]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/swapfile.c
swap: prevent reuse during hibernation
[net-next-2.6.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
5ad64688 25#include <linux/ksm.h>
1da177e4
LT
26#include <linux/rmap.h>
27#include <linux/security.h>
28#include <linux/backing-dev.h>
fc0abb14 29#include <linux/mutex.h>
c59ede7b 30#include <linux/capability.h>
1da177e4 31#include <linux/syscalls.h>
8a9f3ccd 32#include <linux/memcontrol.h>
1da177e4
LT
33
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <linux/swapops.h>
27a7faa0 37#include <linux/page_cgroup.h>
1da177e4 38
570a335b
HD
39static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 unsigned char);
41static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 42static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 43
7c363b8c
AB
44static DEFINE_SPINLOCK(swap_lock);
45static unsigned int nr_swapfiles;
b962716b 46long nr_swap_pages;
1da177e4 47long total_swap_pages;
78ecba08 48static int least_priority;
1da177e4 49
1da177e4
LT
50static const char Bad_file[] = "Bad swap file entry ";
51static const char Unused_file[] = "Unused swap file entry ";
52static const char Bad_offset[] = "Bad swap offset entry ";
53static const char Unused_offset[] = "Unused swap offset entry ";
54
7c363b8c 55static struct swap_list_t swap_list = {-1, -1};
1da177e4 56
efa90a98 57static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 58
fc0abb14 59static DEFINE_MUTEX(swapon_mutex);
1da177e4 60
8d69aaee 61static inline unsigned char swap_count(unsigned char ent)
355cfa73 62{
570a335b 63 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
64}
65
efa90a98 66/* returns 1 if swap entry is freed */
c9e44410
KH
67static int
68__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69{
efa90a98 70 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
71 struct page *page;
72 int ret = 0;
73
74 page = find_get_page(&swapper_space, entry.val);
75 if (!page)
76 return 0;
77 /*
78 * This function is called from scan_swap_map() and it's called
79 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 * We have to use trylock for avoiding deadlock. This is a special
81 * case and you should use try_to_free_swap() with explicit lock_page()
82 * in usual operations.
83 */
84 if (trylock_page(page)) {
85 ret = try_to_free_swap(page);
86 unlock_page(page);
87 }
88 page_cache_release(page);
89 return ret;
90}
355cfa73 91
1da177e4
LT
92/*
93 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 94 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 95 * cannot be turned into a mutex.
1da177e4
LT
96 */
97static DECLARE_RWSEM(swap_unplug_sem);
98
1da177e4
LT
99void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100{
101 swp_entry_t entry;
102
103 down_read(&swap_unplug_sem);
4c21e2f2 104 entry.val = page_private(page);
1da177e4 105 if (PageSwapCache(page)) {
efa90a98 106 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
107 struct backing_dev_info *bdi;
108
109 /*
110 * If the page is removed from swapcache from under us (with a
111 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
112 * count to avoid reading garbage from page_private(page) above.
113 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
114 * condition and it's harmless. However if it triggers without
115 * swapoff it signals a problem.
116 */
117 WARN_ON(page_count(page) <= 1);
118
119 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 120 blk_run_backing_dev(bdi, page);
1da177e4
LT
121 }
122 up_read(&swap_unplug_sem);
123}
124
6a6ba831
HD
125/*
126 * swapon tell device that all the old swap contents can be discarded,
127 * to allow the swap device to optimize its wear-levelling.
128 */
129static int discard_swap(struct swap_info_struct *si)
130{
131 struct swap_extent *se;
9625a5f2
HD
132 sector_t start_block;
133 sector_t nr_blocks;
6a6ba831
HD
134 int err = 0;
135
9625a5f2
HD
136 /* Do not discard the swap header page! */
137 se = &si->first_swap_extent;
138 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 if (nr_blocks) {
141 err = blkdev_issue_discard(si->bdev, start_block,
fbd9b09a
DM
142 nr_blocks, GFP_KERNEL,
143 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
9625a5f2
HD
144 if (err)
145 return err;
146 cond_resched();
147 }
6a6ba831 148
9625a5f2
HD
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
152
153 err = blkdev_issue_discard(si->bdev, start_block,
fbd9b09a
DM
154 nr_blocks, GFP_KERNEL,
155 BLKDEV_IFL_WAIT | BLKDEV_IFL_BARRIER);
6a6ba831
HD
156 if (err)
157 break;
158
159 cond_resched();
160 }
161 return err; /* That will often be -EOPNOTSUPP */
162}
163
7992fde7
HD
164/*
165 * swap allocation tell device that a cluster of swap can now be discarded,
166 * to allow the swap device to optimize its wear-levelling.
167 */
168static void discard_swap_cluster(struct swap_info_struct *si,
169 pgoff_t start_page, pgoff_t nr_pages)
170{
171 struct swap_extent *se = si->curr_swap_extent;
172 int found_extent = 0;
173
174 while (nr_pages) {
175 struct list_head *lh;
176
177 if (se->start_page <= start_page &&
178 start_page < se->start_page + se->nr_pages) {
179 pgoff_t offset = start_page - se->start_page;
180 sector_t start_block = se->start_block + offset;
858a2990 181 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
182
183 if (nr_blocks > nr_pages)
184 nr_blocks = nr_pages;
185 start_page += nr_blocks;
186 nr_pages -= nr_blocks;
187
188 if (!found_extent++)
189 si->curr_swap_extent = se;
190
191 start_block <<= PAGE_SHIFT - 9;
192 nr_blocks <<= PAGE_SHIFT - 9;
193 if (blkdev_issue_discard(si->bdev, start_block,
fbd9b09a
DM
194 nr_blocks, GFP_NOIO, BLKDEV_IFL_WAIT |
195 BLKDEV_IFL_BARRIER))
7992fde7
HD
196 break;
197 }
198
199 lh = se->list.next;
7992fde7
HD
200 se = list_entry(lh, struct swap_extent, list);
201 }
202}
203
204static int wait_for_discard(void *word)
205{
206 schedule();
207 return 0;
208}
209
048c27fd
HD
210#define SWAPFILE_CLUSTER 256
211#define LATENCY_LIMIT 256
212
355cfa73 213static inline unsigned long scan_swap_map(struct swap_info_struct *si,
8d69aaee 214 unsigned char usage)
1da177e4 215{
ebebbbe9 216 unsigned long offset;
c60aa176 217 unsigned long scan_base;
7992fde7 218 unsigned long last_in_cluster = 0;
048c27fd 219 int latency_ration = LATENCY_LIMIT;
7992fde7 220 int found_free_cluster = 0;
7dfad418 221
886bb7e9 222 /*
7dfad418
HD
223 * We try to cluster swap pages by allocating them sequentially
224 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
225 * way, however, we resort to first-free allocation, starting
226 * a new cluster. This prevents us from scattering swap pages
227 * all over the entire swap partition, so that we reduce
228 * overall disk seek times between swap pages. -- sct
229 * But we do now try to find an empty cluster. -Andrea
c60aa176 230 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
231 */
232
52b7efdb 233 si->flags += SWP_SCANNING;
c60aa176 234 scan_base = offset = si->cluster_next;
ebebbbe9
HD
235
236 if (unlikely(!si->cluster_nr--)) {
237 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
238 si->cluster_nr = SWAPFILE_CLUSTER - 1;
239 goto checks;
240 }
7992fde7
HD
241 if (si->flags & SWP_DISCARDABLE) {
242 /*
243 * Start range check on racing allocations, in case
244 * they overlap the cluster we eventually decide on
245 * (we scan without swap_lock to allow preemption).
246 * It's hardly conceivable that cluster_nr could be
247 * wrapped during our scan, but don't depend on it.
248 */
249 if (si->lowest_alloc)
250 goto checks;
251 si->lowest_alloc = si->max;
252 si->highest_alloc = 0;
253 }
5d337b91 254 spin_unlock(&swap_lock);
7dfad418 255
c60aa176
HD
256 /*
257 * If seek is expensive, start searching for new cluster from
258 * start of partition, to minimize the span of allocated swap.
259 * But if seek is cheap, search from our current position, so
260 * that swap is allocated from all over the partition: if the
261 * Flash Translation Layer only remaps within limited zones,
262 * we don't want to wear out the first zone too quickly.
263 */
264 if (!(si->flags & SWP_SOLIDSTATE))
265 scan_base = offset = si->lowest_bit;
7dfad418
HD
266 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
267
268 /* Locate the first empty (unaligned) cluster */
269 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 270 if (si->swap_map[offset])
7dfad418
HD
271 last_in_cluster = offset + SWAPFILE_CLUSTER;
272 else if (offset == last_in_cluster) {
5d337b91 273 spin_lock(&swap_lock);
ebebbbe9
HD
274 offset -= SWAPFILE_CLUSTER - 1;
275 si->cluster_next = offset;
276 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 277 found_free_cluster = 1;
ebebbbe9 278 goto checks;
1da177e4 279 }
048c27fd
HD
280 if (unlikely(--latency_ration < 0)) {
281 cond_resched();
282 latency_ration = LATENCY_LIMIT;
283 }
7dfad418 284 }
ebebbbe9
HD
285
286 offset = si->lowest_bit;
c60aa176
HD
287 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
288
289 /* Locate the first empty (unaligned) cluster */
290 for (; last_in_cluster < scan_base; offset++) {
291 if (si->swap_map[offset])
292 last_in_cluster = offset + SWAPFILE_CLUSTER;
293 else if (offset == last_in_cluster) {
294 spin_lock(&swap_lock);
295 offset -= SWAPFILE_CLUSTER - 1;
296 si->cluster_next = offset;
297 si->cluster_nr = SWAPFILE_CLUSTER - 1;
298 found_free_cluster = 1;
299 goto checks;
300 }
301 if (unlikely(--latency_ration < 0)) {
302 cond_resched();
303 latency_ration = LATENCY_LIMIT;
304 }
305 }
306
307 offset = scan_base;
5d337b91 308 spin_lock(&swap_lock);
ebebbbe9 309 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 310 si->lowest_alloc = 0;
1da177e4 311 }
7dfad418 312
ebebbbe9
HD
313checks:
314 if (!(si->flags & SWP_WRITEOK))
52b7efdb 315 goto no_page;
7dfad418
HD
316 if (!si->highest_bit)
317 goto no_page;
ebebbbe9 318 if (offset > si->highest_bit)
c60aa176 319 scan_base = offset = si->lowest_bit;
c9e44410 320
b73d7fce
HD
321 /* reuse swap entry of cache-only swap if not busy. */
322 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410
KH
323 int swap_was_freed;
324 spin_unlock(&swap_lock);
325 swap_was_freed = __try_to_reclaim_swap(si, offset);
326 spin_lock(&swap_lock);
327 /* entry was freed successfully, try to use this again */
328 if (swap_was_freed)
329 goto checks;
330 goto scan; /* check next one */
331 }
332
ebebbbe9
HD
333 if (si->swap_map[offset])
334 goto scan;
335
336 if (offset == si->lowest_bit)
337 si->lowest_bit++;
338 if (offset == si->highest_bit)
339 si->highest_bit--;
340 si->inuse_pages++;
341 if (si->inuse_pages == si->pages) {
342 si->lowest_bit = si->max;
343 si->highest_bit = 0;
1da177e4 344 }
253d553b 345 si->swap_map[offset] = usage;
ebebbbe9
HD
346 si->cluster_next = offset + 1;
347 si->flags -= SWP_SCANNING;
7992fde7
HD
348
349 if (si->lowest_alloc) {
350 /*
351 * Only set when SWP_DISCARDABLE, and there's a scan
352 * for a free cluster in progress or just completed.
353 */
354 if (found_free_cluster) {
355 /*
356 * To optimize wear-levelling, discard the
357 * old data of the cluster, taking care not to
358 * discard any of its pages that have already
359 * been allocated by racing tasks (offset has
360 * already stepped over any at the beginning).
361 */
362 if (offset < si->highest_alloc &&
363 si->lowest_alloc <= last_in_cluster)
364 last_in_cluster = si->lowest_alloc - 1;
365 si->flags |= SWP_DISCARDING;
366 spin_unlock(&swap_lock);
367
368 if (offset < last_in_cluster)
369 discard_swap_cluster(si, offset,
370 last_in_cluster - offset + 1);
371
372 spin_lock(&swap_lock);
373 si->lowest_alloc = 0;
374 si->flags &= ~SWP_DISCARDING;
375
376 smp_mb(); /* wake_up_bit advises this */
377 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
378
379 } else if (si->flags & SWP_DISCARDING) {
380 /*
381 * Delay using pages allocated by racing tasks
382 * until the whole discard has been issued. We
383 * could defer that delay until swap_writepage,
384 * but it's easier to keep this self-contained.
385 */
386 spin_unlock(&swap_lock);
387 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
388 wait_for_discard, TASK_UNINTERRUPTIBLE);
389 spin_lock(&swap_lock);
390 } else {
391 /*
392 * Note pages allocated by racing tasks while
393 * scan for a free cluster is in progress, so
394 * that its final discard can exclude them.
395 */
396 if (offset < si->lowest_alloc)
397 si->lowest_alloc = offset;
398 if (offset > si->highest_alloc)
399 si->highest_alloc = offset;
400 }
401 }
ebebbbe9 402 return offset;
7dfad418 403
ebebbbe9 404scan:
5d337b91 405 spin_unlock(&swap_lock);
7dfad418 406 while (++offset <= si->highest_bit) {
52b7efdb 407 if (!si->swap_map[offset]) {
5d337b91 408 spin_lock(&swap_lock);
52b7efdb
HD
409 goto checks;
410 }
c9e44410
KH
411 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
412 spin_lock(&swap_lock);
413 goto checks;
414 }
048c27fd
HD
415 if (unlikely(--latency_ration < 0)) {
416 cond_resched();
417 latency_ration = LATENCY_LIMIT;
418 }
7dfad418 419 }
c60aa176
HD
420 offset = si->lowest_bit;
421 while (++offset < scan_base) {
422 if (!si->swap_map[offset]) {
423 spin_lock(&swap_lock);
424 goto checks;
425 }
c9e44410
KH
426 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
427 spin_lock(&swap_lock);
428 goto checks;
429 }
c60aa176
HD
430 if (unlikely(--latency_ration < 0)) {
431 cond_resched();
432 latency_ration = LATENCY_LIMIT;
433 }
434 }
5d337b91 435 spin_lock(&swap_lock);
7dfad418
HD
436
437no_page:
52b7efdb 438 si->flags -= SWP_SCANNING;
1da177e4
LT
439 return 0;
440}
441
442swp_entry_t get_swap_page(void)
443{
fb4f88dc
HD
444 struct swap_info_struct *si;
445 pgoff_t offset;
446 int type, next;
447 int wrapped = 0;
1da177e4 448
5d337b91 449 spin_lock(&swap_lock);
1da177e4 450 if (nr_swap_pages <= 0)
fb4f88dc
HD
451 goto noswap;
452 nr_swap_pages--;
453
454 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 455 si = swap_info[type];
fb4f88dc
HD
456 next = si->next;
457 if (next < 0 ||
efa90a98 458 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
459 next = swap_list.head;
460 wrapped++;
1da177e4 461 }
fb4f88dc
HD
462
463 if (!si->highest_bit)
464 continue;
465 if (!(si->flags & SWP_WRITEOK))
466 continue;
467
468 swap_list.next = next;
355cfa73 469 /* This is called for allocating swap entry for cache */
253d553b 470 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
471 if (offset) {
472 spin_unlock(&swap_lock);
fb4f88dc 473 return swp_entry(type, offset);
5d337b91 474 }
fb4f88dc 475 next = swap_list.next;
1da177e4 476 }
fb4f88dc
HD
477
478 nr_swap_pages++;
479noswap:
5d337b91 480 spin_unlock(&swap_lock);
fb4f88dc 481 return (swp_entry_t) {0};
1da177e4
LT
482}
483
910321ea
HD
484/* The only caller of this function is now susupend routine */
485swp_entry_t get_swap_page_of_type(int type)
486{
487 struct swap_info_struct *si;
488 pgoff_t offset;
489
490 spin_lock(&swap_lock);
491 si = swap_info[type];
492 if (si && (si->flags & SWP_WRITEOK)) {
493 nr_swap_pages--;
494 /* This is called for allocating swap entry, not cache */
495 offset = scan_swap_map(si, 1);
496 if (offset) {
497 spin_unlock(&swap_lock);
498 return swp_entry(type, offset);
499 }
500 nr_swap_pages++;
501 }
502 spin_unlock(&swap_lock);
503 return (swp_entry_t) {0};
504}
505
73c34b6a 506static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 507{
73c34b6a 508 struct swap_info_struct *p;
1da177e4
LT
509 unsigned long offset, type;
510
511 if (!entry.val)
512 goto out;
513 type = swp_type(entry);
514 if (type >= nr_swapfiles)
515 goto bad_nofile;
efa90a98 516 p = swap_info[type];
1da177e4
LT
517 if (!(p->flags & SWP_USED))
518 goto bad_device;
519 offset = swp_offset(entry);
520 if (offset >= p->max)
521 goto bad_offset;
522 if (!p->swap_map[offset])
523 goto bad_free;
5d337b91 524 spin_lock(&swap_lock);
1da177e4
LT
525 return p;
526
527bad_free:
528 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
529 goto out;
530bad_offset:
531 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
532 goto out;
533bad_device:
534 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
535 goto out;
536bad_nofile:
537 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
538out:
539 return NULL;
886bb7e9 540}
1da177e4 541
8d69aaee
HD
542static unsigned char swap_entry_free(struct swap_info_struct *p,
543 swp_entry_t entry, unsigned char usage)
1da177e4 544{
253d553b 545 unsigned long offset = swp_offset(entry);
8d69aaee
HD
546 unsigned char count;
547 unsigned char has_cache;
355cfa73 548
253d553b
HD
549 count = p->swap_map[offset];
550 has_cache = count & SWAP_HAS_CACHE;
551 count &= ~SWAP_HAS_CACHE;
355cfa73 552
253d553b 553 if (usage == SWAP_HAS_CACHE) {
355cfa73 554 VM_BUG_ON(!has_cache);
253d553b 555 has_cache = 0;
aaa46865
HD
556 } else if (count == SWAP_MAP_SHMEM) {
557 /*
558 * Or we could insist on shmem.c using a special
559 * swap_shmem_free() and free_shmem_swap_and_cache()...
560 */
561 count = 0;
570a335b
HD
562 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
563 if (count == COUNT_CONTINUED) {
564 if (swap_count_continued(p, offset, count))
565 count = SWAP_MAP_MAX | COUNT_CONTINUED;
566 else
567 count = SWAP_MAP_MAX;
568 } else
569 count--;
570 }
253d553b
HD
571
572 if (!count)
573 mem_cgroup_uncharge_swap(entry);
574
575 usage = count | has_cache;
576 p->swap_map[offset] = usage;
355cfa73 577
355cfa73 578 /* free if no reference */
253d553b 579 if (!usage) {
b3a27d05 580 struct gendisk *disk = p->bdev->bd_disk;
355cfa73
KH
581 if (offset < p->lowest_bit)
582 p->lowest_bit = offset;
583 if (offset > p->highest_bit)
584 p->highest_bit = offset;
efa90a98
HD
585 if (swap_list.next >= 0 &&
586 p->prio > swap_info[swap_list.next]->prio)
587 swap_list.next = p->type;
355cfa73
KH
588 nr_swap_pages++;
589 p->inuse_pages--;
b3a27d05
NG
590 if ((p->flags & SWP_BLKDEV) &&
591 disk->fops->swap_slot_free_notify)
592 disk->fops->swap_slot_free_notify(p->bdev, offset);
1da177e4 593 }
253d553b
HD
594
595 return usage;
1da177e4
LT
596}
597
598/*
599 * Caller has made sure that the swapdevice corresponding to entry
600 * is still around or has not been recycled.
601 */
602void swap_free(swp_entry_t entry)
603{
73c34b6a 604 struct swap_info_struct *p;
1da177e4
LT
605
606 p = swap_info_get(entry);
607 if (p) {
253d553b 608 swap_entry_free(p, entry, 1);
5d337b91 609 spin_unlock(&swap_lock);
1da177e4
LT
610 }
611}
612
cb4b86ba
KH
613/*
614 * Called after dropping swapcache to decrease refcnt to swap entries.
615 */
616void swapcache_free(swp_entry_t entry, struct page *page)
617{
355cfa73 618 struct swap_info_struct *p;
8d69aaee 619 unsigned char count;
355cfa73 620
355cfa73
KH
621 p = swap_info_get(entry);
622 if (p) {
253d553b
HD
623 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
624 if (page)
625 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
626 spin_unlock(&swap_lock);
627 }
cb4b86ba
KH
628}
629
1da177e4 630/*
c475a8ab 631 * How many references to page are currently swapped out?
570a335b
HD
632 * This does not give an exact answer when swap count is continued,
633 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 634 */
c475a8ab 635static inline int page_swapcount(struct page *page)
1da177e4 636{
c475a8ab
HD
637 int count = 0;
638 struct swap_info_struct *p;
1da177e4
LT
639 swp_entry_t entry;
640
4c21e2f2 641 entry.val = page_private(page);
1da177e4
LT
642 p = swap_info_get(entry);
643 if (p) {
355cfa73 644 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 645 spin_unlock(&swap_lock);
1da177e4 646 }
c475a8ab 647 return count;
1da177e4
LT
648}
649
650/*
7b1fe597
HD
651 * We can write to an anon page without COW if there are no other references
652 * to it. And as a side-effect, free up its swap: because the old content
653 * on disk will never be read, and seeking back there to write new content
654 * later would only waste time away from clustering.
1da177e4 655 */
7b1fe597 656int reuse_swap_page(struct page *page)
1da177e4 657{
c475a8ab
HD
658 int count;
659
51726b12 660 VM_BUG_ON(!PageLocked(page));
5ad64688
HD
661 if (unlikely(PageKsm(page)))
662 return 0;
c475a8ab 663 count = page_mapcount(page);
7b1fe597 664 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 665 count += page_swapcount(page);
7b1fe597
HD
666 if (count == 1 && !PageWriteback(page)) {
667 delete_from_swap_cache(page);
668 SetPageDirty(page);
669 }
670 }
5ad64688 671 return count <= 1;
1da177e4
LT
672}
673
674/*
a2c43eed
HD
675 * If swap is getting full, or if there are no more mappings of this page,
676 * then try_to_free_swap is called to free its swap space.
1da177e4 677 */
a2c43eed 678int try_to_free_swap(struct page *page)
1da177e4 679{
51726b12 680 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
681
682 if (!PageSwapCache(page))
683 return 0;
684 if (PageWriteback(page))
685 return 0;
a2c43eed 686 if (page_swapcount(page))
1da177e4
LT
687 return 0;
688
b73d7fce
HD
689 /*
690 * Once hibernation has begun to create its image of memory,
691 * there's a danger that one of the calls to try_to_free_swap()
692 * - most probably a call from __try_to_reclaim_swap() while
693 * hibernation is allocating its own swap pages for the image,
694 * but conceivably even a call from memory reclaim - will free
695 * the swap from a page which has already been recorded in the
696 * image as a clean swapcache page, and then reuse its swap for
697 * another page of the image. On waking from hibernation, the
698 * original page might be freed under memory pressure, then
699 * later read back in from swap, now with the wrong data.
700 *
701 * Hibernation clears bits from gfp_allowed_mask to prevent
702 * memory reclaim from writing to disk, so check that here.
703 */
704 if (!(gfp_allowed_mask & __GFP_IO))
705 return 0;
706
a2c43eed
HD
707 delete_from_swap_cache(page);
708 SetPageDirty(page);
709 return 1;
68a22394
RR
710}
711
1da177e4
LT
712/*
713 * Free the swap entry like above, but also try to
714 * free the page cache entry if it is the last user.
715 */
2509ef26 716int free_swap_and_cache(swp_entry_t entry)
1da177e4 717{
2509ef26 718 struct swap_info_struct *p;
1da177e4
LT
719 struct page *page = NULL;
720
a7420aa5 721 if (non_swap_entry(entry))
2509ef26 722 return 1;
0697212a 723
1da177e4
LT
724 p = swap_info_get(entry);
725 if (p) {
253d553b 726 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 727 page = find_get_page(&swapper_space, entry.val);
8413ac9d 728 if (page && !trylock_page(page)) {
93fac704
NP
729 page_cache_release(page);
730 page = NULL;
731 }
732 }
5d337b91 733 spin_unlock(&swap_lock);
1da177e4
LT
734 }
735 if (page) {
a2c43eed
HD
736 /*
737 * Not mapped elsewhere, or swap space full? Free it!
738 * Also recheck PageSwapCache now page is locked (above).
739 */
93fac704 740 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 741 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
742 delete_from_swap_cache(page);
743 SetPageDirty(page);
744 }
745 unlock_page(page);
746 page_cache_release(page);
747 }
2509ef26 748 return p != NULL;
1da177e4
LT
749}
750
02491447
DN
751#ifdef CONFIG_CGROUP_MEM_RES_CTLR
752/**
753 * mem_cgroup_count_swap_user - count the user of a swap entry
754 * @ent: the swap entry to be checked
755 * @pagep: the pointer for the swap cache page of the entry to be stored
756 *
757 * Returns the number of the user of the swap entry. The number is valid only
758 * for swaps of anonymous pages.
759 * If the entry is found on swap cache, the page is stored to pagep with
760 * refcount of it being incremented.
761 */
762int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
763{
764 struct page *page;
765 struct swap_info_struct *p;
766 int count = 0;
767
768 page = find_get_page(&swapper_space, ent.val);
769 if (page)
770 count += page_mapcount(page);
771 p = swap_info_get(ent);
772 if (p) {
773 count += swap_count(p->swap_map[swp_offset(ent)]);
774 spin_unlock(&swap_lock);
775 }
776
777 *pagep = page;
778 return count;
779}
780#endif
781
b0cb1a19 782#ifdef CONFIG_HIBERNATION
f577eb30 783/*
915bae9e 784 * Find the swap type that corresponds to given device (if any).
f577eb30 785 *
915bae9e
RW
786 * @offset - number of the PAGE_SIZE-sized block of the device, starting
787 * from 0, in which the swap header is expected to be located.
788 *
789 * This is needed for the suspend to disk (aka swsusp).
f577eb30 790 */
7bf23687 791int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 792{
915bae9e 793 struct block_device *bdev = NULL;
efa90a98 794 int type;
f577eb30 795
915bae9e
RW
796 if (device)
797 bdev = bdget(device);
798
f577eb30 799 spin_lock(&swap_lock);
efa90a98
HD
800 for (type = 0; type < nr_swapfiles; type++) {
801 struct swap_info_struct *sis = swap_info[type];
f577eb30 802
915bae9e 803 if (!(sis->flags & SWP_WRITEOK))
f577eb30 804 continue;
b6b5bce3 805
915bae9e 806 if (!bdev) {
7bf23687 807 if (bdev_p)
dddac6a7 808 *bdev_p = bdgrab(sis->bdev);
7bf23687 809
6e1819d6 810 spin_unlock(&swap_lock);
efa90a98 811 return type;
6e1819d6 812 }
915bae9e 813 if (bdev == sis->bdev) {
9625a5f2 814 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 815
915bae9e 816 if (se->start_block == offset) {
7bf23687 817 if (bdev_p)
dddac6a7 818 *bdev_p = bdgrab(sis->bdev);
7bf23687 819
915bae9e
RW
820 spin_unlock(&swap_lock);
821 bdput(bdev);
efa90a98 822 return type;
915bae9e 823 }
f577eb30
RW
824 }
825 }
826 spin_unlock(&swap_lock);
915bae9e
RW
827 if (bdev)
828 bdput(bdev);
829
f577eb30
RW
830 return -ENODEV;
831}
832
73c34b6a
HD
833/*
834 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
835 * corresponding to given index in swap_info (swap type).
836 */
837sector_t swapdev_block(int type, pgoff_t offset)
838{
839 struct block_device *bdev;
840
841 if ((unsigned int)type >= nr_swapfiles)
842 return 0;
843 if (!(swap_info[type]->flags & SWP_WRITEOK))
844 return 0;
d4906e1a 845 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
846}
847
f577eb30
RW
848/*
849 * Return either the total number of swap pages of given type, or the number
850 * of free pages of that type (depending on @free)
851 *
852 * This is needed for software suspend
853 */
854unsigned int count_swap_pages(int type, int free)
855{
856 unsigned int n = 0;
857
efa90a98
HD
858 spin_lock(&swap_lock);
859 if ((unsigned int)type < nr_swapfiles) {
860 struct swap_info_struct *sis = swap_info[type];
861
862 if (sis->flags & SWP_WRITEOK) {
863 n = sis->pages;
f577eb30 864 if (free)
efa90a98 865 n -= sis->inuse_pages;
f577eb30 866 }
f577eb30 867 }
efa90a98 868 spin_unlock(&swap_lock);
f577eb30
RW
869 return n;
870}
73c34b6a 871#endif /* CONFIG_HIBERNATION */
f577eb30 872
1da177e4 873/*
72866f6f
HD
874 * No need to decide whether this PTE shares the swap entry with others,
875 * just let do_wp_page work it out if a write is requested later - to
876 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 877 */
044d66c1 878static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
879 unsigned long addr, swp_entry_t entry, struct page *page)
880{
7a81b88c 881 struct mem_cgroup *ptr = NULL;
044d66c1
HD
882 spinlock_t *ptl;
883 pte_t *pte;
884 int ret = 1;
885
85d9fc89 886 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 887 ret = -ENOMEM;
85d9fc89
KH
888 goto out_nolock;
889 }
044d66c1
HD
890
891 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
892 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
893 if (ret > 0)
7a81b88c 894 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
895 ret = 0;
896 goto out;
897 }
8a9f3ccd 898
b084d435 899 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 900 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
901 get_page(page);
902 set_pte_at(vma->vm_mm, addr, pte,
903 pte_mkold(mk_pte(page, vma->vm_page_prot)));
904 page_add_anon_rmap(page, vma, addr);
7a81b88c 905 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
906 swap_free(entry);
907 /*
908 * Move the page to the active list so it is not
909 * immediately swapped out again after swapon.
910 */
911 activate_page(page);
044d66c1
HD
912out:
913 pte_unmap_unlock(pte, ptl);
85d9fc89 914out_nolock:
044d66c1 915 return ret;
1da177e4
LT
916}
917
918static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
919 unsigned long addr, unsigned long end,
920 swp_entry_t entry, struct page *page)
921{
1da177e4 922 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 923 pte_t *pte;
8a9f3ccd 924 int ret = 0;
1da177e4 925
044d66c1
HD
926 /*
927 * We don't actually need pte lock while scanning for swp_pte: since
928 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
929 * page table while we're scanning; though it could get zapped, and on
930 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
931 * of unmatched parts which look like swp_pte, so unuse_pte must
932 * recheck under pte lock. Scanning without pte lock lets it be
933 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
934 */
935 pte = pte_offset_map(pmd, addr);
1da177e4
LT
936 do {
937 /*
938 * swapoff spends a _lot_ of time in this loop!
939 * Test inline before going to call unuse_pte.
940 */
941 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
942 pte_unmap(pte);
943 ret = unuse_pte(vma, pmd, addr, entry, page);
944 if (ret)
945 goto out;
946 pte = pte_offset_map(pmd, addr);
1da177e4
LT
947 }
948 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
949 pte_unmap(pte - 1);
950out:
8a9f3ccd 951 return ret;
1da177e4
LT
952}
953
954static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
955 unsigned long addr, unsigned long end,
956 swp_entry_t entry, struct page *page)
957{
958 pmd_t *pmd;
959 unsigned long next;
8a9f3ccd 960 int ret;
1da177e4
LT
961
962 pmd = pmd_offset(pud, addr);
963 do {
964 next = pmd_addr_end(addr, end);
965 if (pmd_none_or_clear_bad(pmd))
966 continue;
8a9f3ccd
BS
967 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
968 if (ret)
969 return ret;
1da177e4
LT
970 } while (pmd++, addr = next, addr != end);
971 return 0;
972}
973
974static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
975 unsigned long addr, unsigned long end,
976 swp_entry_t entry, struct page *page)
977{
978 pud_t *pud;
979 unsigned long next;
8a9f3ccd 980 int ret;
1da177e4
LT
981
982 pud = pud_offset(pgd, addr);
983 do {
984 next = pud_addr_end(addr, end);
985 if (pud_none_or_clear_bad(pud))
986 continue;
8a9f3ccd
BS
987 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
988 if (ret)
989 return ret;
1da177e4
LT
990 } while (pud++, addr = next, addr != end);
991 return 0;
992}
993
994static int unuse_vma(struct vm_area_struct *vma,
995 swp_entry_t entry, struct page *page)
996{
997 pgd_t *pgd;
998 unsigned long addr, end, next;
8a9f3ccd 999 int ret;
1da177e4 1000
3ca7b3c5 1001 if (page_anon_vma(page)) {
1da177e4
LT
1002 addr = page_address_in_vma(page, vma);
1003 if (addr == -EFAULT)
1004 return 0;
1005 else
1006 end = addr + PAGE_SIZE;
1007 } else {
1008 addr = vma->vm_start;
1009 end = vma->vm_end;
1010 }
1011
1012 pgd = pgd_offset(vma->vm_mm, addr);
1013 do {
1014 next = pgd_addr_end(addr, end);
1015 if (pgd_none_or_clear_bad(pgd))
1016 continue;
8a9f3ccd
BS
1017 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1018 if (ret)
1019 return ret;
1da177e4
LT
1020 } while (pgd++, addr = next, addr != end);
1021 return 0;
1022}
1023
1024static int unuse_mm(struct mm_struct *mm,
1025 swp_entry_t entry, struct page *page)
1026{
1027 struct vm_area_struct *vma;
8a9f3ccd 1028 int ret = 0;
1da177e4
LT
1029
1030 if (!down_read_trylock(&mm->mmap_sem)) {
1031 /*
7d03431c
FLVC
1032 * Activate page so shrink_inactive_list is unlikely to unmap
1033 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1034 */
c475a8ab 1035 activate_page(page);
1da177e4
LT
1036 unlock_page(page);
1037 down_read(&mm->mmap_sem);
1038 lock_page(page);
1039 }
1da177e4 1040 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1041 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1042 break;
1043 }
1da177e4 1044 up_read(&mm->mmap_sem);
8a9f3ccd 1045 return (ret < 0)? ret: 0;
1da177e4
LT
1046}
1047
1048/*
1049 * Scan swap_map from current position to next entry still in use.
1050 * Recycle to start on reaching the end, returning 0 when empty.
1051 */
6eb396dc
HD
1052static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1053 unsigned int prev)
1da177e4 1054{
6eb396dc
HD
1055 unsigned int max = si->max;
1056 unsigned int i = prev;
8d69aaee 1057 unsigned char count;
1da177e4
LT
1058
1059 /*
5d337b91 1060 * No need for swap_lock here: we're just looking
1da177e4
LT
1061 * for whether an entry is in use, not modifying it; false
1062 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1063 * allocations from this area (while holding swap_lock).
1da177e4
LT
1064 */
1065 for (;;) {
1066 if (++i >= max) {
1067 if (!prev) {
1068 i = 0;
1069 break;
1070 }
1071 /*
1072 * No entries in use at top of swap_map,
1073 * loop back to start and recheck there.
1074 */
1075 max = prev + 1;
1076 prev = 0;
1077 i = 1;
1078 }
1079 count = si->swap_map[i];
355cfa73 1080 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1081 break;
1082 }
1083 return i;
1084}
1085
1086/*
1087 * We completely avoid races by reading each swap page in advance,
1088 * and then search for the process using it. All the necessary
1089 * page table adjustments can then be made atomically.
1090 */
1091static int try_to_unuse(unsigned int type)
1092{
efa90a98 1093 struct swap_info_struct *si = swap_info[type];
1da177e4 1094 struct mm_struct *start_mm;
8d69aaee
HD
1095 unsigned char *swap_map;
1096 unsigned char swcount;
1da177e4
LT
1097 struct page *page;
1098 swp_entry_t entry;
6eb396dc 1099 unsigned int i = 0;
1da177e4 1100 int retval = 0;
1da177e4
LT
1101
1102 /*
1103 * When searching mms for an entry, a good strategy is to
1104 * start at the first mm we freed the previous entry from
1105 * (though actually we don't notice whether we or coincidence
1106 * freed the entry). Initialize this start_mm with a hold.
1107 *
1108 * A simpler strategy would be to start at the last mm we
1109 * freed the previous entry from; but that would take less
1110 * advantage of mmlist ordering, which clusters forked mms
1111 * together, child after parent. If we race with dup_mmap(), we
1112 * prefer to resolve parent before child, lest we miss entries
1113 * duplicated after we scanned child: using last mm would invert
570a335b 1114 * that.
1da177e4
LT
1115 */
1116 start_mm = &init_mm;
1117 atomic_inc(&init_mm.mm_users);
1118
1119 /*
1120 * Keep on scanning until all entries have gone. Usually,
1121 * one pass through swap_map is enough, but not necessarily:
1122 * there are races when an instance of an entry might be missed.
1123 */
1124 while ((i = find_next_to_unuse(si, i)) != 0) {
1125 if (signal_pending(current)) {
1126 retval = -EINTR;
1127 break;
1128 }
1129
886bb7e9 1130 /*
1da177e4
LT
1131 * Get a page for the entry, using the existing swap
1132 * cache page if there is one. Otherwise, get a clean
886bb7e9 1133 * page and read the swap into it.
1da177e4
LT
1134 */
1135 swap_map = &si->swap_map[i];
1136 entry = swp_entry(type, i);
02098fea
HD
1137 page = read_swap_cache_async(entry,
1138 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1139 if (!page) {
1140 /*
1141 * Either swap_duplicate() failed because entry
1142 * has been freed independently, and will not be
1143 * reused since sys_swapoff() already disabled
1144 * allocation from here, or alloc_page() failed.
1145 */
1146 if (!*swap_map)
1147 continue;
1148 retval = -ENOMEM;
1149 break;
1150 }
1151
1152 /*
1153 * Don't hold on to start_mm if it looks like exiting.
1154 */
1155 if (atomic_read(&start_mm->mm_users) == 1) {
1156 mmput(start_mm);
1157 start_mm = &init_mm;
1158 atomic_inc(&init_mm.mm_users);
1159 }
1160
1161 /*
1162 * Wait for and lock page. When do_swap_page races with
1163 * try_to_unuse, do_swap_page can handle the fault much
1164 * faster than try_to_unuse can locate the entry. This
1165 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1166 * defer to do_swap_page in such a case - in some tests,
1167 * do_swap_page and try_to_unuse repeatedly compete.
1168 */
1169 wait_on_page_locked(page);
1170 wait_on_page_writeback(page);
1171 lock_page(page);
1172 wait_on_page_writeback(page);
1173
1174 /*
1175 * Remove all references to entry.
1da177e4 1176 */
1da177e4 1177 swcount = *swap_map;
aaa46865
HD
1178 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1179 retval = shmem_unuse(entry, page);
1180 /* page has already been unlocked and released */
1181 if (retval < 0)
1182 break;
1183 continue;
1da177e4 1184 }
aaa46865
HD
1185 if (swap_count(swcount) && start_mm != &init_mm)
1186 retval = unuse_mm(start_mm, entry, page);
1187
355cfa73 1188 if (swap_count(*swap_map)) {
1da177e4
LT
1189 int set_start_mm = (*swap_map >= swcount);
1190 struct list_head *p = &start_mm->mmlist;
1191 struct mm_struct *new_start_mm = start_mm;
1192 struct mm_struct *prev_mm = start_mm;
1193 struct mm_struct *mm;
1194
1195 atomic_inc(&new_start_mm->mm_users);
1196 atomic_inc(&prev_mm->mm_users);
1197 spin_lock(&mmlist_lock);
aaa46865 1198 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1199 (p = p->next) != &start_mm->mmlist) {
1200 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1201 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1202 continue;
1da177e4
LT
1203 spin_unlock(&mmlist_lock);
1204 mmput(prev_mm);
1205 prev_mm = mm;
1206
1207 cond_resched();
1208
1209 swcount = *swap_map;
355cfa73 1210 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1211 ;
aaa46865 1212 else if (mm == &init_mm)
1da177e4 1213 set_start_mm = 1;
aaa46865 1214 else
1da177e4 1215 retval = unuse_mm(mm, entry, page);
355cfa73 1216
32c5fc10 1217 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1218 mmput(new_start_mm);
1219 atomic_inc(&mm->mm_users);
1220 new_start_mm = mm;
1221 set_start_mm = 0;
1222 }
1223 spin_lock(&mmlist_lock);
1224 }
1225 spin_unlock(&mmlist_lock);
1226 mmput(prev_mm);
1227 mmput(start_mm);
1228 start_mm = new_start_mm;
1229 }
1230 if (retval) {
1231 unlock_page(page);
1232 page_cache_release(page);
1233 break;
1234 }
1235
1da177e4
LT
1236 /*
1237 * If a reference remains (rare), we would like to leave
1238 * the page in the swap cache; but try_to_unmap could
1239 * then re-duplicate the entry once we drop page lock,
1240 * so we might loop indefinitely; also, that page could
1241 * not be swapped out to other storage meanwhile. So:
1242 * delete from cache even if there's another reference,
1243 * after ensuring that the data has been saved to disk -
1244 * since if the reference remains (rarer), it will be
1245 * read from disk into another page. Splitting into two
1246 * pages would be incorrect if swap supported "shared
1247 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1248 *
1249 * Given how unuse_vma() targets one particular offset
1250 * in an anon_vma, once the anon_vma has been determined,
1251 * this splitting happens to be just what is needed to
1252 * handle where KSM pages have been swapped out: re-reading
1253 * is unnecessarily slow, but we can fix that later on.
1da177e4 1254 */
355cfa73
KH
1255 if (swap_count(*swap_map) &&
1256 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1257 struct writeback_control wbc = {
1258 .sync_mode = WB_SYNC_NONE,
1259 };
1260
1261 swap_writepage(page, &wbc);
1262 lock_page(page);
1263 wait_on_page_writeback(page);
1264 }
68bdc8d6
HD
1265
1266 /*
1267 * It is conceivable that a racing task removed this page from
1268 * swap cache just before we acquired the page lock at the top,
1269 * or while we dropped it in unuse_mm(). The page might even
1270 * be back in swap cache on another swap area: that we must not
1271 * delete, since it may not have been written out to swap yet.
1272 */
1273 if (PageSwapCache(page) &&
1274 likely(page_private(page) == entry.val))
2e0e26c7 1275 delete_from_swap_cache(page);
1da177e4
LT
1276
1277 /*
1278 * So we could skip searching mms once swap count went
1279 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1280 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1281 */
1282 SetPageDirty(page);
1283 unlock_page(page);
1284 page_cache_release(page);
1285
1286 /*
1287 * Make sure that we aren't completely killing
1288 * interactive performance.
1289 */
1290 cond_resched();
1291 }
1292
1293 mmput(start_mm);
1da177e4
LT
1294 return retval;
1295}
1296
1297/*
5d337b91
HD
1298 * After a successful try_to_unuse, if no swap is now in use, we know
1299 * we can empty the mmlist. swap_lock must be held on entry and exit.
1300 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1301 * added to the mmlist just after page_duplicate - before would be racy.
1302 */
1303static void drain_mmlist(void)
1304{
1305 struct list_head *p, *next;
efa90a98 1306 unsigned int type;
1da177e4 1307
efa90a98
HD
1308 for (type = 0; type < nr_swapfiles; type++)
1309 if (swap_info[type]->inuse_pages)
1da177e4
LT
1310 return;
1311 spin_lock(&mmlist_lock);
1312 list_for_each_safe(p, next, &init_mm.mmlist)
1313 list_del_init(p);
1314 spin_unlock(&mmlist_lock);
1315}
1316
1317/*
1318 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1319 * corresponds to page offset for the specified swap entry.
1320 * Note that the type of this function is sector_t, but it returns page offset
1321 * into the bdev, not sector offset.
1da177e4 1322 */
d4906e1a 1323static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1324{
f29ad6a9
HD
1325 struct swap_info_struct *sis;
1326 struct swap_extent *start_se;
1327 struct swap_extent *se;
1328 pgoff_t offset;
1329
efa90a98 1330 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1331 *bdev = sis->bdev;
1332
1333 offset = swp_offset(entry);
1334 start_se = sis->curr_swap_extent;
1335 se = start_se;
1da177e4
LT
1336
1337 for ( ; ; ) {
1338 struct list_head *lh;
1339
1340 if (se->start_page <= offset &&
1341 offset < (se->start_page + se->nr_pages)) {
1342 return se->start_block + (offset - se->start_page);
1343 }
11d31886 1344 lh = se->list.next;
1da177e4
LT
1345 se = list_entry(lh, struct swap_extent, list);
1346 sis->curr_swap_extent = se;
1347 BUG_ON(se == start_se); /* It *must* be present */
1348 }
1349}
1350
d4906e1a
LS
1351/*
1352 * Returns the page offset into bdev for the specified page's swap entry.
1353 */
1354sector_t map_swap_page(struct page *page, struct block_device **bdev)
1355{
1356 swp_entry_t entry;
1357 entry.val = page_private(page);
1358 return map_swap_entry(entry, bdev);
1359}
1360
1da177e4
LT
1361/*
1362 * Free all of a swapdev's extent information
1363 */
1364static void destroy_swap_extents(struct swap_info_struct *sis)
1365{
9625a5f2 1366 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1367 struct swap_extent *se;
1368
9625a5f2 1369 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1370 struct swap_extent, list);
1371 list_del(&se->list);
1372 kfree(se);
1373 }
1da177e4
LT
1374}
1375
1376/*
1377 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1378 * extent list. The extent list is kept sorted in page order.
1da177e4 1379 *
11d31886 1380 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1381 */
1382static int
1383add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1384 unsigned long nr_pages, sector_t start_block)
1385{
1386 struct swap_extent *se;
1387 struct swap_extent *new_se;
1388 struct list_head *lh;
1389
9625a5f2
HD
1390 if (start_page == 0) {
1391 se = &sis->first_swap_extent;
1392 sis->curr_swap_extent = se;
1393 se->start_page = 0;
1394 se->nr_pages = nr_pages;
1395 se->start_block = start_block;
1396 return 1;
1397 } else {
1398 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1399 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1400 BUG_ON(se->start_page + se->nr_pages != start_page);
1401 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1402 /* Merge it */
1403 se->nr_pages += nr_pages;
1404 return 0;
1405 }
1da177e4
LT
1406 }
1407
1408 /*
1409 * No merge. Insert a new extent, preserving ordering.
1410 */
1411 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1412 if (new_se == NULL)
1413 return -ENOMEM;
1414 new_se->start_page = start_page;
1415 new_se->nr_pages = nr_pages;
1416 new_se->start_block = start_block;
1417
9625a5f2 1418 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1419 return 1;
1da177e4
LT
1420}
1421
1422/*
1423 * A `swap extent' is a simple thing which maps a contiguous range of pages
1424 * onto a contiguous range of disk blocks. An ordered list of swap extents
1425 * is built at swapon time and is then used at swap_writepage/swap_readpage
1426 * time for locating where on disk a page belongs.
1427 *
1428 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1429 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1430 * swap files identically.
1431 *
1432 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1433 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1434 * swapfiles are handled *identically* after swapon time.
1435 *
1436 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1437 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1438 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1439 * requirements, they are simply tossed out - we will never use those blocks
1440 * for swapping.
1441 *
b0d9bcd4 1442 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1443 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1444 * which will scribble on the fs.
1445 *
1446 * The amount of disk space which a single swap extent represents varies.
1447 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1448 * extents in the list. To avoid much list walking, we cache the previous
1449 * search location in `curr_swap_extent', and start new searches from there.
1450 * This is extremely effective. The average number of iterations in
1451 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1452 */
53092a74 1453static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1454{
1455 struct inode *inode;
1456 unsigned blocks_per_page;
1457 unsigned long page_no;
1458 unsigned blkbits;
1459 sector_t probe_block;
1460 sector_t last_block;
53092a74
HD
1461 sector_t lowest_block = -1;
1462 sector_t highest_block = 0;
1463 int nr_extents = 0;
1da177e4
LT
1464 int ret;
1465
1466 inode = sis->swap_file->f_mapping->host;
1467 if (S_ISBLK(inode->i_mode)) {
1468 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1469 *span = sis->pages;
9625a5f2 1470 goto out;
1da177e4
LT
1471 }
1472
1473 blkbits = inode->i_blkbits;
1474 blocks_per_page = PAGE_SIZE >> blkbits;
1475
1476 /*
1477 * Map all the blocks into the extent list. This code doesn't try
1478 * to be very smart.
1479 */
1480 probe_block = 0;
1481 page_no = 0;
1482 last_block = i_size_read(inode) >> blkbits;
1483 while ((probe_block + blocks_per_page) <= last_block &&
1484 page_no < sis->max) {
1485 unsigned block_in_page;
1486 sector_t first_block;
1487
1488 first_block = bmap(inode, probe_block);
1489 if (first_block == 0)
1490 goto bad_bmap;
1491
1492 /*
1493 * It must be PAGE_SIZE aligned on-disk
1494 */
1495 if (first_block & (blocks_per_page - 1)) {
1496 probe_block++;
1497 goto reprobe;
1498 }
1499
1500 for (block_in_page = 1; block_in_page < blocks_per_page;
1501 block_in_page++) {
1502 sector_t block;
1503
1504 block = bmap(inode, probe_block + block_in_page);
1505 if (block == 0)
1506 goto bad_bmap;
1507 if (block != first_block + block_in_page) {
1508 /* Discontiguity */
1509 probe_block++;
1510 goto reprobe;
1511 }
1512 }
1513
53092a74
HD
1514 first_block >>= (PAGE_SHIFT - blkbits);
1515 if (page_no) { /* exclude the header page */
1516 if (first_block < lowest_block)
1517 lowest_block = first_block;
1518 if (first_block > highest_block)
1519 highest_block = first_block;
1520 }
1521
1da177e4
LT
1522 /*
1523 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1524 */
53092a74
HD
1525 ret = add_swap_extent(sis, page_no, 1, first_block);
1526 if (ret < 0)
1da177e4 1527 goto out;
53092a74 1528 nr_extents += ret;
1da177e4
LT
1529 page_no++;
1530 probe_block += blocks_per_page;
1531reprobe:
1532 continue;
1533 }
53092a74
HD
1534 ret = nr_extents;
1535 *span = 1 + highest_block - lowest_block;
1da177e4 1536 if (page_no == 0)
e2244ec2 1537 page_no = 1; /* force Empty message */
1da177e4 1538 sis->max = page_no;
e2244ec2 1539 sis->pages = page_no - 1;
1da177e4 1540 sis->highest_bit = page_no - 1;
9625a5f2
HD
1541out:
1542 return ret;
1da177e4
LT
1543bad_bmap:
1544 printk(KERN_ERR "swapon: swapfile has holes\n");
1545 ret = -EINVAL;
9625a5f2 1546 goto out;
1da177e4
LT
1547}
1548
c4ea37c2 1549SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1550{
73c34b6a 1551 struct swap_info_struct *p = NULL;
8d69aaee 1552 unsigned char *swap_map;
1da177e4
LT
1553 struct file *swap_file, *victim;
1554 struct address_space *mapping;
1555 struct inode *inode;
73c34b6a 1556 char *pathname;
1da177e4
LT
1557 int i, type, prev;
1558 int err;
886bb7e9 1559
1da177e4
LT
1560 if (!capable(CAP_SYS_ADMIN))
1561 return -EPERM;
1562
1563 pathname = getname(specialfile);
1564 err = PTR_ERR(pathname);
1565 if (IS_ERR(pathname))
1566 goto out;
1567
1568 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1569 putname(pathname);
1570 err = PTR_ERR(victim);
1571 if (IS_ERR(victim))
1572 goto out;
1573
1574 mapping = victim->f_mapping;
1575 prev = -1;
5d337b91 1576 spin_lock(&swap_lock);
efa90a98
HD
1577 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1578 p = swap_info[type];
22c6f8fd 1579 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1580 if (p->swap_file->f_mapping == mapping)
1581 break;
1582 }
1583 prev = type;
1584 }
1585 if (type < 0) {
1586 err = -EINVAL;
5d337b91 1587 spin_unlock(&swap_lock);
1da177e4
LT
1588 goto out_dput;
1589 }
1590 if (!security_vm_enough_memory(p->pages))
1591 vm_unacct_memory(p->pages);
1592 else {
1593 err = -ENOMEM;
5d337b91 1594 spin_unlock(&swap_lock);
1da177e4
LT
1595 goto out_dput;
1596 }
efa90a98 1597 if (prev < 0)
1da177e4 1598 swap_list.head = p->next;
efa90a98
HD
1599 else
1600 swap_info[prev]->next = p->next;
1da177e4
LT
1601 if (type == swap_list.next) {
1602 /* just pick something that's safe... */
1603 swap_list.next = swap_list.head;
1604 }
78ecba08 1605 if (p->prio < 0) {
efa90a98
HD
1606 for (i = p->next; i >= 0; i = swap_info[i]->next)
1607 swap_info[i]->prio = p->prio--;
78ecba08
HD
1608 least_priority++;
1609 }
1da177e4
LT
1610 nr_swap_pages -= p->pages;
1611 total_swap_pages -= p->pages;
1612 p->flags &= ~SWP_WRITEOK;
5d337b91 1613 spin_unlock(&swap_lock);
fb4f88dc 1614
35451bee 1615 current->flags |= PF_OOM_ORIGIN;
1da177e4 1616 err = try_to_unuse(type);
35451bee 1617 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1618
1da177e4
LT
1619 if (err) {
1620 /* re-insert swap space back into swap_list */
5d337b91 1621 spin_lock(&swap_lock);
78ecba08
HD
1622 if (p->prio < 0)
1623 p->prio = --least_priority;
1624 prev = -1;
efa90a98
HD
1625 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1626 if (p->prio >= swap_info[i]->prio)
1da177e4 1627 break;
78ecba08
HD
1628 prev = i;
1629 }
1da177e4
LT
1630 p->next = i;
1631 if (prev < 0)
efa90a98 1632 swap_list.head = swap_list.next = type;
1da177e4 1633 else
efa90a98 1634 swap_info[prev]->next = type;
1da177e4
LT
1635 nr_swap_pages += p->pages;
1636 total_swap_pages += p->pages;
1637 p->flags |= SWP_WRITEOK;
5d337b91 1638 spin_unlock(&swap_lock);
1da177e4
LT
1639 goto out_dput;
1640 }
52b7efdb
HD
1641
1642 /* wait for any unplug function to finish */
1643 down_write(&swap_unplug_sem);
1644 up_write(&swap_unplug_sem);
1645
5d337b91 1646 destroy_swap_extents(p);
570a335b
HD
1647 if (p->flags & SWP_CONTINUED)
1648 free_swap_count_continuations(p);
1649
fc0abb14 1650 mutex_lock(&swapon_mutex);
5d337b91
HD
1651 spin_lock(&swap_lock);
1652 drain_mmlist();
1653
52b7efdb 1654 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1655 p->highest_bit = 0; /* cuts scans short */
1656 while (p->flags >= SWP_SCANNING) {
5d337b91 1657 spin_unlock(&swap_lock);
13e4b57f 1658 schedule_timeout_uninterruptible(1);
5d337b91 1659 spin_lock(&swap_lock);
52b7efdb 1660 }
52b7efdb 1661
1da177e4
LT
1662 swap_file = p->swap_file;
1663 p->swap_file = NULL;
1664 p->max = 0;
1665 swap_map = p->swap_map;
1666 p->swap_map = NULL;
1667 p->flags = 0;
5d337b91 1668 spin_unlock(&swap_lock);
fc0abb14 1669 mutex_unlock(&swapon_mutex);
1da177e4 1670 vfree(swap_map);
27a7faa0
KH
1671 /* Destroy swap account informatin */
1672 swap_cgroup_swapoff(type);
1673
1da177e4
LT
1674 inode = mapping->host;
1675 if (S_ISBLK(inode->i_mode)) {
1676 struct block_device *bdev = I_BDEV(inode);
1677 set_blocksize(bdev, p->old_block_size);
1678 bd_release(bdev);
1679 } else {
1b1dcc1b 1680 mutex_lock(&inode->i_mutex);
1da177e4 1681 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1682 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1683 }
1684 filp_close(swap_file, NULL);
1685 err = 0;
1686
1687out_dput:
1688 filp_close(victim, NULL);
1689out:
1690 return err;
1691}
1692
1693#ifdef CONFIG_PROC_FS
1694/* iterator */
1695static void *swap_start(struct seq_file *swap, loff_t *pos)
1696{
efa90a98
HD
1697 struct swap_info_struct *si;
1698 int type;
1da177e4
LT
1699 loff_t l = *pos;
1700
fc0abb14 1701 mutex_lock(&swapon_mutex);
1da177e4 1702
881e4aab
SS
1703 if (!l)
1704 return SEQ_START_TOKEN;
1705
efa90a98
HD
1706 for (type = 0; type < nr_swapfiles; type++) {
1707 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1708 si = swap_info[type];
1709 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1710 continue;
881e4aab 1711 if (!--l)
efa90a98 1712 return si;
1da177e4
LT
1713 }
1714
1715 return NULL;
1716}
1717
1718static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1719{
efa90a98
HD
1720 struct swap_info_struct *si = v;
1721 int type;
1da177e4 1722
881e4aab 1723 if (v == SEQ_START_TOKEN)
efa90a98
HD
1724 type = 0;
1725 else
1726 type = si->type + 1;
881e4aab 1727
efa90a98
HD
1728 for (; type < nr_swapfiles; type++) {
1729 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1730 si = swap_info[type];
1731 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1732 continue;
1733 ++*pos;
efa90a98 1734 return si;
1da177e4
LT
1735 }
1736
1737 return NULL;
1738}
1739
1740static void swap_stop(struct seq_file *swap, void *v)
1741{
fc0abb14 1742 mutex_unlock(&swapon_mutex);
1da177e4
LT
1743}
1744
1745static int swap_show(struct seq_file *swap, void *v)
1746{
efa90a98 1747 struct swap_info_struct *si = v;
1da177e4
LT
1748 struct file *file;
1749 int len;
1750
efa90a98 1751 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1752 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1753 return 0;
1754 }
1da177e4 1755
efa90a98 1756 file = si->swap_file;
c32c2f63 1757 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1758 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1759 len < 40 ? 40 - len : 1, " ",
1760 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1761 "partition" : "file\t",
efa90a98
HD
1762 si->pages << (PAGE_SHIFT - 10),
1763 si->inuse_pages << (PAGE_SHIFT - 10),
1764 si->prio);
1da177e4
LT
1765 return 0;
1766}
1767
15ad7cdc 1768static const struct seq_operations swaps_op = {
1da177e4
LT
1769 .start = swap_start,
1770 .next = swap_next,
1771 .stop = swap_stop,
1772 .show = swap_show
1773};
1774
1775static int swaps_open(struct inode *inode, struct file *file)
1776{
1777 return seq_open(file, &swaps_op);
1778}
1779
15ad7cdc 1780static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1781 .open = swaps_open,
1782 .read = seq_read,
1783 .llseek = seq_lseek,
1784 .release = seq_release,
1785};
1786
1787static int __init procswaps_init(void)
1788{
3d71f86f 1789 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1790 return 0;
1791}
1792__initcall(procswaps_init);
1793#endif /* CONFIG_PROC_FS */
1794
1796316a
JB
1795#ifdef MAX_SWAPFILES_CHECK
1796static int __init max_swapfiles_check(void)
1797{
1798 MAX_SWAPFILES_CHECK();
1799 return 0;
1800}
1801late_initcall(max_swapfiles_check);
1802#endif
1803
1da177e4
LT
1804/*
1805 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1806 *
1807 * The swapon system call
1808 */
c4ea37c2 1809SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1da177e4 1810{
73c34b6a 1811 struct swap_info_struct *p;
1da177e4
LT
1812 char *name = NULL;
1813 struct block_device *bdev = NULL;
1814 struct file *swap_file = NULL;
1815 struct address_space *mapping;
1816 unsigned int type;
1817 int i, prev;
1818 int error;
ad2bd7e0
HD
1819 union swap_header *swap_header;
1820 unsigned int nr_good_pages;
6eb396dc 1821 int nr_extents = 0;
53092a74 1822 sector_t span;
ad2bd7e0 1823 unsigned long maxpages;
73fd8748 1824 unsigned long swapfilepages;
8d69aaee 1825 unsigned char *swap_map = NULL;
1da177e4
LT
1826 struct page *page = NULL;
1827 struct inode *inode = NULL;
1828 int did_down = 0;
1829
1830 if (!capable(CAP_SYS_ADMIN))
1831 return -EPERM;
efa90a98
HD
1832
1833 p = kzalloc(sizeof(*p), GFP_KERNEL);
1834 if (!p)
1835 return -ENOMEM;
1836
5d337b91 1837 spin_lock(&swap_lock);
efa90a98
HD
1838 for (type = 0; type < nr_swapfiles; type++) {
1839 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1840 break;
efa90a98 1841 }
1da177e4 1842 error = -EPERM;
0697212a 1843 if (type >= MAX_SWAPFILES) {
5d337b91 1844 spin_unlock(&swap_lock);
efa90a98 1845 kfree(p);
1da177e4
LT
1846 goto out;
1847 }
efa90a98
HD
1848 if (type >= nr_swapfiles) {
1849 p->type = type;
1850 swap_info[type] = p;
1851 /*
1852 * Write swap_info[type] before nr_swapfiles, in case a
1853 * racing procfs swap_start() or swap_next() is reading them.
1854 * (We never shrink nr_swapfiles, we never free this entry.)
1855 */
1856 smp_wmb();
1857 nr_swapfiles++;
1858 } else {
1859 kfree(p);
1860 p = swap_info[type];
1861 /*
1862 * Do not memset this entry: a racing procfs swap_next()
1863 * would be relying on p->type to remain valid.
1864 */
1865 }
9625a5f2 1866 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1867 p->flags = SWP_USED;
1da177e4 1868 p->next = -1;
5d337b91 1869 spin_unlock(&swap_lock);
efa90a98 1870
1da177e4
LT
1871 name = getname(specialfile);
1872 error = PTR_ERR(name);
1873 if (IS_ERR(name)) {
1874 name = NULL;
1875 goto bad_swap_2;
1876 }
1877 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1878 error = PTR_ERR(swap_file);
1879 if (IS_ERR(swap_file)) {
1880 swap_file = NULL;
1881 goto bad_swap_2;
1882 }
1883
1884 p->swap_file = swap_file;
1885 mapping = swap_file->f_mapping;
1886 inode = mapping->host;
1887
1888 error = -EBUSY;
1889 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1890 struct swap_info_struct *q = swap_info[i];
1da177e4
LT
1891
1892 if (i == type || !q->swap_file)
1893 continue;
1894 if (mapping == q->swap_file->f_mapping)
1895 goto bad_swap;
1896 }
1897
1898 error = -EINVAL;
1899 if (S_ISBLK(inode->i_mode)) {
1900 bdev = I_BDEV(inode);
1901 error = bd_claim(bdev, sys_swapon);
1902 if (error < 0) {
1903 bdev = NULL;
f7b3a435 1904 error = -EINVAL;
1da177e4
LT
1905 goto bad_swap;
1906 }
1907 p->old_block_size = block_size(bdev);
1908 error = set_blocksize(bdev, PAGE_SIZE);
1909 if (error < 0)
1910 goto bad_swap;
1911 p->bdev = bdev;
b2725643 1912 p->flags |= SWP_BLKDEV;
1da177e4
LT
1913 } else if (S_ISREG(inode->i_mode)) {
1914 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1915 mutex_lock(&inode->i_mutex);
1da177e4
LT
1916 did_down = 1;
1917 if (IS_SWAPFILE(inode)) {
1918 error = -EBUSY;
1919 goto bad_swap;
1920 }
1921 } else {
1922 goto bad_swap;
1923 }
1924
73fd8748 1925 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1926
1927 /*
1928 * Read the swap header.
1929 */
1930 if (!mapping->a_ops->readpage) {
1931 error = -EINVAL;
1932 goto bad_swap;
1933 }
090d2b18 1934 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1935 if (IS_ERR(page)) {
1936 error = PTR_ERR(page);
1937 goto bad_swap;
1938 }
81e33971 1939 swap_header = kmap(page);
1da177e4 1940
81e33971 1941 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1942 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1943 error = -EINVAL;
1944 goto bad_swap;
1945 }
886bb7e9 1946
81e33971
HD
1947 /* swap partition endianess hack... */
1948 if (swab32(swap_header->info.version) == 1) {
1949 swab32s(&swap_header->info.version);
1950 swab32s(&swap_header->info.last_page);
1951 swab32s(&swap_header->info.nr_badpages);
1952 for (i = 0; i < swap_header->info.nr_badpages; i++)
1953 swab32s(&swap_header->info.badpages[i]);
1954 }
1955 /* Check the swap header's sub-version */
1956 if (swap_header->info.version != 1) {
1957 printk(KERN_WARNING
1958 "Unable to handle swap header version %d\n",
1959 swap_header->info.version);
1da177e4
LT
1960 error = -EINVAL;
1961 goto bad_swap;
81e33971 1962 }
1da177e4 1963
81e33971
HD
1964 p->lowest_bit = 1;
1965 p->cluster_next = 1;
efa90a98 1966 p->cluster_nr = 0;
52b7efdb 1967
81e33971
HD
1968 /*
1969 * Find out how many pages are allowed for a single swap
1970 * device. There are two limiting factors: 1) the number of
1971 * bits for the swap offset in the swp_entry_t type and
1972 * 2) the number of bits in the a swap pte as defined by
1973 * the different architectures. In order to find the
1974 * largest possible bit mask a swap entry with swap type 0
1975 * and swap offset ~0UL is created, encoded to a swap pte,
1976 * decoded to a swp_entry_t again and finally the swap
1977 * offset is extracted. This will mask all the bits from
1978 * the initial ~0UL mask that can't be encoded in either
1979 * the swp_entry_t or the architecture definition of a
1980 * swap pte.
1981 */
1982 maxpages = swp_offset(pte_to_swp_entry(
ad2bd7e0
HD
1983 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1984 if (maxpages > swap_header->info.last_page) {
1985 maxpages = swap_header->info.last_page + 1;
1986 /* p->max is an unsigned int: don't overflow it */
1987 if ((unsigned int)maxpages == 0)
1988 maxpages = UINT_MAX;
1989 }
81e33971 1990 p->highest_bit = maxpages - 1;
1da177e4 1991
81e33971
HD
1992 error = -EINVAL;
1993 if (!maxpages)
1994 goto bad_swap;
1995 if (swapfilepages && maxpages > swapfilepages) {
1996 printk(KERN_WARNING
1997 "Swap area shorter than signature indicates\n");
1998 goto bad_swap;
1999 }
2000 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2001 goto bad_swap;
2002 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2003 goto bad_swap;
cd105df4 2004
81e33971 2005 /* OK, set up the swap map and apply the bad block list */
8d69aaee 2006 swap_map = vmalloc(maxpages);
81e33971
HD
2007 if (!swap_map) {
2008 error = -ENOMEM;
2009 goto bad_swap;
2010 }
1da177e4 2011
8d69aaee 2012 memset(swap_map, 0, maxpages);
ad2bd7e0
HD
2013 nr_good_pages = maxpages - 1; /* omit header page */
2014
81e33971 2015 for (i = 0; i < swap_header->info.nr_badpages; i++) {
ad2bd7e0
HD
2016 unsigned int page_nr = swap_header->info.badpages[i];
2017 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
81e33971 2018 error = -EINVAL;
1da177e4 2019 goto bad_swap;
81e33971 2020 }
ad2bd7e0
HD
2021 if (page_nr < maxpages) {
2022 swap_map[page_nr] = SWAP_MAP_BAD;
2023 nr_good_pages--;
2024 }
1da177e4 2025 }
27a7faa0
KH
2026
2027 error = swap_cgroup_swapon(type, maxpages);
2028 if (error)
2029 goto bad_swap;
2030
e2244ec2 2031 if (nr_good_pages) {
78ecba08 2032 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
2033 p->max = maxpages;
2034 p->pages = nr_good_pages;
53092a74
HD
2035 nr_extents = setup_swap_extents(p, &span);
2036 if (nr_extents < 0) {
2037 error = nr_extents;
e2244ec2 2038 goto bad_swap;
53092a74 2039 }
e2244ec2
HD
2040 nr_good_pages = p->pages;
2041 }
1da177e4
LT
2042 if (!nr_good_pages) {
2043 printk(KERN_WARNING "Empty swap-file\n");
2044 error = -EINVAL;
2045 goto bad_swap;
2046 }
1da177e4 2047
3bd0f0c7
SJ
2048 if (p->bdev) {
2049 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2050 p->flags |= SWP_SOLIDSTATE;
2051 p->cluster_next = 1 + (random32() % p->highest_bit);
2052 }
2053 if (discard_swap(p) == 0)
2054 p->flags |= SWP_DISCARDABLE;
20137a49 2055 }
6a6ba831 2056
fc0abb14 2057 mutex_lock(&swapon_mutex);
5d337b91 2058 spin_lock(&swap_lock);
78ecba08
HD
2059 if (swap_flags & SWAP_FLAG_PREFER)
2060 p->prio =
2061 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2062 else
2063 p->prio = --least_priority;
2064 p->swap_map = swap_map;
22c6f8fd 2065 p->flags |= SWP_WRITEOK;
1da177e4
LT
2066 nr_swap_pages += nr_good_pages;
2067 total_swap_pages += nr_good_pages;
53092a74 2068
6eb396dc 2069 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2070 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2071 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2072 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2073 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2074 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2075
2076 /* insert swap space into swap_list: */
2077 prev = -1;
efa90a98
HD
2078 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2079 if (p->prio >= swap_info[i]->prio)
1da177e4 2080 break;
1da177e4
LT
2081 prev = i;
2082 }
2083 p->next = i;
efa90a98
HD
2084 if (prev < 0)
2085 swap_list.head = swap_list.next = type;
2086 else
2087 swap_info[prev]->next = type;
5d337b91 2088 spin_unlock(&swap_lock);
fc0abb14 2089 mutex_unlock(&swapon_mutex);
1da177e4
LT
2090 error = 0;
2091 goto out;
2092bad_swap:
2093 if (bdev) {
2094 set_blocksize(bdev, p->old_block_size);
2095 bd_release(bdev);
2096 }
4cd3bb10 2097 destroy_swap_extents(p);
27a7faa0 2098 swap_cgroup_swapoff(type);
1da177e4 2099bad_swap_2:
5d337b91 2100 spin_lock(&swap_lock);
1da177e4 2101 p->swap_file = NULL;
1da177e4 2102 p->flags = 0;
5d337b91 2103 spin_unlock(&swap_lock);
1da177e4
LT
2104 vfree(swap_map);
2105 if (swap_file)
2106 filp_close(swap_file, NULL);
2107out:
2108 if (page && !IS_ERR(page)) {
2109 kunmap(page);
2110 page_cache_release(page);
2111 }
2112 if (name)
2113 putname(name);
2114 if (did_down) {
2115 if (!error)
2116 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2117 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2118 }
2119 return error;
2120}
2121
2122void si_swapinfo(struct sysinfo *val)
2123{
efa90a98 2124 unsigned int type;
1da177e4
LT
2125 unsigned long nr_to_be_unused = 0;
2126
5d337b91 2127 spin_lock(&swap_lock);
efa90a98
HD
2128 for (type = 0; type < nr_swapfiles; type++) {
2129 struct swap_info_struct *si = swap_info[type];
2130
2131 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2132 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2133 }
2134 val->freeswap = nr_swap_pages + nr_to_be_unused;
2135 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2136 spin_unlock(&swap_lock);
1da177e4
LT
2137}
2138
2139/*
2140 * Verify that a swap entry is valid and increment its swap map count.
2141 *
355cfa73
KH
2142 * Returns error code in following case.
2143 * - success -> 0
2144 * - swp_entry is invalid -> EINVAL
2145 * - swp_entry is migration entry -> EINVAL
2146 * - swap-cache reference is requested but there is already one. -> EEXIST
2147 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2148 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2149 */
8d69aaee 2150static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2151{
73c34b6a 2152 struct swap_info_struct *p;
1da177e4 2153 unsigned long offset, type;
8d69aaee
HD
2154 unsigned char count;
2155 unsigned char has_cache;
253d553b 2156 int err = -EINVAL;
1da177e4 2157
a7420aa5 2158 if (non_swap_entry(entry))
253d553b 2159 goto out;
0697212a 2160
1da177e4
LT
2161 type = swp_type(entry);
2162 if (type >= nr_swapfiles)
2163 goto bad_file;
efa90a98 2164 p = swap_info[type];
1da177e4
LT
2165 offset = swp_offset(entry);
2166
5d337b91 2167 spin_lock(&swap_lock);
355cfa73
KH
2168 if (unlikely(offset >= p->max))
2169 goto unlock_out;
2170
253d553b
HD
2171 count = p->swap_map[offset];
2172 has_cache = count & SWAP_HAS_CACHE;
2173 count &= ~SWAP_HAS_CACHE;
2174 err = 0;
355cfa73 2175
253d553b 2176 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2177
2178 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2179 if (!has_cache && count)
2180 has_cache = SWAP_HAS_CACHE;
2181 else if (has_cache) /* someone else added cache */
2182 err = -EEXIST;
2183 else /* no users remaining */
2184 err = -ENOENT;
355cfa73
KH
2185
2186 } else if (count || has_cache) {
253d553b 2187
570a335b
HD
2188 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2189 count += usage;
2190 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2191 err = -EINVAL;
570a335b
HD
2192 else if (swap_count_continued(p, offset, count))
2193 count = COUNT_CONTINUED;
2194 else
2195 err = -ENOMEM;
355cfa73 2196 } else
253d553b
HD
2197 err = -ENOENT; /* unused swap entry */
2198
2199 p->swap_map[offset] = count | has_cache;
2200
355cfa73 2201unlock_out:
5d337b91 2202 spin_unlock(&swap_lock);
1da177e4 2203out:
253d553b 2204 return err;
1da177e4
LT
2205
2206bad_file:
2207 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2208 goto out;
2209}
253d553b 2210
aaa46865
HD
2211/*
2212 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2213 * (in which case its reference count is never incremented).
2214 */
2215void swap_shmem_alloc(swp_entry_t entry)
2216{
2217 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2218}
2219
355cfa73 2220/*
08259d58
HD
2221 * Increase reference count of swap entry by 1.
2222 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2223 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2224 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2225 * might occur if a page table entry has got corrupted.
355cfa73 2226 */
570a335b 2227int swap_duplicate(swp_entry_t entry)
355cfa73 2228{
570a335b
HD
2229 int err = 0;
2230
2231 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2232 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2233 return err;
355cfa73 2234}
1da177e4 2235
cb4b86ba 2236/*
355cfa73
KH
2237 * @entry: swap entry for which we allocate swap cache.
2238 *
73c34b6a 2239 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2240 * This can return error codes. Returns 0 at success.
2241 * -EBUSY means there is a swap cache.
2242 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2243 */
2244int swapcache_prepare(swp_entry_t entry)
2245{
253d553b 2246 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2247}
2248
1da177e4 2249/*
5d337b91 2250 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2251 * reference on the swaphandle, it doesn't matter if it becomes unused.
2252 */
2253int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2254{
8952898b 2255 struct swap_info_struct *si;
3f9e7949 2256 int our_page_cluster = page_cluster;
8952898b
HD
2257 pgoff_t target, toff;
2258 pgoff_t base, end;
2259 int nr_pages = 0;
1da177e4 2260
3f9e7949 2261 if (!our_page_cluster) /* no readahead */
1da177e4 2262 return 0;
8952898b 2263
efa90a98 2264 si = swap_info[swp_type(entry)];
8952898b
HD
2265 target = swp_offset(entry);
2266 base = (target >> our_page_cluster) << our_page_cluster;
2267 end = base + (1 << our_page_cluster);
2268 if (!base) /* first page is swap header */
2269 base++;
1da177e4 2270
5d337b91 2271 spin_lock(&swap_lock);
8952898b
HD
2272 if (end > si->max) /* don't go beyond end of map */
2273 end = si->max;
2274
2275 /* Count contiguous allocated slots above our target */
2276 for (toff = target; ++toff < end; nr_pages++) {
2277 /* Don't read in free or bad pages */
2278 if (!si->swap_map[toff])
2279 break;
355cfa73 2280 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2281 break;
8952898b
HD
2282 }
2283 /* Count contiguous allocated slots below our target */
2284 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2285 /* Don't read in free or bad pages */
8952898b 2286 if (!si->swap_map[toff])
1da177e4 2287 break;
355cfa73 2288 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2289 break;
8952898b 2290 }
5d337b91 2291 spin_unlock(&swap_lock);
8952898b
HD
2292
2293 /*
2294 * Indicate starting offset, and return number of pages to get:
2295 * if only 1, say 0, since there's then no readahead to be done.
2296 */
2297 *offset = ++toff;
2298 return nr_pages? ++nr_pages: 0;
1da177e4 2299}
570a335b
HD
2300
2301/*
2302 * add_swap_count_continuation - called when a swap count is duplicated
2303 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2304 * page of the original vmalloc'ed swap_map, to hold the continuation count
2305 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2306 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2307 *
2308 * These continuation pages are seldom referenced: the common paths all work
2309 * on the original swap_map, only referring to a continuation page when the
2310 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2311 *
2312 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2313 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2314 * can be called after dropping locks.
2315 */
2316int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2317{
2318 struct swap_info_struct *si;
2319 struct page *head;
2320 struct page *page;
2321 struct page *list_page;
2322 pgoff_t offset;
2323 unsigned char count;
2324
2325 /*
2326 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2327 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2328 */
2329 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2330
2331 si = swap_info_get(entry);
2332 if (!si) {
2333 /*
2334 * An acceptable race has occurred since the failing
2335 * __swap_duplicate(): the swap entry has been freed,
2336 * perhaps even the whole swap_map cleared for swapoff.
2337 */
2338 goto outer;
2339 }
2340
2341 offset = swp_offset(entry);
2342 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2343
2344 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2345 /*
2346 * The higher the swap count, the more likely it is that tasks
2347 * will race to add swap count continuation: we need to avoid
2348 * over-provisioning.
2349 */
2350 goto out;
2351 }
2352
2353 if (!page) {
2354 spin_unlock(&swap_lock);
2355 return -ENOMEM;
2356 }
2357
2358 /*
2359 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2360 * no architecture is using highmem pages for kernel pagetables: so it
2361 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2362 */
2363 head = vmalloc_to_page(si->swap_map + offset);
2364 offset &= ~PAGE_MASK;
2365
2366 /*
2367 * Page allocation does not initialize the page's lru field,
2368 * but it does always reset its private field.
2369 */
2370 if (!page_private(head)) {
2371 BUG_ON(count & COUNT_CONTINUED);
2372 INIT_LIST_HEAD(&head->lru);
2373 set_page_private(head, SWP_CONTINUED);
2374 si->flags |= SWP_CONTINUED;
2375 }
2376
2377 list_for_each_entry(list_page, &head->lru, lru) {
2378 unsigned char *map;
2379
2380 /*
2381 * If the previous map said no continuation, but we've found
2382 * a continuation page, free our allocation and use this one.
2383 */
2384 if (!(count & COUNT_CONTINUED))
2385 goto out;
2386
2387 map = kmap_atomic(list_page, KM_USER0) + offset;
2388 count = *map;
2389 kunmap_atomic(map, KM_USER0);
2390
2391 /*
2392 * If this continuation count now has some space in it,
2393 * free our allocation and use this one.
2394 */
2395 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2396 goto out;
2397 }
2398
2399 list_add_tail(&page->lru, &head->lru);
2400 page = NULL; /* now it's attached, don't free it */
2401out:
2402 spin_unlock(&swap_lock);
2403outer:
2404 if (page)
2405 __free_page(page);
2406 return 0;
2407}
2408
2409/*
2410 * swap_count_continued - when the original swap_map count is incremented
2411 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2412 * into, carry if so, or else fail until a new continuation page is allocated;
2413 * when the original swap_map count is decremented from 0 with continuation,
2414 * borrow from the continuation and report whether it still holds more.
2415 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2416 */
2417static bool swap_count_continued(struct swap_info_struct *si,
2418 pgoff_t offset, unsigned char count)
2419{
2420 struct page *head;
2421 struct page *page;
2422 unsigned char *map;
2423
2424 head = vmalloc_to_page(si->swap_map + offset);
2425 if (page_private(head) != SWP_CONTINUED) {
2426 BUG_ON(count & COUNT_CONTINUED);
2427 return false; /* need to add count continuation */
2428 }
2429
2430 offset &= ~PAGE_MASK;
2431 page = list_entry(head->lru.next, struct page, lru);
2432 map = kmap_atomic(page, KM_USER0) + offset;
2433
2434 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2435 goto init_map; /* jump over SWAP_CONT_MAX checks */
2436
2437 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2438 /*
2439 * Think of how you add 1 to 999
2440 */
2441 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2442 kunmap_atomic(map, KM_USER0);
2443 page = list_entry(page->lru.next, struct page, lru);
2444 BUG_ON(page == head);
2445 map = kmap_atomic(page, KM_USER0) + offset;
2446 }
2447 if (*map == SWAP_CONT_MAX) {
2448 kunmap_atomic(map, KM_USER0);
2449 page = list_entry(page->lru.next, struct page, lru);
2450 if (page == head)
2451 return false; /* add count continuation */
2452 map = kmap_atomic(page, KM_USER0) + offset;
2453init_map: *map = 0; /* we didn't zero the page */
2454 }
2455 *map += 1;
2456 kunmap_atomic(map, KM_USER0);
2457 page = list_entry(page->lru.prev, struct page, lru);
2458 while (page != head) {
2459 map = kmap_atomic(page, KM_USER0) + offset;
2460 *map = COUNT_CONTINUED;
2461 kunmap_atomic(map, KM_USER0);
2462 page = list_entry(page->lru.prev, struct page, lru);
2463 }
2464 return true; /* incremented */
2465
2466 } else { /* decrementing */
2467 /*
2468 * Think of how you subtract 1 from 1000
2469 */
2470 BUG_ON(count != COUNT_CONTINUED);
2471 while (*map == COUNT_CONTINUED) {
2472 kunmap_atomic(map, KM_USER0);
2473 page = list_entry(page->lru.next, struct page, lru);
2474 BUG_ON(page == head);
2475 map = kmap_atomic(page, KM_USER0) + offset;
2476 }
2477 BUG_ON(*map == 0);
2478 *map -= 1;
2479 if (*map == 0)
2480 count = 0;
2481 kunmap_atomic(map, KM_USER0);
2482 page = list_entry(page->lru.prev, struct page, lru);
2483 while (page != head) {
2484 map = kmap_atomic(page, KM_USER0) + offset;
2485 *map = SWAP_CONT_MAX | count;
2486 count = COUNT_CONTINUED;
2487 kunmap_atomic(map, KM_USER0);
2488 page = list_entry(page->lru.prev, struct page, lru);
2489 }
2490 return count == COUNT_CONTINUED;
2491 }
2492}
2493
2494/*
2495 * free_swap_count_continuations - swapoff free all the continuation pages
2496 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2497 */
2498static void free_swap_count_continuations(struct swap_info_struct *si)
2499{
2500 pgoff_t offset;
2501
2502 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2503 struct page *head;
2504 head = vmalloc_to_page(si->swap_map + offset);
2505 if (page_private(head)) {
2506 struct list_head *this, *next;
2507 list_for_each_safe(this, next, &head->lru) {
2508 struct page *page;
2509 page = list_entry(this, struct page, lru);
2510 list_del(this);
2511 __free_page(page);
2512 }
2513 }
2514 }
2515}