]> bbs.cooldavid.org Git - net-next-2.6.git/blame - Documentation/kvm/mmu.txt
ipv6: AF_INET6 link address family
[net-next-2.6.git] / Documentation / kvm / mmu.txt
CommitLineData
03909187
AK
1The x86 kvm shadow mmu
2======================
3
4The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible
5for presenting a standard x86 mmu to the guest, while translating guest
6physical addresses to host physical addresses.
7
8The mmu code attempts to satisfy the following requirements:
9
10- correctness: the guest should not be able to determine that it is running
11 on an emulated mmu except for timing (we attempt to comply
12 with the specification, not emulate the characteristics of
13 a particular implementation such as tlb size)
14- security: the guest must not be able to touch host memory not assigned
15 to it
16- performance: minimize the performance penalty imposed by the mmu
17- scaling: need to scale to large memory and large vcpu guests
18- hardware: support the full range of x86 virtualization hardware
19- integration: Linux memory management code must be in control of guest memory
20 so that swapping, page migration, page merging, transparent
21 hugepages, and similar features work without change
22- dirty tracking: report writes to guest memory to enable live migration
23 and framebuffer-based displays
24- footprint: keep the amount of pinned kernel memory low (most memory
25 should be shrinkable)
26- reliablity: avoid multipage or GFP_ATOMIC allocations
27
28Acronyms
29========
30
31pfn host page frame number
32hpa host physical address
33hva host virtual address
34gfn guest frame number
35gpa guest physical address
36gva guest virtual address
37ngpa nested guest physical address
38ngva nested guest virtual address
39pte page table entry (used also to refer generically to paging structure
40 entries)
41gpte guest pte (referring to gfns)
42spte shadow pte (referring to pfns)
43tdp two dimensional paging (vendor neutral term for NPT and EPT)
44
45Virtual and real hardware supported
46===================================
47
48The mmu supports first-generation mmu hardware, which allows an atomic switch
49of the current paging mode and cr3 during guest entry, as well as
50two-dimensional paging (AMD's NPT and Intel's EPT). The emulated hardware
51it exposes is the traditional 2/3/4 level x86 mmu, with support for global
52pages, pae, pse, pse36, cr0.wp, and 1GB pages. Work is in progress to support
53exposing NPT capable hardware on NPT capable hosts.
54
55Translation
56===========
57
58The primary job of the mmu is to program the processor's mmu to translate
59addresses for the guest. Different translations are required at different
60times:
61
62- when guest paging is disabled, we translate guest physical addresses to
63 host physical addresses (gpa->hpa)
64- when guest paging is enabled, we translate guest virtual addresses, to
65 guest physical addresses, to host physical addresses (gva->gpa->hpa)
66- when the guest launches a guest of its own, we translate nested guest
67 virtual addresses, to nested guest physical addresses, to guest physical
68 addresses, to host physical addresses (ngva->ngpa->gpa->hpa)
69
70The primary challenge is to encode between 1 and 3 translations into hardware
71that support only 1 (traditional) and 2 (tdp) translations. When the
72number of required translations matches the hardware, the mmu operates in
73direct mode; otherwise it operates in shadow mode (see below).
74
75Memory
76======
77
c4bd09b2
AK
78Guest memory (gpa) is part of the user address space of the process that is
79using kvm. Userspace defines the translation between guest addresses and user
21bbe18b 80addresses (gpa->hva); note that two gpas may alias to the same hva, but not
03909187
AK
81vice versa.
82
21bbe18b 83These hvas may be backed using any method available to the host: anonymous
03909187
AK
84memory, file backed memory, and device memory. Memory might be paged by the
85host at any time.
86
87Events
88======
89
90The mmu is driven by events, some from the guest, some from the host.
91
92Guest generated events:
93- writes to control registers (especially cr3)
94- invlpg/invlpga instruction execution
95- access to missing or protected translations
96
97Host generated events:
98- changes in the gpa->hpa translation (either through gpa->hva changes or
99 through hva->hpa changes)
100- memory pressure (the shrinker)
101
102Shadow pages
103============
104
105The principal data structure is the shadow page, 'struct kvm_mmu_page'. A
106shadow page contains 512 sptes, which can be either leaf or nonleaf sptes. A
107shadow page may contain a mix of leaf and nonleaf sptes.
108
109A nonleaf spte allows the hardware mmu to reach the leaf pages and
110is not related to a translation directly. It points to other shadow pages.
111
112A leaf spte corresponds to either one or two translations encoded into
113one paging structure entry. These are always the lowest level of the
c4bd09b2 114translation stack, with optional higher level translations left to NPT/EPT.
03909187
AK
115Leaf ptes point at guest pages.
116
117The following table shows translations encoded by leaf ptes, with higher-level
118translations in parentheses:
119
120 Non-nested guests:
121 nonpaging: gpa->hpa
122 paging: gva->gpa->hpa
123 paging, tdp: (gva->)gpa->hpa
124 Nested guests:
125 non-tdp: ngva->gpa->hpa (*)
126 tdp: (ngva->)ngpa->gpa->hpa
127
128(*) the guest hypervisor will encode the ngva->gpa translation into its page
129 tables if npt is not present
130
131Shadow pages contain the following information:
132 role.level:
133 The level in the shadow paging hierarchy that this shadow page belongs to.
134 1=4k sptes, 2=2M sptes, 3=1G sptes, etc.
135 role.direct:
136 If set, leaf sptes reachable from this page are for a linear range.
137 Examples include real mode translation, large guest pages backed by small
138 host pages, and gpa->hpa translations when NPT or EPT is active.
139 The linear range starts at (gfn << PAGE_SHIFT) and its size is determined
140 by role.level (2MB for first level, 1GB for second level, 0.5TB for third
141 level, 256TB for fourth level)
142 If clear, this page corresponds to a guest page table denoted by the gfn
143 field.
144 role.quadrant:
145 When role.cr4_pae=0, the guest uses 32-bit gptes while the host uses 64-bit
146 sptes. That means a guest page table contains more ptes than the host,
147 so multiple shadow pages are needed to shadow one guest page.
148 For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
149 first or second 512-gpte block in the guest page table. For second-level
150 page tables, each 32-bit gpte is converted to two 64-bit sptes
151 (since each first-level guest page is shadowed by two first-level
152 shadow pages) so role.quadrant takes values in the range 0..3. Each
153 quadrant maps 1GB virtual address space.
154 role.access:
155 Inherited guest access permissions in the form uwx. Note execute
156 permission is positive, not negative.
157 role.invalid:
158 The page is invalid and should not be used. It is a root page that is
159 currently pinned (by a cpu hardware register pointing to it); once it is
160 unpinned it will be destroyed.
161 role.cr4_pae:
162 Contains the value of cr4.pae for which the page is valid (e.g. whether
163 32-bit or 64-bit gptes are in use).
6859762e 164 role.nxe:
03909187 165 Contains the value of efer.nxe for which the page is valid.
3dbe1415
AK
166 role.cr0_wp:
167 Contains the value of cr0.wp for which the page is valid.
03909187
AK
168 gfn:
169 Either the guest page table containing the translations shadowed by this
170 page, or the base page frame for linear translations. See role.direct.
171 spt:
c4bd09b2 172 A pageful of 64-bit sptes containing the translations for this page.
03909187
AK
173 Accessed by both kvm and hardware.
174 The page pointed to by spt will have its page->private pointing back
175 at the shadow page structure.
176 sptes in spt point either at guest pages, or at lower-level shadow pages.
177 Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point
178 at __pa(sp2->spt). sp2 will point back at sp1 through parent_pte.
179 The spt array forms a DAG structure with the shadow page as a node, and
180 guest pages as leaves.
181 gfns:
182 An array of 512 guest frame numbers, one for each present pte. Used to
2032a93d
LJ
183 perform a reverse map from a pte to a gfn. When role.direct is set, any
184 element of this array can be calculated from the gfn field when used, in
185 this case, the array of gfns is not allocated. See role.direct and gfn.
03909187
AK
186 slot_bitmap:
187 A bitmap containing one bit per memory slot. If the page contains a pte
188 mapping a page from memory slot n, then bit n of slot_bitmap will be set
189 (if a page is aliased among several slots, then it is not guaranteed that
190 all slots will be marked).
191 Used during dirty logging to avoid scanning a shadow page if none if its
192 pages need tracking.
193 root_count:
194 A counter keeping track of how many hardware registers (guest cr3 or
195 pdptrs) are now pointing at the page. While this counter is nonzero, the
196 page cannot be destroyed. See role.invalid.
197 multimapped:
198 Whether there exist multiple sptes pointing at this page.
199 parent_pte/parent_ptes:
200 If multimapped is zero, parent_pte points at the single spte that points at
201 this page's spt. Otherwise, parent_ptes points at a data structure
202 with a list of parent_ptes.
203 unsync:
204 If true, then the translations in this page may not match the guest's
205 translation. This is equivalent to the state of the tlb when a pte is
206 changed but before the tlb entry is flushed. Accordingly, unsync ptes
207 are synchronized when the guest executes invlpg or flushes its tlb by
208 other means. Valid for leaf pages.
209 unsync_children:
210 How many sptes in the page point at pages that are unsync (or have
211 unsynchronized children).
212 unsync_child_bitmap:
213 A bitmap indicating which sptes in spt point (directly or indirectly) at
214 pages that may be unsynchronized. Used to quickly locate all unsychronized
215 pages reachable from a given page.
216
217Reverse map
218===========
219
220The mmu maintains a reverse mapping whereby all ptes mapping a page can be
221reached given its gfn. This is used, for example, when swapping out a page.
222
223Synchronized and unsynchronized pages
224=====================================
225
226The guest uses two events to synchronize its tlb and page tables: tlb flushes
227and page invalidations (invlpg).
228
229A tlb flush means that we need to synchronize all sptes reachable from the
230guest's cr3. This is expensive, so we keep all guest page tables write
231protected, and synchronize sptes to gptes when a gpte is written.
232
233A special case is when a guest page table is reachable from the current
234guest cr3. In this case, the guest is obliged to issue an invlpg instruction
235before using the translation. We take advantage of that by removing write
236protection from the guest page, and allowing the guest to modify it freely.
237We synchronize modified gptes when the guest invokes invlpg. This reduces
238the amount of emulation we have to do when the guest modifies multiple gptes,
239or when the a guest page is no longer used as a page table and is used for
240random guest data.
241
c4bd09b2 242As a side effect we have to resynchronize all reachable unsynchronized shadow
03909187
AK
243pages on a tlb flush.
244
245
246Reaction to events
247==================
248
249- guest page fault (or npt page fault, or ept violation)
250
251This is the most complicated event. The cause of a page fault can be:
252
253 - a true guest fault (the guest translation won't allow the access) (*)
254 - access to a missing translation
255 - access to a protected translation
256 - when logging dirty pages, memory is write protected
257 - synchronized shadow pages are write protected (*)
258 - access to untranslatable memory (mmio)
259
260 (*) not applicable in direct mode
261
262Handling a page fault is performed as follows:
263
264 - if needed, walk the guest page tables to determine the guest translation
265 (gva->gpa or ngpa->gpa)
266 - if permissions are insufficient, reflect the fault back to the guest
267 - determine the host page
268 - if this is an mmio request, there is no host page; call the emulator
269 to emulate the instruction instead
270 - walk the shadow page table to find the spte for the translation,
271 instantiating missing intermediate page tables as necessary
272 - try to unsynchronize the page
273 - if successful, we can let the guest continue and modify the gpte
274 - emulate the instruction
275 - if failed, unshadow the page and let the guest continue
276 - update any translations that were modified by the instruction
277
278invlpg handling:
279
280 - walk the shadow page hierarchy and drop affected translations
281 - try to reinstantiate the indicated translation in the hope that the
282 guest will use it in the near future
283
284Guest control register updates:
285
286- mov to cr3
287 - look up new shadow roots
288 - synchronize newly reachable shadow pages
289
290- mov to cr0/cr4/efer
291 - set up mmu context for new paging mode
292 - look up new shadow roots
293 - synchronize newly reachable shadow pages
294
295Host translation updates:
296
297 - mmu notifier called with updated hva
298 - look up affected sptes through reverse map
299 - drop (or update) translations
300
ec87fe2a
AK
301Emulating cr0.wp
302================
303
304If tdp is not enabled, the host must keep cr0.wp=1 so page write protection
305works for the guest kernel, not guest guest userspace. When the guest
306cr0.wp=1, this does not present a problem. However when the guest cr0.wp=0,
307we cannot map the permissions for gpte.u=1, gpte.w=0 to any spte (the
308semantics require allowing any guest kernel access plus user read access).
309
310We handle this by mapping the permissions to two possible sptes, depending
311on fault type:
312
313- kernel write fault: spte.u=0, spte.w=1 (allows full kernel access,
314 disallows user access)
315- read fault: spte.u=1, spte.w=0 (allows full read access, disallows kernel
316 write access)
317
318(user write faults generate a #PF)
319
316b9521
AK
320Large pages
321===========
322
323The mmu supports all combinations of large and small guest and host pages.
324Supported page sizes include 4k, 2M, 4M, and 1G. 4M pages are treated as
325two separate 2M pages, on both guest and host, since the mmu always uses PAE
326paging.
327
328To instantiate a large spte, four constraints must be satisfied:
329
330- the spte must point to a large host page
331- the guest pte must be a large pte of at least equivalent size (if tdp is
332 enabled, there is no guest pte and this condition is satisified)
333- if the spte will be writeable, the large page frame may not overlap any
334 write-protected pages
335- the guest page must be wholly contained by a single memory slot
336
337To check the last two conditions, the mmu maintains a ->write_count set of
338arrays for each memory slot and large page size. Every write protected page
339causes its write_count to be incremented, thus preventing instantiation of
340a large spte. The frames at the end of an unaligned memory slot have
341artificically inflated ->write_counts so they can never be instantiated.
342
03909187
AK
343Further reading
344===============
345
346- NPT presentation from KVM Forum 2008
347 http://www.linux-kvm.org/wiki/images/c/c8/KvmForum2008%24kdf2008_21.pdf
348