd, !Rn, !Rm
1502 * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
1503 * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
1504 * REV/16/SH: !Rd, !Rm
1505 * RFE: !Rn
1506 * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
1507 * SEL: !Rd, !Rn, !Rm
1508 * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
1509 * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
1510 * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
1511 * SSAT/16: !Rd, !Rm
1512 * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
1513 * STRT immediate pre/post-indexed: Rd*, !Rn
1514 * STRT register pre/post-indexed: Rd*, !Rn, !Rm
1515 * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
1516 * STREX: !Rd, !Rn, !Rm
1517 * SWP/B: !Rd, !Rn, !Rm
1518 * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
1519 * {S,U}XT{B,B16,H}: !Rd, !Rm
1520 * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
1521 * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
1522 *
1523 * May transfer control by writing R15 (possible mode changes or alternate
1524 * mode accesses marked by "*"):
1525 * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
1526 * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
1527 *
1528 * Instructions that do not take general registers, nor transfer control:
1529 * CDP/2, SETEND, SRS*
1530 */