]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/ipv4/fib_trie.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
19baf839
RO
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
fd966255
RO
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
19baf839
RO
49 */
50
80b71b80 51#define VERSION "0.409"
19baf839 52
19baf839
RO
53#include <asm/uaccess.h>
54#include <asm/system.h>
1977f032 55#include <linux/bitops.h>
19baf839
RO
56#include <linux/types.h>
57#include <linux/kernel.h>
19baf839
RO
58#include <linux/mm.h>
59#include <linux/string.h>
60#include <linux/socket.h>
61#include <linux/sockios.h>
62#include <linux/errno.h>
63#include <linux/in.h>
64#include <linux/inet.h>
cd8787ab 65#include <linux/inetdevice.h>
19baf839
RO
66#include <linux/netdevice.h>
67#include <linux/if_arp.h>
68#include <linux/proc_fs.h>
2373ce1c 69#include <linux/rcupdate.h>
19baf839
RO
70#include <linux/skbuff.h>
71#include <linux/netlink.h>
72#include <linux/init.h>
73#include <linux/list.h>
5a0e3ad6 74#include <linux/slab.h>
457c4cbc 75#include <net/net_namespace.h>
19baf839
RO
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
06ef921d 84#define MAX_STAT_DEPTH 32
19baf839 85
19baf839 86#define KEYLENGTH (8*sizeof(t_key))
19baf839 87
19baf839
RO
88typedef unsigned int t_key;
89
90#define T_TNODE 0
91#define T_LEAF 1
92#define NODE_TYPE_MASK 0x1UL
2373ce1c
RO
93#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
91b9a277
OJ
95#define IS_TNODE(n) (!(n->parent & T_LEAF))
96#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
97
98struct node {
91b9a277 99 unsigned long parent;
8d965444 100 t_key key;
19baf839
RO
101};
102
103struct leaf {
91b9a277 104 unsigned long parent;
8d965444 105 t_key key;
19baf839 106 struct hlist_head list;
2373ce1c 107 struct rcu_head rcu;
19baf839
RO
108};
109
110struct leaf_info {
111 struct hlist_node hlist;
2373ce1c 112 struct rcu_head rcu;
19baf839
RO
113 int plen;
114 struct list_head falh;
115};
116
117struct tnode {
91b9a277 118 unsigned long parent;
8d965444 119 t_key key;
112d8cfc
ED
120 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
121 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
8d965444
ED
122 unsigned int full_children; /* KEYLENGTH bits needed */
123 unsigned int empty_children; /* KEYLENGTH bits needed */
15be75cd
SH
124 union {
125 struct rcu_head rcu;
126 struct work_struct work;
e0f7cb8c 127 struct tnode *tnode_free;
15be75cd 128 };
91b9a277 129 struct node *child[0];
19baf839
RO
130};
131
132#ifdef CONFIG_IP_FIB_TRIE_STATS
133struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
2f36895a 139 unsigned int resize_node_skipped;
19baf839
RO
140};
141#endif
142
143struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
93672292 149 unsigned int prefixes;
06ef921d 150 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 151};
19baf839
RO
152
153struct trie {
91b9a277 154 struct node *trie;
19baf839
RO
155#ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157#endif
19baf839
RO
158};
159
19baf839 160static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
a07f5f50
SH
161static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
162 int wasfull);
19baf839 163static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
164static struct tnode *inflate(struct trie *t, struct tnode *tn);
165static struct tnode *halve(struct trie *t, struct tnode *tn);
e0f7cb8c
JP
166/* tnodes to free after resize(); protected by RTNL */
167static struct tnode *tnode_free_head;
c3059477
JP
168static size_t tnode_free_size;
169
170/*
171 * synchronize_rcu after call_rcu for that many pages; it should be especially
172 * useful before resizing the root node with PREEMPT_NONE configs; the value was
173 * obtained experimentally, aiming to avoid visible slowdown.
174 */
175static const int sync_pages = 128;
19baf839 176
e18b890b 177static struct kmem_cache *fn_alias_kmem __read_mostly;
bc3c8c1e 178static struct kmem_cache *trie_leaf_kmem __read_mostly;
19baf839 179
06801916
SH
180static inline struct tnode *node_parent(struct node *node)
181{
b59cfbf7
ED
182 return (struct tnode *)(node->parent & ~NODE_TYPE_MASK);
183}
184
185static inline struct tnode *node_parent_rcu(struct node *node)
186{
187 struct tnode *ret = node_parent(node);
06801916 188
06801916
SH
189 return rcu_dereference(ret);
190}
191
6440cc9e
SH
192/* Same as rcu_assign_pointer
193 * but that macro() assumes that value is a pointer.
194 */
06801916
SH
195static inline void node_set_parent(struct node *node, struct tnode *ptr)
196{
6440cc9e
SH
197 smp_wmb();
198 node->parent = (unsigned long)ptr | NODE_TYPE(node);
06801916 199}
2373ce1c 200
b59cfbf7
ED
201static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i)
202{
203 BUG_ON(i >= 1U << tn->bits);
2373ce1c 204
b59cfbf7
ED
205 return tn->child[i];
206}
207
208static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i)
19baf839 209{
b59cfbf7 210 struct node *ret = tnode_get_child(tn, i);
19baf839 211
b59cfbf7 212 return rcu_dereference(ret);
19baf839
RO
213}
214
bb435b8d 215static inline int tnode_child_length(const struct tnode *tn)
19baf839 216{
91b9a277 217 return 1 << tn->bits;
19baf839
RO
218}
219
ab66b4a7
SH
220static inline t_key mask_pfx(t_key k, unsigned short l)
221{
222 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
223}
224
19baf839
RO
225static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
226{
91b9a277 227 if (offset < KEYLENGTH)
19baf839 228 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 229 else
19baf839
RO
230 return 0;
231}
232
233static inline int tkey_equals(t_key a, t_key b)
234{
c877efb2 235 return a == b;
19baf839
RO
236}
237
238static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
239{
c877efb2
SH
240 if (bits == 0 || offset >= KEYLENGTH)
241 return 1;
91b9a277
OJ
242 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
243 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 244}
19baf839
RO
245
246static inline int tkey_mismatch(t_key a, int offset, t_key b)
247{
248 t_key diff = a ^ b;
249 int i = offset;
250
c877efb2
SH
251 if (!diff)
252 return 0;
253 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
254 i++;
255 return i;
256}
257
19baf839 258/*
e905a9ed
YH
259 To understand this stuff, an understanding of keys and all their bits is
260 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
261 all of the bits in that key are significant.
262
263 Consider a node 'n' and its parent 'tp'.
264
e905a9ed
YH
265 If n is a leaf, every bit in its key is significant. Its presence is
266 necessitated by path compression, since during a tree traversal (when
267 searching for a leaf - unless we are doing an insertion) we will completely
268 ignore all skipped bits we encounter. Thus we need to verify, at the end of
269 a potentially successful search, that we have indeed been walking the
19baf839
RO
270 correct key path.
271
e905a9ed
YH
272 Note that we can never "miss" the correct key in the tree if present by
273 following the wrong path. Path compression ensures that segments of the key
274 that are the same for all keys with a given prefix are skipped, but the
275 skipped part *is* identical for each node in the subtrie below the skipped
276 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
277 call to tkey_sub_equals() in trie_insert().
278
e905a9ed 279 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
280 have many different meanings.
281
e905a9ed 282 Example:
19baf839
RO
283 _________________________________________________________________
284 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
285 -----------------------------------------------------------------
e905a9ed 286 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
287
288 _________________________________________________________________
289 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
290 -----------------------------------------------------------------
291 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
292
293 tp->pos = 7
294 tp->bits = 3
295 n->pos = 15
91b9a277 296 n->bits = 4
19baf839 297
e905a9ed
YH
298 First, let's just ignore the bits that come before the parent tp, that is
299 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
300 not use them for anything.
301
302 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 303 index into the parent's child array. That is, they will be used to find
19baf839
RO
304 'n' among tp's children.
305
306 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
307 for the node n.
308
e905a9ed 309 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
310 of the bits are really not needed or indeed known in n->key.
311
e905a9ed 312 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 313 n's child array, and will of course be different for each child.
e905a9ed 314
c877efb2 315
19baf839
RO
316 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
317 at this point.
318
319*/
320
0c7770c7 321static inline void check_tnode(const struct tnode *tn)
19baf839 322{
0c7770c7 323 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
324}
325
f5026fab
DL
326static const int halve_threshold = 25;
327static const int inflate_threshold = 50;
345aa031 328static const int halve_threshold_root = 15;
80b71b80 329static const int inflate_threshold_root = 30;
2373ce1c
RO
330
331static void __alias_free_mem(struct rcu_head *head)
19baf839 332{
2373ce1c
RO
333 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
334 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
335}
336
2373ce1c 337static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 338{
2373ce1c
RO
339 call_rcu(&fa->rcu, __alias_free_mem);
340}
91b9a277 341
2373ce1c
RO
342static void __leaf_free_rcu(struct rcu_head *head)
343{
bc3c8c1e
SH
344 struct leaf *l = container_of(head, struct leaf, rcu);
345 kmem_cache_free(trie_leaf_kmem, l);
2373ce1c 346}
91b9a277 347
387a5487
SH
348static inline void free_leaf(struct leaf *l)
349{
350 call_rcu_bh(&l->rcu, __leaf_free_rcu);
351}
352
2373ce1c 353static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 354{
2373ce1c 355 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
356}
357
2373ce1c 358static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 359{
2373ce1c 360 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
361}
362
8d965444 363static struct tnode *tnode_alloc(size_t size)
f0e36f8c 364{
2373ce1c 365 if (size <= PAGE_SIZE)
8d965444 366 return kzalloc(size, GFP_KERNEL);
15be75cd
SH
367 else
368 return __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
369}
2373ce1c 370
15be75cd
SH
371static void __tnode_vfree(struct work_struct *arg)
372{
373 struct tnode *tn = container_of(arg, struct tnode, work);
374 vfree(tn);
f0e36f8c
PM
375}
376
2373ce1c 377static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 378{
2373ce1c 379 struct tnode *tn = container_of(head, struct tnode, rcu);
8d965444
ED
380 size_t size = sizeof(struct tnode) +
381 (sizeof(struct node *) << tn->bits);
f0e36f8c
PM
382
383 if (size <= PAGE_SIZE)
384 kfree(tn);
15be75cd
SH
385 else {
386 INIT_WORK(&tn->work, __tnode_vfree);
387 schedule_work(&tn->work);
388 }
f0e36f8c
PM
389}
390
2373ce1c
RO
391static inline void tnode_free(struct tnode *tn)
392{
387a5487
SH
393 if (IS_LEAF(tn))
394 free_leaf((struct leaf *) tn);
395 else
550e29bc 396 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
397}
398
e0f7cb8c
JP
399static void tnode_free_safe(struct tnode *tn)
400{
401 BUG_ON(IS_LEAF(tn));
7b85576d
JP
402 tn->tnode_free = tnode_free_head;
403 tnode_free_head = tn;
c3059477
JP
404 tnode_free_size += sizeof(struct tnode) +
405 (sizeof(struct node *) << tn->bits);
e0f7cb8c
JP
406}
407
408static void tnode_free_flush(void)
409{
410 struct tnode *tn;
411
412 while ((tn = tnode_free_head)) {
413 tnode_free_head = tn->tnode_free;
414 tn->tnode_free = NULL;
415 tnode_free(tn);
416 }
c3059477
JP
417
418 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
419 tnode_free_size = 0;
420 synchronize_rcu();
421 }
e0f7cb8c
JP
422}
423
2373ce1c
RO
424static struct leaf *leaf_new(void)
425{
bc3c8c1e 426 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
2373ce1c
RO
427 if (l) {
428 l->parent = T_LEAF;
429 INIT_HLIST_HEAD(&l->list);
430 }
431 return l;
432}
433
434static struct leaf_info *leaf_info_new(int plen)
435{
436 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
437 if (li) {
438 li->plen = plen;
439 INIT_LIST_HEAD(&li->falh);
440 }
441 return li;
442}
443
a07f5f50 444static struct tnode *tnode_new(t_key key, int pos, int bits)
19baf839 445{
8d965444 446 size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits);
f0e36f8c 447 struct tnode *tn = tnode_alloc(sz);
19baf839 448
91b9a277 449 if (tn) {
2373ce1c 450 tn->parent = T_TNODE;
19baf839
RO
451 tn->pos = pos;
452 tn->bits = bits;
453 tn->key = key;
454 tn->full_children = 0;
455 tn->empty_children = 1<<bits;
456 }
c877efb2 457
8d965444
ED
458 pr_debug("AT %p s=%u %lu\n", tn, (unsigned int) sizeof(struct tnode),
459 (unsigned long) (sizeof(struct node) << bits));
19baf839
RO
460 return tn;
461}
462
19baf839
RO
463/*
464 * Check whether a tnode 'n' is "full", i.e. it is an internal node
465 * and no bits are skipped. See discussion in dyntree paper p. 6
466 */
467
bb435b8d 468static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 469{
c877efb2 470 if (n == NULL || IS_LEAF(n))
19baf839
RO
471 return 0;
472
473 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
474}
475
a07f5f50
SH
476static inline void put_child(struct trie *t, struct tnode *tn, int i,
477 struct node *n)
19baf839
RO
478{
479 tnode_put_child_reorg(tn, i, n, -1);
480}
481
c877efb2 482 /*
19baf839
RO
483 * Add a child at position i overwriting the old value.
484 * Update the value of full_children and empty_children.
485 */
486
a07f5f50
SH
487static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n,
488 int wasfull)
19baf839 489{
2373ce1c 490 struct node *chi = tn->child[i];
19baf839
RO
491 int isfull;
492
0c7770c7
SH
493 BUG_ON(i >= 1<<tn->bits);
494
19baf839
RO
495 /* update emptyChildren */
496 if (n == NULL && chi != NULL)
497 tn->empty_children++;
498 else if (n != NULL && chi == NULL)
499 tn->empty_children--;
c877efb2 500
19baf839 501 /* update fullChildren */
91b9a277 502 if (wasfull == -1)
19baf839
RO
503 wasfull = tnode_full(tn, chi);
504
505 isfull = tnode_full(tn, n);
c877efb2 506 if (wasfull && !isfull)
19baf839 507 tn->full_children--;
c877efb2 508 else if (!wasfull && isfull)
19baf839 509 tn->full_children++;
91b9a277 510
c877efb2 511 if (n)
06801916 512 node_set_parent(n, tn);
19baf839 513
2373ce1c 514 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
515}
516
80b71b80 517#define MAX_WORK 10
c877efb2 518static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
519{
520 int i;
2f80b3c8 521 struct tnode *old_tn;
e6308be8
RO
522 int inflate_threshold_use;
523 int halve_threshold_use;
80b71b80 524 int max_work;
19baf839 525
e905a9ed 526 if (!tn)
19baf839
RO
527 return NULL;
528
0c7770c7
SH
529 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
530 tn, inflate_threshold, halve_threshold);
19baf839
RO
531
532 /* No children */
533 if (tn->empty_children == tnode_child_length(tn)) {
e0f7cb8c 534 tnode_free_safe(tn);
19baf839
RO
535 return NULL;
536 }
537 /* One child */
538 if (tn->empty_children == tnode_child_length(tn) - 1)
80b71b80 539 goto one_child;
c877efb2 540 /*
19baf839
RO
541 * Double as long as the resulting node has a number of
542 * nonempty nodes that are above the threshold.
543 */
544
545 /*
c877efb2
SH
546 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
547 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 548 * Telecommunications, page 6:
c877efb2 549 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
550 * children in the *doubled* node is at least 'high'."
551 *
c877efb2
SH
552 * 'high' in this instance is the variable 'inflate_threshold'. It
553 * is expressed as a percentage, so we multiply it with
554 * tnode_child_length() and instead of multiplying by 2 (since the
555 * child array will be doubled by inflate()) and multiplying
556 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 557 * multiply the left-hand side by 50.
c877efb2
SH
558 *
559 * The left-hand side may look a bit weird: tnode_child_length(tn)
560 * - tn->empty_children is of course the number of non-null children
561 * in the current node. tn->full_children is the number of "full"
19baf839 562 * children, that is non-null tnodes with a skip value of 0.
c877efb2 563 * All of those will be doubled in the resulting inflated tnode, so
19baf839 564 * we just count them one extra time here.
c877efb2 565 *
19baf839 566 * A clearer way to write this would be:
c877efb2 567 *
19baf839 568 * to_be_doubled = tn->full_children;
c877efb2 569 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
570 * tn->full_children;
571 *
572 * new_child_length = tnode_child_length(tn) * 2;
573 *
c877efb2 574 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
575 * new_child_length;
576 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
577 *
578 * ...and so on, tho it would mess up the while () loop.
579 *
19baf839
RO
580 * anyway,
581 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
582 * inflate_threshold
c877efb2 583 *
19baf839
RO
584 * avoid a division:
585 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
586 * inflate_threshold * new_child_length
c877efb2 587 *
19baf839 588 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 589 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 590 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 591 *
19baf839 592 * expand new_child_length:
c877efb2 593 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 594 * tn->full_children) >=
19baf839 595 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 596 *
19baf839 597 * shorten again:
c877efb2 598 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 599 * tn->empty_children) >= inflate_threshold *
19baf839 600 * tnode_child_length(tn)
c877efb2 601 *
19baf839
RO
602 */
603
604 check_tnode(tn);
c877efb2 605
e6308be8
RO
606 /* Keep root node larger */
607
80b71b80
JL
608 if (!node_parent((struct node*) tn)) {
609 inflate_threshold_use = inflate_threshold_root;
610 halve_threshold_use = halve_threshold_root;
611 }
612 else {
e6308be8 613 inflate_threshold_use = inflate_threshold;
80b71b80
JL
614 halve_threshold_use = halve_threshold;
615 }
e6308be8 616
80b71b80
JL
617 max_work = MAX_WORK;
618 while ((tn->full_children > 0 && max_work-- &&
a07f5f50
SH
619 50 * (tn->full_children + tnode_child_length(tn)
620 - tn->empty_children)
621 >= inflate_threshold_use * tnode_child_length(tn))) {
19baf839 622
2f80b3c8
RO
623 old_tn = tn;
624 tn = inflate(t, tn);
a07f5f50 625
2f80b3c8
RO
626 if (IS_ERR(tn)) {
627 tn = old_tn;
2f36895a
RO
628#ifdef CONFIG_IP_FIB_TRIE_STATS
629 t->stats.resize_node_skipped++;
630#endif
631 break;
632 }
19baf839
RO
633 }
634
635 check_tnode(tn);
636
80b71b80
JL
637 /* Return if at least one inflate is run */
638 if( max_work != MAX_WORK)
639 return (struct node *) tn;
640
19baf839
RO
641 /*
642 * Halve as long as the number of empty children in this
643 * node is above threshold.
644 */
2f36895a 645
80b71b80
JL
646 max_work = MAX_WORK;
647 while (tn->bits > 1 && max_work-- &&
19baf839 648 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 649 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 650
2f80b3c8
RO
651 old_tn = tn;
652 tn = halve(t, tn);
653 if (IS_ERR(tn)) {
654 tn = old_tn;
2f36895a
RO
655#ifdef CONFIG_IP_FIB_TRIE_STATS
656 t->stats.resize_node_skipped++;
657#endif
658 break;
659 }
660 }
19baf839 661
c877efb2 662
19baf839 663 /* Only one child remains */
80b71b80
JL
664 if (tn->empty_children == tnode_child_length(tn) - 1) {
665one_child:
19baf839 666 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 667 struct node *n;
19baf839 668
91b9a277 669 n = tn->child[i];
2373ce1c 670 if (!n)
91b9a277 671 continue;
91b9a277
OJ
672
673 /* compress one level */
674
06801916 675 node_set_parent(n, NULL);
e0f7cb8c 676 tnode_free_safe(tn);
91b9a277 677 return n;
19baf839 678 }
80b71b80 679 }
19baf839
RO
680 return (struct node *) tn;
681}
682
2f80b3c8 683static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839 684{
19baf839
RO
685 struct tnode *oldtnode = tn;
686 int olen = tnode_child_length(tn);
687 int i;
688
0c7770c7 689 pr_debug("In inflate\n");
19baf839
RO
690
691 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
692
0c7770c7 693 if (!tn)
2f80b3c8 694 return ERR_PTR(-ENOMEM);
2f36895a
RO
695
696 /*
c877efb2
SH
697 * Preallocate and store tnodes before the actual work so we
698 * don't get into an inconsistent state if memory allocation
699 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
700 * of tnode is ignored.
701 */
91b9a277
OJ
702
703 for (i = 0; i < olen; i++) {
a07f5f50 704 struct tnode *inode;
2f36895a 705
a07f5f50 706 inode = (struct tnode *) tnode_get_child(oldtnode, i);
2f36895a
RO
707 if (inode &&
708 IS_TNODE(inode) &&
709 inode->pos == oldtnode->pos + oldtnode->bits &&
710 inode->bits > 1) {
711 struct tnode *left, *right;
ab66b4a7 712 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
c877efb2 713
2f36895a
RO
714 left = tnode_new(inode->key&(~m), inode->pos + 1,
715 inode->bits - 1);
2f80b3c8
RO
716 if (!left)
717 goto nomem;
91b9a277 718
2f36895a
RO
719 right = tnode_new(inode->key|m, inode->pos + 1,
720 inode->bits - 1);
721
e905a9ed 722 if (!right) {
2f80b3c8
RO
723 tnode_free(left);
724 goto nomem;
e905a9ed 725 }
2f36895a
RO
726
727 put_child(t, tn, 2*i, (struct node *) left);
728 put_child(t, tn, 2*i+1, (struct node *) right);
729 }
730 }
731
91b9a277 732 for (i = 0; i < olen; i++) {
c95aaf9a 733 struct tnode *inode;
19baf839 734 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
735 struct tnode *left, *right;
736 int size, j;
c877efb2 737
19baf839
RO
738 /* An empty child */
739 if (node == NULL)
740 continue;
741
742 /* A leaf or an internal node with skipped bits */
743
c877efb2 744 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 745 tn->pos + tn->bits - 1) {
a07f5f50
SH
746 if (tkey_extract_bits(node->key,
747 oldtnode->pos + oldtnode->bits,
748 1) == 0)
19baf839
RO
749 put_child(t, tn, 2*i, node);
750 else
751 put_child(t, tn, 2*i+1, node);
752 continue;
753 }
754
755 /* An internal node with two children */
756 inode = (struct tnode *) node;
757
758 if (inode->bits == 1) {
759 put_child(t, tn, 2*i, inode->child[0]);
760 put_child(t, tn, 2*i+1, inode->child[1]);
761
e0f7cb8c 762 tnode_free_safe(inode);
91b9a277 763 continue;
19baf839
RO
764 }
765
91b9a277
OJ
766 /* An internal node with more than two children */
767
768 /* We will replace this node 'inode' with two new
769 * ones, 'left' and 'right', each with half of the
770 * original children. The two new nodes will have
771 * a position one bit further down the key and this
772 * means that the "significant" part of their keys
773 * (see the discussion near the top of this file)
774 * will differ by one bit, which will be "0" in
775 * left's key and "1" in right's key. Since we are
776 * moving the key position by one step, the bit that
777 * we are moving away from - the bit at position
778 * (inode->pos) - is the one that will differ between
779 * left and right. So... we synthesize that bit in the
780 * two new keys.
781 * The mask 'm' below will be a single "one" bit at
782 * the position (inode->pos)
783 */
19baf839 784
91b9a277
OJ
785 /* Use the old key, but set the new significant
786 * bit to zero.
787 */
2f36895a 788
91b9a277
OJ
789 left = (struct tnode *) tnode_get_child(tn, 2*i);
790 put_child(t, tn, 2*i, NULL);
2f36895a 791
91b9a277 792 BUG_ON(!left);
2f36895a 793
91b9a277
OJ
794 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
795 put_child(t, tn, 2*i+1, NULL);
19baf839 796
91b9a277 797 BUG_ON(!right);
19baf839 798
91b9a277
OJ
799 size = tnode_child_length(left);
800 for (j = 0; j < size; j++) {
801 put_child(t, left, j, inode->child[j]);
802 put_child(t, right, j, inode->child[j + size]);
19baf839 803 }
91b9a277
OJ
804 put_child(t, tn, 2*i, resize(t, left));
805 put_child(t, tn, 2*i+1, resize(t, right));
806
e0f7cb8c 807 tnode_free_safe(inode);
19baf839 808 }
e0f7cb8c 809 tnode_free_safe(oldtnode);
19baf839 810 return tn;
2f80b3c8
RO
811nomem:
812 {
813 int size = tnode_child_length(tn);
814 int j;
815
0c7770c7 816 for (j = 0; j < size; j++)
2f80b3c8
RO
817 if (tn->child[j])
818 tnode_free((struct tnode *)tn->child[j]);
819
820 tnode_free(tn);
0c7770c7 821
2f80b3c8
RO
822 return ERR_PTR(-ENOMEM);
823 }
19baf839
RO
824}
825
2f80b3c8 826static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
827{
828 struct tnode *oldtnode = tn;
829 struct node *left, *right;
830 int i;
831 int olen = tnode_child_length(tn);
832
0c7770c7 833 pr_debug("In halve\n");
c877efb2
SH
834
835 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 836
2f80b3c8
RO
837 if (!tn)
838 return ERR_PTR(-ENOMEM);
2f36895a
RO
839
840 /*
c877efb2
SH
841 * Preallocate and store tnodes before the actual work so we
842 * don't get into an inconsistent state if memory allocation
843 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
844 * of tnode is ignored.
845 */
846
91b9a277 847 for (i = 0; i < olen; i += 2) {
2f36895a
RO
848 left = tnode_get_child(oldtnode, i);
849 right = tnode_get_child(oldtnode, i+1);
c877efb2 850
2f36895a 851 /* Two nonempty children */
0c7770c7 852 if (left && right) {
2f80b3c8 853 struct tnode *newn;
0c7770c7 854
2f80b3c8 855 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
856
857 if (!newn)
2f80b3c8 858 goto nomem;
0c7770c7 859
2f80b3c8 860 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 861 }
2f36895a 862
2f36895a 863 }
19baf839 864
91b9a277
OJ
865 for (i = 0; i < olen; i += 2) {
866 struct tnode *newBinNode;
867
19baf839
RO
868 left = tnode_get_child(oldtnode, i);
869 right = tnode_get_child(oldtnode, i+1);
c877efb2 870
19baf839
RO
871 /* At least one of the children is empty */
872 if (left == NULL) {
873 if (right == NULL) /* Both are empty */
874 continue;
875 put_child(t, tn, i/2, right);
91b9a277 876 continue;
0c7770c7 877 }
91b9a277
OJ
878
879 if (right == NULL) {
19baf839 880 put_child(t, tn, i/2, left);
91b9a277
OJ
881 continue;
882 }
c877efb2 883
19baf839 884 /* Two nonempty children */
91b9a277
OJ
885 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
886 put_child(t, tn, i/2, NULL);
91b9a277
OJ
887 put_child(t, newBinNode, 0, left);
888 put_child(t, newBinNode, 1, right);
889 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839 890 }
e0f7cb8c 891 tnode_free_safe(oldtnode);
19baf839 892 return tn;
2f80b3c8
RO
893nomem:
894 {
895 int size = tnode_child_length(tn);
896 int j;
897
0c7770c7 898 for (j = 0; j < size; j++)
2f80b3c8
RO
899 if (tn->child[j])
900 tnode_free((struct tnode *)tn->child[j]);
901
902 tnode_free(tn);
0c7770c7 903
2f80b3c8
RO
904 return ERR_PTR(-ENOMEM);
905 }
19baf839
RO
906}
907
772cb712 908/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
909 via get_fa_head and dump */
910
772cb712 911static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 912{
772cb712 913 struct hlist_head *head = &l->list;
19baf839
RO
914 struct hlist_node *node;
915 struct leaf_info *li;
916
2373ce1c 917 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 918 if (li->plen == plen)
19baf839 919 return li;
91b9a277 920
19baf839
RO
921 return NULL;
922}
923
a07f5f50 924static inline struct list_head *get_fa_head(struct leaf *l, int plen)
19baf839 925{
772cb712 926 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 927
91b9a277
OJ
928 if (!li)
929 return NULL;
c877efb2 930
91b9a277 931 return &li->falh;
19baf839
RO
932}
933
934static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
935{
e905a9ed
YH
936 struct leaf_info *li = NULL, *last = NULL;
937 struct hlist_node *node;
938
939 if (hlist_empty(head)) {
940 hlist_add_head_rcu(&new->hlist, head);
941 } else {
942 hlist_for_each_entry(li, node, head, hlist) {
943 if (new->plen > li->plen)
944 break;
945
946 last = li;
947 }
948 if (last)
949 hlist_add_after_rcu(&last->hlist, &new->hlist);
950 else
951 hlist_add_before_rcu(&new->hlist, &li->hlist);
952 }
19baf839
RO
953}
954
2373ce1c
RO
955/* rcu_read_lock needs to be hold by caller from readside */
956
19baf839
RO
957static struct leaf *
958fib_find_node(struct trie *t, u32 key)
959{
960 int pos;
961 struct tnode *tn;
962 struct node *n;
963
964 pos = 0;
634a4b20
PM
965 n = rcu_dereference_check(t->trie,
966 rcu_read_lock_held() ||
967 lockdep_rtnl_is_held());
19baf839
RO
968
969 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
970 tn = (struct tnode *) n;
91b9a277 971
19baf839 972 check_tnode(tn);
91b9a277 973
c877efb2 974 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 975 pos = tn->pos + tn->bits;
a07f5f50
SH
976 n = tnode_get_child_rcu(tn,
977 tkey_extract_bits(key,
978 tn->pos,
979 tn->bits));
91b9a277 980 } else
19baf839
RO
981 break;
982 }
983 /* Case we have found a leaf. Compare prefixes */
984
91b9a277
OJ
985 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
986 return (struct leaf *)n;
987
19baf839
RO
988 return NULL;
989}
990
7b85576d 991static void trie_rebalance(struct trie *t, struct tnode *tn)
19baf839 992{
19baf839 993 int wasfull;
3ed18d76 994 t_key cindex, key;
06801916 995 struct tnode *tp;
19baf839 996
3ed18d76
RO
997 key = tn->key;
998
06801916 999 while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) {
19baf839
RO
1000 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1001 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
a07f5f50
SH
1002 tn = (struct tnode *) resize(t, (struct tnode *)tn);
1003
1004 tnode_put_child_reorg((struct tnode *)tp, cindex,
1005 (struct node *)tn, wasfull);
91b9a277 1006
06801916 1007 tp = node_parent((struct node *) tn);
008440e3
JP
1008 if (!tp)
1009 rcu_assign_pointer(t->trie, (struct node *)tn);
1010
e0f7cb8c 1011 tnode_free_flush();
06801916 1012 if (!tp)
19baf839 1013 break;
06801916 1014 tn = tp;
19baf839 1015 }
06801916 1016
19baf839 1017 /* Handle last (top) tnode */
7b85576d 1018 if (IS_TNODE(tn))
a07f5f50 1019 tn = (struct tnode *)resize(t, (struct tnode *)tn);
19baf839 1020
7b85576d
JP
1021 rcu_assign_pointer(t->trie, (struct node *)tn);
1022 tnode_free_flush();
1023
1024 return;
19baf839
RO
1025}
1026
2373ce1c
RO
1027/* only used from updater-side */
1028
fea86ad8 1029static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
19baf839
RO
1030{
1031 int pos, newpos;
1032 struct tnode *tp = NULL, *tn = NULL;
1033 struct node *n;
1034 struct leaf *l;
1035 int missbit;
c877efb2 1036 struct list_head *fa_head = NULL;
19baf839
RO
1037 struct leaf_info *li;
1038 t_key cindex;
1039
1040 pos = 0;
c877efb2 1041 n = t->trie;
19baf839 1042
c877efb2
SH
1043 /* If we point to NULL, stop. Either the tree is empty and we should
1044 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1045 * and we should just put our new leaf in that.
c877efb2
SH
1046 * If we point to a T_TNODE, check if it matches our key. Note that
1047 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1048 * not be the parent's 'pos'+'bits'!
1049 *
c877efb2 1050 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1051 * the index from our key, push the T_TNODE and walk the tree.
1052 *
1053 * If it doesn't, we have to replace it with a new T_TNODE.
1054 *
c877efb2
SH
1055 * If we point to a T_LEAF, it might or might not have the same key
1056 * as we do. If it does, just change the value, update the T_LEAF's
1057 * value, and return it.
19baf839
RO
1058 * If it doesn't, we need to replace it with a T_TNODE.
1059 */
1060
1061 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1062 tn = (struct tnode *) n;
91b9a277 1063
c877efb2 1064 check_tnode(tn);
91b9a277 1065
c877efb2 1066 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1067 tp = tn;
91b9a277 1068 pos = tn->pos + tn->bits;
a07f5f50
SH
1069 n = tnode_get_child(tn,
1070 tkey_extract_bits(key,
1071 tn->pos,
1072 tn->bits));
19baf839 1073
06801916 1074 BUG_ON(n && node_parent(n) != tn);
91b9a277 1075 } else
19baf839
RO
1076 break;
1077 }
1078
1079 /*
1080 * n ----> NULL, LEAF or TNODE
1081 *
c877efb2 1082 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1083 */
1084
91b9a277 1085 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1086
1087 /* Case 1: n is a leaf. Compare prefixes */
1088
c877efb2 1089 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
c95aaf9a 1090 l = (struct leaf *) n;
19baf839 1091 li = leaf_info_new(plen);
91b9a277 1092
fea86ad8
SH
1093 if (!li)
1094 return NULL;
19baf839
RO
1095
1096 fa_head = &li->falh;
1097 insert_leaf_info(&l->list, li);
1098 goto done;
1099 }
19baf839
RO
1100 l = leaf_new();
1101
fea86ad8
SH
1102 if (!l)
1103 return NULL;
19baf839
RO
1104
1105 l->key = key;
1106 li = leaf_info_new(plen);
1107
c877efb2 1108 if (!li) {
387a5487 1109 free_leaf(l);
fea86ad8 1110 return NULL;
f835e471 1111 }
19baf839
RO
1112
1113 fa_head = &li->falh;
1114 insert_leaf_info(&l->list, li);
1115
19baf839 1116 if (t->trie && n == NULL) {
91b9a277 1117 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839 1118
06801916 1119 node_set_parent((struct node *)l, tp);
19baf839 1120
91b9a277
OJ
1121 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1122 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1123 } else {
1124 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1125 /*
1126 * Add a new tnode here
19baf839
RO
1127 * first tnode need some special handling
1128 */
1129
1130 if (tp)
91b9a277 1131 pos = tp->pos+tp->bits;
19baf839 1132 else
91b9a277
OJ
1133 pos = 0;
1134
c877efb2 1135 if (n) {
19baf839
RO
1136 newpos = tkey_mismatch(key, pos, n->key);
1137 tn = tnode_new(n->key, newpos, 1);
91b9a277 1138 } else {
19baf839 1139 newpos = 0;
c877efb2 1140 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1141 }
19baf839 1142
c877efb2 1143 if (!tn) {
f835e471 1144 free_leaf_info(li);
387a5487 1145 free_leaf(l);
fea86ad8 1146 return NULL;
91b9a277
OJ
1147 }
1148
06801916 1149 node_set_parent((struct node *)tn, tp);
19baf839 1150
91b9a277 1151 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1152 put_child(t, tn, missbit, (struct node *)l);
1153 put_child(t, tn, 1-missbit, n);
1154
c877efb2 1155 if (tp) {
19baf839 1156 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
a07f5f50
SH
1157 put_child(t, (struct tnode *)tp, cindex,
1158 (struct node *)tn);
91b9a277 1159 } else {
a07f5f50 1160 rcu_assign_pointer(t->trie, (struct node *)tn);
19baf839
RO
1161 tp = tn;
1162 }
1163 }
91b9a277
OJ
1164
1165 if (tp && tp->pos + tp->bits > 32)
a07f5f50
SH
1166 pr_warning("fib_trie"
1167 " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1168 tp, tp->pos, tp->bits, key, plen);
91b9a277 1169
19baf839 1170 /* Rebalance the trie */
2373ce1c 1171
7b85576d 1172 trie_rebalance(t, tp);
f835e471 1173done:
19baf839
RO
1174 return fa_head;
1175}
1176
d562f1f8
RO
1177/*
1178 * Caller must hold RTNL.
1179 */
16c6cf8b 1180int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1181{
1182 struct trie *t = (struct trie *) tb->tb_data;
1183 struct fib_alias *fa, *new_fa;
c877efb2 1184 struct list_head *fa_head = NULL;
19baf839 1185 struct fib_info *fi;
4e902c57
TG
1186 int plen = cfg->fc_dst_len;
1187 u8 tos = cfg->fc_tos;
19baf839
RO
1188 u32 key, mask;
1189 int err;
1190 struct leaf *l;
1191
1192 if (plen > 32)
1193 return -EINVAL;
1194
4e902c57 1195 key = ntohl(cfg->fc_dst);
19baf839 1196
2dfe55b4 1197 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1198
91b9a277 1199 mask = ntohl(inet_make_mask(plen));
19baf839 1200
c877efb2 1201 if (key & ~mask)
19baf839
RO
1202 return -EINVAL;
1203
1204 key = key & mask;
1205
4e902c57
TG
1206 fi = fib_create_info(cfg);
1207 if (IS_ERR(fi)) {
1208 err = PTR_ERR(fi);
19baf839 1209 goto err;
4e902c57 1210 }
19baf839
RO
1211
1212 l = fib_find_node(t, key);
c877efb2 1213 fa = NULL;
19baf839 1214
c877efb2 1215 if (l) {
19baf839
RO
1216 fa_head = get_fa_head(l, plen);
1217 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1218 }
1219
1220 /* Now fa, if non-NULL, points to the first fib alias
1221 * with the same keys [prefix,tos,priority], if such key already
1222 * exists or to the node before which we will insert new one.
1223 *
1224 * If fa is NULL, we will need to allocate a new one and
1225 * insert to the head of f.
1226 *
1227 * If f is NULL, no fib node matched the destination key
1228 * and we need to allocate a new one of those as well.
1229 */
1230
936f6f8e
JA
1231 if (fa && fa->fa_tos == tos &&
1232 fa->fa_info->fib_priority == fi->fib_priority) {
1233 struct fib_alias *fa_first, *fa_match;
19baf839
RO
1234
1235 err = -EEXIST;
4e902c57 1236 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1237 goto out;
1238
936f6f8e
JA
1239 /* We have 2 goals:
1240 * 1. Find exact match for type, scope, fib_info to avoid
1241 * duplicate routes
1242 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1243 */
1244 fa_match = NULL;
1245 fa_first = fa;
1246 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1247 list_for_each_entry_continue(fa, fa_head, fa_list) {
1248 if (fa->fa_tos != tos)
1249 break;
1250 if (fa->fa_info->fib_priority != fi->fib_priority)
1251 break;
1252 if (fa->fa_type == cfg->fc_type &&
1253 fa->fa_scope == cfg->fc_scope &&
1254 fa->fa_info == fi) {
1255 fa_match = fa;
1256 break;
1257 }
1258 }
1259
4e902c57 1260 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1261 struct fib_info *fi_drop;
1262 u8 state;
1263
936f6f8e
JA
1264 fa = fa_first;
1265 if (fa_match) {
1266 if (fa == fa_match)
1267 err = 0;
6725033f 1268 goto out;
936f6f8e 1269 }
2373ce1c 1270 err = -ENOBUFS;
e94b1766 1271 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1272 if (new_fa == NULL)
1273 goto out;
19baf839
RO
1274
1275 fi_drop = fa->fa_info;
2373ce1c
RO
1276 new_fa->fa_tos = fa->fa_tos;
1277 new_fa->fa_info = fi;
4e902c57
TG
1278 new_fa->fa_type = cfg->fc_type;
1279 new_fa->fa_scope = cfg->fc_scope;
19baf839 1280 state = fa->fa_state;
936f6f8e 1281 new_fa->fa_state = state & ~FA_S_ACCESSED;
19baf839 1282
2373ce1c
RO
1283 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1284 alias_free_mem_rcu(fa);
19baf839
RO
1285
1286 fib_release_info(fi_drop);
1287 if (state & FA_S_ACCESSED)
76e6ebfb 1288 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
b8f55831
MK
1289 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1290 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
19baf839 1291
91b9a277 1292 goto succeeded;
19baf839
RO
1293 }
1294 /* Error if we find a perfect match which
1295 * uses the same scope, type, and nexthop
1296 * information.
1297 */
936f6f8e
JA
1298 if (fa_match)
1299 goto out;
a07f5f50 1300
4e902c57 1301 if (!(cfg->fc_nlflags & NLM_F_APPEND))
936f6f8e 1302 fa = fa_first;
19baf839
RO
1303 }
1304 err = -ENOENT;
4e902c57 1305 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1306 goto out;
1307
1308 err = -ENOBUFS;
e94b1766 1309 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1310 if (new_fa == NULL)
1311 goto out;
1312
1313 new_fa->fa_info = fi;
1314 new_fa->fa_tos = tos;
4e902c57
TG
1315 new_fa->fa_type = cfg->fc_type;
1316 new_fa->fa_scope = cfg->fc_scope;
19baf839 1317 new_fa->fa_state = 0;
19baf839
RO
1318 /*
1319 * Insert new entry to the list.
1320 */
1321
c877efb2 1322 if (!fa_head) {
fea86ad8
SH
1323 fa_head = fib_insert_node(t, key, plen);
1324 if (unlikely(!fa_head)) {
1325 err = -ENOMEM;
f835e471 1326 goto out_free_new_fa;
fea86ad8 1327 }
f835e471 1328 }
19baf839 1329
2373ce1c
RO
1330 list_add_tail_rcu(&new_fa->fa_list,
1331 (fa ? &fa->fa_list : fa_head));
19baf839 1332
76e6ebfb 1333 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
4e902c57 1334 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
b8f55831 1335 &cfg->fc_nlinfo, 0);
19baf839
RO
1336succeeded:
1337 return 0;
f835e471
RO
1338
1339out_free_new_fa:
1340 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1341out:
1342 fib_release_info(fi);
91b9a277 1343err:
19baf839
RO
1344 return err;
1345}
1346
772cb712 1347/* should be called with rcu_read_lock */
a07f5f50
SH
1348static int check_leaf(struct trie *t, struct leaf *l,
1349 t_key key, const struct flowi *flp,
1350 struct fib_result *res)
19baf839 1351{
19baf839
RO
1352 struct leaf_info *li;
1353 struct hlist_head *hhead = &l->list;
1354 struct hlist_node *node;
c877efb2 1355
2373ce1c 1356 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
a07f5f50
SH
1357 int err;
1358 int plen = li->plen;
1359 __be32 mask = inet_make_mask(plen);
1360
888454c5 1361 if (l->key != (key & ntohl(mask)))
19baf839
RO
1362 continue;
1363
e204a345 1364 err = fib_semantic_match(&li->falh, flp, res, plen);
a07f5f50 1365
19baf839 1366#ifdef CONFIG_IP_FIB_TRIE_STATS
a07f5f50 1367 if (err <= 0)
19baf839 1368 t->stats.semantic_match_passed++;
a07f5f50
SH
1369 else
1370 t->stats.semantic_match_miss++;
19baf839 1371#endif
a07f5f50 1372 if (err <= 0)
2e655571 1373 return err;
19baf839 1374 }
a07f5f50 1375
2e655571 1376 return 1;
19baf839
RO
1377}
1378
16c6cf8b
SH
1379int fib_table_lookup(struct fib_table *tb, const struct flowi *flp,
1380 struct fib_result *res)
19baf839
RO
1381{
1382 struct trie *t = (struct trie *) tb->tb_data;
2e655571 1383 int ret;
19baf839
RO
1384 struct node *n;
1385 struct tnode *pn;
1386 int pos, bits;
91b9a277 1387 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1388 int chopped_off;
1389 t_key cindex = 0;
1390 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1391 struct tnode *cn;
1392 t_key node_prefix, key_prefix, pref_mismatch;
1393 int mp;
1394
2373ce1c 1395 rcu_read_lock();
91b9a277 1396
2373ce1c 1397 n = rcu_dereference(t->trie);
c877efb2 1398 if (!n)
19baf839
RO
1399 goto failed;
1400
1401#ifdef CONFIG_IP_FIB_TRIE_STATS
1402 t->stats.gets++;
1403#endif
1404
1405 /* Just a leaf? */
1406 if (IS_LEAF(n)) {
2e655571 1407 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
a07f5f50 1408 goto found;
19baf839 1409 }
a07f5f50 1410
19baf839
RO
1411 pn = (struct tnode *) n;
1412 chopped_off = 0;
c877efb2 1413
91b9a277 1414 while (pn) {
19baf839
RO
1415 pos = pn->pos;
1416 bits = pn->bits;
1417
c877efb2 1418 if (!chopped_off)
ab66b4a7
SH
1419 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1420 pos, bits);
19baf839 1421
b902e573 1422 n = tnode_get_child_rcu(pn, cindex);
19baf839
RO
1423
1424 if (n == NULL) {
1425#ifdef CONFIG_IP_FIB_TRIE_STATS
1426 t->stats.null_node_hit++;
1427#endif
1428 goto backtrace;
1429 }
1430
91b9a277 1431 if (IS_LEAF(n)) {
2e655571
BH
1432 ret = check_leaf(t, (struct leaf *)n, key, flp, res);
1433 if (ret > 0)
91b9a277 1434 goto backtrace;
a07f5f50 1435 goto found;
91b9a277
OJ
1436 }
1437
91b9a277 1438 cn = (struct tnode *)n;
19baf839 1439
91b9a277
OJ
1440 /*
1441 * It's a tnode, and we can do some extra checks here if we
1442 * like, to avoid descending into a dead-end branch.
1443 * This tnode is in the parent's child array at index
1444 * key[p_pos..p_pos+p_bits] but potentially with some bits
1445 * chopped off, so in reality the index may be just a
1446 * subprefix, padded with zero at the end.
1447 * We can also take a look at any skipped bits in this
1448 * tnode - everything up to p_pos is supposed to be ok,
1449 * and the non-chopped bits of the index (se previous
1450 * paragraph) are also guaranteed ok, but the rest is
1451 * considered unknown.
1452 *
1453 * The skipped bits are key[pos+bits..cn->pos].
1454 */
19baf839 1455
91b9a277
OJ
1456 /* If current_prefix_length < pos+bits, we are already doing
1457 * actual prefix matching, which means everything from
1458 * pos+(bits-chopped_off) onward must be zero along some
1459 * branch of this subtree - otherwise there is *no* valid
1460 * prefix present. Here we can only check the skipped
1461 * bits. Remember, since we have already indexed into the
1462 * parent's child array, we know that the bits we chopped of
1463 * *are* zero.
1464 */
19baf839 1465
a07f5f50
SH
1466 /* NOTA BENE: Checking only skipped bits
1467 for the new node here */
19baf839 1468
91b9a277
OJ
1469 if (current_prefix_length < pos+bits) {
1470 if (tkey_extract_bits(cn->key, current_prefix_length,
a07f5f50
SH
1471 cn->pos - current_prefix_length)
1472 || !(cn->child[0]))
91b9a277
OJ
1473 goto backtrace;
1474 }
19baf839 1475
91b9a277
OJ
1476 /*
1477 * If chopped_off=0, the index is fully validated and we
1478 * only need to look at the skipped bits for this, the new,
1479 * tnode. What we actually want to do is to find out if
1480 * these skipped bits match our key perfectly, or if we will
1481 * have to count on finding a matching prefix further down,
1482 * because if we do, we would like to have some way of
1483 * verifying the existence of such a prefix at this point.
1484 */
19baf839 1485
91b9a277
OJ
1486 /* The only thing we can do at this point is to verify that
1487 * any such matching prefix can indeed be a prefix to our
1488 * key, and if the bits in the node we are inspecting that
1489 * do not match our key are not ZERO, this cannot be true.
1490 * Thus, find out where there is a mismatch (before cn->pos)
1491 * and verify that all the mismatching bits are zero in the
1492 * new tnode's key.
1493 */
19baf839 1494
a07f5f50
SH
1495 /*
1496 * Note: We aren't very concerned about the piece of
1497 * the key that precede pn->pos+pn->bits, since these
1498 * have already been checked. The bits after cn->pos
1499 * aren't checked since these are by definition
1500 * "unknown" at this point. Thus, what we want to see
1501 * is if we are about to enter the "prefix matching"
1502 * state, and in that case verify that the skipped
1503 * bits that will prevail throughout this subtree are
1504 * zero, as they have to be if we are to find a
1505 * matching prefix.
91b9a277
OJ
1506 */
1507
ab66b4a7
SH
1508 node_prefix = mask_pfx(cn->key, cn->pos);
1509 key_prefix = mask_pfx(key, cn->pos);
91b9a277
OJ
1510 pref_mismatch = key_prefix^node_prefix;
1511 mp = 0;
1512
a07f5f50
SH
1513 /*
1514 * In short: If skipped bits in this node do not match
1515 * the search key, enter the "prefix matching"
1516 * state.directly.
91b9a277
OJ
1517 */
1518 if (pref_mismatch) {
1519 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1520 mp++;
a07f5f50 1521 pref_mismatch = pref_mismatch << 1;
91b9a277
OJ
1522 }
1523 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1524
1525 if (key_prefix != 0)
1526 goto backtrace;
1527
1528 if (current_prefix_length >= cn->pos)
1529 current_prefix_length = mp;
c877efb2 1530 }
a07f5f50 1531
91b9a277
OJ
1532 pn = (struct tnode *)n; /* Descend */
1533 chopped_off = 0;
1534 continue;
1535
19baf839
RO
1536backtrace:
1537 chopped_off++;
1538
1539 /* As zero don't change the child key (cindex) */
a07f5f50
SH
1540 while ((chopped_off <= pn->bits)
1541 && !(cindex & (1<<(chopped_off-1))))
19baf839 1542 chopped_off++;
19baf839
RO
1543
1544 /* Decrease current_... with bits chopped off */
1545 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
a07f5f50
SH
1546 current_prefix_length = pn->pos + pn->bits
1547 - chopped_off;
91b9a277 1548
19baf839 1549 /*
c877efb2 1550 * Either we do the actual chop off according or if we have
19baf839
RO
1551 * chopped off all bits in this tnode walk up to our parent.
1552 */
1553
91b9a277 1554 if (chopped_off <= pn->bits) {
19baf839 1555 cindex &= ~(1 << (chopped_off-1));
91b9a277 1556 } else {
b902e573 1557 struct tnode *parent = node_parent_rcu((struct node *) pn);
06801916 1558 if (!parent)
19baf839 1559 goto failed;
91b9a277 1560
19baf839 1561 /* Get Child's index */
06801916
SH
1562 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1563 pn = parent;
19baf839
RO
1564 chopped_off = 0;
1565
1566#ifdef CONFIG_IP_FIB_TRIE_STATS
1567 t->stats.backtrack++;
1568#endif
1569 goto backtrace;
c877efb2 1570 }
19baf839
RO
1571 }
1572failed:
c877efb2 1573 ret = 1;
19baf839 1574found:
2373ce1c 1575 rcu_read_unlock();
19baf839
RO
1576 return ret;
1577}
1578
9195bef7
SH
1579/*
1580 * Remove the leaf and return parent.
1581 */
1582static void trie_leaf_remove(struct trie *t, struct leaf *l)
19baf839 1583{
9195bef7 1584 struct tnode *tp = node_parent((struct node *) l);
c877efb2 1585
9195bef7 1586 pr_debug("entering trie_leaf_remove(%p)\n", l);
19baf839 1587
c877efb2 1588 if (tp) {
9195bef7 1589 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
19baf839 1590 put_child(t, (struct tnode *)tp, cindex, NULL);
7b85576d 1591 trie_rebalance(t, tp);
91b9a277 1592 } else
2373ce1c 1593 rcu_assign_pointer(t->trie, NULL);
19baf839 1594
387a5487 1595 free_leaf(l);
19baf839
RO
1596}
1597
d562f1f8
RO
1598/*
1599 * Caller must hold RTNL.
1600 */
16c6cf8b 1601int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1602{
1603 struct trie *t = (struct trie *) tb->tb_data;
1604 u32 key, mask;
4e902c57
TG
1605 int plen = cfg->fc_dst_len;
1606 u8 tos = cfg->fc_tos;
19baf839
RO
1607 struct fib_alias *fa, *fa_to_delete;
1608 struct list_head *fa_head;
1609 struct leaf *l;
91b9a277
OJ
1610 struct leaf_info *li;
1611
c877efb2 1612 if (plen > 32)
19baf839
RO
1613 return -EINVAL;
1614
4e902c57 1615 key = ntohl(cfg->fc_dst);
91b9a277 1616 mask = ntohl(inet_make_mask(plen));
19baf839 1617
c877efb2 1618 if (key & ~mask)
19baf839
RO
1619 return -EINVAL;
1620
1621 key = key & mask;
1622 l = fib_find_node(t, key);
1623
c877efb2 1624 if (!l)
19baf839
RO
1625 return -ESRCH;
1626
1627 fa_head = get_fa_head(l, plen);
1628 fa = fib_find_alias(fa_head, tos, 0);
1629
1630 if (!fa)
1631 return -ESRCH;
1632
0c7770c7 1633 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1634
1635 fa_to_delete = NULL;
936f6f8e
JA
1636 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1637 list_for_each_entry_continue(fa, fa_head, fa_list) {
19baf839
RO
1638 struct fib_info *fi = fa->fa_info;
1639
1640 if (fa->fa_tos != tos)
1641 break;
1642
4e902c57
TG
1643 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1644 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1645 fa->fa_scope == cfg->fc_scope) &&
1646 (!cfg->fc_protocol ||
1647 fi->fib_protocol == cfg->fc_protocol) &&
1648 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1649 fa_to_delete = fa;
1650 break;
1651 }
1652 }
1653
91b9a277
OJ
1654 if (!fa_to_delete)
1655 return -ESRCH;
19baf839 1656
91b9a277 1657 fa = fa_to_delete;
4e902c57 1658 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
b8f55831 1659 &cfg->fc_nlinfo, 0);
91b9a277
OJ
1660
1661 l = fib_find_node(t, key);
772cb712 1662 li = find_leaf_info(l, plen);
19baf839 1663
2373ce1c 1664 list_del_rcu(&fa->fa_list);
19baf839 1665
91b9a277 1666 if (list_empty(fa_head)) {
2373ce1c 1667 hlist_del_rcu(&li->hlist);
91b9a277 1668 free_leaf_info(li);
2373ce1c 1669 }
19baf839 1670
91b9a277 1671 if (hlist_empty(&l->list))
9195bef7 1672 trie_leaf_remove(t, l);
19baf839 1673
91b9a277 1674 if (fa->fa_state & FA_S_ACCESSED)
76e6ebfb 1675 rt_cache_flush(cfg->fc_nlinfo.nl_net, -1);
19baf839 1676
2373ce1c
RO
1677 fib_release_info(fa->fa_info);
1678 alias_free_mem_rcu(fa);
91b9a277 1679 return 0;
19baf839
RO
1680}
1681
ef3660ce 1682static int trie_flush_list(struct list_head *head)
19baf839
RO
1683{
1684 struct fib_alias *fa, *fa_node;
1685 int found = 0;
1686
1687 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1688 struct fib_info *fi = fa->fa_info;
19baf839 1689
2373ce1c
RO
1690 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1691 list_del_rcu(&fa->fa_list);
1692 fib_release_info(fa->fa_info);
1693 alias_free_mem_rcu(fa);
19baf839
RO
1694 found++;
1695 }
1696 }
1697 return found;
1698}
1699
ef3660ce 1700static int trie_flush_leaf(struct leaf *l)
19baf839
RO
1701{
1702 int found = 0;
1703 struct hlist_head *lih = &l->list;
1704 struct hlist_node *node, *tmp;
1705 struct leaf_info *li = NULL;
1706
1707 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
ef3660ce 1708 found += trie_flush_list(&li->falh);
19baf839
RO
1709
1710 if (list_empty(&li->falh)) {
2373ce1c 1711 hlist_del_rcu(&li->hlist);
19baf839
RO
1712 free_leaf_info(li);
1713 }
1714 }
1715 return found;
1716}
1717
82cfbb00
SH
1718/*
1719 * Scan for the next right leaf starting at node p->child[idx]
1720 * Since we have back pointer, no recursion necessary.
1721 */
1722static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c)
19baf839 1723{
82cfbb00
SH
1724 do {
1725 t_key idx;
c877efb2 1726
c877efb2 1727 if (c)
82cfbb00 1728 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
c877efb2 1729 else
82cfbb00 1730 idx = 0;
2373ce1c 1731
82cfbb00
SH
1732 while (idx < 1u << p->bits) {
1733 c = tnode_get_child_rcu(p, idx++);
2373ce1c 1734 if (!c)
91b9a277
OJ
1735 continue;
1736
82cfbb00
SH
1737 if (IS_LEAF(c)) {
1738 prefetch(p->child[idx]);
1739 return (struct leaf *) c;
19baf839 1740 }
82cfbb00
SH
1741
1742 /* Rescan start scanning in new node */
1743 p = (struct tnode *) c;
1744 idx = 0;
19baf839 1745 }
82cfbb00
SH
1746
1747 /* Node empty, walk back up to parent */
91b9a277 1748 c = (struct node *) p;
82cfbb00
SH
1749 } while ( (p = node_parent_rcu(c)) != NULL);
1750
1751 return NULL; /* Root of trie */
1752}
1753
82cfbb00
SH
1754static struct leaf *trie_firstleaf(struct trie *t)
1755{
1756 struct tnode *n = (struct tnode *) rcu_dereference(t->trie);
1757
1758 if (!n)
1759 return NULL;
1760
1761 if (IS_LEAF(n)) /* trie is just a leaf */
1762 return (struct leaf *) n;
1763
1764 return leaf_walk_rcu(n, NULL);
1765}
1766
1767static struct leaf *trie_nextleaf(struct leaf *l)
1768{
1769 struct node *c = (struct node *) l;
b902e573 1770 struct tnode *p = node_parent_rcu(c);
82cfbb00
SH
1771
1772 if (!p)
1773 return NULL; /* trie with just one leaf */
1774
1775 return leaf_walk_rcu(p, c);
19baf839
RO
1776}
1777
71d67e66
SH
1778static struct leaf *trie_leafindex(struct trie *t, int index)
1779{
1780 struct leaf *l = trie_firstleaf(t);
1781
ec28cf73 1782 while (l && index-- > 0)
71d67e66 1783 l = trie_nextleaf(l);
ec28cf73 1784
71d67e66
SH
1785 return l;
1786}
1787
1788
d562f1f8
RO
1789/*
1790 * Caller must hold RTNL.
1791 */
16c6cf8b 1792int fib_table_flush(struct fib_table *tb)
19baf839
RO
1793{
1794 struct trie *t = (struct trie *) tb->tb_data;
9195bef7 1795 struct leaf *l, *ll = NULL;
82cfbb00 1796 int found = 0;
19baf839 1797
82cfbb00 1798 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
ef3660ce 1799 found += trie_flush_leaf(l);
19baf839
RO
1800
1801 if (ll && hlist_empty(&ll->list))
9195bef7 1802 trie_leaf_remove(t, ll);
19baf839
RO
1803 ll = l;
1804 }
1805
1806 if (ll && hlist_empty(&ll->list))
9195bef7 1807 trie_leaf_remove(t, ll);
19baf839 1808
0c7770c7 1809 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1810 return found;
1811}
1812
16c6cf8b
SH
1813void fib_table_select_default(struct fib_table *tb,
1814 const struct flowi *flp,
1815 struct fib_result *res)
19baf839
RO
1816{
1817 struct trie *t = (struct trie *) tb->tb_data;
1818 int order, last_idx;
1819 struct fib_info *fi = NULL;
1820 struct fib_info *last_resort;
1821 struct fib_alias *fa = NULL;
1822 struct list_head *fa_head;
1823 struct leaf *l;
1824
1825 last_idx = -1;
1826 last_resort = NULL;
1827 order = -1;
1828
2373ce1c 1829 rcu_read_lock();
c877efb2 1830
19baf839 1831 l = fib_find_node(t, 0);
c877efb2 1832 if (!l)
19baf839
RO
1833 goto out;
1834
1835 fa_head = get_fa_head(l, 0);
c877efb2 1836 if (!fa_head)
19baf839
RO
1837 goto out;
1838
c877efb2 1839 if (list_empty(fa_head))
19baf839
RO
1840 goto out;
1841
2373ce1c 1842 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1843 struct fib_info *next_fi = fa->fa_info;
91b9a277 1844
19baf839
RO
1845 if (fa->fa_scope != res->scope ||
1846 fa->fa_type != RTN_UNICAST)
1847 continue;
91b9a277 1848
19baf839
RO
1849 if (next_fi->fib_priority > res->fi->fib_priority)
1850 break;
1851 if (!next_fi->fib_nh[0].nh_gw ||
1852 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1853 continue;
1854 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1855
19baf839
RO
1856 if (fi == NULL) {
1857 if (next_fi != res->fi)
1858 break;
1859 } else if (!fib_detect_death(fi, order, &last_resort,
971b893e 1860 &last_idx, tb->tb_default)) {
a2bbe682 1861 fib_result_assign(res, fi);
971b893e 1862 tb->tb_default = order;
19baf839
RO
1863 goto out;
1864 }
1865 fi = next_fi;
1866 order++;
1867 }
1868 if (order <= 0 || fi == NULL) {
971b893e 1869 tb->tb_default = -1;
19baf839
RO
1870 goto out;
1871 }
1872
971b893e
DL
1873 if (!fib_detect_death(fi, order, &last_resort, &last_idx,
1874 tb->tb_default)) {
a2bbe682 1875 fib_result_assign(res, fi);
971b893e 1876 tb->tb_default = order;
19baf839
RO
1877 goto out;
1878 }
a2bbe682
DL
1879 if (last_idx >= 0)
1880 fib_result_assign(res, last_resort);
971b893e
DL
1881 tb->tb_default = last_idx;
1882out:
2373ce1c 1883 rcu_read_unlock();
19baf839
RO
1884}
1885
a07f5f50
SH
1886static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1887 struct fib_table *tb,
19baf839
RO
1888 struct sk_buff *skb, struct netlink_callback *cb)
1889{
1890 int i, s_i;
1891 struct fib_alias *fa;
32ab5f80 1892 __be32 xkey = htonl(key);
19baf839 1893
71d67e66 1894 s_i = cb->args[5];
19baf839
RO
1895 i = 0;
1896
2373ce1c
RO
1897 /* rcu_read_lock is hold by caller */
1898
1899 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1900 if (i < s_i) {
1901 i++;
1902 continue;
1903 }
19baf839
RO
1904
1905 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1906 cb->nlh->nlmsg_seq,
1907 RTM_NEWROUTE,
1908 tb->tb_id,
1909 fa->fa_type,
1910 fa->fa_scope,
be403ea1 1911 xkey,
19baf839
RO
1912 plen,
1913 fa->fa_tos,
64347f78 1914 fa->fa_info, NLM_F_MULTI) < 0) {
71d67e66 1915 cb->args[5] = i;
19baf839 1916 return -1;
91b9a277 1917 }
19baf839
RO
1918 i++;
1919 }
71d67e66 1920 cb->args[5] = i;
19baf839
RO
1921 return skb->len;
1922}
1923
a88ee229
SH
1924static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1925 struct sk_buff *skb, struct netlink_callback *cb)
19baf839 1926{
a88ee229
SH
1927 struct leaf_info *li;
1928 struct hlist_node *node;
1929 int i, s_i;
19baf839 1930
71d67e66 1931 s_i = cb->args[4];
a88ee229 1932 i = 0;
19baf839 1933
a88ee229
SH
1934 /* rcu_read_lock is hold by caller */
1935 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
1936 if (i < s_i) {
1937 i++;
19baf839 1938 continue;
a88ee229 1939 }
91b9a277 1940
a88ee229 1941 if (i > s_i)
71d67e66 1942 cb->args[5] = 0;
19baf839 1943
a88ee229 1944 if (list_empty(&li->falh))
19baf839
RO
1945 continue;
1946
a88ee229 1947 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
71d67e66 1948 cb->args[4] = i;
19baf839
RO
1949 return -1;
1950 }
a88ee229 1951 i++;
19baf839 1952 }
a88ee229 1953
71d67e66 1954 cb->args[4] = i;
19baf839
RO
1955 return skb->len;
1956}
1957
16c6cf8b
SH
1958int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1959 struct netlink_callback *cb)
19baf839 1960{
a88ee229 1961 struct leaf *l;
19baf839 1962 struct trie *t = (struct trie *) tb->tb_data;
d5ce8a0e 1963 t_key key = cb->args[2];
71d67e66 1964 int count = cb->args[3];
19baf839 1965
2373ce1c 1966 rcu_read_lock();
d5ce8a0e
SH
1967 /* Dump starting at last key.
1968 * Note: 0.0.0.0/0 (ie default) is first key.
1969 */
71d67e66 1970 if (count == 0)
d5ce8a0e
SH
1971 l = trie_firstleaf(t);
1972 else {
71d67e66
SH
1973 /* Normally, continue from last key, but if that is missing
1974 * fallback to using slow rescan
1975 */
d5ce8a0e 1976 l = fib_find_node(t, key);
71d67e66
SH
1977 if (!l)
1978 l = trie_leafindex(t, count);
d5ce8a0e 1979 }
a88ee229 1980
d5ce8a0e
SH
1981 while (l) {
1982 cb->args[2] = l->key;
a88ee229 1983 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
71d67e66 1984 cb->args[3] = count;
a88ee229 1985 rcu_read_unlock();
a88ee229 1986 return -1;
19baf839 1987 }
d5ce8a0e 1988
71d67e66 1989 ++count;
d5ce8a0e 1990 l = trie_nextleaf(l);
71d67e66
SH
1991 memset(&cb->args[4], 0,
1992 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839 1993 }
71d67e66 1994 cb->args[3] = count;
2373ce1c 1995 rcu_read_unlock();
a88ee229 1996
19baf839 1997 return skb->len;
19baf839
RO
1998}
1999
7f9b8052
SH
2000void __init fib_hash_init(void)
2001{
a07f5f50
SH
2002 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2003 sizeof(struct fib_alias),
bc3c8c1e
SH
2004 0, SLAB_PANIC, NULL);
2005
2006 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2007 max(sizeof(struct leaf),
2008 sizeof(struct leaf_info)),
2009 0, SLAB_PANIC, NULL);
7f9b8052 2010}
19baf839 2011
7f9b8052
SH
2012
2013/* Fix more generic FIB names for init later */
2014struct fib_table *fib_hash_table(u32 id)
19baf839
RO
2015{
2016 struct fib_table *tb;
2017 struct trie *t;
2018
19baf839
RO
2019 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
2020 GFP_KERNEL);
2021 if (tb == NULL)
2022 return NULL;
2023
2024 tb->tb_id = id;
971b893e 2025 tb->tb_default = -1;
19baf839
RO
2026
2027 t = (struct trie *) tb->tb_data;
c28a1cf4 2028 memset(t, 0, sizeof(*t));
19baf839 2029
19baf839 2030 if (id == RT_TABLE_LOCAL)
a07f5f50 2031 pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
2032
2033 return tb;
2034}
2035
cb7b593c
SH
2036#ifdef CONFIG_PROC_FS
2037/* Depth first Trie walk iterator */
2038struct fib_trie_iter {
1c340b2f 2039 struct seq_net_private p;
3d3b2d25 2040 struct fib_table *tb;
cb7b593c 2041 struct tnode *tnode;
cb7b593c
SH
2042 unsigned index;
2043 unsigned depth;
2044};
19baf839 2045
cb7b593c 2046static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2047{
cb7b593c
SH
2048 struct tnode *tn = iter->tnode;
2049 unsigned cindex = iter->index;
2050 struct tnode *p;
19baf839 2051
6640e697
EB
2052 /* A single entry routing table */
2053 if (!tn)
2054 return NULL;
2055
cb7b593c
SH
2056 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2057 iter->tnode, iter->index, iter->depth);
2058rescan:
2059 while (cindex < (1<<tn->bits)) {
b59cfbf7 2060 struct node *n = tnode_get_child_rcu(tn, cindex);
19baf839 2061
cb7b593c
SH
2062 if (n) {
2063 if (IS_LEAF(n)) {
2064 iter->tnode = tn;
2065 iter->index = cindex + 1;
2066 } else {
2067 /* push down one level */
2068 iter->tnode = (struct tnode *) n;
2069 iter->index = 0;
2070 ++iter->depth;
2071 }
2072 return n;
2073 }
19baf839 2074
cb7b593c
SH
2075 ++cindex;
2076 }
91b9a277 2077
cb7b593c 2078 /* Current node exhausted, pop back up */
b59cfbf7 2079 p = node_parent_rcu((struct node *)tn);
cb7b593c
SH
2080 if (p) {
2081 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2082 tn = p;
2083 --iter->depth;
2084 goto rescan;
19baf839 2085 }
cb7b593c
SH
2086
2087 /* got root? */
2088 return NULL;
19baf839
RO
2089}
2090
cb7b593c
SH
2091static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2092 struct trie *t)
19baf839 2093{
3d3b2d25 2094 struct node *n;
5ddf0eb2 2095
132adf54 2096 if (!t)
5ddf0eb2
RO
2097 return NULL;
2098
2099 n = rcu_dereference(t->trie);
3d3b2d25 2100 if (!n)
5ddf0eb2 2101 return NULL;
19baf839 2102
3d3b2d25
SH
2103 if (IS_TNODE(n)) {
2104 iter->tnode = (struct tnode *) n;
2105 iter->index = 0;
2106 iter->depth = 1;
2107 } else {
2108 iter->tnode = NULL;
2109 iter->index = 0;
2110 iter->depth = 0;
91b9a277 2111 }
3d3b2d25
SH
2112
2113 return n;
cb7b593c 2114}
91b9a277 2115
cb7b593c
SH
2116static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2117{
2118 struct node *n;
2119 struct fib_trie_iter iter;
91b9a277 2120
cb7b593c 2121 memset(s, 0, sizeof(*s));
91b9a277 2122
cb7b593c 2123 rcu_read_lock();
3d3b2d25 2124 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
cb7b593c 2125 if (IS_LEAF(n)) {
93672292
SH
2126 struct leaf *l = (struct leaf *)n;
2127 struct leaf_info *li;
2128 struct hlist_node *tmp;
2129
cb7b593c
SH
2130 s->leaves++;
2131 s->totdepth += iter.depth;
2132 if (iter.depth > s->maxdepth)
2133 s->maxdepth = iter.depth;
93672292
SH
2134
2135 hlist_for_each_entry_rcu(li, tmp, &l->list, hlist)
2136 ++s->prefixes;
cb7b593c
SH
2137 } else {
2138 const struct tnode *tn = (const struct tnode *) n;
2139 int i;
2140
2141 s->tnodes++;
132adf54 2142 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2143 s->nodesizes[tn->bits]++;
2144
cb7b593c
SH
2145 for (i = 0; i < (1<<tn->bits); i++)
2146 if (!tn->child[i])
2147 s->nullpointers++;
19baf839 2148 }
19baf839 2149 }
2373ce1c 2150 rcu_read_unlock();
19baf839
RO
2151}
2152
cb7b593c
SH
2153/*
2154 * This outputs /proc/net/fib_triestats
2155 */
2156static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2157{
cb7b593c 2158 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2159
cb7b593c
SH
2160 if (stat->leaves)
2161 avdepth = stat->totdepth*100 / stat->leaves;
2162 else
2163 avdepth = 0;
91b9a277 2164
a07f5f50
SH
2165 seq_printf(seq, "\tAver depth: %u.%02d\n",
2166 avdepth / 100, avdepth % 100);
cb7b593c 2167 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2168
cb7b593c 2169 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
cb7b593c 2170 bytes = sizeof(struct leaf) * stat->leaves;
93672292
SH
2171
2172 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2173 bytes += sizeof(struct leaf_info) * stat->prefixes;
2174
187b5188 2175 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
cb7b593c 2176 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2177
06ef921d
RO
2178 max = MAX_STAT_DEPTH;
2179 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2180 max--;
19baf839 2181
cb7b593c
SH
2182 pointers = 0;
2183 for (i = 1; i <= max; i++)
2184 if (stat->nodesizes[i] != 0) {
187b5188 2185 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
cb7b593c
SH
2186 pointers += (1<<i) * stat->nodesizes[i];
2187 }
2188 seq_putc(seq, '\n');
187b5188 2189 seq_printf(seq, "\tPointers: %u\n", pointers);
2373ce1c 2190
cb7b593c 2191 bytes += sizeof(struct node *) * pointers;
187b5188
SH
2192 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2193 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
66a2f7fd 2194}
2373ce1c 2195
cb7b593c 2196#ifdef CONFIG_IP_FIB_TRIE_STATS
66a2f7fd
SH
2197static void trie_show_usage(struct seq_file *seq,
2198 const struct trie_use_stats *stats)
2199{
2200 seq_printf(seq, "\nCounters:\n---------\n");
a07f5f50
SH
2201 seq_printf(seq, "gets = %u\n", stats->gets);
2202 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2203 seq_printf(seq, "semantic match passed = %u\n",
2204 stats->semantic_match_passed);
2205 seq_printf(seq, "semantic match miss = %u\n",
2206 stats->semantic_match_miss);
2207 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2208 seq_printf(seq, "skipped node resize = %u\n\n",
2209 stats->resize_node_skipped);
cb7b593c 2210}
66a2f7fd
SH
2211#endif /* CONFIG_IP_FIB_TRIE_STATS */
2212
3d3b2d25 2213static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
d717a9a6 2214{
3d3b2d25
SH
2215 if (tb->tb_id == RT_TABLE_LOCAL)
2216 seq_puts(seq, "Local:\n");
2217 else if (tb->tb_id == RT_TABLE_MAIN)
2218 seq_puts(seq, "Main:\n");
2219 else
2220 seq_printf(seq, "Id %d:\n", tb->tb_id);
d717a9a6 2221}
19baf839 2222
3d3b2d25 2223
cb7b593c
SH
2224static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2225{
1c340b2f 2226 struct net *net = (struct net *)seq->private;
3d3b2d25 2227 unsigned int h;
877a9bff 2228
d717a9a6 2229 seq_printf(seq,
a07f5f50
SH
2230 "Basic info: size of leaf:"
2231 " %Zd bytes, size of tnode: %Zd bytes.\n",
d717a9a6
SH
2232 sizeof(struct leaf), sizeof(struct tnode));
2233
3d3b2d25
SH
2234 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2235 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2236 struct hlist_node *node;
2237 struct fib_table *tb;
2238
2239 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2240 struct trie *t = (struct trie *) tb->tb_data;
2241 struct trie_stat stat;
877a9bff 2242
3d3b2d25
SH
2243 if (!t)
2244 continue;
2245
2246 fib_table_print(seq, tb);
2247
2248 trie_collect_stats(t, &stat);
2249 trie_show_stats(seq, &stat);
2250#ifdef CONFIG_IP_FIB_TRIE_STATS
2251 trie_show_usage(seq, &t->stats);
2252#endif
2253 }
2254 }
19baf839 2255
cb7b593c 2256 return 0;
19baf839
RO
2257}
2258
cb7b593c 2259static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2260{
de05c557 2261 return single_open_net(inode, file, fib_triestat_seq_show);
1c340b2f
DL
2262}
2263
9a32144e 2264static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2265 .owner = THIS_MODULE,
2266 .open = fib_triestat_seq_open,
2267 .read = seq_read,
2268 .llseek = seq_lseek,
b6fcbdb4 2269 .release = single_release_net,
cb7b593c
SH
2270};
2271
1218854a 2272static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
19baf839 2273{
1218854a
YH
2274 struct fib_trie_iter *iter = seq->private;
2275 struct net *net = seq_file_net(seq);
cb7b593c 2276 loff_t idx = 0;
3d3b2d25 2277 unsigned int h;
cb7b593c 2278
3d3b2d25
SH
2279 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2280 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2281 struct hlist_node *node;
2282 struct fib_table *tb;
cb7b593c 2283
3d3b2d25
SH
2284 hlist_for_each_entry_rcu(tb, node, head, tb_hlist) {
2285 struct node *n;
2286
2287 for (n = fib_trie_get_first(iter,
2288 (struct trie *) tb->tb_data);
2289 n; n = fib_trie_get_next(iter))
2290 if (pos == idx++) {
2291 iter->tb = tb;
2292 return n;
2293 }
2294 }
cb7b593c 2295 }
3d3b2d25 2296
19baf839
RO
2297 return NULL;
2298}
2299
cb7b593c 2300static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
c95aaf9a 2301 __acquires(RCU)
19baf839 2302{
cb7b593c 2303 rcu_read_lock();
1218854a 2304 return fib_trie_get_idx(seq, *pos);
19baf839
RO
2305}
2306
cb7b593c 2307static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2308{
cb7b593c 2309 struct fib_trie_iter *iter = seq->private;
1218854a 2310 struct net *net = seq_file_net(seq);
3d3b2d25
SH
2311 struct fib_table *tb = iter->tb;
2312 struct hlist_node *tb_node;
2313 unsigned int h;
2314 struct node *n;
cb7b593c 2315
19baf839 2316 ++*pos;
3d3b2d25
SH
2317 /* next node in same table */
2318 n = fib_trie_get_next(iter);
2319 if (n)
2320 return n;
19baf839 2321
3d3b2d25
SH
2322 /* walk rest of this hash chain */
2323 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2324 while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) {
2325 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2326 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2327 if (n)
2328 goto found;
2329 }
19baf839 2330
3d3b2d25
SH
2331 /* new hash chain */
2332 while (++h < FIB_TABLE_HASHSZ) {
2333 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2334 hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) {
2335 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2336 if (n)
2337 goto found;
2338 }
2339 }
cb7b593c 2340 return NULL;
3d3b2d25
SH
2341
2342found:
2343 iter->tb = tb;
2344 return n;
cb7b593c 2345}
19baf839 2346
cb7b593c 2347static void fib_trie_seq_stop(struct seq_file *seq, void *v)
c95aaf9a 2348 __releases(RCU)
19baf839 2349{
cb7b593c
SH
2350 rcu_read_unlock();
2351}
91b9a277 2352
cb7b593c
SH
2353static void seq_indent(struct seq_file *seq, int n)
2354{
2355 while (n-- > 0) seq_puts(seq, " ");
2356}
19baf839 2357
28d36e37 2358static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
cb7b593c 2359{
132adf54 2360 switch (s) {
cb7b593c
SH
2361 case RT_SCOPE_UNIVERSE: return "universe";
2362 case RT_SCOPE_SITE: return "site";
2363 case RT_SCOPE_LINK: return "link";
2364 case RT_SCOPE_HOST: return "host";
2365 case RT_SCOPE_NOWHERE: return "nowhere";
2366 default:
28d36e37 2367 snprintf(buf, len, "scope=%d", s);
cb7b593c
SH
2368 return buf;
2369 }
2370}
19baf839 2371
36cbd3dc 2372static const char *const rtn_type_names[__RTN_MAX] = {
cb7b593c
SH
2373 [RTN_UNSPEC] = "UNSPEC",
2374 [RTN_UNICAST] = "UNICAST",
2375 [RTN_LOCAL] = "LOCAL",
2376 [RTN_BROADCAST] = "BROADCAST",
2377 [RTN_ANYCAST] = "ANYCAST",
2378 [RTN_MULTICAST] = "MULTICAST",
2379 [RTN_BLACKHOLE] = "BLACKHOLE",
2380 [RTN_UNREACHABLE] = "UNREACHABLE",
2381 [RTN_PROHIBIT] = "PROHIBIT",
2382 [RTN_THROW] = "THROW",
2383 [RTN_NAT] = "NAT",
2384 [RTN_XRESOLVE] = "XRESOLVE",
2385};
19baf839 2386
28d36e37 2387static inline const char *rtn_type(char *buf, size_t len, unsigned t)
cb7b593c 2388{
cb7b593c
SH
2389 if (t < __RTN_MAX && rtn_type_names[t])
2390 return rtn_type_names[t];
28d36e37 2391 snprintf(buf, len, "type %u", t);
cb7b593c 2392 return buf;
19baf839
RO
2393}
2394
cb7b593c
SH
2395/* Pretty print the trie */
2396static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2397{
cb7b593c
SH
2398 const struct fib_trie_iter *iter = seq->private;
2399 struct node *n = v;
c877efb2 2400
3d3b2d25
SH
2401 if (!node_parent_rcu(n))
2402 fib_table_print(seq, iter->tb);
095b8501 2403
cb7b593c
SH
2404 if (IS_TNODE(n)) {
2405 struct tnode *tn = (struct tnode *) n;
ab66b4a7 2406 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
91b9a277 2407
1d25cd6c 2408 seq_indent(seq, iter->depth-1);
673d57e7
HH
2409 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2410 &prf, tn->pos, tn->bits, tn->full_children,
1d25cd6c 2411 tn->empty_children);
e905a9ed 2412
cb7b593c
SH
2413 } else {
2414 struct leaf *l = (struct leaf *) n;
1328042e
SH
2415 struct leaf_info *li;
2416 struct hlist_node *node;
32ab5f80 2417 __be32 val = htonl(l->key);
cb7b593c
SH
2418
2419 seq_indent(seq, iter->depth);
673d57e7 2420 seq_printf(seq, " |-- %pI4\n", &val);
1328042e
SH
2421
2422 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
2423 struct fib_alias *fa;
2424
2425 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2426 char buf1[32], buf2[32];
2427
2428 seq_indent(seq, iter->depth+1);
2429 seq_printf(seq, " /%d %s %s", li->plen,
2430 rtn_scope(buf1, sizeof(buf1),
2431 fa->fa_scope),
2432 rtn_type(buf2, sizeof(buf2),
2433 fa->fa_type));
2434 if (fa->fa_tos)
b9c4d82a 2435 seq_printf(seq, " tos=%d", fa->fa_tos);
1328042e 2436 seq_putc(seq, '\n');
cb7b593c
SH
2437 }
2438 }
19baf839 2439 }
cb7b593c 2440
19baf839
RO
2441 return 0;
2442}
2443
f690808e 2444static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2445 .start = fib_trie_seq_start,
2446 .next = fib_trie_seq_next,
2447 .stop = fib_trie_seq_stop,
2448 .show = fib_trie_seq_show,
19baf839
RO
2449};
2450
cb7b593c 2451static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839 2452{
1c340b2f
DL
2453 return seq_open_net(inode, file, &fib_trie_seq_ops,
2454 sizeof(struct fib_trie_iter));
19baf839
RO
2455}
2456
9a32144e 2457static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2458 .owner = THIS_MODULE,
2459 .open = fib_trie_seq_open,
2460 .read = seq_read,
2461 .llseek = seq_lseek,
1c340b2f 2462 .release = seq_release_net,
19baf839
RO
2463};
2464
8315f5d8
SH
2465struct fib_route_iter {
2466 struct seq_net_private p;
2467 struct trie *main_trie;
2468 loff_t pos;
2469 t_key key;
2470};
2471
2472static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2473{
2474 struct leaf *l = NULL;
2475 struct trie *t = iter->main_trie;
2476
2477 /* use cache location of last found key */
2478 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2479 pos -= iter->pos;
2480 else {
2481 iter->pos = 0;
2482 l = trie_firstleaf(t);
2483 }
2484
2485 while (l && pos-- > 0) {
2486 iter->pos++;
2487 l = trie_nextleaf(l);
2488 }
2489
2490 if (l)
2491 iter->key = pos; /* remember it */
2492 else
2493 iter->pos = 0; /* forget it */
2494
2495 return l;
2496}
2497
2498static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2499 __acquires(RCU)
2500{
2501 struct fib_route_iter *iter = seq->private;
2502 struct fib_table *tb;
2503
2504 rcu_read_lock();
1218854a 2505 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
8315f5d8
SH
2506 if (!tb)
2507 return NULL;
2508
2509 iter->main_trie = (struct trie *) tb->tb_data;
2510 if (*pos == 0)
2511 return SEQ_START_TOKEN;
2512 else
2513 return fib_route_get_idx(iter, *pos - 1);
2514}
2515
2516static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2517{
2518 struct fib_route_iter *iter = seq->private;
2519 struct leaf *l = v;
2520
2521 ++*pos;
2522 if (v == SEQ_START_TOKEN) {
2523 iter->pos = 0;
2524 l = trie_firstleaf(iter->main_trie);
2525 } else {
2526 iter->pos++;
2527 l = trie_nextleaf(l);
2528 }
2529
2530 if (l)
2531 iter->key = l->key;
2532 else
2533 iter->pos = 0;
2534 return l;
2535}
2536
2537static void fib_route_seq_stop(struct seq_file *seq, void *v)
2538 __releases(RCU)
2539{
2540 rcu_read_unlock();
2541}
2542
32ab5f80 2543static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2544{
cb7b593c
SH
2545 static unsigned type2flags[RTN_MAX + 1] = {
2546 [7] = RTF_REJECT, [8] = RTF_REJECT,
2547 };
2548 unsigned flags = type2flags[type];
19baf839 2549
cb7b593c
SH
2550 if (fi && fi->fib_nh->nh_gw)
2551 flags |= RTF_GATEWAY;
32ab5f80 2552 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2553 flags |= RTF_HOST;
2554 flags |= RTF_UP;
2555 return flags;
19baf839
RO
2556}
2557
cb7b593c
SH
2558/*
2559 * This outputs /proc/net/route.
2560 * The format of the file is not supposed to be changed
2561 * and needs to be same as fib_hash output to avoid breaking
2562 * legacy utilities
2563 */
2564static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2565{
cb7b593c 2566 struct leaf *l = v;
1328042e
SH
2567 struct leaf_info *li;
2568 struct hlist_node *node;
19baf839 2569
cb7b593c
SH
2570 if (v == SEQ_START_TOKEN) {
2571 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2572 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2573 "\tWindow\tIRTT");
2574 return 0;
2575 }
19baf839 2576
1328042e 2577 hlist_for_each_entry_rcu(li, node, &l->list, hlist) {
cb7b593c 2578 struct fib_alias *fa;
32ab5f80 2579 __be32 mask, prefix;
91b9a277 2580
cb7b593c
SH
2581 mask = inet_make_mask(li->plen);
2582 prefix = htonl(l->key);
19baf839 2583
cb7b593c 2584 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2585 const struct fib_info *fi = fa->fa_info;
cb7b593c 2586 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
5e659e4c 2587 int len;
19baf839 2588
cb7b593c
SH
2589 if (fa->fa_type == RTN_BROADCAST
2590 || fa->fa_type == RTN_MULTICAST)
2591 continue;
19baf839 2592
cb7b593c 2593 if (fi)
5e659e4c
PE
2594 seq_printf(seq,
2595 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2596 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c
SH
2597 fi->fib_dev ? fi->fib_dev->name : "*",
2598 prefix,
2599 fi->fib_nh->nh_gw, flags, 0, 0,
2600 fi->fib_priority,
2601 mask,
a07f5f50
SH
2602 (fi->fib_advmss ?
2603 fi->fib_advmss + 40 : 0),
cb7b593c 2604 fi->fib_window,
5e659e4c 2605 fi->fib_rtt >> 3, &len);
cb7b593c 2606 else
5e659e4c
PE
2607 seq_printf(seq,
2608 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2609 "%d\t%08X\t%d\t%u\t%u%n",
cb7b593c 2610 prefix, 0, flags, 0, 0, 0,
5e659e4c 2611 mask, 0, 0, 0, &len);
19baf839 2612
5e659e4c 2613 seq_printf(seq, "%*s\n", 127 - len, "");
cb7b593c 2614 }
19baf839
RO
2615 }
2616
2617 return 0;
2618}
2619
f690808e 2620static const struct seq_operations fib_route_seq_ops = {
8315f5d8
SH
2621 .start = fib_route_seq_start,
2622 .next = fib_route_seq_next,
2623 .stop = fib_route_seq_stop,
cb7b593c 2624 .show = fib_route_seq_show,
19baf839
RO
2625};
2626
cb7b593c 2627static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839 2628{
1c340b2f 2629 return seq_open_net(inode, file, &fib_route_seq_ops,
8315f5d8 2630 sizeof(struct fib_route_iter));
19baf839
RO
2631}
2632
9a32144e 2633static const struct file_operations fib_route_fops = {
cb7b593c
SH
2634 .owner = THIS_MODULE,
2635 .open = fib_route_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
1c340b2f 2638 .release = seq_release_net,
19baf839
RO
2639};
2640
61a02653 2641int __net_init fib_proc_init(struct net *net)
19baf839 2642{
61a02653 2643 if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops))
cb7b593c
SH
2644 goto out1;
2645
61a02653
DL
2646 if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO,
2647 &fib_triestat_fops))
cb7b593c
SH
2648 goto out2;
2649
61a02653 2650 if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops))
cb7b593c
SH
2651 goto out3;
2652
19baf839 2653 return 0;
cb7b593c
SH
2654
2655out3:
61a02653 2656 proc_net_remove(net, "fib_triestat");
cb7b593c 2657out2:
61a02653 2658 proc_net_remove(net, "fib_trie");
cb7b593c
SH
2659out1:
2660 return -ENOMEM;
19baf839
RO
2661}
2662
61a02653 2663void __net_exit fib_proc_exit(struct net *net)
19baf839 2664{
61a02653
DL
2665 proc_net_remove(net, "fib_trie");
2666 proc_net_remove(net, "fib_triestat");
2667 proc_net_remove(net, "route");
19baf839
RO
2668}
2669
2670#endif /* CONFIG_PROC_FS */