From 9c705260feea6ae329bc6b6d5f6d2ef0227eda0a Mon Sep 17 00:00:00 2001 From: Gabriele Paoloni Date: Fri, 13 Mar 2009 16:09:12 -0700 Subject: [PATCH] ppp: ppp_mp_explode() redesign I found the PPP subsystem to not work properly when connecting channels with different speeds to the same bundle. Problem Description: As the "ppp_mp_explode" function fragments the sk_buff buffer evenly among the PPP channels that are connected to a certain PPP unit to make up a bundle, if we are transmitting using an upper layer protocol that requires an Ack before sending the next packet (like TCP/IP for example), we will have a bandwidth bottleneck on the slowest channel of the bundle. Let's clarify by an example. Let's consider a scenario where we have two PPP links making up a bundle: a slow link (10KB/sec) and a fast link (1000KB/sec) working at the best (full bandwidth). On the top we have a TCP/IP stack sending a 1000 Bytes sk_buff buffer down to the PPP subsystem. The "ppp_mp_explode" function will divide the buffer in two fragments of 500B each (we are neglecting all the headers, crc, flags etc?.). Before the TCP/IP stack sends out the next buffer, it will have to wait for the ACK response from the remote peer, so it will have to wait for both fragments to have been sent over the two PPP links, received by the remote peer and reconstructed. The resulting behaviour is that, rather than having a bundle working @1010KB/sec (the sum of the channels bandwidths), we'll have a bundle working @20KB/sec (the double of the slowest channels bandwidth). Problem Solution: The problem has been solved by redesigning the "ppp_mp_explode" function in such a way to make it split the sk_buff buffer according to the speeds of the underlying PPP channels (the speeds of the serial interfaces respectively attached to the PPP channels). Referring to the above example, the redesigned "ppp_mp_explode" function will now divide the 1000 Bytes buffer into two fragments whose sizes are set according to the speeds of the channels where they are going to be sent on (e.g . 10 Byets on 10KB/sec channel and 990 Bytes on 1000KB/sec channel). The reworked function grants the same performances of the original one in optimal working conditions (i.e. a bundle made up of PPP links all working at the same speed), while greatly improving performances on the bundles made up of channels working at different speeds. Signed-off-by: Gabriele Paoloni Signed-off-by: David S. Miller --- drivers/net/ppp_async.c | 3 + drivers/net/ppp_generic.c | 211 ++++++++++++++++++++---------------- drivers/net/ppp_synctty.c | 3 + include/linux/ppp_channel.h | 2 +- 4 files changed, 127 insertions(+), 92 deletions(-) diff --git a/drivers/net/ppp_async.c b/drivers/net/ppp_async.c index 5de6fedd1d7..6de8399d6dd 100644 --- a/drivers/net/ppp_async.c +++ b/drivers/net/ppp_async.c @@ -157,6 +157,7 @@ ppp_asynctty_open(struct tty_struct *tty) { struct asyncppp *ap; int err; + int speed; if (tty->ops->write == NULL) return -EOPNOTSUPP; @@ -187,6 +188,8 @@ ppp_asynctty_open(struct tty_struct *tty) ap->chan.private = ap; ap->chan.ops = &async_ops; ap->chan.mtu = PPP_MRU; + speed = tty_get_baud_rate(tty); + ap->chan.speed = speed; err = ppp_register_channel(&ap->chan); if (err) goto out_free; diff --git a/drivers/net/ppp_generic.c b/drivers/net/ppp_generic.c index 42d45557845..8ee91421db1 100644 --- a/drivers/net/ppp_generic.c +++ b/drivers/net/ppp_generic.c @@ -167,6 +167,7 @@ struct channel { u8 avail; /* flag used in multilink stuff */ u8 had_frag; /* >= 1 fragments have been sent */ u32 lastseq; /* MP: last sequence # received */ + int speed; /* speed of the corresponding ppp channel*/ #endif /* CONFIG_PPP_MULTILINK */ }; @@ -1307,138 +1308,181 @@ ppp_push(struct ppp *ppp) */ static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) { - int len, fragsize; - int i, bits, hdrlen, mtu; - int flen; - int navail, nfree; - int nbigger; + int len, totlen; + int i, bits, hdrlen, mtu; + int flen; + int navail, nfree, nzero; + int nbigger; + int totspeed; + int totfree; unsigned char *p, *q; struct list_head *list; struct channel *pch; struct sk_buff *frag; struct ppp_channel *chan; - nfree = 0; /* # channels which have no packet already queued */ + totspeed = 0; /*total bitrate of the bundle*/ + nfree = 0; /* # channels which have no packet already queued */ navail = 0; /* total # of usable channels (not deregistered) */ + nzero = 0; /* number of channels with zero speed associated*/ + totfree = 0; /*total # of channels available and + *having no queued packets before + *starting the fragmentation*/ + hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; - i = 0; - list_for_each_entry(pch, &ppp->channels, clist) { + i = 0; + list_for_each_entry(pch, &ppp->channels, clist) { navail += pch->avail = (pch->chan != NULL); - if (pch->avail) { + pch->speed = pch->chan->speed; + if (pch->avail) { if (skb_queue_empty(&pch->file.xq) || - !pch->had_frag) { - pch->avail = 2; - ++nfree; - } - if (!pch->had_frag && i < ppp->nxchan) - ppp->nxchan = i; + !pch->had_frag) { + if (pch->speed == 0) + nzero++; + else + totspeed += pch->speed; + + pch->avail = 2; + ++nfree; + ++totfree; + } + if (!pch->had_frag && i < ppp->nxchan) + ppp->nxchan = i; } ++i; } - /* - * Don't start sending this packet unless at least half of - * the channels are free. This gives much better TCP - * performance if we have a lot of channels. + * Don't start sending this packet unless at least half of + * the channels are free. This gives much better TCP + * performance if we have a lot of channels. */ - if (nfree == 0 || nfree < navail / 2) - return 0; /* can't take now, leave it in xmit_pending */ + if (nfree == 0 || nfree < navail / 2) + return 0; /* can't take now, leave it in xmit_pending */ /* Do protocol field compression (XXX this should be optional) */ - p = skb->data; - len = skb->len; + p = skb->data; + len = skb->len; if (*p == 0) { ++p; --len; } - /* - * Decide on fragment size. - * We create a fragment for each free channel regardless of - * how small they are (i.e. even 0 length) in order to minimize - * the time that it will take to detect when a channel drops - * a fragment. - */ - fragsize = len; - if (nfree > 1) - fragsize = DIV_ROUND_UP(fragsize, nfree); - /* nbigger channels get fragsize bytes, the rest get fragsize-1, - except if nbigger==0, then they all get fragsize. */ - nbigger = len % nfree; - - /* skip to the channel after the one we last used - and start at that one */ + totlen = len; + nbigger = len % nfree; + + /* skip to the channel after the one we last used + and start at that one */ list = &ppp->channels; - for (i = 0; i < ppp->nxchan; ++i) { + for (i = 0; i < ppp->nxchan; ++i) { list = list->next; - if (list == &ppp->channels) { - i = 0; + if (list == &ppp->channels) { + i = 0; break; } } - /* create a fragment for each channel */ + /* create a fragment for each channel */ bits = B; - while (nfree > 0 || len > 0) { + while (nfree > 0 && len > 0) { list = list->next; - if (list == &ppp->channels) { - i = 0; + if (list == &ppp->channels) { + i = 0; continue; } - pch = list_entry(list, struct channel, clist); + pch = list_entry(list, struct channel, clist); ++i; if (!pch->avail) continue; /* - * Skip this channel if it has a fragment pending already and - * we haven't given a fragment to all of the free channels. + * Skip this channel if it has a fragment pending already and + * we haven't given a fragment to all of the free channels. */ if (pch->avail == 1) { - if (nfree > 0) + if (nfree > 0) continue; } else { - --nfree; pch->avail = 1; } /* check the channel's mtu and whether it is still attached. */ spin_lock_bh(&pch->downl); if (pch->chan == NULL) { - /* can't use this channel, it's being deregistered */ + /* can't use this channel, it's being deregistered */ + if (pch->speed == 0) + nzero--; + else + totspeed -= pch->speed; + spin_unlock_bh(&pch->downl); pch->avail = 0; - if (--navail == 0) + totlen = len; + totfree--; + nfree--; + if (--navail == 0) break; continue; } /* - * Create a fragment for this channel of - * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. - * If mtu+2-hdrlen < 4, that is a ridiculously small - * MTU, so we use mtu = 2 + hdrlen. + *if the channel speed is not set divide + *the packet evenly among the free channels; + *otherwise divide it according to the speed + *of the channel we are going to transmit on + */ + if (pch->speed == 0) { + flen = totlen/nfree ; + if (nbigger > 0) { + flen++; + nbigger--; + } + } else { + flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) / + ((totspeed*totfree)/pch->speed)) - hdrlen; + if (nbigger > 0) { + flen += ((totfree - nzero)*pch->speed)/totspeed; + nbigger -= ((totfree - nzero)*pch->speed)/ + totspeed; + } + } + nfree--; + + /* + *check if we are on the last channel or + *we exceded the lenght of the data to + *fragment + */ + if ((nfree == 0) || (flen > len)) + flen = len; + /* + *it is not worth to tx on slow channels: + *in that case from the resulting flen according to the + *above formula will be equal or less than zero. + *Skip the channel in this case */ - if (fragsize > len) - fragsize = len; - flen = fragsize; - mtu = pch->chan->mtu + 2 - hdrlen; - if (mtu < 4) - mtu = 4; + if (flen <= 0) { + pch->avail = 2; + spin_unlock_bh(&pch->downl); + continue; + } + + mtu = pch->chan->mtu + 2 - hdrlen; + if (mtu < 4) + mtu = 4; if (flen > mtu) flen = mtu; - if (flen == len && nfree == 0) - bits |= E; - frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); + if (flen == len) + bits |= E; + frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); if (!frag) goto noskb; - q = skb_put(frag, flen + hdrlen); + q = skb_put(frag, flen + hdrlen); - /* make the MP header */ + /* make the MP header */ q[0] = PPP_MP >> 8; q[1] = PPP_MP; if (ppp->flags & SC_MP_XSHORTSEQ) { - q[2] = bits + ((ppp->nxseq >> 8) & 0xf); + q[2] = bits + ((ppp->nxseq >> 8) & 0xf); q[3] = ppp->nxseq; } else { q[2] = bits; @@ -1447,43 +1491,28 @@ static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) q[5] = ppp->nxseq; } - /* - * Copy the data in. - * Unfortunately there is a bug in older versions of - * the Linux PPP multilink reconstruction code where it - * drops 0-length fragments. Therefore we make sure the - * fragment has at least one byte of data. Any bytes - * we add in this situation will end up as padding on the - * end of the reconstructed packet. - */ - if (flen == 0) - *skb_put(frag, 1) = 0; - else - memcpy(q + hdrlen, p, flen); + memcpy(q + hdrlen, p, flen); /* try to send it down the channel */ chan = pch->chan; - if (!skb_queue_empty(&pch->file.xq) || - !chan->ops->start_xmit(chan, frag)) + if (!skb_queue_empty(&pch->file.xq) || + !chan->ops->start_xmit(chan, frag)) skb_queue_tail(&pch->file.xq, frag); - pch->had_frag = 1; + pch->had_frag = 1; p += flen; - len -= flen; + len -= flen; ++ppp->nxseq; bits = 0; spin_unlock_bh(&pch->downl); - - if (--nbigger == 0 && fragsize > 0) - --fragsize; } - ppp->nxchan = i; + ppp->nxchan = i; return 1; noskb: spin_unlock_bh(&pch->downl); if (ppp->debug & 1) - printk(KERN_ERR "PPP: no memory (fragment)\n"); + printk(KERN_ERR "PPP: no memory (fragment)\n"); ++ppp->dev->stats.tx_errors; ++ppp->nxseq; return 1; /* abandon the frame */ diff --git a/drivers/net/ppp_synctty.c b/drivers/net/ppp_synctty.c index 3ea791d16b0..d2fa2db1358 100644 --- a/drivers/net/ppp_synctty.c +++ b/drivers/net/ppp_synctty.c @@ -206,6 +206,7 @@ ppp_sync_open(struct tty_struct *tty) { struct syncppp *ap; int err; + int speed; if (tty->ops->write == NULL) return -EOPNOTSUPP; @@ -234,6 +235,8 @@ ppp_sync_open(struct tty_struct *tty) ap->chan.ops = &sync_ops; ap->chan.mtu = PPP_MRU; ap->chan.hdrlen = 2; /* for A/C bytes */ + speed = tty_get_baud_rate(tty); + ap->chan.speed = speed; err = ppp_register_channel(&ap->chan); if (err) goto out_free; diff --git a/include/linux/ppp_channel.h b/include/linux/ppp_channel.h index 9d64bdf1477..0d3fa63e90e 100644 --- a/include/linux/ppp_channel.h +++ b/include/linux/ppp_channel.h @@ -40,8 +40,8 @@ struct ppp_channel { int mtu; /* max transmit packet size */ int hdrlen; /* amount of headroom channel needs */ void *ppp; /* opaque to channel */ - /* the following are not used at present */ int speed; /* transfer rate (bytes/second) */ + /* the following is not used at present */ int latency; /* overhead time in milliseconds */ }; -- 2.39.3