]> bbs.cooldavid.org Git - net-next-2.6.git/blame - Documentation/sound/alsa/DocBook/writing-an-alsa-driver.tmpl
[ALSA] document - Add PM support
[net-next-2.6.git] / Documentation / sound / alsa / DocBook / writing-an-alsa-driver.tmpl
CommitLineData
1da177e4
LT
1<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook V4.1//EN">
2
3<book>
4<?dbhtml filename="index.html">
5
6<!-- ****************************************************** -->
7<!-- Header -->
8<!-- ****************************************************** -->
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
20
7c22f1aa
TI
21 <date>October 6, 2005</date>
22 <edition>0.3.5</edition>
1da177e4
LT
23
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
30
31 <legalnotice>
32 <para>
7c22f1aa 33 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
1da177e4
LT
34 </para>
35
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
42
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
50
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
58
59 </bookinfo>
60
61<!-- ****************************************************** -->
62<!-- Preface -->
63<!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on the PCI soundcard.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
76
77 <para>
78 The target of this document is ones who already have enough
79 skill of C language and have the basic knowledge of linux
80 kernel programming. This document doesn't explain the general
81 topics of linux kernel codes and doesn't cover the detail of
82 implementation of each low-level driver. It describes only how is
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
85
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x, you
88 can check the drivers such as <filename>es1938.c</filename> or
89 <filename>maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
92
93 <para>
94 This document is still a draft version. Any feedbacks and
95 corrections, please!!
96 </para>
97 </preface>
98
99
100<!-- ****************************************************** -->
101<!-- File Tree Structure -->
102<!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
105
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in the two ways.
110 </para>
111
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source codes for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling the ALSA driver on the outside of Linux
121 kernel like configure script, the wrapper functions for older,
122 2.2 and 2.4 kernels, to adapt the latest kernel API,
123 and additional drivers which are still in development or in
124 tests. The drivers in alsa-driver tree will be moved to
125 alsa-kernel (eventually 2.6 kernel tree) once when they are
126 finished and confirmed to work fine.
127 </para>
128
129 <para>
130 The file tree structure of ALSA driver is depicted below. Both
131 alsa-kernel and alsa-driver have almost the same file
132 structure, except for <quote>core</quote> directory. It's
133 named as <quote>acore</quote> in alsa-driver tree.
134
135 <example>
136 <title>ALSA File Tree Structure</title>
137 <literallayout>
138 sound
139 /core
140 /oss
141 /seq
142 /oss
143 /instr
144 /ioctl32
145 /include
146 /drivers
147 /mpu401
148 /opl3
149 /i2c
150 /l3
151 /synth
152 /emux
153 /pci
154 /(cards)
155 /isa
156 /(cards)
157 /arm
158 /ppc
159 /sparc
160 /usb
161 /pcmcia /(cards)
162 /oss
163 </literallayout>
164 </example>
165 </para>
166 </section>
167
168 <section id="file-tree-core-directory">
169 <title>core directory</title>
170 <para>
171 This directory contains the middle layer, that is, the heart
172 of ALSA drivers. In this directory, the native ALSA modules are
173 stored. The sub-directories contain different modules and are
174 dependent upon the kernel config.
175 </para>
176
177 <section id="file-tree-core-directory-oss">
178 <title>core/oss</title>
179
180 <para>
181 The codes for PCM and mixer OSS emulation modules are stored
182 in this directory. The rawmidi OSS emulation is included in
183 the ALSA rawmidi code since it's quite small. The sequencer
184 code is stored in core/seq/oss directory (see
185 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
186 below</citetitle></link>).
187 </para>
188 </section>
189
190 <section id="file-tree-core-directory-ioctl32">
191 <title>core/ioctl32</title>
192
193 <para>
194 This directory contains the 32bit-ioctl wrappers for 64bit
195 architectures such like x86-64, ppc64 and sparc64. For 32bit
196 and alpha architectures, these are not compiled.
197 </para>
198 </section>
199
200 <section id="file-tree-core-directory-seq">
201 <title>core/seq</title>
202 <para>
203 This and its sub-directories are for the ALSA
204 sequencer. This directory contains the sequencer core and
205 primary sequencer modules such like snd-seq-midi,
206 snd-seq-virmidi, etc. They are compiled only when
207 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
208 config.
209 </para>
210 </section>
211
212 <section id="file-tree-core-directory-seq-oss">
213 <title>core/seq/oss</title>
214 <para>
215 This contains the OSS sequencer emulation codes.
216 </para>
217 </section>
218
219 <section id="file-tree-core-directory-deq-instr">
220 <title>core/seq/instr</title>
221 <para>
222 This directory contains the modules for the sequencer
223 instrument layer.
224 </para>
225 </section>
226 </section>
227
228 <section id="file-tree-include-directory">
229 <title>include directory</title>
230 <para>
231 This is the place for the public header files of ALSA drivers,
232 which are to be exported to the user-space, or included by
233 several files at different directories. Basically, the private
234 header files should not be placed in this directory, but you may
235 still find files there, due to historical reason :)
236 </para>
237 </section>
238
239 <section id="file-tree-drivers-directory">
240 <title>drivers directory</title>
241 <para>
242 This directory contains the codes shared among different drivers
243 on the different architectures. They are hence supposed not to be
244 architecture-specific.
245 For example, the dummy pcm driver and the serial MIDI
246 driver are found in this directory. In the sub-directories,
247 there are the codes for components which are independent from
248 bus and cpu architectures.
249 </para>
250
251 <section id="file-tree-drivers-directory-mpu401">
252 <title>drivers/mpu401</title>
253 <para>
254 The MPU401 and MPU401-UART modules are stored here.
255 </para>
256 </section>
257
258 <section id="file-tree-drivers-directory-opl3">
259 <title>drivers/opl3 and opl4</title>
260 <para>
261 The OPL3 and OPL4 FM-synth stuff is found here.
262 </para>
263 </section>
264 </section>
265
266 <section id="file-tree-i2c-directory">
267 <title>i2c directory</title>
268 <para>
269 This contains the ALSA i2c components.
270 </para>
271
272 <para>
273 Although there is a standard i2c layer on Linux, ALSA has its
274 own i2c codes for some cards, because the soundcard needs only a
275 simple operation and the standard i2c API is too complicated for
276 such a purpose.
277 </para>
278
279 <section id="file-tree-i2c-directory-l3">
280 <title>i2c/l3</title>
281 <para>
282 This is a sub-directory for ARM L3 i2c.
283 </para>
284 </section>
285 </section>
286
287 <section id="file-tree-synth-directory">
288 <title>synth directory</title>
289 <para>
290 This contains the synth middle-level modules.
291 </para>
292
293 <para>
294 So far, there is only Emu8000/Emu10k1 synth driver under
295 synth/emux sub-directory.
296 </para>
297 </section>
298
299 <section id="file-tree-pci-directory">
300 <title>pci directory</title>
301 <para>
302 This and its sub-directories hold the top-level card modules
303 for PCI soundcards and the codes specific to the PCI BUS.
304 </para>
305
306 <para>
307 The drivers compiled from a single file is stored directly on
308 pci directory, while the drivers with several source files are
309 stored on its own sub-directory (e.g. emu10k1, ice1712).
310 </para>
311 </section>
312
313 <section id="file-tree-isa-directory">
314 <title>isa directory</title>
315 <para>
316 This and its sub-directories hold the top-level card modules
317 for ISA soundcards.
318 </para>
319 </section>
320
321 <section id="file-tree-arm-ppc-sparc-directories">
322 <title>arm, ppc, and sparc directories</title>
323 <para>
324 These are for the top-level card modules which are
325 specific to each given architecture.
326 </para>
327 </section>
328
329 <section id="file-tree-usb-directory">
330 <title>usb directory</title>
331 <para>
332 This contains the USB-audio driver. On the latest version, the
333 USB MIDI driver is integrated together with usb-audio driver.
334 </para>
335 </section>
336
337 <section id="file-tree-pcmcia-directory">
338 <title>pcmcia directory</title>
339 <para>
340 The PCMCIA, especially PCCard drivers will go here. CardBus
341 drivers will be on pci directory, because its API is identical
342 with the standard PCI cards.
343 </para>
344 </section>
345
346 <section id="file-tree-oss-directory">
347 <title>oss directory</title>
348 <para>
349 The OSS/Lite source files are stored here on Linux 2.6 (or
350 later) tree. (In the ALSA driver tarball, it's empty, of course :)
351 </para>
352 </section>
353 </chapter>
354
355
356<!-- ****************************************************** -->
357<!-- Basic Flow for PCI Drivers -->
358<!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
361
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow of PCI soundcard is like the following:
366
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create pci_driver table which contains the three pointers above.</para></listitem>
01d25d46 374 <listitem><para>create <function>init()</function> function just calling <function>pci_register_driver()</function> to register the pci_driver table defined above.</para></listitem>
1da177e4
LT
375 <listitem><para>create <function>exit()</function> function to call <function>pci_unregister_driver()</function> function.</para></listitem>
376 </itemizedlist>
377 </para>
378 </section>
379
380 <section id="basic-flow-example">
381 <title>Full Code Example</title>
382 <para>
383 The code example is shown below. Some parts are kept
384 unimplemented at this moment but will be filled in the
385 succeeding sections. The numbers in comment lines of
386 <function>snd_mychip_probe()</function> function are the
387 markers.
388
389 <example>
390 <title>Basic Flow for PCI Drivers Example</title>
391 <programlisting>
392<![CDATA[
393 #include <sound/driver.h>
394 #include <linux/init.h>
395 #include <linux/pci.h>
396 #include <linux/slab.h>
397 #include <sound/core.h>
398 #include <sound/initval.h>
399
400 /* module parameters (see "Module Parameters") */
401 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
402 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
403 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
404
405 /* definition of the chip-specific record */
446ab5f5
TI
406 struct mychip {
407 struct snd_card *card;
1da177e4
LT
408 // rest of implementation will be in the section
409 // "PCI Resource Managements"
410 };
411
412 /* chip-specific destructor
413 * (see "PCI Resource Managements")
414 */
446ab5f5 415 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
416 {
417 .... // will be implemented later...
418 }
419
420 /* component-destructor
421 * (see "Management of Cards and Components")
422 */
446ab5f5 423 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 424 {
446ab5f5 425 return snd_mychip_free(device->device_data);
1da177e4
LT
426 }
427
428 /* chip-specific constructor
429 * (see "Management of Cards and Components")
430 */
446ab5f5 431 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 432 struct pci_dev *pci,
446ab5f5 433 struct mychip **rchip)
1da177e4 434 {
446ab5f5 435 struct mychip *chip;
1da177e4 436 int err;
446ab5f5 437 static struct snd_device_ops ops = {
1da177e4
LT
438 .dev_free = snd_mychip_dev_free,
439 };
440
441 *rchip = NULL;
442
443 // check PCI availability here
444 // (see "PCI Resource Managements")
445 ....
446
447 /* allocate a chip-specific data with zero filled */
561b220a 448 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
449 if (chip == NULL)
450 return -ENOMEM;
451
452 chip->card = card;
453
454 // rest of initialization here; will be implemented
455 // later, see "PCI Resource Managements"
456 ....
457
458 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
459 chip, &ops)) < 0) {
460 snd_mychip_free(chip);
461 return err;
462 }
463
464 snd_card_set_dev(card, &pci->dev);
465
466 *rchip = chip;
467 return 0;
468 }
469
470 /* constructor -- see "Constructor" sub-section */
471 static int __devinit snd_mychip_probe(struct pci_dev *pci,
472 const struct pci_device_id *pci_id)
473 {
474 static int dev;
446ab5f5
TI
475 struct snd_card *card;
476 struct mychip *chip;
1da177e4
LT
477 int err;
478
479 /* (1) */
480 if (dev >= SNDRV_CARDS)
481 return -ENODEV;
482 if (!enable[dev]) {
483 dev++;
484 return -ENOENT;
485 }
486
487 /* (2) */
488 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
489 if (card == NULL)
490 return -ENOMEM;
491
492 /* (3) */
493 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
494 snd_card_free(card);
495 return err;
496 }
497
498 /* (4) */
499 strcpy(card->driver, "My Chip");
500 strcpy(card->shortname, "My Own Chip 123");
501 sprintf(card->longname, "%s at 0x%lx irq %i",
502 card->shortname, chip->ioport, chip->irq);
503
504 /* (5) */
505 .... // implemented later
506
507 /* (6) */
508 if ((err = snd_card_register(card)) < 0) {
509 snd_card_free(card);
510 return err;
511 }
512
513 /* (7) */
514 pci_set_drvdata(pci, card);
515 dev++;
516 return 0;
517 }
518
519 /* destructor -- see "Destructor" sub-section */
520 static void __devexit snd_mychip_remove(struct pci_dev *pci)
521 {
522 snd_card_free(pci_get_drvdata(pci));
523 pci_set_drvdata(pci, NULL);
524 }
525]]>
526 </programlisting>
527 </example>
528 </para>
529 </section>
530
531 <section id="basic-flow-constructor">
532 <title>Constructor</title>
533 <para>
534 The real constructor of PCI drivers is probe callback. The
535 probe callback and other component-constructors which are called
536 from probe callback should be defined with
537 <parameter>__devinit</parameter> prefix. You
538 cannot use <parameter>__init</parameter> prefix for them,
539 because any PCI device could be a hotplug device.
540 </para>
541
542 <para>
543 In the probe callback, the following scheme is often used.
544 </para>
545
546 <section id="basic-flow-constructor-device-index">
547 <title>1) Check and increment the device index.</title>
548 <para>
549 <informalexample>
550 <programlisting>
551<![CDATA[
552 static int dev;
553 ....
554 if (dev >= SNDRV_CARDS)
555 return -ENODEV;
556 if (!enable[dev]) {
557 dev++;
558 return -ENOENT;
559 }
560]]>
561 </programlisting>
562 </informalexample>
563
564 where enable[dev] is the module option.
565 </para>
566
567 <para>
568 At each time probe callback is called, check the
569 availability of the device. If not available, simply increment
570 the device index and returns. dev will be incremented also
571 later (<link
572 linkend="basic-flow-constructor-set-pci"><citetitle>step
573 7</citetitle></link>).
574 </para>
575 </section>
576
577 <section id="basic-flow-constructor-create-card">
578 <title>2) Create a card instance</title>
579 <para>
580 <informalexample>
581 <programlisting>
582<![CDATA[
446ab5f5 583 struct snd_card *card;
1da177e4
LT
584 ....
585 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
586]]>
587 </programlisting>
588 </informalexample>
589 </para>
590
591 <para>
592 The detail will be explained in the section
593 <link linkend="card-management-card-instance"><citetitle>
594 Management of Cards and Components</citetitle></link>.
595 </para>
596 </section>
597
598 <section id="basic-flow-constructor-create-main">
599 <title>3) Create a main component</title>
600 <para>
601 In this part, the PCI resources are allocated.
602
603 <informalexample>
604 <programlisting>
605<![CDATA[
446ab5f5 606 struct mychip *chip;
1da177e4
LT
607 ....
608 if ((err = snd_mychip_create(card, pci, &chip)) < 0) {
609 snd_card_free(card);
610 return err;
611 }
612]]>
613 </programlisting>
614 </informalexample>
615
616 The detail will be explained in the section <link
617 linkend="pci-resource"><citetitle>PCI Resource
618 Managements</citetitle></link>.
619 </para>
620 </section>
621
622 <section id="basic-flow-constructor-main-component">
623 <title>4) Set the driver ID and name strings.</title>
624 <para>
625 <informalexample>
626 <programlisting>
627<![CDATA[
628 strcpy(card->driver, "My Chip");
629 strcpy(card->shortname, "My Own Chip 123");
630 sprintf(card->longname, "%s at 0x%lx irq %i",
631 card->shortname, chip->ioport, chip->irq);
632]]>
633 </programlisting>
634 </informalexample>
635
636 The driver field holds the minimal ID string of the
637 chip. This is referred by alsa-lib's configurator, so keep it
638 simple but unique.
639 Even the same driver can have different driver IDs to
640 distinguish the functionality of each chip type.
641 </para>
642
643 <para>
644 The shortname field is a string shown as more verbose
645 name. The longname field contains the information which is
646 shown in <filename>/proc/asound/cards</filename>.
647 </para>
648 </section>
649
650 <section id="basic-flow-constructor-create-other">
651 <title>5) Create other components, such as mixer, MIDI, etc.</title>
652 <para>
653 Here you define the basic components such as
654 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
655 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
656 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
657 and other interfaces.
658 Also, if you want a <link linkend="proc-interface"><citetitle>proc
659 file</citetitle></link>, define it here, too.
660 </para>
661 </section>
662
663 <section id="basic-flow-constructor-register-card">
664 <title>6) Register the card instance.</title>
665 <para>
666 <informalexample>
667 <programlisting>
668<![CDATA[
669 if ((err = snd_card_register(card)) < 0) {
670 snd_card_free(card);
671 return err;
672 }
673]]>
674 </programlisting>
675 </informalexample>
676 </para>
677
678 <para>
679 Will be explained in the section <link
680 linkend="card-management-registration"><citetitle>Management
681 of Cards and Components</citetitle></link>, too.
682 </para>
683 </section>
684
685 <section id="basic-flow-constructor-set-pci">
686 <title>7) Set the PCI driver data and return zero.</title>
687 <para>
688 <informalexample>
689 <programlisting>
690<![CDATA[
691 pci_set_drvdata(pci, card);
692 dev++;
693 return 0;
694]]>
695 </programlisting>
696 </informalexample>
697
698 In the above, the card record is stored. This pointer is
699 referred in the remove callback and power-management
700 callbacks, too.
701 </para>
702 </section>
703 </section>
704
705 <section id="basic-flow-destructor">
706 <title>Destructor</title>
707 <para>
708 The destructor, remove callback, simply releases the card
709 instance. Then the ALSA middle layer will release all the
710 attached components automatically.
711 </para>
712
713 <para>
714 It would be typically like the following:
715
716 <informalexample>
717 <programlisting>
718<![CDATA[
719 static void __devexit snd_mychip_remove(struct pci_dev *pci)
720 {
721 snd_card_free(pci_get_drvdata(pci));
722 pci_set_drvdata(pci, NULL);
723 }
724]]>
725 </programlisting>
726 </informalexample>
727
728 The above code assumes that the card pointer is set to the PCI
729 driver data.
730 </para>
731 </section>
732
733 <section id="basic-flow-header-files">
734 <title>Header Files</title>
735 <para>
736 For the above example, at least the following include files
737 are necessary.
738
739 <informalexample>
740 <programlisting>
741<![CDATA[
742 #include <sound/driver.h>
743 #include <linux/init.h>
744 #include <linux/pci.h>
745 #include <linux/slab.h>
746 #include <sound/core.h>
747 #include <sound/initval.h>
748]]>
749 </programlisting>
750 </informalexample>
751
752 where the last one is necessary only when module options are
753 defined in the source file. If the codes are split to several
754 files, the file without module options don't need them.
755 </para>
756
757 <para>
758 In addition to them, you'll need
759 <filename>&lt;linux/interrupt.h&gt;</filename> for the interrupt
760 handling, and <filename>&lt;asm/io.h&gt;</filename> for the i/o
761 access. If you use <function>mdelay()</function> or
762 <function>udelay()</function> functions, you'll need to include
763 <filename>&lt;linux/delay.h&gt;</filename>, too.
764 </para>
765
766 <para>
767 The ALSA interfaces like PCM or control API are defined in other
768 header files as <filename>&lt;sound/xxx.h&gt;</filename>.
769 They have to be included after
770 <filename>&lt;sound/core.h&gt;</filename>.
771 </para>
772
773 </section>
774 </chapter>
775
776
777<!-- ****************************************************** -->
778<!-- Management of Cards and Components -->
779<!-- ****************************************************** -->
780 <chapter id="card-management">
781 <title>Management of Cards and Components</title>
782
783 <section id="card-management-card-instance">
784 <title>Card Instance</title>
785 <para>
786 For each soundcard, a <quote>card</quote> record must be allocated.
787 </para>
788
789 <para>
790 A card record is the headquarters of the soundcard. It manages
791 the list of whole devices (components) on the soundcard, such as
792 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
793 record holds the ID and the name strings of the card, manages
794 the root of proc files, and controls the power-management states
795 and hotplug disconnections. The component list on the card
796 record is used to manage the proper releases of resources at
797 destruction.
798 </para>
799
800 <para>
801 As mentioned above, to create a card instance, call
802 <function>snd_card_new()</function>.
803
804 <informalexample>
805 <programlisting>
806<![CDATA[
446ab5f5 807 struct snd_card *card;
1da177e4
LT
808 card = snd_card_new(index, id, module, extra_size);
809]]>
810 </programlisting>
811 </informalexample>
812 </para>
813
814 <para>
815 The function takes four arguments, the card-index number, the
816 id string, the module pointer (usually
817 <constant>THIS_MODULE</constant>),
818 and the size of extra-data space. The last argument is used to
819 allocate card-&gt;private_data for the
820 chip-specific data. Note that this data
821 <emphasis>is</emphasis> allocated by
822 <function>snd_card_new()</function>.
823 </para>
824 </section>
825
826 <section id="card-management-component">
827 <title>Components</title>
828 <para>
829 After the card is created, you can attach the components
830 (devices) to the card instance. On ALSA driver, a component is
446ab5f5 831 represented as a struct <structname>snd_device</structname> object.
1da177e4
LT
832 A component can be a PCM instance, a control interface, a raw
833 MIDI interface, etc. Each of such instances has one component
834 entry.
835 </para>
836
837 <para>
838 A component can be created via
839 <function>snd_device_new()</function> function.
840
841 <informalexample>
842 <programlisting>
843<![CDATA[
844 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
845]]>
846 </programlisting>
847 </informalexample>
848 </para>
849
850 <para>
851 This takes the card pointer, the device-level
852 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
853 callback pointers (<parameter>&amp;ops</parameter>). The
854 device-level defines the type of components and the order of
855 registration and de-registration. For most of components, the
856 device-level is already defined. For a user-defined component,
857 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
858 </para>
859
860 <para>
861 This function itself doesn't allocate the data space. The data
862 must be allocated manually beforehand, and its pointer is passed
863 as the argument. This pointer is used as the identifier
864 (<parameter>chip</parameter> in the above example) for the
865 instance.
866 </para>
867
868 <para>
869 Each ALSA pre-defined component such as ac97 or pcm calls
870 <function>snd_device_new()</function> inside its
871 constructor. The destructor for each component is defined in the
872 callback pointers. Hence, you don't need to take care of
873 calling a destructor for such a component.
874 </para>
875
876 <para>
877 If you would like to create your own component, you need to
878 set the destructor function to dev_free callback in
879 <parameter>ops</parameter>, so that it can be released
880 automatically via <function>snd_card_free()</function>. The
881 example will be shown later as an implementation of a
882 chip-specific data.
883 </para>
884 </section>
885
886 <section id="card-management-chip-specific">
887 <title>Chip-Specific Data</title>
888 <para>
889 The chip-specific information, e.g. the i/o port address, its
890 resource pointer, or the irq number, is stored in the
891 chip-specific record.
1da177e4
LT
892
893 <informalexample>
894 <programlisting>
895<![CDATA[
446ab5f5 896 struct mychip {
1da177e4
LT
897 ....
898 };
899]]>
900 </programlisting>
901 </informalexample>
902 </para>
903
904 <para>
905 In general, there are two ways to allocate the chip record.
906 </para>
907
908 <section id="card-management-chip-specific-snd-card-new">
909 <title>1. Allocating via <function>snd_card_new()</function>.</title>
910 <para>
911 As mentioned above, you can pass the extra-data-length to the 4th argument of <function>snd_card_new()</function>, i.e.
912
913 <informalexample>
914 <programlisting>
915<![CDATA[
446ab5f5 916 card = snd_card_new(index[dev], id[dev], THIS_MODULE, sizeof(struct mychip));
1da177e4
LT
917]]>
918 </programlisting>
919 </informalexample>
920
446ab5f5 921 whether struct <structname>mychip</structname> is the type of the chip record.
1da177e4
LT
922 </para>
923
924 <para>
925 In return, the allocated record can be accessed as
926
927 <informalexample>
928 <programlisting>
929<![CDATA[
446ab5f5 930 struct mychip *chip = (struct mychip *)card->private_data;
1da177e4
LT
931]]>
932 </programlisting>
933 </informalexample>
934
935 With this method, you don't have to allocate twice.
936 The record is released together with the card instance.
937 </para>
938 </section>
939
940 <section id="card-management-chip-specific-allocate-extra">
941 <title>2. Allocating an extra device.</title>
942
943 <para>
944 After allocating a card instance via
945 <function>snd_card_new()</function> (with
946 <constant>NULL</constant> on the 4th arg), call
561b220a 947 <function>kzalloc()</function>.
1da177e4
LT
948
949 <informalexample>
950 <programlisting>
951<![CDATA[
446ab5f5
TI
952 struct snd_card *card;
953 struct mychip *chip;
1da177e4
LT
954 card = snd_card_new(index[dev], id[dev], THIS_MODULE, NULL);
955 .....
561b220a 956 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
957]]>
958 </programlisting>
959 </informalexample>
960 </para>
961
962 <para>
963 The chip record should have the field to hold the card
964 pointer at least,
965
966 <informalexample>
967 <programlisting>
968<![CDATA[
446ab5f5
TI
969 struct mychip {
970 struct snd_card *card;
1da177e4
LT
971 ....
972 };
973]]>
974 </programlisting>
975 </informalexample>
976 </para>
977
978 <para>
979 Then, set the card pointer in the returned chip instance.
980
981 <informalexample>
982 <programlisting>
983<![CDATA[
984 chip->card = card;
985]]>
986 </programlisting>
987 </informalexample>
988 </para>
989
990 <para>
991 Next, initialize the fields, and register this chip
992 record as a low-level device with a specified
993 <parameter>ops</parameter>,
994
995 <informalexample>
996 <programlisting>
997<![CDATA[
446ab5f5 998 static struct snd_device_ops ops = {
1da177e4
LT
999 .dev_free = snd_mychip_dev_free,
1000 };
1001 ....
1002 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1003]]>
1004 </programlisting>
1005 </informalexample>
1006
1007 <function>snd_mychip_dev_free()</function> is the
1008 device-destructor function, which will call the real
1009 destructor.
1010 </para>
1011
1012 <para>
1013 <informalexample>
1014 <programlisting>
1015<![CDATA[
446ab5f5 1016 static int snd_mychip_dev_free(struct snd_device *device)
1da177e4 1017 {
446ab5f5 1018 return snd_mychip_free(device->device_data);
1da177e4
LT
1019 }
1020]]>
1021 </programlisting>
1022 </informalexample>
1023
1024 where <function>snd_mychip_free()</function> is the real destructor.
1025 </para>
1026 </section>
1027 </section>
1028
1029 <section id="card-management-registration">
1030 <title>Registration and Release</title>
1031 <para>
1032 After all components are assigned, register the card instance
1033 by calling <function>snd_card_register()</function>. The access
1034 to the device files are enabled at this point. That is, before
1035 <function>snd_card_register()</function> is called, the
1036 components are safely inaccessible from external side. If this
1037 call fails, exit the probe function after releasing the card via
1038 <function>snd_card_free()</function>.
1039 </para>
1040
1041 <para>
1042 For releasing the card instance, you can call simply
1043 <function>snd_card_free()</function>. As already mentioned, all
1044 components are released automatically by this call.
1045 </para>
1046
1047 <para>
1048 As further notes, the destructors (both
1049 <function>snd_mychip_dev_free</function> and
1050 <function>snd_mychip_free</function>) cannot be defined with
1051 <parameter>__devexit</parameter> prefix, because they may be
1052 called from the constructor, too, at the false path.
1053 </para>
1054
1055 <para>
1056 For a device which allows hotplugging, you can use
1057 <function>snd_card_free_in_thread</function>. This one will
1058 postpone the destruction and wait in a kernel-thread until all
1059 devices are closed.
1060 </para>
1061
1062 </section>
1063
1064 </chapter>
1065
1066
1067<!-- ****************************************************** -->
1068<!-- PCI Resource Managements -->
1069<!-- ****************************************************** -->
1070 <chapter id="pci-resource">
1071 <title>PCI Resource Managements</title>
1072
1073 <section id="pci-resource-example">
1074 <title>Full Code Example</title>
1075 <para>
1076 In this section, we'll finish the chip-specific constructor,
1077 destructor and PCI entries. The example code is shown first,
1078 below.
1079
1080 <example>
1081 <title>PCI Resource Managements Example</title>
1082 <programlisting>
1083<![CDATA[
446ab5f5
TI
1084 struct mychip {
1085 struct snd_card *card;
1da177e4
LT
1086 struct pci_dev *pci;
1087
1088 unsigned long port;
1089 int irq;
1090 };
1091
446ab5f5 1092 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1093 {
1094 /* disable hardware here if any */
1095 .... // (not implemented in this document)
1096
1097 /* release the irq */
1098 if (chip->irq >= 0)
1099 free_irq(chip->irq, (void *)chip);
1100 /* release the i/o ports & memory */
1101 pci_release_regions(chip->pci);
1102 /* disable the PCI entry */
1103 pci_disable_device(chip->pci);
1104 /* release the data */
1105 kfree(chip);
1106 return 0;
1107 }
1108
1109 /* chip-specific constructor */
446ab5f5 1110 static int __devinit snd_mychip_create(struct snd_card *card,
1da177e4 1111 struct pci_dev *pci,
446ab5f5 1112 struct mychip **rchip)
1da177e4 1113 {
446ab5f5 1114 struct mychip *chip;
1da177e4 1115 int err;
446ab5f5 1116 static struct snd_device_ops ops = {
1da177e4
LT
1117 .dev_free = snd_mychip_dev_free,
1118 };
1119
1120 *rchip = NULL;
1121
1122 /* initialize the PCI entry */
1123 if ((err = pci_enable_device(pci)) < 0)
1124 return err;
1125 /* check PCI availability (28bit DMA) */
1126 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1127 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1128 printk(KERN_ERR "error to set 28bit mask DMA\n");
1129 pci_disable_device(pci);
1130 return -ENXIO;
1131 }
1132
561b220a 1133 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1da177e4
LT
1134 if (chip == NULL) {
1135 pci_disable_device(pci);
1136 return -ENOMEM;
1137 }
1138
1139 /* initialize the stuff */
1140 chip->card = card;
1141 chip->pci = pci;
1142 chip->irq = -1;
1143
1144 /* (1) PCI resource allocation */
1145 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1146 kfree(chip);
1147 pci_disable_device(pci);
1148 return err;
1149 }
1150 chip->port = pci_resource_start(pci, 0);
1151 if (request_irq(pci->irq, snd_mychip_interrupt,
446ab5f5 1152 SA_INTERRUPT|SA_SHIRQ, "My Chip", chip)) {
1da177e4
LT
1153 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1154 snd_mychip_free(chip);
1155 return -EBUSY;
1156 }
1157 chip->irq = pci->irq;
1158
1159 /* (2) initialization of the chip hardware */
1160 .... // (not implemented in this document)
1161
1162 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
1163 chip, &ops)) < 0) {
1164 snd_mychip_free(chip);
1165 return err;
1166 }
1167
1168 snd_card_set_dev(card, &pci->dev);
1169
1170 *rchip = chip;
1171 return 0;
1172 }
1173
1174 /* PCI IDs */
1175 static struct pci_device_id snd_mychip_ids[] = {
1176 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1177 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1178 ....
1179 { 0, }
1180 };
1181 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1182
1183 /* pci_driver definition */
1184 static struct pci_driver driver = {
1185 .name = "My Own Chip",
1186 .id_table = snd_mychip_ids,
1187 .probe = snd_mychip_probe,
1188 .remove = __devexit_p(snd_mychip_remove),
1189 };
1190
1191 /* initialization of the module */
1192 static int __init alsa_card_mychip_init(void)
1193 {
01d25d46 1194 return pci_register_driver(&driver);
1da177e4
LT
1195 }
1196
1197 /* clean up the module */
1198 static void __exit alsa_card_mychip_exit(void)
1199 {
1200 pci_unregister_driver(&driver);
1201 }
1202
1203 module_init(alsa_card_mychip_init)
1204 module_exit(alsa_card_mychip_exit)
1205
1206 EXPORT_NO_SYMBOLS; /* for old kernels only */
1207]]>
1208 </programlisting>
1209 </example>
1210 </para>
1211 </section>
1212
1213 <section id="pci-resource-some-haftas">
1214 <title>Some Hafta's</title>
1215 <para>
1216 The allocation of PCI resources is done in the
1217 <function>probe()</function> function, and usually an extra
1218 <function>xxx_create()</function> function is written for this
1219 purpose.
1220 </para>
1221
1222 <para>
1223 In the case of PCI devices, you have to call at first
1224 <function>pci_enable_device()</function> function before
1225 allocating resources. Also, you need to set the proper PCI DMA
1226 mask to limit the accessed i/o range. In some cases, you might
1227 need to call <function>pci_set_master()</function> function,
1228 too.
1229 </para>
1230
1231 <para>
1232 Suppose the 28bit mask, and the code to be added would be like:
1233
1234 <informalexample>
1235 <programlisting>
1236<![CDATA[
1237 if ((err = pci_enable_device(pci)) < 0)
1238 return err;
1239 if (pci_set_dma_mask(pci, 0x0fffffff) < 0 ||
1240 pci_set_consistent_dma_mask(pci, 0x0fffffff) < 0) {
1241 printk(KERN_ERR "error to set 28bit mask DMA\n");
1242 pci_disable_device(pci);
1243 return -ENXIO;
1244 }
1245
1246]]>
1247 </programlisting>
1248 </informalexample>
1249 </para>
1250 </section>
1251
1252 <section id="pci-resource-resource-allocation">
1253 <title>Resource Allocation</title>
1254 <para>
1255 The allocation of I/O ports and irqs are done via standard kernel
1256 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1257 that. And these resources must be released in the destructor
1258 function (see below). Also, on ALSA 0.9.x, you don't need to
1259 allocate (pseudo-)DMA for PCI like ALSA 0.5.x.
1260 </para>
1261
1262 <para>
1263 Now assume that this PCI device has an I/O port with 8 bytes
446ab5f5 1264 and an interrupt. Then struct <structname>mychip</structname> will have the
1da177e4
LT
1265 following fields:
1266
1267 <informalexample>
1268 <programlisting>
1269<![CDATA[
446ab5f5
TI
1270 struct mychip {
1271 struct snd_card *card;
1da177e4
LT
1272
1273 unsigned long port;
1274 int irq;
1275 };
1276]]>
1277 </programlisting>
1278 </informalexample>
1279 </para>
1280
1281 <para>
1282 For an i/o port (and also a memory region), you need to have
1283 the resource pointer for the standard resource management. For
1284 an irq, you have to keep only the irq number (integer). But you
1285 need to initialize this number as -1 before actual allocation,
1286 since irq 0 is valid. The port address and its resource pointer
1287 can be initialized as null by
561b220a 1288 <function>kzalloc()</function> automatically, so you
1da177e4
LT
1289 don't have to take care of resetting them.
1290 </para>
1291
1292 <para>
1293 The allocation of an i/o port is done like this:
1294
1295 <informalexample>
1296 <programlisting>
1297<![CDATA[
1298 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1299 kfree(chip);
1300 pci_disable_device(pci);
1301 return err;
1302 }
1303 chip->port = pci_resource_start(pci, 0);
1304]]>
1305 </programlisting>
1306 </informalexample>
1307 </para>
1308
1309 <para>
1310 <!-- obsolete -->
1311 It will reserve the i/o port region of 8 bytes of the given
1312 PCI device. The returned value, chip-&gt;res_port, is allocated
1313 via <function>kmalloc()</function> by
1314 <function>request_region()</function>. The pointer must be
1315 released via <function>kfree()</function>, but there is some
1316 problem regarding this. This issue will be explained more below.
1317 </para>
1318
1319 <para>
1320 The allocation of an interrupt source is done like this:
1321
1322 <informalexample>
1323 <programlisting>
1324<![CDATA[
1325 if (request_irq(pci->irq, snd_mychip_interrupt,
446ab5f5 1326 SA_INTERRUPT|SA_SHIRQ, "My Chip", chip)) {
1da177e4
LT
1327 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1328 snd_mychip_free(chip);
1329 return -EBUSY;
1330 }
1331 chip->irq = pci->irq;
1332]]>
1333 </programlisting>
1334 </informalexample>
1335
1336 where <function>snd_mychip_interrupt()</function> is the
1337 interrupt handler defined <link
1338 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1339 Note that chip-&gt;irq should be defined
1340 only when <function>request_irq()</function> succeeded.
1341 </para>
1342
1343 <para>
1344 On the PCI bus, the interrupts can be shared. Thus,
1345 <constant>SA_SHIRQ</constant> is given as the interrupt flag of
1346 <function>request_irq()</function>.
1347 </para>
1348
1349 <para>
1350 The last argument of <function>request_irq()</function> is the
1351 data pointer passed to the interrupt handler. Usually, the
1352 chip-specific record is used for that, but you can use what you
1353 like, too.
1354 </para>
1355
1356 <para>
1357 I won't define the detail of the interrupt handler at this
1358 point, but at least its appearance can be explained now. The
1359 interrupt handler looks usually like the following:
1360
1361 <informalexample>
1362 <programlisting>
1363<![CDATA[
1364 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
1365 struct pt_regs *regs)
1366 {
446ab5f5 1367 struct mychip *chip = dev_id;
1da177e4
LT
1368 ....
1369 return IRQ_HANDLED;
1370 }
1371]]>
1372 </programlisting>
1373 </informalexample>
1374 </para>
1375
1376 <para>
1377 Now let's write the corresponding destructor for the resources
1378 above. The role of destructor is simple: disable the hardware
1379 (if already activated) and release the resources. So far, we
1380 have no hardware part, so the disabling is not written here.
1381 </para>
1382
1383 <para>
1384 For releasing the resources, <quote>check-and-release</quote>
1385 method is a safer way. For the interrupt, do like this:
1386
1387 <informalexample>
1388 <programlisting>
1389<![CDATA[
1390 if (chip->irq >= 0)
1391 free_irq(chip->irq, (void *)chip);
1392]]>
1393 </programlisting>
1394 </informalexample>
1395
1396 Since the irq number can start from 0, you should initialize
1397 chip-&gt;irq with a negative value (e.g. -1), so that you can
1398 check the validity of the irq number as above.
1399 </para>
1400
1401 <para>
1402 When you requested I/O ports or memory regions via
1403 <function>pci_request_region()</function> or
1404 <function>pci_request_regions()</function> like this example,
1405 release the resource(s) using the corresponding function,
1406 <function>pci_release_region()</function> or
1407 <function>pci_release_regions()</function>.
1408
1409 <informalexample>
1410 <programlisting>
1411<![CDATA[
1412 pci_release_regions(chip->pci);
1413]]>
1414 </programlisting>
1415 </informalexample>
1416 </para>
1417
1418 <para>
1419 When you requested manually via <function>request_region()</function>
1420 or <function>request_mem_region</function>, you can release it via
1421 <function>release_resource()</function>. Suppose that you keep
1422 the resource pointer returned from <function>request_region()</function>
1423 in chip-&gt;res_port, the release procedure looks like below:
1424
1425 <informalexample>
1426 <programlisting>
1427<![CDATA[
b1d5776d 1428 release_and_free_resource(chip->res_port);
1da177e4
LT
1429]]>
1430 </programlisting>
1431 </informalexample>
1da177e4
LT
1432 </para>
1433
1434 <para>
1435 Don't forget to call <function>pci_disable_device()</function>
1436 before all finished.
1437 </para>
1438
1439 <para>
1440 And finally, release the chip-specific record.
1441
1442 <informalexample>
1443 <programlisting>
1444<![CDATA[
1445 kfree(chip);
1446]]>
1447 </programlisting>
1448 </informalexample>
1449 </para>
1450
1451 <para>
1452 Again, remember that you cannot
1453 set <parameter>__devexit</parameter> prefix for this destructor.
1454 </para>
1455
1456 <para>
1457 We didn't implement the hardware-disabling part in the above.
1458 If you need to do this, please note that the destructor may be
1459 called even before the initialization of the chip is completed.
1460 It would be better to have a flag to skip the hardware-disabling
1461 if the hardware was not initialized yet.
1462 </para>
1463
1464 <para>
1465 When the chip-data is assigned to the card using
1466 <function>snd_device_new()</function> with
1467 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1468 called at the last. That is, it is assured that all other
1469 components like PCMs and controls have been already released.
1470 You don't have to call stopping PCMs, etc. explicitly, but just
1471 stop the hardware in the low-level.
1472 </para>
1473
1474 <para>
1475 The management of a memory-mapped region is almost as same as
1476 the management of an i/o port. You'll need three fields like
1477 the following:
1478
1479 <informalexample>
1480 <programlisting>
1481<![CDATA[
446ab5f5 1482 struct mychip {
1da177e4
LT
1483 ....
1484 unsigned long iobase_phys;
1485 void __iomem *iobase_virt;
1486 };
1487]]>
1488 </programlisting>
1489 </informalexample>
1490
1491 and the allocation would be like below:
1492
1493 <informalexample>
1494 <programlisting>
1495<![CDATA[
1496 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1497 kfree(chip);
1498 return err;
1499 }
1500 chip->iobase_phys = pci_resource_start(pci, 0);
1501 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1502 pci_resource_len(pci, 0));
1503]]>
1504 </programlisting>
1505 </informalexample>
1506
1507 and the corresponding destructor would be:
1508
1509 <informalexample>
1510 <programlisting>
1511<![CDATA[
446ab5f5 1512 static int snd_mychip_free(struct mychip *chip)
1da177e4
LT
1513 {
1514 ....
1515 if (chip->iobase_virt)
1516 iounmap(chip->iobase_virt);
1517 ....
1518 pci_release_regions(chip->pci);
1519 ....
1520 }
1521]]>
1522 </programlisting>
1523 </informalexample>
1524 </para>
1525
1526 </section>
1527
1528 <section id="pci-resource-device-struct">
1529 <title>Registration of Device Struct</title>
1530 <para>
1531 At some point, typically after calling <function>snd_device_new()</function>,
446ab5f5 1532 you need to register the struct <structname>device</structname> of the chip
1da177e4
LT
1533 you're handling for udev and co. ALSA provides a macro for compatibility with
1534 older kernels. Simply call like the following:
1535 <informalexample>
1536 <programlisting>
1537<![CDATA[
1538 snd_card_set_dev(card, &pci->dev);
1539]]>
1540 </programlisting>
1541 </informalexample>
1542 so that it stores the PCI's device pointer to the card. This will be
1543 referred by ALSA core functions later when the devices are registered.
1544 </para>
1545 <para>
1546 In the case of non-PCI, pass the proper device struct pointer of the BUS
1547 instead. (In the case of legacy ISA without PnP, you don't have to do
1548 anything.)
1549 </para>
1550 </section>
1551
1552 <section id="pci-resource-entries">
1553 <title>PCI Entries</title>
1554 <para>
1555 So far, so good. Let's finish the rest of missing PCI
1556 stuffs. At first, we need a
1557 <structname>pci_device_id</structname> table for this
1558 chipset. It's a table of PCI vendor/device ID number, and some
1559 masks.
1560 </para>
1561
1562 <para>
1563 For example,
1564
1565 <informalexample>
1566 <programlisting>
1567<![CDATA[
1568 static struct pci_device_id snd_mychip_ids[] = {
1569 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1570 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1571 ....
1572 { 0, }
1573 };
1574 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1575]]>
1576 </programlisting>
1577 </informalexample>
1578 </para>
1579
1580 <para>
1581 The first and second fields of
1582 <structname>pci_device_id</structname> struct are the vendor and
1583 device IDs. If you have nothing special to filter the matching
1584 devices, you can use the rest of fields like above. The last
1585 field of <structname>pci_device_id</structname> struct is a
1586 private data for this entry. You can specify any value here, for
1587 example, to tell the type of different operations per each
1588 device IDs. Such an example is found in intel8x0 driver.
1589 </para>
1590
1591 <para>
1592 The last entry of this list is the terminator. You must
1593 specify this all-zero entry.
1594 </para>
1595
1596 <para>
1597 Then, prepare the <structname>pci_driver</structname> record:
1598
1599 <informalexample>
1600 <programlisting>
1601<![CDATA[
1602 static struct pci_driver driver = {
1603 .name = "My Own Chip",
1604 .id_table = snd_mychip_ids,
1605 .probe = snd_mychip_probe,
1606 .remove = __devexit_p(snd_mychip_remove),
1607 };
1608]]>
1609 </programlisting>
1610 </informalexample>
1611 </para>
1612
1613 <para>
1614 The <structfield>probe</structfield> and
1615 <structfield>remove</structfield> functions are what we already
1616 defined in
1617 the previous sections. The <structfield>remove</structfield> should
1618 be defined with
1619 <function>__devexit_p()</function> macro, so that it's not
1620 defined for built-in (and non-hot-pluggable) case. The
1621 <structfield>name</structfield>
1622 field is the name string of this device. Note that you must not
1623 use a slash <quote>/</quote> in this string.
1624 </para>
1625
1626 <para>
1627 And at last, the module entries:
1628
1629 <informalexample>
1630 <programlisting>
1631<![CDATA[
1632 static int __init alsa_card_mychip_init(void)
1633 {
01d25d46 1634 return pci_register_driver(&driver);
1da177e4
LT
1635 }
1636
1637 static void __exit alsa_card_mychip_exit(void)
1638 {
1639 pci_unregister_driver(&driver);
1640 }
1641
1642 module_init(alsa_card_mychip_init)
1643 module_exit(alsa_card_mychip_exit)
1644]]>
1645 </programlisting>
1646 </informalexample>
1647 </para>
1648
1649 <para>
1650 Note that these module entries are tagged with
1651 <parameter>__init</parameter> and
1652 <parameter>__exit</parameter> prefixes, not
1653 <parameter>__devinit</parameter> nor
1654 <parameter>__devexit</parameter>.
1655 </para>
1656
1657 <para>
1658 Oh, one thing was forgotten. If you have no exported symbols,
1659 you need to declare it on 2.2 or 2.4 kernels (on 2.6 kernels
1660 it's not necessary, though).
1661
1662 <informalexample>
1663 <programlisting>
1664<![CDATA[
1665 EXPORT_NO_SYMBOLS;
1666]]>
1667 </programlisting>
1668 </informalexample>
1669
1670 That's all!
1671 </para>
1672 </section>
1673 </chapter>
1674
1675
1676<!-- ****************************************************** -->
1677<!-- PCM Interface -->
1678<!-- ****************************************************** -->
1679 <chapter id="pcm-interface">
1680 <title>PCM Interface</title>
1681
1682 <section id="pcm-interface-general">
1683 <title>General</title>
1684 <para>
1685 The PCM middle layer of ALSA is quite powerful and it is only
1686 necessary for each driver to implement the low-level functions
1687 to access its hardware.
1688 </para>
1689
1690 <para>
1691 For accessing to the PCM layer, you need to include
1692 <filename>&lt;sound/pcm.h&gt;</filename> above all. In addition,
1693 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1694 if you access to some functions related with hw_param.
1695 </para>
1696
1697 <para>
1698 Each card device can have up to four pcm instances. A pcm
1699 instance corresponds to a pcm device file. The limitation of
1700 number of instances comes only from the available bit size of
1701 the linux's device number. Once when 64bit device number is
1702 used, we'll have more available pcm instances.
1703 </para>
1704
1705 <para>
1706 A pcm instance consists of pcm playback and capture streams,
1707 and each pcm stream consists of one or more pcm substreams. Some
1708 soundcard supports the multiple-playback function. For example,
1709 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1710 each open, a free substream is (usually) automatically chosen
1711 and opened. Meanwhile, when only one substream exists and it was
1712 already opened, the succeeding open will result in the blocking
1713 or the error with <constant>EAGAIN</constant> according to the
1714 file open mode. But you don't have to know the detail in your
1715 driver. The PCM middle layer will take all such jobs.
1716 </para>
1717 </section>
1718
1719 <section id="pcm-interface-example">
1720 <title>Full Code Example</title>
1721 <para>
1722 The example code below does not include any hardware access
1723 routines but shows only the skeleton, how to build up the PCM
1724 interfaces.
1725
1726 <example>
1727 <title>PCM Example Code</title>
1728 <programlisting>
1729<![CDATA[
1730 #include <sound/pcm.h>
1731 ....
1732
1733 /* hardware definition */
446ab5f5 1734 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
1735 .info = (SNDRV_PCM_INFO_MMAP |
1736 SNDRV_PCM_INFO_INTERLEAVED |
1737 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1738 SNDRV_PCM_INFO_MMAP_VALID),
1739 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1740 .rates = SNDRV_PCM_RATE_8000_48000,
1741 .rate_min = 8000,
1742 .rate_max = 48000,
1743 .channels_min = 2,
1744 .channels_max = 2,
1745 .buffer_bytes_max = 32768,
1746 .period_bytes_min = 4096,
1747 .period_bytes_max = 32768,
1748 .periods_min = 1,
1749 .periods_max = 1024,
1750 };
1751
1752 /* hardware definition */
446ab5f5 1753 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1da177e4
LT
1754 .info = (SNDRV_PCM_INFO_MMAP |
1755 SNDRV_PCM_INFO_INTERLEAVED |
1756 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1757 SNDRV_PCM_INFO_MMAP_VALID),
1758 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1759 .rates = SNDRV_PCM_RATE_8000_48000,
1760 .rate_min = 8000,
1761 .rate_max = 48000,
1762 .channels_min = 2,
1763 .channels_max = 2,
1764 .buffer_bytes_max = 32768,
1765 .period_bytes_min = 4096,
1766 .period_bytes_max = 32768,
1767 .periods_min = 1,
1768 .periods_max = 1024,
1769 };
1770
1771 /* open callback */
446ab5f5 1772 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1da177e4 1773 {
446ab5f5
TI
1774 struct mychip *chip = snd_pcm_substream_chip(substream);
1775 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1776
1777 runtime->hw = snd_mychip_playback_hw;
1778 // more hardware-initialization will be done here
1779 return 0;
1780 }
1781
1782 /* close callback */
446ab5f5 1783 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1da177e4 1784 {
446ab5f5 1785 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1786 // the hardware-specific codes will be here
1787 return 0;
1788
1789 }
1790
1791 /* open callback */
446ab5f5 1792 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1da177e4 1793 {
446ab5f5
TI
1794 struct mychip *chip = snd_pcm_substream_chip(substream);
1795 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1796
1797 runtime->hw = snd_mychip_capture_hw;
1798 // more hardware-initialization will be done here
1799 return 0;
1800 }
1801
1802 /* close callback */
446ab5f5 1803 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1da177e4 1804 {
446ab5f5 1805 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1806 // the hardware-specific codes will be here
1807 return 0;
1808
1809 }
1810
1811 /* hw_params callback */
446ab5f5
TI
1812 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1813 struct snd_pcm_hw_params *hw_params)
1da177e4
LT
1814 {
1815 return snd_pcm_lib_malloc_pages(substream,
1816 params_buffer_bytes(hw_params));
1817 }
1818
1819 /* hw_free callback */
446ab5f5 1820 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1da177e4
LT
1821 {
1822 return snd_pcm_lib_free_pages(substream);
1823 }
1824
1825 /* prepare callback */
446ab5f5 1826 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1da177e4 1827 {
446ab5f5
TI
1828 struct mychip *chip = snd_pcm_substream_chip(substream);
1829 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
1830
1831 /* set up the hardware with the current configuration
1832 * for example...
1833 */
1834 mychip_set_sample_format(chip, runtime->format);
1835 mychip_set_sample_rate(chip, runtime->rate);
1836 mychip_set_channels(chip, runtime->channels);
1837 mychip_set_dma_setup(chip, runtime->dma_area,
1838 chip->buffer_size,
1839 chip->period_size);
1840 return 0;
1841 }
1842
1843 /* trigger callback */
446ab5f5 1844 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1da177e4
LT
1845 int cmd)
1846 {
1847 switch (cmd) {
1848 case SNDRV_PCM_TRIGGER_START:
1849 // do something to start the PCM engine
1850 break;
1851 case SNDRV_PCM_TRIGGER_STOP:
1852 // do something to stop the PCM engine
1853 break;
1854 default:
1855 return -EINVAL;
1856 }
1857 }
1858
1859 /* pointer callback */
1860 static snd_pcm_uframes_t
446ab5f5 1861 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1da177e4 1862 {
446ab5f5 1863 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
1864 unsigned int current_ptr;
1865
1866 /* get the current hardware pointer */
1867 current_ptr = mychip_get_hw_pointer(chip);
1868 return current_ptr;
1869 }
1870
1871 /* operators */
446ab5f5 1872 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
1873 .open = snd_mychip_playback_open,
1874 .close = snd_mychip_playback_close,
1875 .ioctl = snd_pcm_lib_ioctl,
1876 .hw_params = snd_mychip_pcm_hw_params,
1877 .hw_free = snd_mychip_pcm_hw_free,
1878 .prepare = snd_mychip_pcm_prepare,
1879 .trigger = snd_mychip_pcm_trigger,
1880 .pointer = snd_mychip_pcm_pointer,
1881 };
1882
1883 /* operators */
446ab5f5 1884 static struct snd_pcm_ops snd_mychip_capture_ops = {
1da177e4
LT
1885 .open = snd_mychip_capture_open,
1886 .close = snd_mychip_capture_close,
1887 .ioctl = snd_pcm_lib_ioctl,
1888 .hw_params = snd_mychip_pcm_hw_params,
1889 .hw_free = snd_mychip_pcm_hw_free,
1890 .prepare = snd_mychip_pcm_prepare,
1891 .trigger = snd_mychip_pcm_trigger,
1892 .pointer = snd_mychip_pcm_pointer,
1893 };
1894
1895 /*
1896 * definitions of capture are omitted here...
1897 */
1898
1899 /* create a pcm device */
446ab5f5 1900 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1901 {
446ab5f5 1902 struct snd_pcm *pcm;
1da177e4
LT
1903 int err;
1904
1905 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1906 &pcm)) < 0)
1907 return err;
1908 pcm->private_data = chip;
1909 strcpy(pcm->name, "My Chip");
1910 chip->pcm = pcm;
1911 /* set operators */
1912 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1913 &snd_mychip_playback_ops);
1914 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1915 &snd_mychip_capture_ops);
1916 /* pre-allocation of buffers */
1917 /* NOTE: this may fail */
1918 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1919 snd_dma_pci_data(chip->pci),
1920 64*1024, 64*1024);
1921 return 0;
1922 }
1923]]>
1924 </programlisting>
1925 </example>
1926 </para>
1927 </section>
1928
1929 <section id="pcm-interface-constructor">
1930 <title>Constructor</title>
1931 <para>
1932 A pcm instance is allocated by <function>snd_pcm_new()</function>
1933 function. It would be better to create a constructor for pcm,
1934 namely,
1935
1936 <informalexample>
1937 <programlisting>
1938<![CDATA[
446ab5f5 1939 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 1940 {
446ab5f5 1941 struct snd_pcm *pcm;
1da177e4
LT
1942 int err;
1943
1944 if ((err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1,
1945 &pcm)) < 0)
1946 return err;
1947 pcm->private_data = chip;
1948 strcpy(pcm->name, "My Chip");
1949 chip->pcm = pcm;
1950 ....
1951 return 0;
1952 }
1953]]>
1954 </programlisting>
1955 </informalexample>
1956 </para>
1957
1958 <para>
1959 The <function>snd_pcm_new()</function> function takes the four
1960 arguments. The first argument is the card pointer to which this
1961 pcm is assigned, and the second is the ID string.
1962 </para>
1963
1964 <para>
1965 The third argument (<parameter>index</parameter>, 0 in the
1966 above) is the index of this new pcm. It begins from zero. When
1967 you will create more than one pcm instances, specify the
1968 different numbers in this argument. For example,
1969 <parameter>index</parameter> = 1 for the second PCM device.
1970 </para>
1971
1972 <para>
1973 The fourth and fifth arguments are the number of substreams
1974 for playback and capture, respectively. Here both 1 are given in
1975 the above example. When no playback or no capture is available,
1976 pass 0 to the corresponding argument.
1977 </para>
1978
1979 <para>
1980 If a chip supports multiple playbacks or captures, you can
1981 specify more numbers, but they must be handled properly in
1982 open/close, etc. callbacks. When you need to know which
1983 substream you are referring to, then it can be obtained from
446ab5f5 1984 struct <structname>snd_pcm_substream</structname> data passed to each callback
1da177e4
LT
1985 as follows:
1986
1987 <informalexample>
1988 <programlisting>
1989<![CDATA[
446ab5f5 1990 struct snd_pcm_substream *substream;
1da177e4
LT
1991 int index = substream->number;
1992]]>
1993 </programlisting>
1994 </informalexample>
1995 </para>
1996
1997 <para>
1998 After the pcm is created, you need to set operators for each
1999 pcm stream.
2000
2001 <informalexample>
2002 <programlisting>
2003<![CDATA[
2004 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2005 &snd_mychip_playback_ops);
2006 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2007 &snd_mychip_capture_ops);
2008]]>
2009 </programlisting>
2010 </informalexample>
2011 </para>
2012
2013 <para>
2014 The operators are defined typically like this:
2015
2016 <informalexample>
2017 <programlisting>
2018<![CDATA[
446ab5f5 2019 static struct snd_pcm_ops snd_mychip_playback_ops = {
1da177e4
LT
2020 .open = snd_mychip_pcm_open,
2021 .close = snd_mychip_pcm_close,
2022 .ioctl = snd_pcm_lib_ioctl,
2023 .hw_params = snd_mychip_pcm_hw_params,
2024 .hw_free = snd_mychip_pcm_hw_free,
2025 .prepare = snd_mychip_pcm_prepare,
2026 .trigger = snd_mychip_pcm_trigger,
2027 .pointer = snd_mychip_pcm_pointer,
2028 };
2029]]>
2030 </programlisting>
2031 </informalexample>
2032
2033 Each of callbacks is explained in the subsection
2034 <link linkend="pcm-interface-operators"><citetitle>
2035 Operators</citetitle></link>.
2036 </para>
2037
2038 <para>
2039 After setting the operators, most likely you'd like to
2040 pre-allocate the buffer. For the pre-allocation, simply call
2041 the following:
2042
2043 <informalexample>
2044 <programlisting>
2045<![CDATA[
2046 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2047 snd_dma_pci_data(chip->pci),
2048 64*1024, 64*1024);
2049]]>
2050 </programlisting>
2051 </informalexample>
2052
2053 It will allocate up to 64kB buffer as default. The details of
2054 buffer management will be described in the later section <link
2055 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2056 Management</citetitle></link>.
2057 </para>
2058
2059 <para>
2060 Additionally, you can set some extra information for this pcm
2061 in pcm-&gt;info_flags.
2062 The available values are defined as
2063 <constant>SNDRV_PCM_INFO_XXX</constant> in
2064 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2065 the hardware definition (described later). When your soundchip
2066 supports only half-duplex, specify like this:
2067
2068 <informalexample>
2069 <programlisting>
2070<![CDATA[
2071 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2072]]>
2073 </programlisting>
2074 </informalexample>
2075 </para>
2076 </section>
2077
2078 <section id="pcm-interface-destructor">
2079 <title>... And the Destructor?</title>
2080 <para>
2081 The destructor for a pcm instance is not always
2082 necessary. Since the pcm device will be released by the middle
2083 layer code automatically, you don't have to call destructor
2084 explicitly.
2085 </para>
2086
2087 <para>
2088 The destructor would be necessary when you created some
2089 special records internally and need to release them. In such a
2090 case, set the destructor function to
2091 pcm-&gt;private_free:
2092
2093 <example>
2094 <title>PCM Instance with a Destructor</title>
2095 <programlisting>
2096<![CDATA[
446ab5f5 2097 static void mychip_pcm_free(struct snd_pcm *pcm)
1da177e4 2098 {
446ab5f5 2099 struct mychip *chip = snd_pcm_chip(pcm);
1da177e4
LT
2100 /* free your own data */
2101 kfree(chip->my_private_pcm_data);
2102 // do what you like else
2103 ....
2104 }
2105
446ab5f5 2106 static int __devinit snd_mychip_new_pcm(struct mychip *chip)
1da177e4 2107 {
446ab5f5 2108 struct snd_pcm *pcm;
1da177e4
LT
2109 ....
2110 /* allocate your own data */
2111 chip->my_private_pcm_data = kmalloc(...);
2112 /* set the destructor */
2113 pcm->private_data = chip;
2114 pcm->private_free = mychip_pcm_free;
2115 ....
2116 }
2117]]>
2118 </programlisting>
2119 </example>
2120 </para>
2121 </section>
2122
2123 <section id="pcm-interface-runtime">
2124 <title>Runtime Pointer - The Chest of PCM Information</title>
2125 <para>
2126 When the PCM substream is opened, a PCM runtime instance is
2127 allocated and assigned to the substream. This pointer is
2128 accessible via <constant>substream-&gt;runtime</constant>.
2129 This runtime pointer holds the various information; it holds
2130 the copy of hw_params and sw_params configurations, the buffer
2131 pointers, mmap records, spinlocks, etc. Almost everyhing you
2132 need for controlling the PCM can be found there.
2133 </para>
2134
2135 <para>
2136 The definition of runtime instance is found in
2137 <filename>&lt;sound/pcm.h&gt;</filename>. Here is the
2138 copy from the file.
2139 <informalexample>
2140 <programlisting>
2141<![CDATA[
2142struct _snd_pcm_runtime {
2143 /* -- Status -- */
446ab5f5 2144 struct snd_pcm_substream *trigger_master;
1da177e4
LT
2145 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2146 int overrange;
2147 snd_pcm_uframes_t avail_max;
2148 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2149 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2150
2151 /* -- HW params -- */
2152 snd_pcm_access_t access; /* access mode */
2153 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2154 snd_pcm_subformat_t subformat; /* subformat */
2155 unsigned int rate; /* rate in Hz */
2156 unsigned int channels; /* channels */
2157 snd_pcm_uframes_t period_size; /* period size */
2158 unsigned int periods; /* periods */
2159 snd_pcm_uframes_t buffer_size; /* buffer size */
2160 unsigned int tick_time; /* tick time */
2161 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2162 size_t byte_align;
2163 unsigned int frame_bits;
2164 unsigned int sample_bits;
2165 unsigned int info;
2166 unsigned int rate_num;
2167 unsigned int rate_den;
2168
2169 /* -- SW params -- */
07799e75 2170 struct timespec tstamp_mode; /* mmap timestamp is updated */
1da177e4
LT
2171 unsigned int period_step;
2172 unsigned int sleep_min; /* min ticks to sleep */
2173 snd_pcm_uframes_t xfer_align; /* xfer size need to be a multiple */
2174 snd_pcm_uframes_t start_threshold;
2175 snd_pcm_uframes_t stop_threshold;
2176 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2177 noise is nearest than this */
2178 snd_pcm_uframes_t silence_size; /* Silence filling size */
2179 snd_pcm_uframes_t boundary; /* pointers wrap point */
2180
2181 snd_pcm_uframes_t silenced_start;
2182 snd_pcm_uframes_t silenced_size;
2183
2184 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2185
2186 /* -- mmap -- */
446ab5f5
TI
2187 volatile struct snd_pcm_mmap_status *status;
2188 volatile struct snd_pcm_mmap_control *control;
1da177e4
LT
2189 atomic_t mmap_count;
2190
2191 /* -- locking / scheduling -- */
2192 spinlock_t lock;
2193 wait_queue_head_t sleep;
2194 struct timer_list tick_timer;
2195 struct fasync_struct *fasync;
2196
2197 /* -- private section -- */
2198 void *private_data;
446ab5f5 2199 void (*private_free)(struct snd_pcm_runtime *runtime);
1da177e4
LT
2200
2201 /* -- hardware description -- */
446ab5f5
TI
2202 struct snd_pcm_hardware hw;
2203 struct snd_pcm_hw_constraints hw_constraints;
1da177e4
LT
2204
2205 /* -- interrupt callbacks -- */
446ab5f5
TI
2206 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2207 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
1da177e4
LT
2208
2209 /* -- timer -- */
2210 unsigned int timer_resolution; /* timer resolution */
2211
2212 /* -- DMA -- */
2213 unsigned char *dma_area; /* DMA area */
2214 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2215 size_t dma_bytes; /* size of DMA area */
2216
2217 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2218
2219#if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2220 /* -- OSS things -- */
446ab5f5 2221 struct snd_pcm_oss_runtime oss;
1da177e4
LT
2222#endif
2223};
2224]]>
2225 </programlisting>
2226 </informalexample>
2227 </para>
2228
2229 <para>
2230 For the operators (callbacks) of each sound driver, most of
2231 these records are supposed to be read-only. Only the PCM
2232 middle-layer changes / updates these info. The exceptions are
2233 the hardware description (hw), interrupt callbacks
2234 (transfer_ack_xxx), DMA buffer information, and the private
2235 data. Besides, if you use the standard buffer allocation
2236 method via <function>snd_pcm_lib_malloc_pages()</function>,
2237 you don't need to set the DMA buffer information by yourself.
2238 </para>
2239
2240 <para>
2241 In the sections below, important records are explained.
2242 </para>
2243
2244 <section id="pcm-interface-runtime-hw">
2245 <title>Hardware Description</title>
2246 <para>
446ab5f5 2247 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
1da177e4
LT
2248 contains the definitions of the fundamental hardware
2249 configuration. Above all, you'll need to define this in
2250 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2251 the open callback</citetitle></link>.
2252 Note that the runtime instance holds the copy of the
2253 descriptor, not the pointer to the existing descriptor. That
2254 is, in the open callback, you can modify the copied descriptor
2255 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2256 number of channels is 1 only on some chip models, you can
2257 still use the same hardware descriptor and change the
2258 channels_max later:
2259 <informalexample>
2260 <programlisting>
2261<![CDATA[
446ab5f5 2262 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2263 ...
2264 runtime->hw = snd_mychip_playback_hw; /* common definition */
2265 if (chip->model == VERY_OLD_ONE)
2266 runtime->hw.channels_max = 1;
2267]]>
2268 </programlisting>
2269 </informalexample>
2270 </para>
2271
2272 <para>
2273 Typically, you'll have a hardware descriptor like below:
2274 <informalexample>
2275 <programlisting>
2276<![CDATA[
446ab5f5 2277 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1da177e4
LT
2278 .info = (SNDRV_PCM_INFO_MMAP |
2279 SNDRV_PCM_INFO_INTERLEAVED |
2280 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2281 SNDRV_PCM_INFO_MMAP_VALID),
2282 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2283 .rates = SNDRV_PCM_RATE_8000_48000,
2284 .rate_min = 8000,
2285 .rate_max = 48000,
2286 .channels_min = 2,
2287 .channels_max = 2,
2288 .buffer_bytes_max = 32768,
2289 .period_bytes_min = 4096,
2290 .period_bytes_max = 32768,
2291 .periods_min = 1,
2292 .periods_max = 1024,
2293 };
2294]]>
2295 </programlisting>
2296 </informalexample>
2297 </para>
2298
2299 <para>
2300 <itemizedlist>
2301 <listitem><para>
2302 The <structfield>info</structfield> field contains the type and
2303 capabilities of this pcm. The bit flags are defined in
2304 <filename>&lt;sound/asound.h&gt;</filename> as
2305 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2306 have to specify whether the mmap is supported and which
2307 interleaved format is supported.
2308 When the mmap is supported, add
2309 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2310 hardware supports the interleaved or the non-interleaved
2311 format, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2312 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2313 be set, respectively. If both are supported, you can set both,
2314 too.
2315 </para>
2316
2317 <para>
2318 In the above example, <constant>MMAP_VALID</constant> and
2319 <constant>BLOCK_TRANSFER</constant> are specified for OSS mmap
2320 mode. Usually both are set. Of course,
2321 <constant>MMAP_VALID</constant> is set only if the mmap is
2322 really supported.
2323 </para>
2324
2325 <para>
2326 The other possible flags are
2327 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2328 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2329 <constant>PAUSE</constant> bit means that the pcm supports the
2330 <quote>pause</quote> operation, while the
2331 <constant>RESUME</constant> bit means that the pcm supports
2332 the <quote>suspend/resume</quote> operation. If these flags
2333 are set, the <structfield>trigger</structfield> callback below
2334 must handle the corresponding commands.
2335 </para>
2336
2337 <para>
2338 When the PCM substreams can be synchronized (typically,
2339 synchorinized start/stop of a playback and a capture streams),
2340 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2341 too. In this case, you'll need to check the linked-list of
2342 PCM substreams in the trigger callback. This will be
2343 described in the later section.
2344 </para>
2345 </listitem>
2346
2347 <listitem>
2348 <para>
2349 <structfield>formats</structfield> field contains the bit-flags
2350 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2351 If the hardware supports more than one format, give all or'ed
2352 bits. In the example above, the signed 16bit little-endian
2353 format is specified.
2354 </para>
2355 </listitem>
2356
2357 <listitem>
2358 <para>
2359 <structfield>rates</structfield> field contains the bit-flags of
2360 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2361 When the chip supports continuous rates, pass
2362 <constant>CONTINUOUS</constant> bit additionally.
2363 The pre-defined rate bits are provided only for typical
2364 rates. If your chip supports unconventional rates, you need to add
2365 <constant>KNOT</constant> bit and set up the hardware
2366 constraint manually (explained later).
2367 </para>
2368 </listitem>
2369
2370 <listitem>
2371 <para>
2372 <structfield>rate_min</structfield> and
2373 <structfield>rate_max</structfield> define the minimal and
2374 maximal sample rate. This should correspond somehow to
2375 <structfield>rates</structfield> bits.
2376 </para>
2377 </listitem>
2378
2379 <listitem>
2380 <para>
2381 <structfield>channel_min</structfield> and
2382 <structfield>channel_max</structfield>
2383 define, as you might already expected, the minimal and maximal
2384 number of channels.
2385 </para>
2386 </listitem>
2387
2388 <listitem>
2389 <para>
2390 <structfield>buffer_bytes_max</structfield> defines the
2391 maximal buffer size in bytes. There is no
2392 <structfield>buffer_bytes_min</structfield> field, since
2393 it can be calculated from the minimal period size and the
2394 minimal number of periods.
2395 Meanwhile, <structfield>period_bytes_min</structfield> and
2396 define the minimal and maximal size of the period in bytes.
2397 <structfield>periods_max</structfield> and
2398 <structfield>periods_min</structfield> define the maximal and
2399 minimal number of periods in the buffer.
2400 </para>
2401
2402 <para>
2403 The <quote>period</quote> is a term, that corresponds to
2404 fragment in the OSS world. The period defines the size at
2405 which the PCM interrupt is generated. This size strongly
2406 depends on the hardware.
2407 Generally, the smaller period size will give you more
2408 interrupts, that is, more controls.
2409 In the case of capture, this size defines the input latency.
2410 On the other hand, the whole buffer size defines the
2411 output latency for the playback direction.
2412 </para>
2413 </listitem>
2414
2415 <listitem>
2416 <para>
2417 There is also a field <structfield>fifo_size</structfield>.
2418 This specifies the size of the hardware FIFO, but it's not
2419 used currently in the driver nor in the alsa-lib. So, you
2420 can ignore this field.
2421 </para>
2422 </listitem>
2423 </itemizedlist>
2424 </para>
2425 </section>
2426
2427 <section id="pcm-interface-runtime-config">
2428 <title>PCM Configurations</title>
2429 <para>
2430 Ok, let's go back again to the PCM runtime records.
2431 The most frequently referred records in the runtime instance are
2432 the PCM configurations.
2433 The PCM configurations are stored on runtime instance
2434 after the application sends <type>hw_params</type> data via
2435 alsa-lib. There are many fields copied from hw_params and
2436 sw_params structs. For example,
2437 <structfield>format</structfield> holds the format type
2438 chosen by the application. This field contains the enum value
2439 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2440 </para>
2441
2442 <para>
2443 One thing to be noted is that the configured buffer and period
2444 sizes are stored in <quote>frames</quote> in the runtime
2445 In the ALSA world, 1 frame = channels * samples-size.
2446 For conversion between frames and bytes, you can use the
2447 helper functions, <function>frames_to_bytes()</function> and
2448 <function>bytes_to_frames()</function>.
2449 <informalexample>
2450 <programlisting>
2451<![CDATA[
2452 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2453]]>
2454 </programlisting>
2455 </informalexample>
2456 </para>
2457
2458 <para>
2459 Also, many software parameters (sw_params) are
2460 stored in frames, too. Please check the type of the field.
2461 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2462 integer while <type>snd_pcm_sframes_t</type> is for the frames
2463 as signed integer.
2464 </para>
2465 </section>
2466
2467 <section id="pcm-interface-runtime-dma">
2468 <title>DMA Buffer Information</title>
2469 <para>
2470 The DMA buffer is defined by the following four fields,
2471 <structfield>dma_area</structfield>,
2472 <structfield>dma_addr</structfield>,
2473 <structfield>dma_bytes</structfield> and
2474 <structfield>dma_private</structfield>.
2475 The <structfield>dma_area</structfield> holds the buffer
2476 pointer (the logical address). You can call
2477 <function>memcpy</function> from/to
2478 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2479 holds the physical address of the buffer. This field is
2480 specified only when the buffer is a linear buffer.
2481 <structfield>dma_bytes</structfield> holds the size of buffer
2482 in bytes. <structfield>dma_private</structfield> is used for
2483 the ALSA DMA allocator.
2484 </para>
2485
2486 <para>
2487 If you use a standard ALSA function,
2488 <function>snd_pcm_lib_malloc_pages()</function>, for
2489 allocating the buffer, these fields are set by the ALSA middle
2490 layer, and you should <emphasis>not</emphasis> change them by
2491 yourself. You can read them but not write them.
2492 On the other hand, if you want to allocate the buffer by
2493 yourself, you'll need to manage it in hw_params callback.
2494 At least, <structfield>dma_bytes</structfield> is mandatory.
2495 <structfield>dma_area</structfield> is necessary when the
2496 buffer is mmapped. If your driver doesn't support mmap, this
2497 field is not necessary. <structfield>dma_addr</structfield>
2498 is also not mandatory. You can use
2499 <structfield>dma_private</structfield> as you like, too.
2500 </para>
2501 </section>
2502
2503 <section id="pcm-interface-runtime-status">
2504 <title>Running Status</title>
2505 <para>
2506 The running status can be referred via <constant>runtime-&gt;status</constant>.
446ab5f5 2507 This is the pointer to struct <structname>snd_pcm_mmap_status</structname>
1da177e4
LT
2508 record. For example, you can get the current DMA hardware
2509 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2510 </para>
2511
2512 <para>
2513 The DMA application pointer can be referred via
2514 <constant>runtime-&gt;control</constant>, which points
446ab5f5 2515 struct <structname>snd_pcm_mmap_control</structname> record.
1da177e4
LT
2516 However, accessing directly to this value is not recommended.
2517 </para>
2518 </section>
2519
2520 <section id="pcm-interface-runtime-private">
2521 <title>Private Data</title>
2522 <para>
2523 You can allocate a record for the substream and store it in
2524 <constant>runtime-&gt;private_data</constant>. Usually, this
2525 done in
2526 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2527 the open callback</citetitle></link>.
2528 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2529 The <constant>pcm-&gt;private_data</constant> usually points the
2530 chip instance assigned statically at the creation of PCM, while the
2531 <constant>runtime-&gt;private_data</constant> points a dynamic
2532 data created at the PCM open callback.
2533
2534 <informalexample>
2535 <programlisting>
2536<![CDATA[
446ab5f5 2537 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2538 {
446ab5f5 2539 struct my_pcm_data *data;
1da177e4
LT
2540 ....
2541 data = kmalloc(sizeof(*data), GFP_KERNEL);
2542 substream->runtime->private_data = data;
2543 ....
2544 }
2545]]>
2546 </programlisting>
2547 </informalexample>
2548 </para>
2549
2550 <para>
2551 The allocated object must be released in
2552 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2553 the close callback</citetitle></link>.
2554 </para>
2555 </section>
2556
2557 <section id="pcm-interface-runtime-intr">
2558 <title>Interrupt Callbacks</title>
2559 <para>
2560 The field <structfield>transfer_ack_begin</structfield> and
2561 <structfield>transfer_ack_end</structfield> are called at
2562 the beginning and the end of
2563 <function>snd_pcm_period_elapsed()</function>, respectively.
2564 </para>
2565 </section>
2566
2567 </section>
2568
2569 <section id="pcm-interface-operators">
2570 <title>Operators</title>
2571 <para>
2572 OK, now let me explain the detail of each pcm callback
2573 (<parameter>ops</parameter>). In general, every callback must
2574 return 0 if successful, or a negative number with the error
2575 number such as <constant>-EINVAL</constant> at any
2576 error.
2577 </para>
2578
2579 <para>
2580 The callback function takes at least the argument with
446ab5f5 2581 <structname>snd_pcm_substream</structname> pointer. For retrieving the
1da177e4
LT
2582 chip record from the given substream instance, you can use the
2583 following macro.
2584
2585 <informalexample>
2586 <programlisting>
2587<![CDATA[
2588 int xxx() {
446ab5f5 2589 struct mychip *chip = snd_pcm_substream_chip(substream);
1da177e4
LT
2590 ....
2591 }
2592]]>
2593 </programlisting>
2594 </informalexample>
2595
2596 The macro reads <constant>substream-&gt;private_data</constant>,
2597 which is a copy of <constant>pcm-&gt;private_data</constant>.
2598 You can override the former if you need to assign different data
2599 records per PCM substream. For example, cmi8330 driver assigns
2600 different private_data for playback and capture directions,
2601 because it uses two different codecs (SB- and AD-compatible) for
2602 different directions.
2603 </para>
2604
2605 <section id="pcm-interface-operators-open-callback">
2606 <title>open callback</title>
2607 <para>
2608 <informalexample>
2609 <programlisting>
2610<![CDATA[
446ab5f5 2611 static int snd_xxx_open(struct snd_pcm_substream *substream);
1da177e4
LT
2612]]>
2613 </programlisting>
2614 </informalexample>
2615
2616 This is called when a pcm substream is opened.
2617 </para>
2618
2619 <para>
2620 At least, here you have to initialize the runtime-&gt;hw
2621 record. Typically, this is done by like this:
2622
2623 <informalexample>
2624 <programlisting>
2625<![CDATA[
446ab5f5 2626 static int snd_xxx_open(struct snd_pcm_substream *substream)
1da177e4 2627 {
446ab5f5
TI
2628 struct mychip *chip = snd_pcm_substream_chip(substream);
2629 struct snd_pcm_runtime *runtime = substream->runtime;
1da177e4
LT
2630
2631 runtime->hw = snd_mychip_playback_hw;
2632 return 0;
2633 }
2634]]>
2635 </programlisting>
2636 </informalexample>
2637
2638 where <parameter>snd_mychip_playback_hw</parameter> is the
2639 pre-defined hardware description.
2640 </para>
2641
2642 <para>
2643 You can allocate a private data in this callback, as described
2644 in <link linkend="pcm-interface-runtime-private"><citetitle>
2645 Private Data</citetitle></link> section.
2646 </para>
2647
2648 <para>
2649 If the hardware configuration needs more constraints, set the
2650 hardware constraints here, too.
2651 See <link linkend="pcm-interface-constraints"><citetitle>
2652 Constraints</citetitle></link> for more details.
2653 </para>
2654 </section>
2655
2656 <section id="pcm-interface-operators-close-callback">
2657 <title>close callback</title>
2658 <para>
2659 <informalexample>
2660 <programlisting>
2661<![CDATA[
446ab5f5 2662 static int snd_xxx_close(struct snd_pcm_substream *substream);
1da177e4
LT
2663]]>
2664 </programlisting>
2665 </informalexample>
2666
2667 Obviously, this is called when a pcm substream is closed.
2668 </para>
2669
2670 <para>
2671 Any private instance for a pcm substream allocated in the
2672 open callback will be released here.
2673
2674 <informalexample>
2675 <programlisting>
2676<![CDATA[
446ab5f5 2677 static int snd_xxx_close(struct snd_pcm_substream *substream)
1da177e4
LT
2678 {
2679 ....
2680 kfree(substream->runtime->private_data);
2681 ....
2682 }
2683]]>
2684 </programlisting>
2685 </informalexample>
2686 </para>
2687 </section>
2688
2689 <section id="pcm-interface-operators-ioctl-callback">
2690 <title>ioctl callback</title>
2691 <para>
2692 This is used for any special action to pcm ioctls. But
2693 usually you can pass a generic ioctl callback,
2694 <function>snd_pcm_lib_ioctl</function>.
2695 </para>
2696 </section>
2697
2698 <section id="pcm-interface-operators-hw-params-callback">
2699 <title>hw_params callback</title>
2700 <para>
2701 <informalexample>
2702 <programlisting>
2703<![CDATA[
446ab5f5
TI
2704 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2705 struct snd_pcm_hw_params *hw_params);
1da177e4
LT
2706]]>
2707 </programlisting>
2708 </informalexample>
2709
2710 This and <structfield>hw_free</structfield> callbacks exist
2711 only on ALSA 0.9.x.
2712 </para>
2713
2714 <para>
2715 This is called when the hardware parameter
2716 (<structfield>hw_params</structfield>) is set
2717 up by the application,
2718 that is, once when the buffer size, the period size, the
2719 format, etc. are defined for the pcm substream.
2720 </para>
2721
2722 <para>
2723 Many hardware set-up should be done in this callback,
2724 including the allocation of buffers.
2725 </para>
2726
2727 <para>
2728 Parameters to be initialized are retrieved by
2729 <function>params_xxx()</function> macros. For allocating a
2730 buffer, you can call a helper function,
2731
2732 <informalexample>
2733 <programlisting>
2734<![CDATA[
2735 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2736]]>
2737 </programlisting>
2738 </informalexample>
2739
2740 <function>snd_pcm_lib_malloc_pages()</function> is available
2741 only when the DMA buffers have been pre-allocated.
2742 See the section <link
2743 linkend="buffer-and-memory-buffer-types"><citetitle>
2744 Buffer Types</citetitle></link> for more details.
2745 </para>
2746
2747 <para>
2748 Note that this and <structfield>prepare</structfield> callbacks
2749 may be called multiple times per initialization.
2750 For example, the OSS emulation may
2751 call these callbacks at each change via its ioctl.
2752 </para>
2753
2754 <para>
2755 Thus, you need to take care not to allocate the same buffers
2756 many times, which will lead to memory leak! Calling the
2757 helper function above many times is OK. It will release the
2758 previous buffer automatically when it was already allocated.
2759 </para>
2760
2761 <para>
2762 Another note is that this callback is non-atomic
2763 (schedulable). This is important, because the
2764 <structfield>trigger</structfield> callback
2765 is atomic (non-schedulable). That is, mutex or any
2766 schedule-related functions are not available in
2767 <structfield>trigger</structfield> callback.
2768 Please see the subsection
2769 <link linkend="pcm-interface-atomicity"><citetitle>
2770 Atomicity</citetitle></link> for details.
2771 </para>
2772 </section>
2773
2774 <section id="pcm-interface-operators-hw-free-callback">
2775 <title>hw_free callback</title>
2776 <para>
2777 <informalexample>
2778 <programlisting>
2779<![CDATA[
446ab5f5 2780 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
1da177e4
LT
2781]]>
2782 </programlisting>
2783 </informalexample>
2784 </para>
2785
2786 <para>
2787 This is called to release the resources allocated via
2788 <structfield>hw_params</structfield>. For example, releasing the
2789 buffer via
2790 <function>snd_pcm_lib_malloc_pages()</function> is done by
2791 calling the following:
2792
2793 <informalexample>
2794 <programlisting>
2795<![CDATA[
2796 snd_pcm_lib_free_pages(substream);
2797]]>
2798 </programlisting>
2799 </informalexample>
2800 </para>
2801
2802 <para>
2803 This function is always called before the close callback is called.
2804 Also, the callback may be called multiple times, too.
2805 Keep track whether the resource was already released.
2806 </para>
2807 </section>
2808
2809 <section id="pcm-interface-operators-prepare-callback">
2810 <title>prepare callback</title>
2811 <para>
2812 <informalexample>
2813 <programlisting>
2814<![CDATA[
446ab5f5 2815 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
1da177e4
LT
2816]]>
2817 </programlisting>
2818 </informalexample>
2819 </para>
2820
2821 <para>
2822 This callback is called when the pcm is
2823 <quote>prepared</quote>. You can set the format type, sample
2824 rate, etc. here. The difference from
2825 <structfield>hw_params</structfield> is that the
2826 <structfield>prepare</structfield> callback will be called at each
2827 time
2828 <function>snd_pcm_prepare()</function> is called, i.e. when
2829 recovered after underruns, etc.
2830 </para>
2831
2832 <para>
2833 Note that this callback became non-atomic since the recent version.
2834 You can use schedule-related fucntions safely in this callback now.
2835 </para>
2836
2837 <para>
2838 In this and the following callbacks, you can refer to the
2839 values via the runtime record,
2840 substream-&gt;runtime.
2841 For example, to get the current
2842 rate, format or channels, access to
2843 runtime-&gt;rate,
2844 runtime-&gt;format or
2845 runtime-&gt;channels, respectively.
2846 The physical address of the allocated buffer is set to
2847 runtime-&gt;dma_area. The buffer and period sizes are
2848 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2849 respectively.
2850 </para>
2851
2852 <para>
2853 Be careful that this callback will be called many times at
2854 each set up, too.
2855 </para>
2856 </section>
2857
2858 <section id="pcm-interface-operators-trigger-callback">
2859 <title>trigger callback</title>
2860 <para>
2861 <informalexample>
2862 <programlisting>
2863<![CDATA[
446ab5f5 2864 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
1da177e4
LT
2865]]>
2866 </programlisting>
2867 </informalexample>
2868
2869 This is called when the pcm is started, stopped or paused.
2870 </para>
2871
2872 <para>
2873 Which action is specified in the second argument,
2874 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2875 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2876 <constant>START</constant> and <constant>STOP</constant>
2877 commands must be defined in this callback.
2878
2879 <informalexample>
2880 <programlisting>
2881<![CDATA[
2882 switch (cmd) {
2883 case SNDRV_PCM_TRIGGER_START:
2884 // do something to start the PCM engine
2885 break;
2886 case SNDRV_PCM_TRIGGER_STOP:
2887 // do something to stop the PCM engine
2888 break;
2889 default:
2890 return -EINVAL;
2891 }
2892]]>
2893 </programlisting>
2894 </informalexample>
2895 </para>
2896
2897 <para>
2898 When the pcm supports the pause operation (given in info
2899 field of the hardware table), <constant>PAUSE_PUSE</constant>
2900 and <constant>PAUSE_RELEASE</constant> commands must be
2901 handled here, too. The former is the command to pause the pcm,
2902 and the latter to restart the pcm again.
2903 </para>
2904
2905 <para>
2906 When the pcm supports the suspend/resume operation
2907 (i.e. <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set),
2908 <constant>SUSPEND</constant> and <constant>RESUME</constant>
2909 commands must be handled, too.
2910 These commands are issued when the power-management status is
2911 changed. Obviously, the <constant>SUSPEND</constant> and
2912 <constant>RESUME</constant>
2913 do suspend and resume of the pcm substream, and usually, they
2914 are identical with <constant>STOP</constant> and
2915 <constant>START</constant> commands, respectively.
2916 </para>
2917
2918 <para>
2919 As mentioned, this callback is atomic. You cannot call
2920 the function going to sleep.
2921 The trigger callback should be as minimal as possible,
2922 just really triggering the DMA. The other stuff should be
2923 initialized hw_params and prepare callbacks properly
2924 beforehand.
2925 </para>
2926 </section>
2927
2928 <section id="pcm-interface-operators-pointer-callback">
2929 <title>pointer callback</title>
2930 <para>
2931 <informalexample>
2932 <programlisting>
2933<![CDATA[
446ab5f5 2934 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
1da177e4
LT
2935]]>
2936 </programlisting>
2937 </informalexample>
2938
2939 This callback is called when the PCM middle layer inquires
2940 the current hardware position on the buffer. The position must
2941 be returned in frames (which was in bytes on ALSA 0.5.x),
2942 ranged from 0 to buffer_size - 1.
2943 </para>
2944
2945 <para>
2946 This is called usually from the buffer-update routine in the
2947 pcm middle layer, which is invoked when
2948 <function>snd_pcm_period_elapsed()</function> is called in the
2949 interrupt routine. Then the pcm middle layer updates the
2950 position and calculates the available space, and wakes up the
2951 sleeping poll threads, etc.
2952 </para>
2953
2954 <para>
2955 This callback is also atomic.
2956 </para>
2957 </section>
2958
2959 <section id="pcm-interface-operators-copy-silence">
2960 <title>copy and silence callbacks</title>
2961 <para>
2962 These callbacks are not mandatory, and can be omitted in
2963 most cases. These callbacks are used when the hardware buffer
2964 cannot be on the normal memory space. Some chips have their
2965 own buffer on the hardware which is not mappable. In such a
2966 case, you have to transfer the data manually from the memory
2967 buffer to the hardware buffer. Or, if the buffer is
2968 non-contiguous on both physical and virtual memory spaces,
2969 these callbacks must be defined, too.
2970 </para>
2971
2972 <para>
2973 If these two callbacks are defined, copy and set-silence
2974 operations are done by them. The detailed will be described in
2975 the later section <link
2976 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2977 Management</citetitle></link>.
2978 </para>
2979 </section>
2980
2981 <section id="pcm-interface-operators-ack">
2982 <title>ack callback</title>
2983 <para>
2984 This callback is also not mandatory. This callback is called
2985 when the appl_ptr is updated in read or write operations.
2986 Some drivers like emu10k1-fx and cs46xx need to track the
2987 current appl_ptr for the internal buffer, and this callback
2988 is useful only for such a purpose.
2989 </para>
2990 <para>
2991 This callback is atomic.
2992 </para>
2993 </section>
2994
2995 <section id="pcm-interface-operators-page-callback">
2996 <title>page callback</title>
2997
2998 <para>
2999 This callback is also not mandatory. This callback is used
3000 mainly for the non-contiguous buffer. The mmap calls this
3001 callback to get the page address. Some examples will be
3002 explained in the later section <link
3003 linkend="buffer-and-memory"><citetitle>Buffer and Memory
3004 Management</citetitle></link>, too.
3005 </para>
3006 </section>
3007 </section>
3008
3009 <section id="pcm-interface-interrupt-handler">
3010 <title>Interrupt Handler</title>
3011 <para>
3012 The rest of pcm stuff is the PCM interrupt handler. The
3013 role of PCM interrupt handler in the sound driver is to update
3014 the buffer position and to tell the PCM middle layer when the
3015 buffer position goes across the prescribed period size. To
3016 inform this, call <function>snd_pcm_period_elapsed()</function>
3017 function.
3018 </para>
3019
3020 <para>
3021 There are several types of sound chips to generate the interrupts.
3022 </para>
3023
3024 <section id="pcm-interface-interrupt-handler-boundary">
3025 <title>Interrupts at the period (fragment) boundary</title>
3026 <para>
3027 This is the most frequently found type: the hardware
3028 generates an interrupt at each period boundary.
3029 In this case, you can call
3030 <function>snd_pcm_period_elapsed()</function> at each
3031 interrupt.
3032 </para>
3033
3034 <para>
3035 <function>snd_pcm_period_elapsed()</function> takes the
3036 substream pointer as its argument. Thus, you need to keep the
3037 substream pointer accessible from the chip instance. For
3038 example, define substream field in the chip record to hold the
3039 current running substream pointer, and set the pointer value
3040 at open callback (and reset at close callback).
3041 </para>
3042
3043 <para>
3044 If you aquire a spinlock in the interrupt handler, and the
3045 lock is used in other pcm callbacks, too, then you have to
3046 release the lock before calling
3047 <function>snd_pcm_period_elapsed()</function>, because
3048 <function>snd_pcm_period_elapsed()</function> calls other pcm
3049 callbacks inside.
3050 </para>
3051
3052 <para>
3053 A typical coding would be like:
3054
3055 <example>
3056 <title>Interrupt Handler Case #1</title>
3057 <programlisting>
3058<![CDATA[
3059 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3060 struct pt_regs *regs)
3061 {
446ab5f5 3062 struct mychip *chip = dev_id;
1da177e4
LT
3063 spin_lock(&chip->lock);
3064 ....
3065 if (pcm_irq_invoked(chip)) {
3066 /* call updater, unlock before it */
3067 spin_unlock(&chip->lock);
3068 snd_pcm_period_elapsed(chip->substream);
3069 spin_lock(&chip->lock);
3070 // acknowledge the interrupt if necessary
3071 }
3072 ....
3073 spin_unlock(&chip->lock);
3074 return IRQ_HANDLED;
3075 }
3076]]>
3077 </programlisting>
3078 </example>
3079 </para>
3080 </section>
3081
3082 <section id="pcm-interface-interrupt-handler-timer">
3083 <title>High-frequent timer interrupts</title>
3084 <para>
3085 This is the case when the hardware doesn't generate interrupts
3086 at the period boundary but do timer-interrupts at the fixed
3087 timer rate (e.g. es1968 or ymfpci drivers).
3088 In this case, you need to check the current hardware
3089 position and accumulates the processed sample length at each
3090 interrupt. When the accumulated size overcomes the period
3091 size, call
3092 <function>snd_pcm_period_elapsed()</function> and reset the
3093 accumulator.
3094 </para>
3095
3096 <para>
3097 A typical coding would be like the following.
3098
3099 <example>
3100 <title>Interrupt Handler Case #2</title>
3101 <programlisting>
3102<![CDATA[
3103 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id,
3104 struct pt_regs *regs)
3105 {
446ab5f5 3106 struct mychip *chip = dev_id;
1da177e4
LT
3107 spin_lock(&chip->lock);
3108 ....
3109 if (pcm_irq_invoked(chip)) {
3110 unsigned int last_ptr, size;
3111 /* get the current hardware pointer (in frames) */
3112 last_ptr = get_hw_ptr(chip);
3113 /* calculate the processed frames since the
3114 * last update
3115 */
3116 if (last_ptr < chip->last_ptr)
3117 size = runtime->buffer_size + last_ptr
3118 - chip->last_ptr;
3119 else
3120 size = last_ptr - chip->last_ptr;
3121 /* remember the last updated point */
3122 chip->last_ptr = last_ptr;
3123 /* accumulate the size */
3124 chip->size += size;
3125 /* over the period boundary? */
3126 if (chip->size >= runtime->period_size) {
3127 /* reset the accumulator */
3128 chip->size %= runtime->period_size;
3129 /* call updater */
3130 spin_unlock(&chip->lock);
3131 snd_pcm_period_elapsed(substream);
3132 spin_lock(&chip->lock);
3133 }
3134 // acknowledge the interrupt if necessary
3135 }
3136 ....
3137 spin_unlock(&chip->lock);
3138 return IRQ_HANDLED;
3139 }
3140]]>
3141 </programlisting>
3142 </example>
3143 </para>
3144 </section>
3145
3146 <section id="pcm-interface-interrupt-handler-both">
3147 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3148 <para>
3149 In both cases, even if more than one period are elapsed, you
3150 don't have to call
3151 <function>snd_pcm_period_elapsed()</function> many times. Call
3152 only once. And the pcm layer will check the current hardware
3153 pointer and update to the latest status.
3154 </para>
3155 </section>
3156 </section>
3157
3158 <section id="pcm-interface-atomicity">
3159 <title>Atomicity</title>
3160 <para>
3161 One of the most important (and thus difficult to debug) problem
3162 on the kernel programming is the race condition.
3163 On linux kernel, usually it's solved via spin-locks or
3164 semaphores. In general, if the race condition may
3165 happen in the interrupt handler, it's handled as atomic, and you
3166 have to use spinlock for protecting the critical session. If it
3167 never happens in the interrupt and it may take relatively long
3168 time, you should use semaphore.
3169 </para>
3170
3171 <para>
3172 As already seen, some pcm callbacks are atomic and some are
3173 not. For example, <parameter>hw_params</parameter> callback is
3174 non-atomic, while <parameter>trigger</parameter> callback is
3175 atomic. This means, the latter is called already in a spinlock
3176 held by the PCM middle layer. Please take this atomicity into
3177 account when you use a spinlock or a semaphore in the callbacks.
3178 </para>
3179
3180 <para>
3181 In the atomic callbacks, you cannot use functions which may call
3182 <function>schedule</function> or go to
3183 <function>sleep</function>. The semaphore and mutex do sleep,
3184 and hence they cannot be used inside the atomic callbacks
3185 (e.g. <parameter>trigger</parameter> callback).
3186 For taking a certain delay in such a callback, please use
3187 <function>udelay()</function> or <function>mdelay()</function>.
3188 </para>
3189
3190 <para>
3191 All three atomic callbacks (trigger, pointer, and ack) are
3192 called with local interrupts disabled.
3193 </para>
3194
3195 </section>
3196 <section id="pcm-interface-constraints">
3197 <title>Constraints</title>
3198 <para>
3199 If your chip supports unconventional sample rates, or only the
3200 limited samples, you need to set a constraint for the
3201 condition.
3202 </para>
3203
3204 <para>
3205 For example, in order to restrict the sample rates in the some
3206 supported values, use
3207 <function>snd_pcm_hw_constraint_list()</function>.
3208 You need to call this function in the open callback.
3209
3210 <example>
3211 <title>Example of Hardware Constraints</title>
3212 <programlisting>
3213<![CDATA[
3214 static unsigned int rates[] =
3215 {4000, 10000, 22050, 44100};
446ab5f5 3216 static struct snd_pcm_hw_constraint_list constraints_rates = {
1da177e4
LT
3217 .count = ARRAY_SIZE(rates),
3218 .list = rates,
3219 .mask = 0,
3220 };
3221
446ab5f5 3222 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
1da177e4
LT
3223 {
3224 int err;
3225 ....
3226 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3227 SNDRV_PCM_HW_PARAM_RATE,
3228 &constraints_rates);
3229 if (err < 0)
3230 return err;
3231 ....
3232 }
3233]]>
3234 </programlisting>
3235 </example>
3236 </para>
3237
3238 <para>
3239 There are many different constraints.
3240 Look in <filename>sound/pcm.h</filename> for a complete list.
3241 You can even define your own constraint rules.
3242 For example, let's suppose my_chip can manage a substream of 1 channel
3243 if and only if the format is S16_LE, otherwise it supports any format
446ab5f5 3244 specified in the <structname>snd_pcm_hardware</structname> stucture (or in any
1da177e4
LT
3245 other constraint_list). You can build a rule like this:
3246
3247 <example>
3248 <title>Example of Hardware Constraints for Channels</title>
3249 <programlisting>
3250<![CDATA[
446ab5f5
TI
3251 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3252 struct snd_pcm_hw_rule *rule)
1da177e4 3253 {
446ab5f5
TI
3254 struct snd_interval *c = hw_param_interval(params,
3255 SNDRV_PCM_HW_PARAM_CHANNELS);
3256 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3257 struct snd_mask fmt;
1da177e4
LT
3258
3259 snd_mask_any(&fmt); /* Init the struct */
3260 if (c->min < 2) {
3261 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3262 return snd_mask_refine(f, &fmt);
3263 }
3264 return 0;
3265 }
3266]]>
3267 </programlisting>
3268 </example>
3269 </para>
3270
3271 <para>
3272 Then you need to call this function to add your rule:
3273
3274 <informalexample>
3275 <programlisting>
3276<![CDATA[
3277 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3278 hw_rule_channels_by_format, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3279 -1);
3280]]>
3281 </programlisting>
3282 </informalexample>
3283 </para>
3284
3285 <para>
3286 The rule function is called when an application sets the number of
3287 channels. But an application can set the format before the number of
3288 channels. Thus you also need to define the inverse rule:
3289
3290 <example>
3291 <title>Example of Hardware Constraints for Channels</title>
3292 <programlisting>
3293<![CDATA[
446ab5f5
TI
3294 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3295 struct snd_pcm_hw_rule *rule)
1da177e4 3296 {
446ab5f5
TI
3297 struct snd_interval *c = hw_param_interval(params,
3298 SNDRV_PCM_HW_PARAM_CHANNELS);
3299 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3300 struct snd_interval ch;
1da177e4
LT
3301
3302 snd_interval_any(&ch);
3303 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3304 ch.min = ch.max = 1;
3305 ch.integer = 1;
3306 return snd_interval_refine(c, &ch);
3307 }
3308 return 0;
3309 }
3310]]>
3311 </programlisting>
3312 </example>
3313 </para>
3314
3315 <para>
3316 ...and in the open callback:
3317 <informalexample>
3318 <programlisting>
3319<![CDATA[
3320 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3321 hw_rule_format_by_channels, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3322 -1);
3323]]>
3324 </programlisting>
3325 </informalexample>
3326 </para>
3327
3328 <para>
3329 I won't explain more details here, rather I
3330 would like to say, <quote>Luke, use the source.</quote>
3331 </para>
3332 </section>
3333
3334 </chapter>
3335
3336
3337<!-- ****************************************************** -->
3338<!-- Control Interface -->
3339<!-- ****************************************************** -->
3340 <chapter id="control-interface">
3341 <title>Control Interface</title>
3342
3343 <section id="control-interface-general">
3344 <title>General</title>
3345 <para>
3346 The control interface is used widely for many switches,
3347 sliders, etc. which are accessed from the user-space. Its most
3348 important use is the mixer interface. In other words, on ALSA
3349 0.9.x, all the mixer stuff is implemented on the control kernel
3350 API (while there was an independent mixer kernel API on 0.5.x).
3351 </para>
3352
3353 <para>
3354 ALSA has a well-defined AC97 control module. If your chip
3355 supports only the AC97 and nothing else, you can skip this
3356 section.
3357 </para>
3358
3359 <para>
3360 The control API is defined in
3361 <filename>&lt;sound/control.h&gt;</filename>.
3362 Include this file if you add your own controls.
3363 </para>
3364 </section>
3365
3366 <section id="control-interface-definition">
3367 <title>Definition of Controls</title>
3368 <para>
3369 For creating a new control, you need to define the three
3370 callbacks: <structfield>info</structfield>,
3371 <structfield>get</structfield> and
3372 <structfield>put</structfield>. Then, define a
446ab5f5 3373 struct <structname>snd_kcontrol_new</structname> record, such as:
1da177e4
LT
3374
3375 <example>
3376 <title>Definition of a Control</title>
3377 <programlisting>
3378<![CDATA[
446ab5f5 3379 static struct snd_kcontrol_new my_control __devinitdata = {
1da177e4
LT
3380 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3381 .name = "PCM Playback Switch",
3382 .index = 0,
3383 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3384 .private_values = 0xffff,
3385 .info = my_control_info,
3386 .get = my_control_get,
3387 .put = my_control_put
3388 };
3389]]>
3390 </programlisting>
3391 </example>
3392 </para>
3393
3394 <para>
3395 Most likely the control is created via
3396 <function>snd_ctl_new1()</function>, and in such a case, you can
3397 add <parameter>__devinitdata</parameter> prefix to the
3398 definition like above.
3399 </para>
3400
3401 <para>
3402 The <structfield>iface</structfield> field specifies the type of
67ed4161
CL
3403 the control, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3404 is usually <constant>MIXER</constant>.
3405 Use <constant>CARD</constant> for global controls that are not
3406 logically part of the mixer.
3407 If the control is closely associated with some specific device on
3408 the sound card, use <constant>HWDEP</constant>,
3409 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3410 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3411 specify the device number with the
3412 <structfield>device</structfield> and
3413 <structfield>subdevice</structfield> fields.
1da177e4
LT
3414 </para>
3415
3416 <para>
3417 The <structfield>name</structfield> is the name identifier
3418 string. On ALSA 0.9.x, the control name is very important,
3419 because its role is classified from its name. There are
3420 pre-defined standard control names. The details are described in
3421 the subsection
3422 <link linkend="control-interface-control-names"><citetitle>
3423 Control Names</citetitle></link>.
3424 </para>
3425
3426 <para>
3427 The <structfield>index</structfield> field holds the index number
3428 of this control. If there are several different controls with
3429 the same name, they can be distinguished by the index
3430 number. This is the case when
3431 several codecs exist on the card. If the index is zero, you can
3432 omit the definition above.
3433 </para>
3434
3435 <para>
3436 The <structfield>access</structfield> field contains the access
3437 type of this control. Give the combination of bit masks,
3438 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3439 The detailed will be explained in the subsection
3440 <link linkend="control-interface-access-flags"><citetitle>
3441 Access Flags</citetitle></link>.
3442 </para>
3443
3444 <para>
3445 The <structfield>private_values</structfield> field contains
3446 an arbitrary long integer value for this record. When using
3447 generic <structfield>info</structfield>,
3448 <structfield>get</structfield> and
3449 <structfield>put</structfield> callbacks, you can pass a value
3450 through this field. If several small numbers are necessary, you can
3451 combine them in bitwise. Or, it's possible to give a pointer
3452 (casted to unsigned long) of some record to this field, too.
3453 </para>
3454
3455 <para>
3456 The other three are
3457 <link linkend="control-interface-callbacks"><citetitle>
3458 callback functions</citetitle></link>.
3459 </para>
3460 </section>
3461
3462 <section id="control-interface-control-names">
3463 <title>Control Names</title>
3464 <para>
3465 There are some standards for defining the control names. A
3466 control is usually defined from the three parts as
3467 <quote>SOURCE DIRECTION FUNCTION</quote>.
3468 </para>
3469
3470 <para>
3471 The first, <constant>SOURCE</constant>, specifies the source
3472 of the control, and is a string such as <quote>Master</quote>,
3473 <quote>PCM</quote>, <quote>CD</quote> or
3474 <quote>Line</quote>. There are many pre-defined sources.
3475 </para>
3476
3477 <para>
3478 The second, <constant>DIRECTION</constant>, is one of the
3479 following strings according to the direction of the control:
3480 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3481 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3482 be omitted, meaning both playback and capture directions.
3483 </para>
3484
3485 <para>
3486 The third, <constant>FUNCTION</constant>, is one of the
3487 following strings according to the function of the control:
3488 <quote>Switch</quote>, <quote>Volume</quote> and
3489 <quote>Route</quote>.
3490 </para>
3491
3492 <para>
3493 The example of control names are, thus, <quote>Master Capture
3494 Switch</quote> or <quote>PCM Playback Volume</quote>.
3495 </para>
3496
3497 <para>
3498 There are some exceptions:
3499 </para>
3500
3501 <section id="control-interface-control-names-global">
3502 <title>Global capture and playback</title>
3503 <para>
3504 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3505 and <quote>Capture Volume</quote> are used for the global
3506 capture (input) source, switch and volume. Similarly,
3507 <quote>Playback Switch</quote> and <quote>Playback
3508 Volume</quote> are used for the global output gain switch and
3509 volume.
3510 </para>
3511 </section>
3512
3513 <section id="control-interface-control-names-tone">
3514 <title>Tone-controls</title>
3515 <para>
3516 tone-control switch and volumes are specified like
3517 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3518 Switch</quote>, <quote>Tone Control - Bass</quote>,
3519 <quote>Tone Control - Center</quote>.
3520 </para>
3521 </section>
3522
3523 <section id="control-interface-control-names-3d">
3524 <title>3D controls</title>
3525 <para>
3526 3D-control switches and volumes are specified like <quote>3D
3527 Control - XXX</quote>, e.g. <quote>3D Control -
3528 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3529 Control - Space</quote>.
3530 </para>
3531 </section>
3532
3533 <section id="control-interface-control-names-mic">
3534 <title>Mic boost</title>
3535 <para>
3536 Mic-boost switch is set as <quote>Mic Boost</quote> or
3537 <quote>Mic Boost (6dB)</quote>.
3538 </para>
3539
3540 <para>
3541 More precise information can be found in
3542 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3543 </para>
3544 </section>
3545 </section>
3546
3547 <section id="control-interface-access-flags">
3548 <title>Access Flags</title>
3549
3550 <para>
3551 The access flag is the bit-flags which specifies the access type
3552 of the given control. The default access type is
3553 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3554 which means both read and write are allowed to this control.
3555 When the access flag is omitted (i.e. = 0), it is
3556 regarded as <constant>READWRITE</constant> access as default.
3557 </para>
3558
3559 <para>
3560 When the control is read-only, pass
3561 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3562 In this case, you don't have to define
3563 <structfield>put</structfield> callback.
3564 Similarly, when the control is write-only (although it's a rare
3565 case), you can use <constant>WRITE</constant> flag instead, and
3566 you don't need <structfield>get</structfield> callback.
3567 </para>
3568
3569 <para>
3570 If the control value changes frequently (e.g. the VU meter),
3571 <constant>VOLATILE</constant> flag should be given. This means
3572 that the control may be changed without
3573 <link linkend="control-interface-change-notification"><citetitle>
3574 notification</citetitle></link>. Applications should poll such
3575 a control constantly.
3576 </para>
3577
3578 <para>
3579 When the control is inactive, set
3580 <constant>INACTIVE</constant> flag, too.
3581 There are <constant>LOCK</constant> and
3582 <constant>OWNER</constant> flags for changing the write
3583 permissions.
3584 </para>
3585
3586 </section>
3587
3588 <section id="control-interface-callbacks">
3589 <title>Callbacks</title>
3590
3591 <section id="control-interface-callbacks-info">
3592 <title>info callback</title>
3593 <para>
3594 The <structfield>info</structfield> callback is used to get
3595 the detailed information of this control. This must store the
446ab5f5 3596 values of the given struct <structname>snd_ctl_elem_info</structname>
1da177e4
LT
3597 object. For example, for a boolean control with a single
3598 element will be:
3599
3600 <example>
3601 <title>Example of info callback</title>
3602 <programlisting>
3603<![CDATA[
446ab5f5
TI
3604 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3605 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3606 {
3607 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3608 uinfo->count = 1;
3609 uinfo->value.integer.min = 0;
3610 uinfo->value.integer.max = 1;
3611 return 0;
3612 }
3613]]>
3614 </programlisting>
3615 </example>
3616 </para>
3617
3618 <para>
3619 The <structfield>type</structfield> field specifies the type
3620 of the control. There are <constant>BOOLEAN</constant>,
3621 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3622 <constant>BYTES</constant>, <constant>IEC958</constant> and
3623 <constant>INTEGER64</constant>. The
3624 <structfield>count</structfield> field specifies the
3625 number of elements in this control. For example, a stereo
3626 volume would have count = 2. The
3627 <structfield>value</structfield> field is a union, and
3628 the values stored are depending on the type. The boolean and
3629 integer are identical.
3630 </para>
3631
3632 <para>
3633 The enumerated type is a bit different from others. You'll
3634 need to set the string for the currently given item index.
3635
3636 <informalexample>
3637 <programlisting>
3638<![CDATA[
446ab5f5
TI
3639 static int snd_myctl_info(struct snd_kcontrol *kcontrol,
3640 struct snd_ctl_elem_info *uinfo)
1da177e4
LT
3641 {
3642 static char *texts[4] = {
3643 "First", "Second", "Third", "Fourth"
3644 };
3645 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3646 uinfo->count = 1;
3647 uinfo->value.enumerated.items = 4;
3648 if (uinfo->value.enumerated.item > 3)
3649 uinfo->value.enumerated.item = 3;
3650 strcpy(uinfo->value.enumerated.name,
3651 texts[uinfo->value.enumerated.item]);
3652 return 0;
3653 }
3654]]>
3655 </programlisting>
3656 </informalexample>
3657 </para>
3658 </section>
3659
3660 <section id="control-interface-callbacks-get">
3661 <title>get callback</title>
3662
3663 <para>
3664 This callback is used to read the current value of the
3665 control and to return to the user-space.
3666 </para>
3667
3668 <para>
3669 For example,
3670
3671 <example>
3672 <title>Example of get callback</title>
3673 <programlisting>
3674<![CDATA[
446ab5f5
TI
3675 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3676 struct snd_ctl_elem_value *ucontrol)
1da177e4 3677 {
446ab5f5 3678 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3679 ucontrol->value.integer.value[0] = get_some_value(chip);
3680 return 0;
3681 }
3682]]>
3683 </programlisting>
3684 </example>
3685 </para>
3686
3687 <para>
3688 Here, the chip instance is retrieved via
3689 <function>snd_kcontrol_chip()</function> macro. This macro
063859c8 3690 just accesses to kcontrol-&gt;private_data. The
1da177e4
LT
3691 kcontrol-&gt;private_data field is
3692 given as the argument of <function>snd_ctl_new()</function>
3693 (see the later subsection
3694 <link linkend="control-interface-constructor"><citetitle>Constructor</citetitle></link>).
3695 </para>
3696
3697 <para>
3698 The <structfield>value</structfield> field is depending on
3699 the type of control as well as on info callback. For example,
3700 the sb driver uses this field to store the register offset,
3701 the bit-shift and the bit-mask. The
3702 <structfield>private_value</structfield> is set like
3703 <informalexample>
3704 <programlisting>
3705<![CDATA[
3706 .private_value = reg | (shift << 16) | (mask << 24)
3707]]>
3708 </programlisting>
3709 </informalexample>
3710 and is retrieved in callbacks like
3711 <informalexample>
3712 <programlisting>
3713<![CDATA[
446ab5f5
TI
3714 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3715 struct snd_ctl_elem_value *ucontrol)
1da177e4
LT
3716 {
3717 int reg = kcontrol->private_value & 0xff;
3718 int shift = (kcontrol->private_value >> 16) & 0xff;
3719 int mask = (kcontrol->private_value >> 24) & 0xff;
3720 ....
3721 }
3722]]>
3723 </programlisting>
3724 </informalexample>
3725 </para>
3726
3727 <para>
3728 In <structfield>get</structfield> callback, you have to fill all the elements if the
3729 control has more than one elements,
3730 i.e. <structfield>count</structfield> &gt; 1.
3731 In the example above, we filled only one element
3732 (<structfield>value.integer.value[0]</structfield>) since it's
3733 assumed as <structfield>count</structfield> = 1.
3734 </para>
3735 </section>
3736
3737 <section id="control-interface-callbacks-put">
3738 <title>put callback</title>
3739
3740 <para>
3741 This callback is used to write a value from the user-space.
3742 </para>
3743
3744 <para>
3745 For example,
3746
3747 <example>
3748 <title>Example of put callback</title>
3749 <programlisting>
3750<![CDATA[
446ab5f5
TI
3751 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3752 struct snd_ctl_elem_value *ucontrol)
1da177e4 3753 {
446ab5f5 3754 struct mychip *chip = snd_kcontrol_chip(kcontrol);
1da177e4
LT
3755 int changed = 0;
3756 if (chip->current_value !=
3757 ucontrol->value.integer.value[0]) {
3758 change_current_value(chip,
3759 ucontrol->value.integer.value[0]);
3760 changed = 1;
3761 }
3762 return changed;
3763 }
3764]]>
3765 </programlisting>
3766 </example>
3767
3768 As seen above, you have to return 1 if the value is
3769 changed. If the value is not changed, return 0 instead.
3770 If any fatal error happens, return a negative error code as
3771 usual.
3772 </para>
3773
3774 <para>
3775 Like <structfield>get</structfield> callback,
3776 when the control has more than one elements,
3777 all elemehts must be evaluated in this callback, too.
3778 </para>
3779 </section>
3780
3781 <section id="control-interface-callbacks-all">
3782 <title>Callbacks are not atomic</title>
3783 <para>
3784 All these three callbacks are basically not atomic.
3785 </para>
3786 </section>
3787 </section>
3788
3789 <section id="control-interface-constructor">
3790 <title>Constructor</title>
3791 <para>
3792 When everything is ready, finally we can create a new
3793 control. For creating a control, there are two functions to be
3794 called, <function>snd_ctl_new1()</function> and
3795 <function>snd_ctl_add()</function>.
3796 </para>
3797
3798 <para>
3799 In the simplest way, you can do like this:
3800
3801 <informalexample>
3802 <programlisting>
3803<![CDATA[
3804 if ((err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip))) < 0)
3805 return err;
3806]]>
3807 </programlisting>
3808 </informalexample>
3809
3810 where <parameter>my_control</parameter> is the
446ab5f5 3811 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
1da177e4
LT
3812 is the object pointer to be passed to
3813 kcontrol-&gt;private_data
3814 which can be referred in callbacks.
3815 </para>
3816
3817 <para>
3818 <function>snd_ctl_new1()</function> allocates a new
446ab5f5 3819 <structname>snd_kcontrol</structname> instance (that's why the definition
1da177e4
LT
3820 of <parameter>my_control</parameter> can be with
3821 <parameter>__devinitdata</parameter>
3822 prefix), and <function>snd_ctl_add</function> assigns the given
3823 control component to the card.
3824 </para>
3825 </section>
3826
3827 <section id="control-interface-change-notification">
3828 <title>Change Notification</title>
3829 <para>
3830 If you need to change and update a control in the interrupt
3831 routine, you can call <function>snd_ctl_notify()</function>. For
3832 example,
3833
3834 <informalexample>
3835 <programlisting>
3836<![CDATA[
3837 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3838]]>
3839 </programlisting>
3840 </informalexample>
3841
3842 This function takes the card pointer, the event-mask, and the
3843 control id pointer for the notification. The event-mask
3844 specifies the types of notification, for example, in the above
3845 example, the change of control values is notified.
446ab5f5 3846 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
1da177e4
LT
3847 to be notified.
3848 You can find some examples in <filename>es1938.c</filename> or
3849 <filename>es1968.c</filename> for hardware volume interrupts.
3850 </para>
3851 </section>
3852
3853 </chapter>
3854
3855
3856<!-- ****************************************************** -->
3857<!-- API for AC97 Codec -->
3858<!-- ****************************************************** -->
3859 <chapter id="api-ac97">
3860 <title>API for AC97 Codec</title>
3861
3862 <section>
3863 <title>General</title>
3864 <para>
3865 The ALSA AC97 codec layer is a well-defined one, and you don't
3866 have to write many codes to control it. Only low-level control
3867 routines are necessary. The AC97 codec API is defined in
3868 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3869 </para>
3870 </section>
3871
3872 <section id="api-ac97-example">
3873 <title>Full Code Example</title>
3874 <para>
3875 <example>
3876 <title>Example of AC97 Interface</title>
3877 <programlisting>
3878<![CDATA[
446ab5f5 3879 struct mychip {
1da177e4 3880 ....
446ab5f5 3881 struct snd_ac97 *ac97;
1da177e4
LT
3882 ....
3883 };
3884
446ab5f5 3885 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3886 unsigned short reg)
3887 {
446ab5f5 3888 struct mychip *chip = ac97->private_data;
1da177e4
LT
3889 ....
3890 // read a register value here from the codec
3891 return the_register_value;
3892 }
3893
446ab5f5 3894 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
3895 unsigned short reg, unsigned short val)
3896 {
446ab5f5 3897 struct mychip *chip = ac97->private_data;
1da177e4
LT
3898 ....
3899 // write the given register value to the codec
3900 }
3901
446ab5f5 3902 static int snd_mychip_ac97(struct mychip *chip)
1da177e4 3903 {
446ab5f5
TI
3904 struct snd_ac97_bus *bus;
3905 struct snd_ac97_template ac97;
1da177e4 3906 int err;
446ab5f5 3907 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3908 .write = snd_mychip_ac97_write,
3909 .read = snd_mychip_ac97_read,
3910 };
3911
3912 if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus)) < 0)
3913 return err;
3914 memset(&ac97, 0, sizeof(ac97));
3915 ac97.private_data = chip;
3916 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3917 }
3918
3919]]>
3920 </programlisting>
3921 </example>
3922 </para>
3923 </section>
3924
3925 <section id="api-ac97-constructor">
3926 <title>Constructor</title>
3927 <para>
3928 For creating an ac97 instance, first call <function>snd_ac97_bus</function>
3929 with an <type>ac97_bus_ops_t</type> record with callback functions.
3930
3931 <informalexample>
3932 <programlisting>
3933<![CDATA[
446ab5f5
TI
3934 struct snd_ac97_bus *bus;
3935 static struct snd_ac97_bus_ops ops = {
1da177e4
LT
3936 .write = snd_mychip_ac97_write,
3937 .read = snd_mychip_ac97_read,
3938 };
3939
3940 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3941]]>
3942 </programlisting>
3943 </informalexample>
3944
3945 The bus record is shared among all belonging ac97 instances.
3946 </para>
3947
3948 <para>
446ab5f5
TI
3949 And then call <function>snd_ac97_mixer()</function> with an
3950 struct <structname>snd_ac97_template</structname>
1da177e4
LT
3951 record together with the bus pointer created above.
3952
3953 <informalexample>
3954 <programlisting>
3955<![CDATA[
446ab5f5 3956 struct snd_ac97_template ac97;
1da177e4
LT
3957 int err;
3958
3959 memset(&ac97, 0, sizeof(ac97));
3960 ac97.private_data = chip;
3961 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3962]]>
3963 </programlisting>
3964 </informalexample>
3965
3966 where chip-&gt;ac97 is the pointer of a newly created
3967 <type>ac97_t</type> instance.
3968 In this case, the chip pointer is set as the private data, so that
3969 the read/write callback functions can refer to this chip instance.
3970 This instance is not necessarily stored in the chip
3971 record. When you need to change the register values from the
3972 driver, or need the suspend/resume of ac97 codecs, keep this
3973 pointer to pass to the corresponding functions.
3974 </para>
3975 </section>
3976
3977 <section id="api-ac97-callbacks">
3978 <title>Callbacks</title>
3979 <para>
3980 The standard callbacks are <structfield>read</structfield> and
3981 <structfield>write</structfield>. Obviously they
3982 correspond to the functions for read and write accesses to the
3983 hardware low-level codes.
3984 </para>
3985
3986 <para>
3987 The <structfield>read</structfield> callback returns the
3988 register value specified in the argument.
3989
3990 <informalexample>
3991 <programlisting>
3992<![CDATA[
446ab5f5 3993 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
1da177e4
LT
3994 unsigned short reg)
3995 {
446ab5f5 3996 struct mychip *chip = ac97->private_data;
1da177e4
LT
3997 ....
3998 return the_register_value;
3999 }
4000]]>
4001 </programlisting>
4002 </informalexample>
4003
4004 Here, the chip can be cast from ac97-&gt;private_data.
4005 </para>
4006
4007 <para>
4008 Meanwhile, the <structfield>write</structfield> callback is
4009 used to set the register value.
4010
4011 <informalexample>
4012 <programlisting>
4013<![CDATA[
446ab5f5 4014 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
1da177e4
LT
4015 unsigned short reg, unsigned short val)
4016]]>
4017 </programlisting>
4018 </informalexample>
4019 </para>
4020
4021 <para>
4022 These callbacks are non-atomic like the callbacks of control API.
4023 </para>
4024
4025 <para>
4026 There are also other callbacks:
4027 <structfield>reset</structfield>,
4028 <structfield>wait</structfield> and
4029 <structfield>init</structfield>.
4030 </para>
4031
4032 <para>
4033 The <structfield>reset</structfield> callback is used to reset
4034 the codec. If the chip requires a special way of reset, you can
4035 define this callback.
4036 </para>
4037
4038 <para>
4039 The <structfield>wait</structfield> callback is used for a
4040 certain wait at the standard initialization of the codec. If the
4041 chip requires the extra wait-time, define this callback.
4042 </para>
4043
4044 <para>
4045 The <structfield>init</structfield> callback is used for
4046 additional initialization of the codec.
4047 </para>
4048 </section>
4049
4050 <section id="api-ac97-updating-registers">
4051 <title>Updating Registers in The Driver</title>
4052 <para>
4053 If you need to access to the codec from the driver, you can
4054 call the following functions:
4055 <function>snd_ac97_write()</function>,
4056 <function>snd_ac97_read()</function>,
4057 <function>snd_ac97_update()</function> and
4058 <function>snd_ac97_update_bits()</function>.
4059 </para>
4060
4061 <para>
4062 Both <function>snd_ac97_write()</function> and
4063 <function>snd_ac97_update()</function> functions are used to
4064 set a value to the given register
4065 (<constant>AC97_XXX</constant>). The difference between them is
4066 that <function>snd_ac97_update()</function> doesn't write a
4067 value if the given value has been already set, while
4068 <function>snd_ac97_write()</function> always rewrites the
4069 value.
4070
4071 <informalexample>
4072 <programlisting>
4073<![CDATA[
4074 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4075 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4076]]>
4077 </programlisting>
4078 </informalexample>
4079 </para>
4080
4081 <para>
4082 <function>snd_ac97_read()</function> is used to read the value
4083 of the given register. For example,
4084
4085 <informalexample>
4086 <programlisting>
4087<![CDATA[
4088 value = snd_ac97_read(ac97, AC97_MASTER);
4089]]>
4090 </programlisting>
4091 </informalexample>
4092 </para>
4093
4094 <para>
4095 <function>snd_ac97_update_bits()</function> is used to update
4096 some bits of the given register.
4097
4098 <informalexample>
4099 <programlisting>
4100<![CDATA[
4101 snd_ac97_update_bits(ac97, reg, mask, value);
4102]]>
4103 </programlisting>
4104 </informalexample>
4105 </para>
4106
4107 <para>
4108 Also, there is a function to change the sample rate (of a
4109 certain register such as
4110 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4111 DRA is supported by the codec:
4112 <function>snd_ac97_set_rate()</function>.
4113
4114 <informalexample>
4115 <programlisting>
4116<![CDATA[
4117 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4118]]>
4119 </programlisting>
4120 </informalexample>
4121 </para>
4122
4123 <para>
4124 The following registers are available for setting the rate:
4125 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4126 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4127 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4128 <constant>AC97_SPDIF</constant>. When the
4129 <constant>AC97_SPDIF</constant> is specified, the register is
4130 not really changed but the corresponding IEC958 status bits will
4131 be updated.
4132 </para>
4133 </section>
4134
4135 <section id="api-ac97-clock-adjustment">
4136 <title>Clock Adjustment</title>
4137 <para>
4138 On some chip, the clock of the codec isn't 48000 but using a
4139 PCI clock (to save a quartz!). In this case, change the field
4140 bus-&gt;clock to the corresponding
4141 value. For example, intel8x0
4142 and es1968 drivers have the auto-measurement function of the
4143 clock.
4144 </para>
4145 </section>
4146
4147 <section id="api-ac97-proc-files">
4148 <title>Proc Files</title>
4149 <para>
4150 The ALSA AC97 interface will create a proc file such as
4151 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4152 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4153 see the current status and registers of the codec.
4154 </para>
4155 </section>
4156
4157 <section id="api-ac97-multiple-codecs">
4158 <title>Multiple Codecs</title>
4159 <para>
4160 When there are several codecs on the same card, you need to
446ab5f5 4161 call <function>snd_ac97_mixer()</function> multiple times with
1da177e4
LT
4162 ac97.num=1 or greater. The <structfield>num</structfield> field
4163 specifies the codec
4164 number.
4165 </para>
4166
4167 <para>
4168 If you have set up multiple codecs, you need to either write
4169 different callbacks for each codec or check
4170 ac97-&gt;num in the
4171 callback routines.
4172 </para>
4173 </section>
4174
4175 </chapter>
4176
4177
4178<!-- ****************************************************** -->
4179<!-- MIDI (MPU401-UART) Interface -->
4180<!-- ****************************************************** -->
4181 <chapter id="midi-interface">
4182 <title>MIDI (MPU401-UART) Interface</title>
4183
4184 <section id="midi-interface-general">
4185 <title>General</title>
4186 <para>
4187 Many soundcards have built-in MIDI (MPU401-UART)
4188 interfaces. When the soundcard supports the standard MPU401-UART
4189 interface, most likely you can use the ALSA MPU401-UART API. The
4190 MPU401-UART API is defined in
4191 <filename>&lt;sound/mpu401.h&gt;</filename>.
4192 </para>
4193
4194 <para>
4195 Some soundchips have similar but a little bit different
4196 implementation of mpu401 stuff. For example, emu10k1 has its own
4197 mpu401 routines.
4198 </para>
4199 </section>
4200
4201 <section id="midi-interface-constructor">
4202 <title>Constructor</title>
4203 <para>
4204 For creating a rawmidi object, call
4205 <function>snd_mpu401_uart_new()</function>.
4206
4207 <informalexample>
4208 <programlisting>
4209<![CDATA[
446ab5f5 4210 struct snd_rawmidi *rmidi;
1da177e4
LT
4211 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, integrated,
4212 irq, irq_flags, &rmidi);
4213]]>
4214 </programlisting>
4215 </informalexample>
4216 </para>
4217
4218 <para>
4219 The first argument is the card pointer, and the second is the
4220 index of this component. You can create up to 8 rawmidi
4221 devices.
4222 </para>
4223
4224 <para>
4225 The third argument is the type of the hardware,
4226 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4227 you can use <constant>MPU401_HW_MPU401</constant>.
4228 </para>
4229
4230 <para>
4231 The 4th argument is the i/o port address. Many
4232 backward-compatible MPU401 has an i/o port such as 0x330. Or, it
4233 might be a part of its own PCI i/o region. It depends on the
4234 chip design.
4235 </para>
4236
4237 <para>
4238 When the i/o port address above is a part of the PCI i/o
4239 region, the MPU401 i/o port might have been already allocated
4240 (reserved) by the driver itself. In such a case, pass non-zero
4241 to the 5th argument
4242 (<parameter>integrated</parameter>). Otherwise, pass 0 to it,
4243 and
4244 the mpu401-uart layer will allocate the i/o ports by itself.
4245 </para>
4246
4247 <para>
4248 Usually, the port address corresponds to the command port and
4249 port + 1 corresponds to the data port. If not, you may change
4250 the <structfield>cport</structfield> field of
446ab5f5
TI
4251 struct <structname>snd_mpu401</structname> manually
4252 afterward. However, <structname>snd_mpu401</structname> pointer is not
1da177e4
LT
4253 returned explicitly by
4254 <function>snd_mpu401_uart_new()</function>. You need to cast
4255 rmidi-&gt;private_data to
446ab5f5 4256 <structname>snd_mpu401</structname> explicitly,
1da177e4
LT
4257
4258 <informalexample>
4259 <programlisting>
4260<![CDATA[
446ab5f5 4261 struct snd_mpu401 *mpu;
1da177e4
LT
4262 mpu = rmidi->private_data;
4263]]>
4264 </programlisting>
4265 </informalexample>
4266
4267 and reset the cport as you like:
4268
4269 <informalexample>
4270 <programlisting>
4271<![CDATA[
4272 mpu->cport = my_own_control_port;
4273]]>
4274 </programlisting>
4275 </informalexample>
4276 </para>
4277
4278 <para>
4279 The 6th argument specifies the irq number for UART. If the irq
4280 is already allocated, pass 0 to the 7th argument
4281 (<parameter>irq_flags</parameter>). Otherwise, pass the flags
4282 for irq allocation
4283 (<constant>SA_XXX</constant> bits) to it, and the irq will be
4284 reserved by the mpu401-uart layer. If the card doesn't generates
4285 UART interrupts, pass -1 as the irq number. Then a timer
4286 interrupt will be invoked for polling.
4287 </para>
4288 </section>
4289
4290 <section id="midi-interface-interrupt-handler">
4291 <title>Interrupt Handler</title>
4292 <para>
4293 When the interrupt is allocated in
4294 <function>snd_mpu401_uart_new()</function>, the private
4295 interrupt handler is used, hence you don't have to do nothing
4296 else than creating the mpu401 stuff. Otherwise, you have to call
4297 <function>snd_mpu401_uart_interrupt()</function> explicitly when
4298 a UART interrupt is invoked and checked in your own interrupt
4299 handler.
4300 </para>
4301
4302 <para>
4303 In this case, you need to pass the private_data of the
4304 returned rawmidi object from
4305 <function>snd_mpu401_uart_new()</function> as the second
4306 argument of <function>snd_mpu401_uart_interrupt()</function>.
4307
4308 <informalexample>
4309 <programlisting>
4310<![CDATA[
4311 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4312]]>
4313 </programlisting>
4314 </informalexample>
4315 </para>
4316 </section>
4317
4318 </chapter>
4319
4320
4321<!-- ****************************************************** -->
4322<!-- RawMIDI Interface -->
4323<!-- ****************************************************** -->
4324 <chapter id="rawmidi-interface">
4325 <title>RawMIDI Interface</title>
4326
4327 <section id="rawmidi-interface-overview">
4328 <title>Overview</title>
4329
4330 <para>
4331 The raw MIDI interface is used for hardware MIDI ports that can
4332 be accessed as a byte stream. It is not used for synthesizer
4333 chips that do not directly understand MIDI.
4334 </para>
4335
4336 <para>
4337 ALSA handles file and buffer management. All you have to do is
4338 to write some code to move data between the buffer and the
4339 hardware.
4340 </para>
4341
4342 <para>
4343 The rawmidi API is defined in
4344 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4345 </para>
4346 </section>
4347
4348 <section id="rawmidi-interface-constructor">
4349 <title>Constructor</title>
4350
4351 <para>
4352 To create a rawmidi device, call the
4353 <function>snd_rawmidi_new</function> function:
4354 <informalexample>
4355 <programlisting>
4356<![CDATA[
446ab5f5 4357 struct snd_rawmidi *rmidi;
1da177e4
LT
4358 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4359 if (err < 0)
4360 return err;
4361 rmidi->private_data = chip;
4362 strcpy(rmidi->name, "My MIDI");
4363 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4364 SNDRV_RAWMIDI_INFO_INPUT |
4365 SNDRV_RAWMIDI_INFO_DUPLEX;
4366]]>
4367 </programlisting>
4368 </informalexample>
4369 </para>
4370
4371 <para>
4372 The first argument is the card pointer, the second argument is
4373 the ID string.
4374 </para>
4375
4376 <para>
4377 The third argument is the index of this component. You can
4378 create up to 8 rawmidi devices.
4379 </para>
4380
4381 <para>
4382 The fourth and fifth arguments are the number of output and
4383 input substreams, respectively, of this device. (A substream is
4384 the equivalent of a MIDI port.)
4385 </para>
4386
4387 <para>
4388 Set the <structfield>info_flags</structfield> field to specify
4389 the capabilities of the device.
4390 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4391 at least one output port,
4392 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4393 least one input port,
4394 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4395 can handle output and input at the same time.
4396 </para>
4397
4398 <para>
4399 After the rawmidi device is created, you need to set the
4400 operators (callbacks) for each substream. There are helper
4401 functions to set the operators for all substream of a device:
4402 <informalexample>
4403 <programlisting>
4404<![CDATA[
4405 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4406 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4407]]>
4408 </programlisting>
4409 </informalexample>
4410 </para>
4411
4412 <para>
4413 The operators are usually defined like this:
4414 <informalexample>
4415 <programlisting>
4416<![CDATA[
446ab5f5 4417 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
1da177e4
LT
4418 .open = snd_mymidi_output_open,
4419 .close = snd_mymidi_output_close,
4420 .trigger = snd_mymidi_output_trigger,
4421 };
4422]]>
4423 </programlisting>
4424 </informalexample>
4425 These callbacks are explained in the <link
4426 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4427 section.
4428 </para>
4429
4430 <para>
4431 If there is more than one substream, you should give each one a
4432 unique name:
4433 <informalexample>
4434 <programlisting>
4435<![CDATA[
4436 struct list_head *list;
446ab5f5 4437 struct snd_rawmidi_substream *substream;
1da177e4 4438 list_for_each(list, &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams) {
446ab5f5 4439 substream = list_entry(list, struct snd_rawmidi_substream, list);
1da177e4
LT
4440 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4441 }
4442 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4443]]>
4444 </programlisting>
4445 </informalexample>
4446 </para>
4447 </section>
4448
4449 <section id="rawmidi-interface-callbacks">
4450 <title>Callbacks</title>
4451
4452 <para>
4453 In all callbacks, the private data that you've set for the
4454 rawmidi device can be accessed as
4455 substream-&gt;rmidi-&gt;private_data.
4456 <!-- <code> isn't available before DocBook 4.3 -->
4457 </para>
4458
4459 <para>
4460 If there is more than one port, your callbacks can determine the
446ab5f5 4461 port index from the struct snd_rawmidi_substream data passed to each
1da177e4
LT
4462 callback:
4463 <informalexample>
4464 <programlisting>
4465<![CDATA[
446ab5f5 4466 struct snd_rawmidi_substream *substream;
1da177e4
LT
4467 int index = substream->number;
4468]]>
4469 </programlisting>
4470 </informalexample>
4471 </para>
4472
4473 <section id="rawmidi-interface-op-open">
4474 <title><function>open</function> callback</title>
4475
4476 <informalexample>
4477 <programlisting>
4478<![CDATA[
446ab5f5 4479 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
1da177e4
LT
4480]]>
4481 </programlisting>
4482 </informalexample>
4483
4484 <para>
4485 This is called when a substream is opened.
4486 You can initialize the hardware here, but you should not yet
4487 start transmitting/receiving data.
4488 </para>
4489 </section>
4490
4491 <section id="rawmidi-interface-op-close">
4492 <title><function>close</function> callback</title>
4493
4494 <informalexample>
4495 <programlisting>
4496<![CDATA[
446ab5f5 4497 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
1da177e4
LT
4498]]>
4499 </programlisting>
4500 </informalexample>
4501
4502 <para>
4503 Guess what.
4504 </para>
4505
4506 <para>
4507 The <function>open</function> and <function>close</function>
4508 callbacks of a rawmidi device are serialized with a mutex,
4509 and can sleep.
4510 </para>
4511 </section>
4512
4513 <section id="rawmidi-interface-op-trigger-out">
4514 <title><function>trigger</function> callback for output
4515 substreams</title>
4516
4517 <informalexample>
4518 <programlisting>
4519<![CDATA[
446ab5f5 4520 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4521]]>
4522 </programlisting>
4523 </informalexample>
4524
4525 <para>
4526 This is called with a nonzero <parameter>up</parameter>
4527 parameter when there is some data in the substream buffer that
4528 must be transmitted.
4529 </para>
4530
4531 <para>
4532 To read data from the buffer, call
4533 <function>snd_rawmidi_transmit_peek</function>. It will
4534 return the number of bytes that have been read; this will be
4535 less than the number of bytes requested when there is no more
4536 data in the buffer.
4537 After the data has been transmitted successfully, call
4538 <function>snd_rawmidi_transmit_ack</function> to remove the
4539 data from the substream buffer:
4540 <informalexample>
4541 <programlisting>
4542<![CDATA[
4543 unsigned char data;
4544 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
446ab5f5 4545 if (snd_mychip_try_to_transmit(data))
1da177e4
LT
4546 snd_rawmidi_transmit_ack(substream, 1);
4547 else
4548 break; /* hardware FIFO full */
4549 }
4550]]>
4551 </programlisting>
4552 </informalexample>
4553 </para>
4554
4555 <para>
4556 If you know beforehand that the hardware will accept data, you
4557 can use the <function>snd_rawmidi_transmit</function> function
4558 which reads some data and removes it from the buffer at once:
4559 <informalexample>
4560 <programlisting>
4561<![CDATA[
446ab5f5 4562 while (snd_mychip_transmit_possible()) {
1da177e4
LT
4563 unsigned char data;
4564 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4565 break; /* no more data */
446ab5f5 4566 snd_mychip_transmit(data);
1da177e4
LT
4567 }
4568]]>
4569 </programlisting>
4570 </informalexample>
4571 </para>
4572
4573 <para>
4574 If you know beforehand how many bytes you can accept, you can
4575 use a buffer size greater than one with the
4576 <function>snd_rawmidi_transmit*</function> functions.
4577 </para>
4578
4579 <para>
4580 The <function>trigger</function> callback must not sleep. If
4581 the hardware FIFO is full before the substream buffer has been
4582 emptied, you have to continue transmitting data later, either
4583 in an interrupt handler, or with a timer if the hardware
4584 doesn't have a MIDI transmit interrupt.
4585 </para>
4586
4587 <para>
4588 The <function>trigger</function> callback is called with a
4589 zero <parameter>up</parameter> parameter when the transmission
4590 of data should be aborted.
4591 </para>
4592 </section>
4593
4594 <section id="rawmidi-interface-op-trigger-in">
4595 <title><function>trigger</function> callback for input
4596 substreams</title>
4597
4598 <informalexample>
4599 <programlisting>
4600<![CDATA[
446ab5f5 4601 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
1da177e4
LT
4602]]>
4603 </programlisting>
4604 </informalexample>
4605
4606 <para>
4607 This is called with a nonzero <parameter>up</parameter>
4608 parameter to enable receiving data, or with a zero
4609 <parameter>up</parameter> parameter do disable receiving data.
4610 </para>
4611
4612 <para>
4613 The <function>trigger</function> callback must not sleep; the
4614 actual reading of data from the device is usually done in an
4615 interrupt handler.
4616 </para>
4617
4618 <para>
4619 When data reception is enabled, your interrupt handler should
4620 call <function>snd_rawmidi_receive</function> for all received
4621 data:
4622 <informalexample>
4623 <programlisting>
4624<![CDATA[
4625 void snd_mychip_midi_interrupt(...)
4626 {
4627 while (mychip_midi_available()) {
4628 unsigned char data;
4629 data = mychip_midi_read();
4630 snd_rawmidi_receive(substream, &data, 1);
4631 }
4632 }
4633]]>
4634 </programlisting>
4635 </informalexample>
4636 </para>
4637 </section>
4638
4639 <section id="rawmidi-interface-op-drain">
4640 <title><function>drain</function> callback</title>
4641
4642 <informalexample>
4643 <programlisting>
4644<![CDATA[
446ab5f5 4645 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
1da177e4
LT
4646]]>
4647 </programlisting>
4648 </informalexample>
4649
4650 <para>
4651 This is only used with output substreams. This function should wait
4652 until all data read from the substream buffer has been transmitted.
4653 This ensures that the device can be closed and the driver unloaded
4654 without losing data.
4655 </para>
4656
4657 <para>
4658 This callback is optional. If you do not set
446ab5f5 4659 <structfield>drain</structfield> in the struct snd_rawmidi_ops
1da177e4
LT
4660 structure, ALSA will simply wait for 50&nbsp;milliseconds
4661 instead.
4662 </para>
4663 </section>
4664 </section>
4665
4666 </chapter>
4667
4668
4669<!-- ****************************************************** -->
4670<!-- Miscellaneous Devices -->
4671<!-- ****************************************************** -->
4672 <chapter id="misc-devices">
4673 <title>Miscellaneous Devices</title>
4674
4675 <section id="misc-devices-opl3">
4676 <title>FM OPL3</title>
4677 <para>
4678 The FM OPL3 is still used on many chips (mainly for backward
4679 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4680 OPL3 API is defined in
4681 <filename>&lt;sound/opl3.h&gt;</filename>.
4682 </para>
4683
4684 <para>
4685 FM registers can be directly accessed through direct-FM API,
4686 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4687 ALSA native mode, FM registers are accessed through
4688 Hardware-Dependant Device direct-FM extension API, whereas in
4689 OSS compatible mode, FM registers can be accessed with OSS
4690 direct-FM compatible API on <filename>/dev/dmfmX</filename> device.
4691 </para>
4692
4693 <para>
4694 For creating the OPL3 component, you have two functions to
4695 call. The first one is a constructor for <type>opl3_t</type>
4696 instance.
4697
4698 <informalexample>
4699 <programlisting>
4700<![CDATA[
446ab5f5 4701 struct snd_opl3 *opl3;
1da177e4
LT
4702 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4703 integrated, &opl3);
4704]]>
4705 </programlisting>
4706 </informalexample>
4707 </para>
4708
4709 <para>
4710 The first argument is the card pointer, the second one is the
4711 left port address, and the third is the right port address. In
4712 most cases, the right port is placed at the left port + 2.
4713 </para>
4714
4715 <para>
4716 The fourth argument is the hardware type.
4717 </para>
4718
4719 <para>
4720 When the left and right ports have been already allocated by
4721 the card driver, pass non-zero to the fifth argument
4722 (<parameter>integrated</parameter>). Otherwise, opl3 module will
4723 allocate the specified ports by itself.
4724 </para>
4725
4726 <para>
4727 When the accessing to the hardware requires special method
4728 instead of the standard I/O access, you can create opl3 instance
4729 separately with <function>snd_opl3_new()</function>.
4730
4731 <informalexample>
4732 <programlisting>
4733<![CDATA[
446ab5f5 4734 struct snd_opl3 *opl3;
1da177e4
LT
4735 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4736]]>
4737 </programlisting>
4738 </informalexample>
4739 </para>
4740
4741 <para>
4742 Then set <structfield>command</structfield>,
4743 <structfield>private_data</structfield> and
4744 <structfield>private_free</structfield> for the private
4745 access function, the private data and the destructor.
4746 The l_port and r_port are not necessarily set. Only the
4747 command must be set properly. You can retrieve the data
4748 from opl3-&gt;private_data field.
4749 </para>
4750
4751 <para>
4752 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4753 call <function>snd_opl3_init()</function> to initialize the chip to the
4754 proper state. Note that <function>snd_opl3_create()</function> always
4755 calls it internally.
4756 </para>
4757
4758 <para>
4759 If the opl3 instance is created successfully, then create a
4760 hwdep device for this opl3.
4761
4762 <informalexample>
4763 <programlisting>
4764<![CDATA[
446ab5f5 4765 struct snd_hwdep *opl3hwdep;
1da177e4
LT
4766 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4767]]>
4768 </programlisting>
4769 </informalexample>
4770 </para>
4771
4772 <para>
4773 The first argument is the <type>opl3_t</type> instance you
4774 created, and the second is the index number, usually 0.
4775 </para>
4776
4777 <para>
4778 The third argument is the index-offset for the sequencer
4779 client assigned to the OPL3 port. When there is an MPU401-UART,
4780 give 1 for here (UART always takes 0).
4781 </para>
4782 </section>
4783
4784 <section id="misc-devices-hardware-dependent">
4785 <title>Hardware-Dependent Devices</title>
4786 <para>
4787 Some chips need the access from the user-space for special
4788 controls or for loading the micro code. In such a case, you can
4789 create a hwdep (hardware-dependent) device. The hwdep API is
4790 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4791 find examples in opl3 driver or
4792 <filename>isa/sb/sb16_csp.c</filename>.
4793 </para>
4794
4795 <para>
4796 Creation of the <type>hwdep</type> instance is done via
4797 <function>snd_hwdep_new()</function>.
4798
4799 <informalexample>
4800 <programlisting>
4801<![CDATA[
446ab5f5 4802 struct snd_hwdep *hw;
1da177e4
LT
4803 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4804]]>
4805 </programlisting>
4806 </informalexample>
4807
4808 where the third argument is the index number.
4809 </para>
4810
4811 <para>
4812 You can then pass any pointer value to the
4813 <parameter>private_data</parameter>.
4814 If you assign a private data, you should define the
4815 destructor, too. The destructor function is set to
4816 <structfield>private_free</structfield> field.
4817
4818 <informalexample>
4819 <programlisting>
4820<![CDATA[
446ab5f5 4821 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
1da177e4
LT
4822 hw->private_data = p;
4823 hw->private_free = mydata_free;
4824]]>
4825 </programlisting>
4826 </informalexample>
4827
4828 and the implementation of destructor would be:
4829
4830 <informalexample>
4831 <programlisting>
4832<![CDATA[
446ab5f5 4833 static void mydata_free(struct snd_hwdep *hw)
1da177e4 4834 {
446ab5f5 4835 struct mydata *p = hw->private_data;
1da177e4
LT
4836 kfree(p);
4837 }
4838]]>
4839 </programlisting>
4840 </informalexample>
4841 </para>
4842
4843 <para>
4844 The arbitrary file operations can be defined for this
4845 instance. The file operators are defined in
4846 <parameter>ops</parameter> table. For example, assume that
4847 this chip needs an ioctl.
4848
4849 <informalexample>
4850 <programlisting>
4851<![CDATA[
4852 hw->ops.open = mydata_open;
4853 hw->ops.ioctl = mydata_ioctl;
4854 hw->ops.release = mydata_release;
4855]]>
4856 </programlisting>
4857 </informalexample>
4858
4859 And implement the callback functions as you like.
4860 </para>
4861 </section>
4862
4863 <section id="misc-devices-IEC958">
4864 <title>IEC958 (S/PDIF)</title>
4865 <para>
4866 Usually the controls for IEC958 devices are implemented via
4867 control interface. There is a macro to compose a name string for
4868 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4869 defined in <filename>&lt;include/asound.h&gt;</filename>.
4870 </para>
4871
4872 <para>
4873 There are some standard controls for IEC958 status bits. These
4874 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4875 and the size of element is fixed as 4 bytes array
4876 (value.iec958.status[x]). For <structfield>info</structfield>
4877 callback, you don't specify
4878 the value field for this type (the count field must be set,
4879 though).
4880 </para>
4881
4882 <para>
4883 <quote>IEC958 Playback Con Mask</quote> is used to return the
4884 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4885 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4886 professional mode. They are read-only controls, and are defined
4887 as MIXER controls (iface =
4888 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4889 </para>
4890
4891 <para>
4892 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4893 defined for getting and setting the current default IEC958
4894 bits. Note that this one is usually defined as a PCM control
4895 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4896 although in some places it's defined as a MIXER control.
4897 </para>
4898
4899 <para>
4900 In addition, you can define the control switches to
4901 enable/disable or to set the raw bit mode. The implementation
4902 will depend on the chip, but the control should be named as
4903 <quote>IEC958 xxx</quote>, preferably using
4904 <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4905 </para>
4906
4907 <para>
4908 You can find several cases, for example,
4909 <filename>pci/emu10k1</filename>,
4910 <filename>pci/ice1712</filename>, or
4911 <filename>pci/cmipci.c</filename>.
4912 </para>
4913 </section>
4914
4915 </chapter>
4916
4917
4918<!-- ****************************************************** -->
4919<!-- Buffer and Memory Management -->
4920<!-- ****************************************************** -->
4921 <chapter id="buffer-and-memory">
4922 <title>Buffer and Memory Management</title>
4923
4924 <section id="buffer-and-memory-buffer-types">
4925 <title>Buffer Types</title>
4926 <para>
4927 ALSA provides several different buffer allocation functions
4928 depending on the bus and the architecture. All these have a
4929 consistent API. The allocation of physically-contiguous pages is
4930 done via
4931 <function>snd_malloc_xxx_pages()</function> function, where xxx
4932 is the bus type.
4933 </para>
4934
4935 <para>
4936 The allocation of pages with fallback is
4937 <function>snd_malloc_xxx_pages_fallback()</function>. This
4938 function tries to allocate the specified pages but if the pages
4939 are not available, it tries to reduce the page sizes until the
4940 enough space is found.
4941 </para>
4942
4943 <para>
4944 For releasing the space, call
4945 <function>snd_free_xxx_pages()</function> function.
4946 </para>
4947
4948 <para>
4949 Usually, ALSA drivers try to allocate and reserve
4950 a large contiguous physical space
4951 at the time the module is loaded for the later use.
4952 This is called <quote>pre-allocation</quote>.
4953 As already written, you can call the following function at the
4954 construction of pcm instance (in the case of PCI bus).
4955
4956 <informalexample>
4957 <programlisting>
4958<![CDATA[
4959 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
4960 snd_dma_pci_data(pci), size, max);
4961]]>
4962 </programlisting>
4963 </informalexample>
4964
4965 where <parameter>size</parameter> is the byte size to be
4966 pre-allocated and the <parameter>max</parameter> is the maximal
4967 size to be changed via <filename>prealloc</filename> proc file.
4968 The allocator will try to get as large area as possible
4969 within the given size.
4970 </para>
4971
4972 <para>
4973 The second argument (type) and the third argument (device pointer)
4974 are dependent on the bus.
4975 In the case of ISA bus, pass <function>snd_dma_isa_data()</function>
4976 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
4977 For the continuous buffer unrelated to the bus can be pre-allocated
4978 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
4979 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
4980 whereh <constant>GFP_KERNEL</constant> is the kernel allocation flag to
4981 use. For the SBUS, <constant>SNDRV_DMA_TYPE_SBUS</constant> and
4982 <function>snd_dma_sbus_data(sbus_dev)</function> are used instead.
4983 For the PCI scatter-gather buffers, use
4984 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
4985 <function>snd_dma_pci_data(pci)</function>
4986 (see the section
4987 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
4988 </citetitle></link>).
4989 </para>
4990
4991 <para>
4992 Once when the buffer is pre-allocated, you can use the
4993 allocator in the <structfield>hw_params</structfield> callback
4994
4995 <informalexample>
4996 <programlisting>
4997<![CDATA[
4998 snd_pcm_lib_malloc_pages(substream, size);
4999]]>
5000 </programlisting>
5001 </informalexample>
5002
5003 Note that you have to pre-allocate to use this function.
5004 </para>
5005 </section>
5006
5007 <section id="buffer-and-memory-external-hardware">
5008 <title>External Hardware Buffers</title>
5009 <para>
5010 Some chips have their own hardware buffers and the DMA
5011 transfer from the host memory is not available. In such a case,
5012 you need to either 1) copy/set the audio data directly to the
5013 external hardware buffer, or 2) make an intermediate buffer and
5014 copy/set the data from it to the external hardware buffer in
5015 interrupts (or in tasklets, preferably).
5016 </para>
5017
5018 <para>
5019 The first case works fine if the external hardware buffer is enough
5020 large. This method doesn't need any extra buffers and thus is
5021 more effective. You need to define the
5022 <structfield>copy</structfield> and
5023 <structfield>silence</structfield> callbacks for
5024 the data transfer. However, there is a drawback: it cannot
5025 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5026 wavetable PCM.
5027 </para>
5028
5029 <para>
5030 The second case allows the mmap of the buffer, although you have
5031 to handle an interrupt or a tasklet for transferring the data
5032 from the intermediate buffer to the hardware buffer. You can find an
5033 example in vxpocket driver.
5034 </para>
5035
5036 <para>
5037 Another case is that the chip uses a PCI memory-map
5038 region for the buffer instead of the host memory. In this case,
5039 mmap is available only on certain architectures like intel. In
5040 non-mmap mode, the data cannot be transferred as the normal
5041 way. Thus you need to define <structfield>copy</structfield> and
5042 <structfield>silence</structfield> callbacks as well
5043 as in the cases above. The examples are found in
5044 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5045 </para>
5046
5047 <para>
5048 The implementation of <structfield>copy</structfield> and
5049 <structfield>silence</structfield> callbacks depends upon
5050 whether the hardware supports interleaved or non-interleaved
5051 samples. The <structfield>copy</structfield> callback is
5052 defined like below, a bit
5053 differently depending whether the direction is playback or
5054 capture:
5055
5056 <informalexample>
5057 <programlisting>
5058<![CDATA[
446ab5f5 5059 static int playback_copy(struct snd_pcm_substream *substream, int channel,
1da177e4 5060 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
446ab5f5 5061 static int capture_copy(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5062 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5063]]>
5064 </programlisting>
5065 </informalexample>
5066 </para>
5067
5068 <para>
5069 In the case of interleaved samples, the second argument
5070 (<parameter>channel</parameter>) is not used. The third argument
5071 (<parameter>pos</parameter>) points the
5072 current position offset in frames.
5073 </para>
5074
5075 <para>
5076 The meaning of the fourth argument is different between
5077 playback and capture. For playback, it holds the source data
5078 pointer, and for capture, it's the destination data pointer.
5079 </para>
5080
5081 <para>
5082 The last argument is the number of frames to be copied.
5083 </para>
5084
5085 <para>
5086 What you have to do in this callback is again different
5087 between playback and capture directions. In the case of
5088 playback, you do: copy the given amount of data
5089 (<parameter>count</parameter>) at the specified pointer
5090 (<parameter>src</parameter>) to the specified offset
5091 (<parameter>pos</parameter>) on the hardware buffer. When
5092 coded like memcpy-like way, the copy would be like:
5093
5094 <informalexample>
5095 <programlisting>
5096<![CDATA[
5097 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5098 frames_to_bytes(runtime, count));
5099]]>
5100 </programlisting>
5101 </informalexample>
5102 </para>
5103
5104 <para>
5105 For the capture direction, you do: copy the given amount of
5106 data (<parameter>count</parameter>) at the specified offset
5107 (<parameter>pos</parameter>) on the hardware buffer to the
5108 specified pointer (<parameter>dst</parameter>).
5109
5110 <informalexample>
5111 <programlisting>
5112<![CDATA[
5113 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5114 frames_to_bytes(runtime, count));
5115]]>
5116 </programlisting>
5117 </informalexample>
5118
5119 Note that both of the position and the data amount are given
5120 in frames.
5121 </para>
5122
5123 <para>
5124 In the case of non-interleaved samples, the implementation
5125 will be a bit more complicated.
5126 </para>
5127
5128 <para>
5129 You need to check the channel argument, and if it's -1, copy
5130 the whole channels. Otherwise, you have to copy only the
5131 specified channel. Please check
5132 <filename>isa/gus/gus_pcm.c</filename> as an example.
5133 </para>
5134
5135 <para>
5136 The <structfield>silence</structfield> callback is also
5137 implemented in a similar way.
5138
5139 <informalexample>
5140 <programlisting>
5141<![CDATA[
446ab5f5 5142 static int silence(struct snd_pcm_substream *substream, int channel,
1da177e4
LT
5143 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5144]]>
5145 </programlisting>
5146 </informalexample>
5147 </para>
5148
5149 <para>
5150 The meanings of arguments are identical with the
5151 <structfield>copy</structfield>
5152 callback, although there is no <parameter>src/dst</parameter>
5153 argument. In the case of interleaved samples, the channel
5154 argument has no meaning, as well as on
5155 <structfield>copy</structfield> callback.
5156 </para>
5157
5158 <para>
5159 The role of <structfield>silence</structfield> callback is to
5160 set the given amount
5161 (<parameter>count</parameter>) of silence data at the
5162 specified offset (<parameter>pos</parameter>) on the hardware
5163 buffer. Suppose that the data format is signed (that is, the
5164 silent-data is 0), and the implementation using a memset-like
5165 function would be like:
5166
5167 <informalexample>
5168 <programlisting>
5169<![CDATA[
5170 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5171 frames_to_bytes(runtime, count));
5172]]>
5173 </programlisting>
5174 </informalexample>
5175 </para>
5176
5177 <para>
5178 In the case of non-interleaved samples, again, the
5179 implementation becomes a bit more complicated. See, for example,
5180 <filename>isa/gus/gus_pcm.c</filename>.
5181 </para>
5182 </section>
5183
5184 <section id="buffer-and-memory-non-contiguous">
5185 <title>Non-Contiguous Buffers</title>
5186 <para>
5187 If your hardware supports the page table like emu10k1 or the
5188 buffer descriptors like via82xx, you can use the scatter-gather
5189 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5190 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5191 </para>
5192
5193 <para>
5194 For creating the SG-buffer handler, call
5195 <function>snd_pcm_lib_preallocate_pages()</function> or
5196 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5197 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5198 in the PCM constructor like other PCI pre-allocator.
5199 You need to pass the <function>snd_dma_pci_data(pci)</function>,
5200 where pci is the struct <structname>pci_dev</structname> pointer
5201 of the chip as well.
5202 The <type>snd_sg_buf_t</type> instance is created as
5203 substream-&gt;dma_private. You can cast
5204 the pointer like:
5205
5206 <informalexample>
5207 <programlisting>
5208<![CDATA[
446ab5f5 5209 struct snd_sg_buf *sgbuf = (struct snd_sg_buf_t*)substream->dma_private;
1da177e4
LT
5210]]>
5211 </programlisting>
5212 </informalexample>
5213 </para>
5214
5215 <para>
5216 Then call <function>snd_pcm_lib_malloc_pages()</function>
5217 in <structfield>hw_params</structfield> callback
5218 as well as in the case of normal PCI buffer.
5219 The SG-buffer handler will allocate the non-contiguous kernel
5220 pages of the given size and map them onto the virtually contiguous
5221 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5222 The physical address (runtime-&gt;dma_addr) is set to zero,
5223 because the buffer is physically non-contigous.
5224 The physical address table is set up in sgbuf-&gt;table.
5225 You can get the physical address at a certain offset via
5226 <function>snd_pcm_sgbuf_get_addr()</function>.
5227 </para>
5228
5229 <para>
5230 When a SG-handler is used, you need to set
5231 <function>snd_pcm_sgbuf_ops_page</function> as
5232 the <structfield>page</structfield> callback.
5233 (See <link linkend="pcm-interface-operators-page-callback">
5234 <citetitle>page callback section</citetitle></link>.)
5235 </para>
5236
5237 <para>
5238 For releasing the data, call
5239 <function>snd_pcm_lib_free_pages()</function> in the
5240 <structfield>hw_free</structfield> callback as usual.
5241 </para>
5242 </section>
5243
5244 <section id="buffer-and-memory-vmalloced">
5245 <title>Vmalloc'ed Buffers</title>
5246 <para>
5247 It's possible to use a buffer allocated via
5248 <function>vmalloc</function>, for example, for an intermediate
5249 buffer. Since the allocated pages are not contiguous, you need
5250 to set the <structfield>page</structfield> callback to obtain
5251 the physical address at every offset.
5252 </para>
5253
5254 <para>
5255 The implementation of <structfield>page</structfield> callback
5256 would be like this:
5257
5258 <informalexample>
5259 <programlisting>
5260<![CDATA[
5261 #include <linux/vmalloc.h>
5262
5263 /* get the physical page pointer on the given offset */
446ab5f5 5264 static struct page *mychip_page(struct snd_pcm_substream *substream,
1da177e4
LT
5265 unsigned long offset)
5266 {
5267 void *pageptr = substream->runtime->dma_area + offset;
5268 return vmalloc_to_page(pageptr);
5269 }
5270]]>
5271 </programlisting>
5272 </informalexample>
5273 </para>
5274 </section>
5275
5276 </chapter>
5277
5278
5279<!-- ****************************************************** -->
5280<!-- Proc Interface -->
5281<!-- ****************************************************** -->
5282 <chapter id="proc-interface">
5283 <title>Proc Interface</title>
5284 <para>
5285 ALSA provides an easy interface for procfs. The proc files are
5286 very useful for debugging. I recommend you set up proc files if
5287 you write a driver and want to get a running status or register
5288 dumps. The API is found in
5289 <filename>&lt;sound/info.h&gt;</filename>.
5290 </para>
5291
5292 <para>
5293 For creating a proc file, call
5294 <function>snd_card_proc_new()</function>.
5295
5296 <informalexample>
5297 <programlisting>
5298<![CDATA[
446ab5f5 5299 struct snd_info_entry *entry;
1da177e4
LT
5300 int err = snd_card_proc_new(card, "my-file", &entry);
5301]]>
5302 </programlisting>
5303 </informalexample>
5304
5305 where the second argument specifies the proc-file name to be
5306 created. The above example will create a file
5307 <filename>my-file</filename> under the card directory,
5308 e.g. <filename>/proc/asound/card0/my-file</filename>.
5309 </para>
5310
5311 <para>
5312 Like other components, the proc entry created via
5313 <function>snd_card_proc_new()</function> will be registered and
5314 released automatically in the card registration and release
5315 functions.
5316 </para>
5317
5318 <para>
5319 When the creation is successful, the function stores a new
5320 instance at the pointer given in the third argument.
5321 It is initialized as a text proc file for read only. For using
5322 this proc file as a read-only text file as it is, set the read
5323 callback with a private data via
5324 <function>snd_info_set_text_ops()</function>.
5325
5326 <informalexample>
5327 <programlisting>
5328<![CDATA[
5329 snd_info_set_text_ops(entry, chip, read_size, my_proc_read);
5330]]>
5331 </programlisting>
5332 </informalexample>
5333
5334 where the second argument (<parameter>chip</parameter>) is the
5335 private data to be used in the callbacks. The third parameter
5336 specifies the read buffer size and the fourth
5337 (<parameter>my_proc_read</parameter>) is the callback function, which
5338 is defined like
5339
5340 <informalexample>
5341 <programlisting>
5342<![CDATA[
446ab5f5
TI
5343 static void my_proc_read(struct snd_info_entry *entry,
5344 struct snd_info_buffer *buffer);
1da177e4
LT
5345]]>
5346 </programlisting>
5347 </informalexample>
5348
5349 </para>
5350
5351 <para>
5352 In the read callback, use <function>snd_iprintf()</function> for
5353 output strings, which works just like normal
5354 <function>printf()</function>. For example,
5355
5356 <informalexample>
5357 <programlisting>
5358<![CDATA[
446ab5f5
TI
5359 static void my_proc_read(struct snd_info_entry *entry,
5360 struct snd_info_buffer *buffer)
1da177e4 5361 {
446ab5f5 5362 struct my_chip *chip = entry->private_data;
1da177e4
LT
5363
5364 snd_iprintf(buffer, "This is my chip!\n");
5365 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5366 }
5367]]>
5368 </programlisting>
5369 </informalexample>
5370 </para>
5371
5372 <para>
5373 The file permission can be changed afterwards. As default, it's
5374 set as read only for all users. If you want to add the write
5375 permission to the user (root as default), set like below:
5376
5377 <informalexample>
5378 <programlisting>
5379<![CDATA[
5380 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5381]]>
5382 </programlisting>
5383 </informalexample>
5384
5385 and set the write buffer size and the callback
5386
5387 <informalexample>
5388 <programlisting>
5389<![CDATA[
5390 entry->c.text.write_size = 256;
5391 entry->c.text.write = my_proc_write;
5392]]>
5393 </programlisting>
5394 </informalexample>
5395 </para>
5396
5397 <para>
5398 The buffer size for read is set to 1024 implicitly by
5399 <function>snd_info_set_text_ops()</function>. It should suffice
5400 in most cases (the size will be aligned to
5401 <constant>PAGE_SIZE</constant> anyway), but if you need to handle
5402 very large text files, you can set it explicitly, too.
5403
5404 <informalexample>
5405 <programlisting>
5406<![CDATA[
5407 entry->c.text.read_size = 65536;
5408]]>
5409 </programlisting>
5410 </informalexample>
5411 </para>
5412
5413 <para>
5414 For the write callback, you can use
5415 <function>snd_info_get_line()</function> to get a text line, and
5416 <function>snd_info_get_str()</function> to retrieve a string from
5417 the line. Some examples are found in
5418 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5419 <filename>pcm_oss.c</filename>.
5420 </para>
5421
5422 <para>
5423 For a raw-data proc-file, set the attributes like the following:
5424
5425 <informalexample>
5426 <programlisting>
5427<![CDATA[
5428 static struct snd_info_entry_ops my_file_io_ops = {
5429 .read = my_file_io_read,
5430 };
5431
5432 entry->content = SNDRV_INFO_CONTENT_DATA;
5433 entry->private_data = chip;
5434 entry->c.ops = &my_file_io_ops;
5435 entry->size = 4096;
5436 entry->mode = S_IFREG | S_IRUGO;
5437]]>
5438 </programlisting>
5439 </informalexample>
5440 </para>
5441
5442 <para>
5443 The callback is much more complicated than the text-file
5444 version. You need to use a low-level i/o functions such as
5445 <function>copy_from/to_user()</function> to transfer the
5446 data.
5447
5448 <informalexample>
5449 <programlisting>
5450<![CDATA[
446ab5f5 5451 static long my_file_io_read(struct snd_info_entry *entry,
1da177e4
LT
5452 void *file_private_data,
5453 struct file *file,
5454 char *buf,
5455 unsigned long count,
5456 unsigned long pos)
5457 {
5458 long size = count;
5459 if (pos + size > local_max_size)
5460 size = local_max_size - pos;
5461 if (copy_to_user(buf, local_data + pos, size))
5462 return -EFAULT;
5463 return size;
5464 }
5465]]>
5466 </programlisting>
5467 </informalexample>
5468 </para>
5469
5470 </chapter>
5471
5472
5473<!-- ****************************************************** -->
5474<!-- Power Management -->
5475<!-- ****************************************************** -->
5476 <chapter id="power-management">
5477 <title>Power Management</title>
5478 <para>
5479 If the chip is supposed to work with with suspend/resume
5480 functions, you need to add the power-management codes to the
5481 driver. The additional codes for the power-management should be
5482 <function>ifdef</function>'ed with
5483 <constant>CONFIG_PM</constant>.
5484 </para>
5485
5486 <para>
5487 ALSA provides the common power-management layer. Each card driver
5488 needs to have only low-level suspend and resume callbacks.
5489
5490 <informalexample>
5491 <programlisting>
5492<![CDATA[
5493 #ifdef CONFIG_PM
446ab5f5 5494 static int snd_my_suspend(struct snd_card *card, pm_message_t state)
1da177e4
LT
5495 {
5496 .... // do things for suspsend
5497 return 0;
5498 }
446ab5f5 5499 static int snd_my_resume(struct snd_card *card)
1da177e4
LT
5500 {
5501 .... // do things for suspsend
5502 return 0;
5503 }
5504 #endif
5505]]>
5506 </programlisting>
5507 </informalexample>
5508 </para>
5509
5510 <para>
5511 The scheme of the real suspend job is as following.
5512
5513 <orderedlist>
5514 <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem>
5515 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5516 <listitem><para>Save the register values if necessary.</para></listitem>
5517 <listitem><para>Stop the hardware if necessary.</para></listitem>
5518 <listitem><para>Disable the PCI device by calling <function>pci_disable_device()</function>.</para></listitem>
5519 </orderedlist>
5520 </para>
5521
5522 <para>
5523 A typical code would be like:
5524
5525 <informalexample>
5526 <programlisting>
5527<![CDATA[
446ab5f5 5528 static int mychip_suspend(struct snd_card *card, pm_message_t state)
1da177e4
LT
5529 {
5530 /* (1) */
446ab5f5 5531 struct mychip *chip = card->pm_private_data;
1da177e4
LT
5532 /* (2) */
5533 snd_pcm_suspend_all(chip->pcm);
5534 /* (3) */
5535 snd_mychip_save_registers(chip);
5536 /* (4) */
5537 snd_mychip_stop_hardware(chip);
5538 /* (5) */
5539 pci_disable_device(chip->pci);
5540 return 0;
5541 }
5542]]>
5543 </programlisting>
5544 </informalexample>
5545 </para>
5546
5547 <para>
5548 The scheme of the real resume job is as following.
5549
5550 <orderedlist>
5551 <listitem><para>Retrieve the chip data from pm_private_data field.</para></listitem>
5552 <listitem><para>Enable the pci device again by calling
5553 <function>pci_enable_device()</function>.</para></listitem>
5554 <listitem><para>Re-initialize the chip.</para></listitem>
5555 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5556 <listitem><para>Resume the mixer, e.g. calling
5557 <function>snd_ac97_resume()</function>.</para></listitem>
5558 <listitem><para>Restart the hardware (if any).</para></listitem>
5559 </orderedlist>
5560 </para>
5561
5562 <para>
5563 A typical code would be like:
5564
5565 <informalexample>
5566 <programlisting>
5567<![CDATA[
446ab5f5 5568 static void mychip_resume(struct mychip *chip)
1da177e4
LT
5569 {
5570 /* (1) */
446ab5f5 5571 struct mychip *chip = card->pm_private_data;
1da177e4
LT
5572 /* (2) */
5573 pci_enable_device(chip->pci);
5574 /* (3) */
5575 snd_mychip_reinit_chip(chip);
5576 /* (4) */
5577 snd_mychip_restore_registers(chip);
5578 /* (5) */
5579 snd_ac97_resume(chip->ac97);
5580 /* (6) */
5581 snd_mychip_restart_chip(chip);
5582 return 0;
5583 }
5584]]>
5585 </programlisting>
5586 </informalexample>
5587 </para>
5588
5589 <para>
5590 OK, we have all callbacks now. Let's set up them now. In the
5591 initialization of the card, add the following:
5592
5593 <informalexample>
5594 <programlisting>
5595<![CDATA[
5596 static int __devinit snd_mychip_probe(struct pci_dev *pci,
5597 const struct pci_device_id *pci_id)
5598 {
5599 ....
446ab5f5
TI
5600 struct snd_card *card;
5601 struct mychip *chip;
1da177e4
LT
5602 ....
5603 snd_card_set_pm_callback(card, snd_my_suspend, snd_my_resume, chip);
5604 ....
5605 }
5606]]>
5607 </programlisting>
5608 </informalexample>
5609
5610 Here you don't have to put ifdef CONFIG_PM around, since it's already
5611 checked in the header and expanded to empty if not needed.
5612 </para>
5613
5614 <para>
5615 If you need a space for saving the registers, you'll need to
5616 allocate the buffer for it here, too, since it would be fatal
5617 if you cannot allocate a memory in the suspend phase.
5618 The allocated buffer should be released in the corresponding
5619 destructor.
5620 </para>
5621
5622 <para>
5623 And next, set suspend/resume callbacks to the pci_driver,
5624 This can be done by passing a macro SND_PCI_PM_CALLBACKS
5625 in the pci_driver struct. This macro is expanded to the correct
5626 (global) callbacks if CONFIG_PM is set.
5627
5628 <informalexample>
5629 <programlisting>
5630<![CDATA[
5631 static struct pci_driver driver = {
5632 .name = "My Chip",
5633 .id_table = snd_my_ids,
5634 .probe = snd_my_probe,
5635 .remove = __devexit_p(snd_my_remove),
5636 SND_PCI_PM_CALLBACKS
5637 };
5638]]>
5639 </programlisting>
5640 </informalexample>
5641 </para>
5642
5643 </chapter>
5644
5645
5646<!-- ****************************************************** -->
5647<!-- Module Parameters -->
5648<!-- ****************************************************** -->
5649 <chapter id="module-parameters">
5650 <title>Module Parameters</title>
5651 <para>
5652 There are standard module options for ALSA. At least, each
5653 module should have <parameter>index</parameter>,
5654 <parameter>id</parameter> and <parameter>enable</parameter>
5655 options.
5656 </para>
5657
5658 <para>
5659 If the module supports multiple cards (usually up to
5660 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5661 arrays. The default initial values are defined already as
5662 constants for ease of programming:
5663
5664 <informalexample>
5665 <programlisting>
5666<![CDATA[
5667 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5668 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5669 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5670]]>
5671 </programlisting>
5672 </informalexample>
5673 </para>
5674
5675 <para>
5676 If the module supports only a single card, they could be single
5677 variables, instead. <parameter>enable</parameter> option is not
5678 always necessary in this case, but it wouldn't be so bad to have a
5679 dummy option for compatibility.
5680 </para>
5681
5682 <para>
5683 The module parameters must be declared with the standard
5684 <function>module_param()()</function>,
5685 <function>module_param_array()()</function> and
5686 <function>MODULE_PARM_DESC()</function> macros.
5687 </para>
5688
5689 <para>
5690 The typical coding would be like below:
5691
5692 <informalexample>
5693 <programlisting>
5694<![CDATA[
5695 #define CARD_NAME "My Chip"
5696
5697 module_param_array(index, int, NULL, 0444);
5698 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5699 module_param_array(id, charp, NULL, 0444);
5700 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5701 module_param_array(enable, bool, NULL, 0444);
5702 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5703]]>
5704 </programlisting>
5705 </informalexample>
5706 </para>
5707
5708 <para>
5709 Also, don't forget to define the module description, classes,
5710 license and devices. Especially, the recent modprobe requires to
5711 define the module license as GPL, etc., otherwise the system is
5712 shown as <quote>tainted</quote>.
5713
5714 <informalexample>
5715 <programlisting>
5716<![CDATA[
5717 MODULE_DESCRIPTION("My Chip");
5718 MODULE_LICENSE("GPL");
5719 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5720]]>
5721 </programlisting>
5722 </informalexample>
5723 </para>
5724
5725 </chapter>
5726
5727
5728<!-- ****************************************************** -->
5729<!-- How To Put Your Driver -->
5730<!-- ****************************************************** -->
5731 <chapter id="how-to-put-your-driver">
5732 <title>How To Put Your Driver Into ALSA Tree</title>
5733 <section>
5734 <title>General</title>
5735 <para>
5736 So far, you've learned how to write the driver codes.
5737 And you might have a question now: how to put my own
5738 driver into the ALSA driver tree?
5739 Here (finally :) the standard procedure is described briefly.
5740 </para>
5741
5742 <para>
5743 Suppose that you'll create a new PCI driver for the card
5744 <quote>xyz</quote>. The card module name would be
5745 snd-xyz. The new driver is usually put into alsa-driver
5746 tree, <filename>alsa-driver/pci</filename> directory in
5747 the case of PCI cards.
5748 Then the driver is evaluated, audited and tested
5749 by developers and users. After a certain time, the driver
5750 will go to alsa-kernel tree (to the corresponding directory,
5751 such as <filename>alsa-kernel/pci</filename>) and eventually
5752 integrated into Linux 2.6 tree (the directory would be
5753 <filename>linux/sound/pci</filename>).
5754 </para>
5755
5756 <para>
5757 In the following sections, the driver code is supposed
5758 to be put into alsa-driver tree. The two cases are assumed:
5759 a driver consisting of a single source file and one consisting
5760 of several source files.
5761 </para>
5762 </section>
5763
5764 <section>
5765 <title>Driver with A Single Source File</title>
5766 <para>
5767 <orderedlist>
5768 <listitem>
5769 <para>
5770 Modify alsa-driver/pci/Makefile
5771 </para>
5772
5773 <para>
5774 Suppose you have a file xyz.c. Add the following
5775 two lines
5776 <informalexample>
5777 <programlisting>
5778<![CDATA[
5779 snd-xyz-objs := xyz.o
5780 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5781]]>
5782 </programlisting>
5783 </informalexample>
5784 </para>
5785 </listitem>
5786
5787 <listitem>
5788 <para>
5789 Create the Kconfig entry
5790 </para>
5791
5792 <para>
5793 Add the new entry of Kconfig for your xyz driver.
5794 <informalexample>
5795 <programlisting>
5796<![CDATA[
5797 config SND_XYZ
5798 tristate "Foobar XYZ"
5799 depends on SND
5800 select SND_PCM
5801 help
5802 Say Y here to include support for Foobar XYZ soundcard.
5803
5804 To compile this driver as a module, choose M here: the module
5805 will be called snd-xyz.
5806]]>
5807 </programlisting>
5808 </informalexample>
5809
5810 the line, select SND_PCM, specifies that the driver xyz supports
5811 PCM. In addition to SND_PCM, the following components are
5812 supported for select command:
5813 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5814 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5815 Add the select command for each supported component.
5816 </para>
5817
5818 <para>
5819 Note that some selections imply the lowlevel selections.
5820 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5821 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5822 You don't need to give the lowlevel selections again.
5823 </para>
5824
5825 <para>
5826 For the details of Kconfig script, refer to the kbuild
5827 documentation.
5828 </para>
5829
5830 </listitem>
5831
5832 <listitem>
5833 <para>
5834 Run cvscompile script to re-generate the configure script and
5835 build the whole stuff again.
5836 </para>
5837 </listitem>
5838 </orderedlist>
5839 </para>
5840 </section>
5841
5842 <section>
5843 <title>Drivers with Several Source Files</title>
5844 <para>
5845 Suppose that the driver snd-xyz have several source files.
5846 They are located in the new subdirectory,
5847 pci/xyz.
5848
5849 <orderedlist>
5850 <listitem>
5851 <para>
5852 Add a new directory (<filename>xyz</filename>) in
5853 <filename>alsa-driver/pci/Makefile</filename> like below
5854
5855 <informalexample>
5856 <programlisting>
5857<![CDATA[
5858 obj-$(CONFIG_SND) += xyz/
5859]]>
5860 </programlisting>
5861 </informalexample>
5862 </para>
5863 </listitem>
5864
5865 <listitem>
5866 <para>
5867 Under the directory <filename>xyz</filename>, create a Makefile
5868
5869 <example>
5870 <title>Sample Makefile for a driver xyz</title>
5871 <programlisting>
5872<![CDATA[
5873 ifndef SND_TOPDIR
5874 SND_TOPDIR=../..
5875 endif
5876
5877 include $(SND_TOPDIR)/toplevel.config
5878 include $(SND_TOPDIR)/Makefile.conf
5879
5880 snd-xyz-objs := xyz.o abc.o def.o
5881
5882 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5883
5884 include $(SND_TOPDIR)/Rules.make
5885]]>
5886 </programlisting>
5887 </example>
5888 </para>
5889 </listitem>
5890
5891 <listitem>
5892 <para>
5893 Create the Kconfig entry
5894 </para>
5895
5896 <para>
5897 This procedure is as same as in the last section.
5898 </para>
5899 </listitem>
5900
5901 <listitem>
5902 <para>
5903 Run cvscompile script to re-generate the configure script and
5904 build the whole stuff again.
5905 </para>
5906 </listitem>
5907 </orderedlist>
5908 </para>
5909 </section>
5910
5911 </chapter>
5912
5913<!-- ****************************************************** -->
5914<!-- Useful Functions -->
5915<!-- ****************************************************** -->
5916 <chapter id="useful-functions">
5917 <title>Useful Functions</title>
5918
5919 <section id="useful-functions-snd-printk">
5920 <title><function>snd_printk()</function> and friends</title>
5921 <para>
5922 ALSA provides a verbose version of
5923 <function>printk()</function> function. If a kernel config
5924 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
5925 function prints the given message together with the file name
5926 and the line of the caller. The <constant>KERN_XXX</constant>
5927 prefix is processed as
5928 well as the original <function>printk()</function> does, so it's
5929 recommended to add this prefix, e.g.
5930
5931 <informalexample>
5932 <programlisting>
5933<![CDATA[
5934 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
5935]]>
5936 </programlisting>
5937 </informalexample>
5938 </para>
5939
5940 <para>
5941 There are also <function>printk()</function>'s for
5942 debugging. <function>snd_printd()</function> can be used for
5943 general debugging purposes. If
5944 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
5945 compiled, and works just like
5946 <function>snd_printk()</function>. If the ALSA is compiled
5947 without the debugging flag, it's ignored.
5948 </para>
5949
5950 <para>
5951 <function>snd_printdd()</function> is compiled in only when
5952 <constant>CONFIG_SND_DEBUG_DETECT</constant> is set. Please note
5953 that <constant>DEBUG_DETECT</constant> is not set as default
5954 even if you configure the alsa-driver with
5955 <option>--with-debug=full</option> option. You need to give
5956 explicitly <option>--with-debug=detect</option> option instead.
5957 </para>
5958 </section>
5959
5960 <section id="useful-functions-snd-assert">
5961 <title><function>snd_assert()</function></title>
5962 <para>
5963 <function>snd_assert()</function> macro is similar with the
5964 normal <function>assert()</function> macro. For example,
5965
5966 <informalexample>
5967 <programlisting>
5968<![CDATA[
5969 snd_assert(pointer != NULL, return -EINVAL);
5970]]>
5971 </programlisting>
5972 </informalexample>
5973 </para>
5974
5975 <para>
5976 The first argument is the expression to evaluate, and the
5977 second argument is the action if it fails. When
5978 <constant>CONFIG_SND_DEBUG</constant>, is set, it will show an
7c22f1aa
TI
5979 error message such as <computeroutput>BUG? (xxx)</computeroutput>
5980 together with stack trace.
1da177e4 5981 </para>
1da177e4 5982 <para>
7c22f1aa 5983 When no debug flag is set, this macro is ignored.
1da177e4
LT
5984 </para>
5985 </section>
5986
5987 <section id="useful-functions-snd-bug">
5988 <title><function>snd_BUG()</function></title>
5989 <para>
7c22f1aa
TI
5990 It shows <computeroutput>BUG?</computeroutput> message and
5991 stack trace as well as <function>snd_assert</function> at the point.
5992 It's useful to show that a fatal error happens there.
5993 </para>
5994 <para>
5995 When no debug flag is set, this macro is ignored.
1da177e4
LT
5996 </para>
5997 </section>
5998 </chapter>
5999
6000
6001<!-- ****************************************************** -->
6002<!-- Acknowledgments -->
6003<!-- ****************************************************** -->
6004 <chapter id="acknowledments">
6005 <title>Acknowledgments</title>
6006 <para>
6007 I would like to thank Phil Kerr for his help for improvement and
6008 corrections of this document.
6009 </para>
6010 <para>
6011 Kevin Conder reformatted the original plain-text to the
6012 DocBook format.
6013 </para>
6014 <para>
6015 Giuliano Pochini corrected typos and contributed the example codes
6016 in the hardware constraints section.
6017 </para>
6018 </chapter>
6019
6020
6021</book>