]> bbs.cooldavid.org Git - net-next-2.6.git/blame - Documentation/kvm/mmu.txt
netfilter: xt_sctp: use WORD_ROUND macro to calculate length of multiple of 4 bytes
[net-next-2.6.git] / Documentation / kvm / mmu.txt
CommitLineData
03909187
AK
1The x86 kvm shadow mmu
2======================
3
4The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible
5for presenting a standard x86 mmu to the guest, while translating guest
6physical addresses to host physical addresses.
7
8The mmu code attempts to satisfy the following requirements:
9
10- correctness: the guest should not be able to determine that it is running
11 on an emulated mmu except for timing (we attempt to comply
12 with the specification, not emulate the characteristics of
13 a particular implementation such as tlb size)
14- security: the guest must not be able to touch host memory not assigned
15 to it
16- performance: minimize the performance penalty imposed by the mmu
17- scaling: need to scale to large memory and large vcpu guests
18- hardware: support the full range of x86 virtualization hardware
19- integration: Linux memory management code must be in control of guest memory
20 so that swapping, page migration, page merging, transparent
21 hugepages, and similar features work without change
22- dirty tracking: report writes to guest memory to enable live migration
23 and framebuffer-based displays
24- footprint: keep the amount of pinned kernel memory low (most memory
25 should be shrinkable)
26- reliablity: avoid multipage or GFP_ATOMIC allocations
27
28Acronyms
29========
30
31pfn host page frame number
32hpa host physical address
33hva host virtual address
34gfn guest frame number
35gpa guest physical address
36gva guest virtual address
37ngpa nested guest physical address
38ngva nested guest virtual address
39pte page table entry (used also to refer generically to paging structure
40 entries)
41gpte guest pte (referring to gfns)
42spte shadow pte (referring to pfns)
43tdp two dimensional paging (vendor neutral term for NPT and EPT)
44
45Virtual and real hardware supported
46===================================
47
48The mmu supports first-generation mmu hardware, which allows an atomic switch
49of the current paging mode and cr3 during guest entry, as well as
50two-dimensional paging (AMD's NPT and Intel's EPT). The emulated hardware
51it exposes is the traditional 2/3/4 level x86 mmu, with support for global
52pages, pae, pse, pse36, cr0.wp, and 1GB pages. Work is in progress to support
53exposing NPT capable hardware on NPT capable hosts.
54
55Translation
56===========
57
58The primary job of the mmu is to program the processor's mmu to translate
59addresses for the guest. Different translations are required at different
60times:
61
62- when guest paging is disabled, we translate guest physical addresses to
63 host physical addresses (gpa->hpa)
64- when guest paging is enabled, we translate guest virtual addresses, to
65 guest physical addresses, to host physical addresses (gva->gpa->hpa)
66- when the guest launches a guest of its own, we translate nested guest
67 virtual addresses, to nested guest physical addresses, to guest physical
68 addresses, to host physical addresses (ngva->ngpa->gpa->hpa)
69
70The primary challenge is to encode between 1 and 3 translations into hardware
71that support only 1 (traditional) and 2 (tdp) translations. When the
72number of required translations matches the hardware, the mmu operates in
73direct mode; otherwise it operates in shadow mode (see below).
74
75Memory
76======
77
c4bd09b2
AK
78Guest memory (gpa) is part of the user address space of the process that is
79using kvm. Userspace defines the translation between guest addresses and user
03909187
AK
80addresses (gpa->hva); note that two gpas may alias to the same gva, but not
81vice versa.
82
83These gvas may be backed using any method available to the host: anonymous
84memory, file backed memory, and device memory. Memory might be paged by the
85host at any time.
86
87Events
88======
89
90The mmu is driven by events, some from the guest, some from the host.
91
92Guest generated events:
93- writes to control registers (especially cr3)
94- invlpg/invlpga instruction execution
95- access to missing or protected translations
96
97Host generated events:
98- changes in the gpa->hpa translation (either through gpa->hva changes or
99 through hva->hpa changes)
100- memory pressure (the shrinker)
101
102Shadow pages
103============
104
105The principal data structure is the shadow page, 'struct kvm_mmu_page'. A
106shadow page contains 512 sptes, which can be either leaf or nonleaf sptes. A
107shadow page may contain a mix of leaf and nonleaf sptes.
108
109A nonleaf spte allows the hardware mmu to reach the leaf pages and
110is not related to a translation directly. It points to other shadow pages.
111
112A leaf spte corresponds to either one or two translations encoded into
113one paging structure entry. These are always the lowest level of the
c4bd09b2 114translation stack, with optional higher level translations left to NPT/EPT.
03909187
AK
115Leaf ptes point at guest pages.
116
117The following table shows translations encoded by leaf ptes, with higher-level
118translations in parentheses:
119
120 Non-nested guests:
121 nonpaging: gpa->hpa
122 paging: gva->gpa->hpa
123 paging, tdp: (gva->)gpa->hpa
124 Nested guests:
125 non-tdp: ngva->gpa->hpa (*)
126 tdp: (ngva->)ngpa->gpa->hpa
127
128(*) the guest hypervisor will encode the ngva->gpa translation into its page
129 tables if npt is not present
130
131Shadow pages contain the following information:
132 role.level:
133 The level in the shadow paging hierarchy that this shadow page belongs to.
134 1=4k sptes, 2=2M sptes, 3=1G sptes, etc.
135 role.direct:
136 If set, leaf sptes reachable from this page are for a linear range.
137 Examples include real mode translation, large guest pages backed by small
138 host pages, and gpa->hpa translations when NPT or EPT is active.
139 The linear range starts at (gfn << PAGE_SHIFT) and its size is determined
140 by role.level (2MB for first level, 1GB for second level, 0.5TB for third
141 level, 256TB for fourth level)
142 If clear, this page corresponds to a guest page table denoted by the gfn
143 field.
144 role.quadrant:
145 When role.cr4_pae=0, the guest uses 32-bit gptes while the host uses 64-bit
146 sptes. That means a guest page table contains more ptes than the host,
147 so multiple shadow pages are needed to shadow one guest page.
148 For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
149 first or second 512-gpte block in the guest page table. For second-level
150 page tables, each 32-bit gpte is converted to two 64-bit sptes
151 (since each first-level guest page is shadowed by two first-level
152 shadow pages) so role.quadrant takes values in the range 0..3. Each
153 quadrant maps 1GB virtual address space.
154 role.access:
155 Inherited guest access permissions in the form uwx. Note execute
156 permission is positive, not negative.
157 role.invalid:
158 The page is invalid and should not be used. It is a root page that is
159 currently pinned (by a cpu hardware register pointing to it); once it is
160 unpinned it will be destroyed.
161 role.cr4_pae:
162 Contains the value of cr4.pae for which the page is valid (e.g. whether
163 32-bit or 64-bit gptes are in use).
164 role.cr4_nxe:
165 Contains the value of efer.nxe for which the page is valid.
3dbe1415
AK
166 role.cr0_wp:
167 Contains the value of cr0.wp for which the page is valid.
03909187
AK
168 gfn:
169 Either the guest page table containing the translations shadowed by this
170 page, or the base page frame for linear translations. See role.direct.
171 spt:
c4bd09b2 172 A pageful of 64-bit sptes containing the translations for this page.
03909187
AK
173 Accessed by both kvm and hardware.
174 The page pointed to by spt will have its page->private pointing back
175 at the shadow page structure.
176 sptes in spt point either at guest pages, or at lower-level shadow pages.
177 Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point
178 at __pa(sp2->spt). sp2 will point back at sp1 through parent_pte.
179 The spt array forms a DAG structure with the shadow page as a node, and
180 guest pages as leaves.
181 gfns:
182 An array of 512 guest frame numbers, one for each present pte. Used to
183 perform a reverse map from a pte to a gfn.
184 slot_bitmap:
185 A bitmap containing one bit per memory slot. If the page contains a pte
186 mapping a page from memory slot n, then bit n of slot_bitmap will be set
187 (if a page is aliased among several slots, then it is not guaranteed that
188 all slots will be marked).
189 Used during dirty logging to avoid scanning a shadow page if none if its
190 pages need tracking.
191 root_count:
192 A counter keeping track of how many hardware registers (guest cr3 or
193 pdptrs) are now pointing at the page. While this counter is nonzero, the
194 page cannot be destroyed. See role.invalid.
195 multimapped:
196 Whether there exist multiple sptes pointing at this page.
197 parent_pte/parent_ptes:
198 If multimapped is zero, parent_pte points at the single spte that points at
199 this page's spt. Otherwise, parent_ptes points at a data structure
200 with a list of parent_ptes.
201 unsync:
202 If true, then the translations in this page may not match the guest's
203 translation. This is equivalent to the state of the tlb when a pte is
204 changed but before the tlb entry is flushed. Accordingly, unsync ptes
205 are synchronized when the guest executes invlpg or flushes its tlb by
206 other means. Valid for leaf pages.
207 unsync_children:
208 How many sptes in the page point at pages that are unsync (or have
209 unsynchronized children).
210 unsync_child_bitmap:
211 A bitmap indicating which sptes in spt point (directly or indirectly) at
212 pages that may be unsynchronized. Used to quickly locate all unsychronized
213 pages reachable from a given page.
214
215Reverse map
216===========
217
218The mmu maintains a reverse mapping whereby all ptes mapping a page can be
219reached given its gfn. This is used, for example, when swapping out a page.
220
221Synchronized and unsynchronized pages
222=====================================
223
224The guest uses two events to synchronize its tlb and page tables: tlb flushes
225and page invalidations (invlpg).
226
227A tlb flush means that we need to synchronize all sptes reachable from the
228guest's cr3. This is expensive, so we keep all guest page tables write
229protected, and synchronize sptes to gptes when a gpte is written.
230
231A special case is when a guest page table is reachable from the current
232guest cr3. In this case, the guest is obliged to issue an invlpg instruction
233before using the translation. We take advantage of that by removing write
234protection from the guest page, and allowing the guest to modify it freely.
235We synchronize modified gptes when the guest invokes invlpg. This reduces
236the amount of emulation we have to do when the guest modifies multiple gptes,
237or when the a guest page is no longer used as a page table and is used for
238random guest data.
239
c4bd09b2 240As a side effect we have to resynchronize all reachable unsynchronized shadow
03909187
AK
241pages on a tlb flush.
242
243
244Reaction to events
245==================
246
247- guest page fault (or npt page fault, or ept violation)
248
249This is the most complicated event. The cause of a page fault can be:
250
251 - a true guest fault (the guest translation won't allow the access) (*)
252 - access to a missing translation
253 - access to a protected translation
254 - when logging dirty pages, memory is write protected
255 - synchronized shadow pages are write protected (*)
256 - access to untranslatable memory (mmio)
257
258 (*) not applicable in direct mode
259
260Handling a page fault is performed as follows:
261
262 - if needed, walk the guest page tables to determine the guest translation
263 (gva->gpa or ngpa->gpa)
264 - if permissions are insufficient, reflect the fault back to the guest
265 - determine the host page
266 - if this is an mmio request, there is no host page; call the emulator
267 to emulate the instruction instead
268 - walk the shadow page table to find the spte for the translation,
269 instantiating missing intermediate page tables as necessary
270 - try to unsynchronize the page
271 - if successful, we can let the guest continue and modify the gpte
272 - emulate the instruction
273 - if failed, unshadow the page and let the guest continue
274 - update any translations that were modified by the instruction
275
276invlpg handling:
277
278 - walk the shadow page hierarchy and drop affected translations
279 - try to reinstantiate the indicated translation in the hope that the
280 guest will use it in the near future
281
282Guest control register updates:
283
284- mov to cr3
285 - look up new shadow roots
286 - synchronize newly reachable shadow pages
287
288- mov to cr0/cr4/efer
289 - set up mmu context for new paging mode
290 - look up new shadow roots
291 - synchronize newly reachable shadow pages
292
293Host translation updates:
294
295 - mmu notifier called with updated hva
296 - look up affected sptes through reverse map
297 - drop (or update) translations
298
299Further reading
300===============
301
302- NPT presentation from KVM Forum 2008
303 http://www.linux-kvm.org/wiki/images/c/c8/KvmForum2008%24kdf2008_21.pdf
304