]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
x86,nobootmem: make alloc_bootmem_node fall back to other node when 32bit numa is...
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
56de7263 52#include <linux/compaction.h>
0d3d062a 53#include <trace/events/kmem.h>
718a3821 54#include <linux/ftrace_event.h>
1da177e4
LT
55
56#include <asm/tlbflush.h>
ac924c60 57#include <asm/div64.h>
1da177e4
LT
58#include "internal.h"
59
72812019
LS
60#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61DEFINE_PER_CPU(int, numa_node);
62EXPORT_PER_CPU_SYMBOL(numa_node);
63#endif
64
7aac7898
LS
65#ifdef CONFIG_HAVE_MEMORYLESS_NODES
66/*
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
71 */
72DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74#endif
75
1da177e4 76/*
13808910 77 * Array of node states.
1da177e4 78 */
13808910
CL
79nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82#ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84#ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86#endif
87 [N_CPU] = { { [0] = 1UL } },
88#endif /* NUMA */
89};
90EXPORT_SYMBOL(node_states);
91
6c231b7b 92unsigned long totalram_pages __read_mostly;
cb45b0e9 93unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 94int percpu_pagelist_fraction;
dcce284a 95gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 96
452aa699
RW
97#ifdef CONFIG_PM_SLEEP
98/*
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
105 */
106void set_gfp_allowed_mask(gfp_t mask)
107{
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
110}
111
112gfp_t clear_gfp_allowed_mask(gfp_t mask)
113{
114 gfp_t ret = gfp_allowed_mask;
115
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
119}
120#endif /* CONFIG_PM_SLEEP */
121
d9c23400
MG
122#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123int pageblock_order __read_mostly;
124#endif
125
d98c7a09 126static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 127
1da177e4
LT
128/*
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
135 *
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
1da177e4 138 */
2f1b6248 139int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 140#ifdef CONFIG_ZONE_DMA
2f1b6248 141 256,
4b51d669 142#endif
fb0e7942 143#ifdef CONFIG_ZONE_DMA32
2f1b6248 144 256,
fb0e7942 145#endif
e53ef38d 146#ifdef CONFIG_HIGHMEM
2a1e274a 147 32,
e53ef38d 148#endif
2a1e274a 149 32,
2f1b6248 150};
1da177e4
LT
151
152EXPORT_SYMBOL(totalram_pages);
1da177e4 153
15ad7cdc 154static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 155#ifdef CONFIG_ZONE_DMA
2f1b6248 156 "DMA",
4b51d669 157#endif
fb0e7942 158#ifdef CONFIG_ZONE_DMA32
2f1b6248 159 "DMA32",
fb0e7942 160#endif
2f1b6248 161 "Normal",
e53ef38d 162#ifdef CONFIG_HIGHMEM
2a1e274a 163 "HighMem",
e53ef38d 164#endif
2a1e274a 165 "Movable",
2f1b6248
CL
166};
167
1da177e4
LT
168int min_free_kbytes = 1024;
169
2c85f51d
JB
170static unsigned long __meminitdata nr_kernel_pages;
171static unsigned long __meminitdata nr_all_pages;
a3142c8e 172static unsigned long __meminitdata dma_reserve;
1da177e4 173
c713216d
MG
174#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
175 /*
183ff22b 176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
181 */
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
194
98011f56
JB
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 199 static unsigned long __initdata required_kernelcore;
484f51f8 200 static unsigned long __initdata required_movablecore;
b69a7288 201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
202
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
c713216d
MG
206#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
207
418508c1
MS
208#if MAX_NUMNODES > 1
209int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 210int nr_online_nodes __read_mostly = 1;
418508c1 211EXPORT_SYMBOL(nr_node_ids);
62bc62a8 212EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
213#endif
214
9ef9acb0
MG
215int page_group_by_mobility_disabled __read_mostly;
216
b2a0ac88
MG
217static void set_pageblock_migratetype(struct page *page, int migratetype)
218{
49255c61
MG
219
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
222
b2a0ac88
MG
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
225}
226
7f33d49a
RW
227bool oom_killer_disabled __read_mostly;
228
13e7444b 229#ifdef CONFIG_DEBUG_VM
c6a57e19 230static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 231{
bdc8cb98
DH
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
c6a57e19 235
bdc8cb98
DH
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
243
244 return ret;
c6a57e19
DH
245}
246
247static int page_is_consistent(struct zone *zone, struct page *page)
248{
14e07298 249 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 250 return 0;
1da177e4 251 if (zone != page_zone(page))
c6a57e19
DH
252 return 0;
253
254 return 1;
255}
256/*
257 * Temporary debugging check for pages not lying within a given zone.
258 */
259static int bad_range(struct zone *zone, struct page *page)
260{
261 if (page_outside_zone_boundaries(zone, page))
1da177e4 262 return 1;
c6a57e19
DH
263 if (!page_is_consistent(zone, page))
264 return 1;
265
1da177e4
LT
266 return 0;
267}
13e7444b
NP
268#else
269static inline int bad_range(struct zone *zone, struct page *page)
270{
271 return 0;
272}
273#endif
274
224abf92 275static void bad_page(struct page *page)
1da177e4 276{
d936cf9b
HD
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
280
2a7684a2
WF
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
285 }
286
d936cf9b
HD
287 /*
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
290 */
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
295 }
296 if (nr_unshown) {
1e9e6365
HD
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
299 nr_unshown);
300 nr_unshown = 0;
301 }
302 nr_shown = 0;
303 }
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
306
1e9e6365 307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 308 current->comm, page_to_pfn(page));
718a3821 309 dump_page(page);
3dc14741 310
1da177e4 311 dump_stack();
d936cf9b 312out:
8cc3b392
HD
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
9f158333 315 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
316}
317
1da177e4
LT
318/*
319 * Higher-order pages are called "compound pages". They are structured thusly:
320 *
321 * The first PAGE_SIZE page is called the "head page".
322 *
323 * The remaining PAGE_SIZE pages are called "tail pages".
324 *
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
327 *
41d78ba5
HD
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
1da177e4 331 */
d98c7a09
HD
332
333static void free_compound_page(struct page *page)
334{
d85f3385 335 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
336}
337
01ad1c08 338void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
339{
340 int i;
341 int nr_pages = 1 << order;
342
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
348
349 __SetPageTail(p);
350 p->first_page = page;
351 }
352}
353
8cc3b392 354static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
355{
356 int i;
357 int nr_pages = 1 << order;
8cc3b392 358 int bad = 0;
1da177e4 359
8cc3b392
HD
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
224abf92 362 bad_page(page);
8cc3b392
HD
363 bad++;
364 }
1da177e4 365
6d777953 366 __ClearPageHead(page);
8cc3b392 367
18229df5
AW
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
1da177e4 370
e713a21d 371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 372 bad_page(page);
8cc3b392
HD
373 bad++;
374 }
d85f3385 375 __ClearPageTail(p);
1da177e4 376 }
8cc3b392
HD
377
378 return bad;
1da177e4 379}
1da177e4 380
17cf4406
NP
381static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
382{
383 int i;
384
6626c5d5
AM
385 /*
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
388 */
725d704e 389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
392}
393
6aa3001b
AM
394static inline void set_page_order(struct page *page, int order)
395{
4c21e2f2 396 set_page_private(page, order);
676165a8 397 __SetPageBuddy(page);
1da177e4
LT
398}
399
400static inline void rmv_page_order(struct page *page)
401{
676165a8 402 __ClearPageBuddy(page);
4c21e2f2 403 set_page_private(page, 0);
1da177e4
LT
404}
405
406/*
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
409 *
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
416 *
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
420 *
d6e05edc 421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
422 */
423static inline struct page *
424__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
425{
426 unsigned long buddy_idx = page_idx ^ (1 << order);
427
428 return page + (buddy_idx - page_idx);
429}
430
431static inline unsigned long
432__find_combined_index(unsigned long page_idx, unsigned int order)
433{
434 return (page_idx & ~(1 << order));
435}
436
437/*
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
13e7444b 440 * (a) the buddy is not in a hole &&
676165a8 441 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
676165a8
NP
444 *
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 447 *
676165a8 448 * For recording page's order, we use page_private(page).
1da177e4 449 */
cb2b95e1
AW
450static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
1da177e4 452{
14e07298 453 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 454 return 0;
13e7444b 455
cb2b95e1
AW
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
458
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 460 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 461 return 1;
676165a8 462 }
6aa3001b 463 return 0;
1da177e4
LT
464}
465
466/*
467 * Freeing function for a buddy system allocator.
468 *
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
676165a8 479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 480 * order is recorded in page_private(page) field.
1da177e4
LT
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
486 *
487 * -- wli
488 */
489
48db57f8 490static inline void __free_one_page(struct page *page,
ed0ae21d
MG
491 struct zone *zone, unsigned int order,
492 int migratetype)
1da177e4
LT
493{
494 unsigned long page_idx;
6dda9d55
CZ
495 unsigned long combined_idx;
496 struct page *buddy;
1da177e4 497
224abf92 498 if (unlikely(PageCompound(page)))
8cc3b392
HD
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
1da177e4 501
ed0ae21d
MG
502 VM_BUG_ON(migratetype == -1);
503
1da177e4
LT
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
f2260e6b 506 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 507 VM_BUG_ON(bad_range(zone, page));
1da177e4 508
1da177e4 509 while (order < MAX_ORDER-1) {
1da177e4 510 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 511 if (!page_is_buddy(page, buddy, order))
3c82d0ce 512 break;
13e7444b 513
3c82d0ce 514 /* Our buddy is free, merge with it and move up one order. */
1da177e4 515 list_del(&buddy->lru);
b2a0ac88 516 zone->free_area[order].nr_free--;
1da177e4 517 rmv_page_order(buddy);
13e7444b 518 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
522 }
523 set_page_order(page, order);
6dda9d55
CZ
524
525 /*
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
532 */
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
542 }
543 }
544
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546out:
1da177e4
LT
547 zone->free_area[order].nr_free++;
548}
549
092cead6
KM
550/*
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
554 */
555static inline void free_page_mlock(struct page *page)
556{
092cead6
KM
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
559}
092cead6 560
224abf92 561static inline int free_pages_check(struct page *page)
1da177e4 562{
92be2e33
NP
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
a3af9c38 565 (atomic_read(&page->_count) != 0) |
8cc3b392 566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 567 bad_page(page);
79f4b7bf 568 return 1;
8cc3b392 569 }
79f4b7bf
HD
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
1da177e4
LT
573}
574
575/*
5f8dcc21 576 * Frees a number of pages from the PCP lists
1da177e4 577 * Assumes all pages on list are in same zone, and of same order.
207f36ee 578 * count is the number of pages to free.
1da177e4
LT
579 *
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
582 *
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
585 */
5f8dcc21
MG
586static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
1da177e4 588{
5f8dcc21 589 int migratetype = 0;
a6f9edd6 590 int batch_free = 0;
5f8dcc21 591
c54ad30c 592 spin_lock(&zone->lock);
93e4a89a 593 zone->all_unreclaimable = 0;
1da177e4 594 zone->pages_scanned = 0;
f2260e6b 595
5f8dcc21 596 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 597 while (count) {
48db57f8 598 struct page *page;
5f8dcc21
MG
599 struct list_head *list;
600
601 /*
a6f9edd6
MG
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
5f8dcc21
MG
607 */
608 do {
a6f9edd6 609 batch_free++;
5f8dcc21
MG
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
48db57f8 614
a6f9edd6
MG
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
a7016235
HD
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 622 } while (--count && --batch_free && !list_empty(list));
1da177e4 623 }
c54ad30c 624 spin_unlock(&zone->lock);
1da177e4
LT
625}
626
ed0ae21d
MG
627static void free_one_page(struct zone *zone, struct page *page, int order,
628 int migratetype)
1da177e4 629{
006d22d9 630 spin_lock(&zone->lock);
93e4a89a 631 zone->all_unreclaimable = 0;
006d22d9 632 zone->pages_scanned = 0;
f2260e6b
MG
633
634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 635 __free_one_page(page, zone, order, migratetype);
006d22d9 636 spin_unlock(&zone->lock);
48db57f8
NP
637}
638
ec95f53a 639static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 640{
1da177e4 641 int i;
8cc3b392 642 int bad = 0;
1da177e4 643
f650316c 644 trace_mm_page_free_direct(page, order);
b1eeab67
VN
645 kmemcheck_free_shadow(page, order);
646
ec95f53a
KM
647 for (i = 0; i < (1 << order); i++) {
648 struct page *pg = page + i;
649
650 if (PageAnon(pg))
651 pg->mapping = NULL;
652 bad += free_pages_check(pg);
653 }
8cc3b392 654 if (bad)
ec95f53a 655 return false;
689bcebf 656
3ac7fe5a 657 if (!PageHighMem(page)) {
9858db50 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
659 debug_check_no_obj_freed(page_address(page),
660 PAGE_SIZE << order);
661 }
dafb1367 662 arch_free_page(page, order);
48db57f8 663 kernel_map_pages(page, 1 << order, 0);
dafb1367 664
ec95f53a
KM
665 return true;
666}
667
668static void __free_pages_ok(struct page *page, unsigned int order)
669{
670 unsigned long flags;
671 int wasMlocked = __TestClearPageMlocked(page);
672
673 if (!free_pages_prepare(page, order))
674 return;
675
c54ad30c 676 local_irq_save(flags);
c277331d 677 if (unlikely(wasMlocked))
da456f14 678 free_page_mlock(page);
f8891e5e 679 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
680 free_one_page(page_zone(page), page, order,
681 get_pageblock_migratetype(page));
c54ad30c 682 local_irq_restore(flags);
1da177e4
LT
683}
684
a226f6c8
DH
685/*
686 * permit the bootmem allocator to evade page validation on high-order frees
687 */
af370fb8 688void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
689{
690 if (order == 0) {
691 __ClearPageReserved(page);
692 set_page_count(page, 0);
7835e98b 693 set_page_refcounted(page);
545b1ea9 694 __free_page(page);
a226f6c8 695 } else {
a226f6c8
DH
696 int loop;
697
545b1ea9 698 prefetchw(page);
a226f6c8
DH
699 for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 struct page *p = &page[loop];
701
545b1ea9
NP
702 if (loop + 1 < BITS_PER_LONG)
703 prefetchw(p + 1);
a226f6c8
DH
704 __ClearPageReserved(p);
705 set_page_count(p, 0);
706 }
707
7835e98b 708 set_page_refcounted(page);
545b1ea9 709 __free_pages(page, order);
a226f6c8
DH
710 }
711}
712
1da177e4
LT
713
714/*
715 * The order of subdivision here is critical for the IO subsystem.
716 * Please do not alter this order without good reasons and regression
717 * testing. Specifically, as large blocks of memory are subdivided,
718 * the order in which smaller blocks are delivered depends on the order
719 * they're subdivided in this function. This is the primary factor
720 * influencing the order in which pages are delivered to the IO
721 * subsystem according to empirical testing, and this is also justified
722 * by considering the behavior of a buddy system containing a single
723 * large block of memory acted on by a series of small allocations.
724 * This behavior is a critical factor in sglist merging's success.
725 *
726 * -- wli
727 */
085cc7d5 728static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
729 int low, int high, struct free_area *area,
730 int migratetype)
1da177e4
LT
731{
732 unsigned long size = 1 << high;
733
734 while (high > low) {
735 area--;
736 high--;
737 size >>= 1;
725d704e 738 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 739 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
740 area->nr_free++;
741 set_page_order(&page[size], high);
742 }
1da177e4
LT
743}
744
1da177e4
LT
745/*
746 * This page is about to be returned from the page allocator
747 */
2a7684a2 748static inline int check_new_page(struct page *page)
1da177e4 749{
92be2e33
NP
750 if (unlikely(page_mapcount(page) |
751 (page->mapping != NULL) |
a3af9c38 752 (atomic_read(&page->_count) != 0) |
8cc3b392 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 754 bad_page(page);
689bcebf 755 return 1;
8cc3b392 756 }
2a7684a2
WF
757 return 0;
758}
759
760static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761{
762 int i;
763
764 for (i = 0; i < (1 << order); i++) {
765 struct page *p = page + i;
766 if (unlikely(check_new_page(p)))
767 return 1;
768 }
689bcebf 769
4c21e2f2 770 set_page_private(page, 0);
7835e98b 771 set_page_refcounted(page);
cc102509
NP
772
773 arch_alloc_page(page, order);
1da177e4 774 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
775
776 if (gfp_flags & __GFP_ZERO)
777 prep_zero_page(page, order, gfp_flags);
778
779 if (order && (gfp_flags & __GFP_COMP))
780 prep_compound_page(page, order);
781
689bcebf 782 return 0;
1da177e4
LT
783}
784
56fd56b8
MG
785/*
786 * Go through the free lists for the given migratetype and remove
787 * the smallest available page from the freelists
788 */
728ec980
MG
789static inline
790struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
791 int migratetype)
792{
793 unsigned int current_order;
794 struct free_area * area;
795 struct page *page;
796
797 /* Find a page of the appropriate size in the preferred list */
798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 area = &(zone->free_area[current_order]);
800 if (list_empty(&area->free_list[migratetype]))
801 continue;
802
803 page = list_entry(area->free_list[migratetype].next,
804 struct page, lru);
805 list_del(&page->lru);
806 rmv_page_order(page);
807 area->nr_free--;
56fd56b8
MG
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811
812 return NULL;
813}
814
815
b2a0ac88
MG
816/*
817 * This array describes the order lists are fallen back to when
818 * the free lists for the desirable migrate type are depleted
819 */
820static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
825};
826
c361be55
MG
827/*
828 * Move the free pages in a range to the free lists of the requested type.
d9c23400 829 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
830 * boundary. If alignment is required, use move_freepages_block()
831 */
b69a7288
AB
832static int move_freepages(struct zone *zone,
833 struct page *start_page, struct page *end_page,
834 int migratetype)
c361be55
MG
835{
836 struct page *page;
837 unsigned long order;
d100313f 838 int pages_moved = 0;
c361be55
MG
839
840#ifndef CONFIG_HOLES_IN_ZONE
841 /*
842 * page_zone is not safe to call in this context when
843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 * anyway as we check zone boundaries in move_freepages_block().
845 * Remove at a later date when no bug reports exist related to
ac0e5b7a 846 * grouping pages by mobility
c361be55
MG
847 */
848 BUG_ON(page_zone(start_page) != page_zone(end_page));
849#endif
850
851 for (page = start_page; page <= end_page;) {
344c790e
AL
852 /* Make sure we are not inadvertently changing nodes */
853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854
c361be55
MG
855 if (!pfn_valid_within(page_to_pfn(page))) {
856 page++;
857 continue;
858 }
859
860 if (!PageBuddy(page)) {
861 page++;
862 continue;
863 }
864
865 order = page_order(page);
866 list_del(&page->lru);
867 list_add(&page->lru,
868 &zone->free_area[order].free_list[migratetype]);
869 page += 1 << order;
d100313f 870 pages_moved += 1 << order;
c361be55
MG
871 }
872
d100313f 873 return pages_moved;
c361be55
MG
874}
875
b69a7288
AB
876static int move_freepages_block(struct zone *zone, struct page *page,
877 int migratetype)
c361be55
MG
878{
879 unsigned long start_pfn, end_pfn;
880 struct page *start_page, *end_page;
881
882 start_pfn = page_to_pfn(page);
d9c23400 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 884 start_page = pfn_to_page(start_pfn);
d9c23400
MG
885 end_page = start_page + pageblock_nr_pages - 1;
886 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
887
888 /* Do not cross zone boundaries */
889 if (start_pfn < zone->zone_start_pfn)
890 start_page = page;
891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 return 0;
893
894 return move_freepages(zone, start_page, end_page, migratetype);
895}
896
2f66a68f
MG
897static void change_pageblock_range(struct page *pageblock_page,
898 int start_order, int migratetype)
899{
900 int nr_pageblocks = 1 << (start_order - pageblock_order);
901
902 while (nr_pageblocks--) {
903 set_pageblock_migratetype(pageblock_page, migratetype);
904 pageblock_page += pageblock_nr_pages;
905 }
906}
907
b2a0ac88 908/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
909static inline struct page *
910__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
911{
912 struct free_area * area;
913 int current_order;
914 struct page *page;
915 int migratetype, i;
916
917 /* Find the largest possible block of pages in the other list */
918 for (current_order = MAX_ORDER-1; current_order >= order;
919 --current_order) {
920 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 migratetype = fallbacks[start_migratetype][i];
922
56fd56b8
MG
923 /* MIGRATE_RESERVE handled later if necessary */
924 if (migratetype == MIGRATE_RESERVE)
925 continue;
e010487d 926
b2a0ac88
MG
927 area = &(zone->free_area[current_order]);
928 if (list_empty(&area->free_list[migratetype]))
929 continue;
930
931 page = list_entry(area->free_list[migratetype].next,
932 struct page, lru);
933 area->nr_free--;
934
935 /*
c361be55 936 * If breaking a large block of pages, move all free
46dafbca
MG
937 * pages to the preferred allocation list. If falling
938 * back for a reclaimable kernel allocation, be more
939 * agressive about taking ownership of free pages
b2a0ac88 940 */
d9c23400 941 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
942 start_migratetype == MIGRATE_RECLAIMABLE ||
943 page_group_by_mobility_disabled) {
46dafbca
MG
944 unsigned long pages;
945 pages = move_freepages_block(zone, page,
946 start_migratetype);
947
948 /* Claim the whole block if over half of it is free */
dd5d241e
MG
949 if (pages >= (1 << (pageblock_order-1)) ||
950 page_group_by_mobility_disabled)
46dafbca
MG
951 set_pageblock_migratetype(page,
952 start_migratetype);
953
b2a0ac88 954 migratetype = start_migratetype;
c361be55 955 }
b2a0ac88
MG
956
957 /* Remove the page from the freelists */
958 list_del(&page->lru);
959 rmv_page_order(page);
b2a0ac88 960
2f66a68f
MG
961 /* Take ownership for orders >= pageblock_order */
962 if (current_order >= pageblock_order)
963 change_pageblock_range(page, current_order,
b2a0ac88
MG
964 start_migratetype);
965
966 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
967
968 trace_mm_page_alloc_extfrag(page, order, current_order,
969 start_migratetype, migratetype);
970
b2a0ac88
MG
971 return page;
972 }
973 }
974
728ec980 975 return NULL;
b2a0ac88
MG
976}
977
56fd56b8 978/*
1da177e4
LT
979 * Do the hard work of removing an element from the buddy allocator.
980 * Call me with the zone->lock already held.
981 */
b2a0ac88
MG
982static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 int migratetype)
1da177e4 984{
1da177e4
LT
985 struct page *page;
986
728ec980 987retry_reserve:
56fd56b8 988 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 989
728ec980 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 991 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 992
728ec980
MG
993 /*
994 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 * is used because __rmqueue_smallest is an inline function
996 * and we want just one call site
997 */
998 if (!page) {
999 migratetype = MIGRATE_RESERVE;
1000 goto retry_reserve;
1001 }
1002 }
1003
0d3d062a 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1005 return page;
1da177e4
LT
1006}
1007
1008/*
1009 * Obtain a specified number of elements from the buddy allocator, all under
1010 * a single hold of the lock, for efficiency. Add them to the supplied list.
1011 * Returns the number of new pages which were placed at *list.
1012 */
1013static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1014 unsigned long count, struct list_head *list,
e084b2d9 1015 int migratetype, int cold)
1da177e4 1016{
1da177e4 1017 int i;
1da177e4 1018
c54ad30c 1019 spin_lock(&zone->lock);
1da177e4 1020 for (i = 0; i < count; ++i) {
b2a0ac88 1021 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1022 if (unlikely(page == NULL))
1da177e4 1023 break;
81eabcbe
MG
1024
1025 /*
1026 * Split buddy pages returned by expand() are received here
1027 * in physical page order. The page is added to the callers and
1028 * list and the list head then moves forward. From the callers
1029 * perspective, the linked list is ordered by page number in
1030 * some conditions. This is useful for IO devices that can
1031 * merge IO requests if the physical pages are ordered
1032 * properly.
1033 */
e084b2d9
MG
1034 if (likely(cold == 0))
1035 list_add(&page->lru, list);
1036 else
1037 list_add_tail(&page->lru, list);
535131e6 1038 set_page_private(page, migratetype);
81eabcbe 1039 list = &page->lru;
1da177e4 1040 }
f2260e6b 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1042 spin_unlock(&zone->lock);
085cc7d5 1043 return i;
1da177e4
LT
1044}
1045
4ae7c039 1046#ifdef CONFIG_NUMA
8fce4d8e 1047/*
4037d452
CL
1048 * Called from the vmstat counter updater to drain pagesets of this
1049 * currently executing processor on remote nodes after they have
1050 * expired.
1051 *
879336c3
CL
1052 * Note that this function must be called with the thread pinned to
1053 * a single processor.
8fce4d8e 1054 */
4037d452 1055void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1056{
4ae7c039 1057 unsigned long flags;
4037d452 1058 int to_drain;
4ae7c039 1059
4037d452
CL
1060 local_irq_save(flags);
1061 if (pcp->count >= pcp->batch)
1062 to_drain = pcp->batch;
1063 else
1064 to_drain = pcp->count;
5f8dcc21 1065 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1066 pcp->count -= to_drain;
1067 local_irq_restore(flags);
4ae7c039
CL
1068}
1069#endif
1070
9f8f2172
CL
1071/*
1072 * Drain pages of the indicated processor.
1073 *
1074 * The processor must either be the current processor and the
1075 * thread pinned to the current processor or a processor that
1076 * is not online.
1077 */
1078static void drain_pages(unsigned int cpu)
1da177e4 1079{
c54ad30c 1080 unsigned long flags;
1da177e4 1081 struct zone *zone;
1da177e4 1082
ee99c71c 1083 for_each_populated_zone(zone) {
1da177e4 1084 struct per_cpu_pageset *pset;
3dfa5721 1085 struct per_cpu_pages *pcp;
1da177e4 1086
99dcc3e5
CL
1087 local_irq_save(flags);
1088 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1089
1090 pcp = &pset->pcp;
5f8dcc21 1091 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1092 pcp->count = 0;
1093 local_irq_restore(flags);
1da177e4
LT
1094 }
1095}
1da177e4 1096
9f8f2172
CL
1097/*
1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099 */
1100void drain_local_pages(void *arg)
1101{
1102 drain_pages(smp_processor_id());
1103}
1104
1105/*
1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107 */
1108void drain_all_pages(void)
1109{
15c8b6c1 1110 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1111}
1112
296699de 1113#ifdef CONFIG_HIBERNATION
1da177e4
LT
1114
1115void mark_free_pages(struct zone *zone)
1116{
f623f0db
RW
1117 unsigned long pfn, max_zone_pfn;
1118 unsigned long flags;
b2a0ac88 1119 int order, t;
1da177e4
LT
1120 struct list_head *curr;
1121
1122 if (!zone->spanned_pages)
1123 return;
1124
1125 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1126
1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 if (pfn_valid(pfn)) {
1130 struct page *page = pfn_to_page(pfn);
1131
7be98234
RW
1132 if (!swsusp_page_is_forbidden(page))
1133 swsusp_unset_page_free(page);
f623f0db 1134 }
1da177e4 1135
b2a0ac88
MG
1136 for_each_migratetype_order(order, t) {
1137 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1138 unsigned long i;
1da177e4 1139
f623f0db
RW
1140 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 for (i = 0; i < (1UL << order); i++)
7be98234 1142 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1143 }
b2a0ac88 1144 }
1da177e4
LT
1145 spin_unlock_irqrestore(&zone->lock, flags);
1146}
e2c55dc8 1147#endif /* CONFIG_PM */
1da177e4 1148
1da177e4
LT
1149/*
1150 * Free a 0-order page
fc91668e 1151 * cold == 1 ? free a cold page : free a hot page
1da177e4 1152 */
fc91668e 1153void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1154{
1155 struct zone *zone = page_zone(page);
1156 struct per_cpu_pages *pcp;
1157 unsigned long flags;
5f8dcc21 1158 int migratetype;
451ea25d 1159 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1160
ec95f53a 1161 if (!free_pages_prepare(page, 0))
689bcebf
HD
1162 return;
1163
5f8dcc21
MG
1164 migratetype = get_pageblock_migratetype(page);
1165 set_page_private(page, migratetype);
1da177e4 1166 local_irq_save(flags);
c277331d 1167 if (unlikely(wasMlocked))
da456f14 1168 free_page_mlock(page);
f8891e5e 1169 __count_vm_event(PGFREE);
da456f14 1170
5f8dcc21
MG
1171 /*
1172 * We only track unmovable, reclaimable and movable on pcp lists.
1173 * Free ISOLATE pages back to the allocator because they are being
1174 * offlined but treat RESERVE as movable pages so we can get those
1175 * areas back if necessary. Otherwise, we may have to free
1176 * excessively into the page allocator
1177 */
1178 if (migratetype >= MIGRATE_PCPTYPES) {
1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 free_one_page(zone, page, 0, migratetype);
1181 goto out;
1182 }
1183 migratetype = MIGRATE_MOVABLE;
1184 }
1185
99dcc3e5 1186 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1187 if (cold)
5f8dcc21 1188 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1189 else
5f8dcc21 1190 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1191 pcp->count++;
48db57f8 1192 if (pcp->count >= pcp->high) {
5f8dcc21 1193 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1194 pcp->count -= pcp->batch;
1195 }
5f8dcc21
MG
1196
1197out:
1da177e4 1198 local_irq_restore(flags);
1da177e4
LT
1199}
1200
8dfcc9ba
NP
1201/*
1202 * split_page takes a non-compound higher-order page, and splits it into
1203 * n (1<<order) sub-pages: page[0..n]
1204 * Each sub-page must be freed individually.
1205 *
1206 * Note: this is probably too low level an operation for use in drivers.
1207 * Please consult with lkml before using this in your driver.
1208 */
1209void split_page(struct page *page, unsigned int order)
1210{
1211 int i;
1212
725d704e
NP
1213 VM_BUG_ON(PageCompound(page));
1214 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1215
1216#ifdef CONFIG_KMEMCHECK
1217 /*
1218 * Split shadow pages too, because free(page[0]) would
1219 * otherwise free the whole shadow.
1220 */
1221 if (kmemcheck_page_is_tracked(page))
1222 split_page(virt_to_page(page[0].shadow), order);
1223#endif
1224
7835e98b
NP
1225 for (i = 1; i < (1 << order); i++)
1226 set_page_refcounted(page + i);
8dfcc9ba 1227}
8dfcc9ba 1228
748446bb
MG
1229/*
1230 * Similar to split_page except the page is already free. As this is only
1231 * being used for migration, the migratetype of the block also changes.
1232 * As this is called with interrupts disabled, the caller is responsible
1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234 * are enabled.
1235 *
1236 * Note: this is probably too low level an operation for use in drivers.
1237 * Please consult with lkml before using this in your driver.
1238 */
1239int split_free_page(struct page *page)
1240{
1241 unsigned int order;
1242 unsigned long watermark;
1243 struct zone *zone;
1244
1245 BUG_ON(!PageBuddy(page));
1246
1247 zone = page_zone(page);
1248 order = page_order(page);
1249
1250 /* Obey watermarks as if the page was being allocated */
1251 watermark = low_wmark_pages(zone) + (1 << order);
1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 return 0;
1254
1255 /* Remove page from free list */
1256 list_del(&page->lru);
1257 zone->free_area[order].nr_free--;
1258 rmv_page_order(page);
1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260
1261 /* Split into individual pages */
1262 set_page_refcounted(page);
1263 split_page(page, order);
1264
1265 if (order >= pageblock_order - 1) {
1266 struct page *endpage = page + (1 << order) - 1;
1267 for (; page < endpage; page += pageblock_nr_pages)
1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 }
1270
1271 return 1 << order;
1272}
1273
1da177e4
LT
1274/*
1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1277 * or two.
1278 */
0a15c3e9
MG
1279static inline
1280struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1281 struct zone *zone, int order, gfp_t gfp_flags,
1282 int migratetype)
1da177e4
LT
1283{
1284 unsigned long flags;
689bcebf 1285 struct page *page;
1da177e4
LT
1286 int cold = !!(gfp_flags & __GFP_COLD);
1287
689bcebf 1288again:
48db57f8 1289 if (likely(order == 0)) {
1da177e4 1290 struct per_cpu_pages *pcp;
5f8dcc21 1291 struct list_head *list;
1da177e4 1292
1da177e4 1293 local_irq_save(flags);
99dcc3e5
CL
1294 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 list = &pcp->lists[migratetype];
5f8dcc21 1296 if (list_empty(list)) {
535131e6 1297 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1298 pcp->batch, list,
e084b2d9 1299 migratetype, cold);
5f8dcc21 1300 if (unlikely(list_empty(list)))
6fb332fa 1301 goto failed;
535131e6 1302 }
b92a6edd 1303
5f8dcc21
MG
1304 if (cold)
1305 page = list_entry(list->prev, struct page, lru);
1306 else
1307 page = list_entry(list->next, struct page, lru);
1308
b92a6edd
MG
1309 list_del(&page->lru);
1310 pcp->count--;
7fb1d9fc 1311 } else {
dab48dab
AM
1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 /*
1314 * __GFP_NOFAIL is not to be used in new code.
1315 *
1316 * All __GFP_NOFAIL callers should be fixed so that they
1317 * properly detect and handle allocation failures.
1318 *
1319 * We most definitely don't want callers attempting to
4923abf9 1320 * allocate greater than order-1 page units with
dab48dab
AM
1321 * __GFP_NOFAIL.
1322 */
4923abf9 1323 WARN_ON_ONCE(order > 1);
dab48dab 1324 }
1da177e4 1325 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1326 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1327 spin_unlock(&zone->lock);
1328 if (!page)
1329 goto failed;
6ccf80eb 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1331 }
1332
f8891e5e 1333 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1334 zone_statistics(preferred_zone, zone);
a74609fa 1335 local_irq_restore(flags);
1da177e4 1336
725d704e 1337 VM_BUG_ON(bad_range(zone, page));
17cf4406 1338 if (prep_new_page(page, order, gfp_flags))
a74609fa 1339 goto again;
1da177e4 1340 return page;
a74609fa
NP
1341
1342failed:
1343 local_irq_restore(flags);
a74609fa 1344 return NULL;
1da177e4
LT
1345}
1346
41858966
MG
1347/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348#define ALLOC_WMARK_MIN WMARK_MIN
1349#define ALLOC_WMARK_LOW WMARK_LOW
1350#define ALLOC_WMARK_HIGH WMARK_HIGH
1351#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1352
1353/* Mask to get the watermark bits */
1354#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1355
3148890b
NP
1356#define ALLOC_HARDER 0x10 /* try to alloc harder */
1357#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1358#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1359
933e312e
AM
1360#ifdef CONFIG_FAIL_PAGE_ALLOC
1361
1362static struct fail_page_alloc_attr {
1363 struct fault_attr attr;
1364
1365 u32 ignore_gfp_highmem;
1366 u32 ignore_gfp_wait;
54114994 1367 u32 min_order;
933e312e
AM
1368
1369#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370
1371 struct dentry *ignore_gfp_highmem_file;
1372 struct dentry *ignore_gfp_wait_file;
54114994 1373 struct dentry *min_order_file;
933e312e
AM
1374
1375#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376
1377} fail_page_alloc = {
1378 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1379 .ignore_gfp_wait = 1,
1380 .ignore_gfp_highmem = 1,
54114994 1381 .min_order = 1,
933e312e
AM
1382};
1383
1384static int __init setup_fail_page_alloc(char *str)
1385{
1386 return setup_fault_attr(&fail_page_alloc.attr, str);
1387}
1388__setup("fail_page_alloc=", setup_fail_page_alloc);
1389
1390static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391{
54114994
AM
1392 if (order < fail_page_alloc.min_order)
1393 return 0;
933e312e
AM
1394 if (gfp_mask & __GFP_NOFAIL)
1395 return 0;
1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 return 0;
1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 return 0;
1400
1401 return should_fail(&fail_page_alloc.attr, 1 << order);
1402}
1403
1404#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405
1406static int __init fail_page_alloc_debugfs(void)
1407{
1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 struct dentry *dir;
1410 int err;
1411
1412 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 "fail_page_alloc");
1414 if (err)
1415 return err;
1416 dir = fail_page_alloc.attr.dentries.dir;
1417
1418 fail_page_alloc.ignore_gfp_wait_file =
1419 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 &fail_page_alloc.ignore_gfp_wait);
1421
1422 fail_page_alloc.ignore_gfp_highmem_file =
1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1425 fail_page_alloc.min_order_file =
1426 debugfs_create_u32("min-order", mode, dir,
1427 &fail_page_alloc.min_order);
933e312e
AM
1428
1429 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1430 !fail_page_alloc.ignore_gfp_highmem_file ||
1431 !fail_page_alloc.min_order_file) {
933e312e
AM
1432 err = -ENOMEM;
1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1435 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 }
1438
1439 return err;
1440}
1441
1442late_initcall(fail_page_alloc_debugfs);
1443
1444#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445
1446#else /* CONFIG_FAIL_PAGE_ALLOC */
1447
1448static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449{
1450 return 0;
1451}
1452
1453#endif /* CONFIG_FAIL_PAGE_ALLOC */
1454
1da177e4
LT
1455/*
1456 * Return 1 if free pages are above 'mark'. This takes into account the order
1457 * of the allocation.
1458 */
1459int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1460 int classzone_idx, int alloc_flags)
1da177e4
LT
1461{
1462 /* free_pages my go negative - that's OK */
d23ad423
CL
1463 long min = mark;
1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1465 int o;
1466
7fb1d9fc 1467 if (alloc_flags & ALLOC_HIGH)
1da177e4 1468 min -= min / 2;
7fb1d9fc 1469 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1470 min -= min / 4;
1471
1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 return 0;
1474 for (o = 0; o < order; o++) {
1475 /* At the next order, this order's pages become unavailable */
1476 free_pages -= z->free_area[o].nr_free << o;
1477
1478 /* Require fewer higher order pages to be free */
1479 min >>= 1;
1480
1481 if (free_pages <= min)
1482 return 0;
1483 }
1484 return 1;
1485}
1486
9276b1bc
PJ
1487#ifdef CONFIG_NUMA
1488/*
1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1490 * skip over zones that are not allowed by the cpuset, or that have
1491 * been recently (in last second) found to be nearly full. See further
1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1493 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1494 *
1495 * If the zonelist cache is present in the passed in zonelist, then
1496 * returns a pointer to the allowed node mask (either the current
37b07e41 1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1498 *
1499 * If the zonelist cache is not available for this zonelist, does
1500 * nothing and returns NULL.
1501 *
1502 * If the fullzones BITMAP in the zonelist cache is stale (more than
1503 * a second since last zap'd) then we zap it out (clear its bits.)
1504 *
1505 * We hold off even calling zlc_setup, until after we've checked the
1506 * first zone in the zonelist, on the theory that most allocations will
1507 * be satisfied from that first zone, so best to examine that zone as
1508 * quickly as we can.
1509 */
1510static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1511{
1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1513 nodemask_t *allowednodes; /* zonelist_cache approximation */
1514
1515 zlc = zonelist->zlcache_ptr;
1516 if (!zlc)
1517 return NULL;
1518
f05111f5 1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521 zlc->last_full_zap = jiffies;
1522 }
1523
1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525 &cpuset_current_mems_allowed :
37b07e41 1526 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1527 return allowednodes;
1528}
1529
1530/*
1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532 * if it is worth looking at further for free memory:
1533 * 1) Check that the zone isn't thought to be full (doesn't have its
1534 * bit set in the zonelist_cache fullzones BITMAP).
1535 * 2) Check that the zones node (obtained from the zonelist_cache
1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537 * Return true (non-zero) if zone is worth looking at further, or
1538 * else return false (zero) if it is not.
1539 *
1540 * This check -ignores- the distinction between various watermarks,
1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1542 * found to be full for any variation of these watermarks, it will
1543 * be considered full for up to one second by all requests, unless
1544 * we are so low on memory on all allowed nodes that we are forced
1545 * into the second scan of the zonelist.
1546 *
1547 * In the second scan we ignore this zonelist cache and exactly
1548 * apply the watermarks to all zones, even it is slower to do so.
1549 * We are low on memory in the second scan, and should leave no stone
1550 * unturned looking for a free page.
1551 */
dd1a239f 1552static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1553 nodemask_t *allowednodes)
1554{
1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1556 int i; /* index of *z in zonelist zones */
1557 int n; /* node that zone *z is on */
1558
1559 zlc = zonelist->zlcache_ptr;
1560 if (!zlc)
1561 return 1;
1562
dd1a239f 1563 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1564 n = zlc->z_to_n[i];
1565
1566 /* This zone is worth trying if it is allowed but not full */
1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1568}
1569
1570/*
1571 * Given 'z' scanning a zonelist, set the corresponding bit in
1572 * zlc->fullzones, so that subsequent attempts to allocate a page
1573 * from that zone don't waste time re-examining it.
1574 */
dd1a239f 1575static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1576{
1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1578 int i; /* index of *z in zonelist zones */
1579
1580 zlc = zonelist->zlcache_ptr;
1581 if (!zlc)
1582 return;
1583
dd1a239f 1584 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1585
1586 set_bit(i, zlc->fullzones);
1587}
1588
1589#else /* CONFIG_NUMA */
1590
1591static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592{
1593 return NULL;
1594}
1595
dd1a239f 1596static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1597 nodemask_t *allowednodes)
1598{
1599 return 1;
1600}
1601
dd1a239f 1602static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1603{
1604}
1605#endif /* CONFIG_NUMA */
1606
7fb1d9fc 1607/*
0798e519 1608 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1609 * a page.
1610 */
1611static struct page *
19770b32 1612get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1614 struct zone *preferred_zone, int migratetype)
753ee728 1615{
dd1a239f 1616 struct zoneref *z;
7fb1d9fc 1617 struct page *page = NULL;
54a6eb5c 1618 int classzone_idx;
5117f45d 1619 struct zone *zone;
9276b1bc
PJ
1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621 int zlc_active = 0; /* set if using zonelist_cache */
1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1623
19770b32 1624 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1625zonelist_scan:
7fb1d9fc 1626 /*
9276b1bc 1627 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1629 */
19770b32
MG
1630 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631 high_zoneidx, nodemask) {
9276b1bc
PJ
1632 if (NUMA_BUILD && zlc_active &&
1633 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1634 continue;
7fb1d9fc 1635 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1636 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1637 goto try_next_zone;
7fb1d9fc 1638
41858966 1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1641 unsigned long mark;
fa5e084e
MG
1642 int ret;
1643
41858966 1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1645 if (zone_watermark_ok(zone, order, mark,
1646 classzone_idx, alloc_flags))
1647 goto try_this_zone;
1648
1649 if (zone_reclaim_mode == 0)
1650 goto this_zone_full;
1651
1652 ret = zone_reclaim(zone, gfp_mask, order);
1653 switch (ret) {
1654 case ZONE_RECLAIM_NOSCAN:
1655 /* did not scan */
1656 goto try_next_zone;
1657 case ZONE_RECLAIM_FULL:
1658 /* scanned but unreclaimable */
1659 goto this_zone_full;
1660 default:
1661 /* did we reclaim enough */
1662 if (!zone_watermark_ok(zone, order, mark,
1663 classzone_idx, alloc_flags))
9276b1bc 1664 goto this_zone_full;
0798e519 1665 }
7fb1d9fc
RS
1666 }
1667
fa5e084e 1668try_this_zone:
3dd28266
MG
1669 page = buffered_rmqueue(preferred_zone, zone, order,
1670 gfp_mask, migratetype);
0798e519 1671 if (page)
7fb1d9fc 1672 break;
9276b1bc
PJ
1673this_zone_full:
1674 if (NUMA_BUILD)
1675 zlc_mark_zone_full(zonelist, z);
1676try_next_zone:
62bc62a8 1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1678 /*
1679 * we do zlc_setup after the first zone is tried but only
1680 * if there are multiple nodes make it worthwhile
1681 */
9276b1bc
PJ
1682 allowednodes = zlc_setup(zonelist, alloc_flags);
1683 zlc_active = 1;
1684 did_zlc_setup = 1;
1685 }
54a6eb5c 1686 }
9276b1bc
PJ
1687
1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689 /* Disable zlc cache for second zonelist scan */
1690 zlc_active = 0;
1691 goto zonelist_scan;
1692 }
7fb1d9fc 1693 return page;
753ee728
MH
1694}
1695
11e33f6a
MG
1696static inline int
1697should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698 unsigned long pages_reclaimed)
1da177e4 1699{
11e33f6a
MG
1700 /* Do not loop if specifically requested */
1701 if (gfp_mask & __GFP_NORETRY)
1702 return 0;
1da177e4 1703
11e33f6a
MG
1704 /*
1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 * means __GFP_NOFAIL, but that may not be true in other
1707 * implementations.
1708 */
1709 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710 return 1;
1711
1712 /*
1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 * specified, then we retry until we no longer reclaim any pages
1715 * (above), or we've reclaimed an order of pages at least as
1716 * large as the allocation's order. In both cases, if the
1717 * allocation still fails, we stop retrying.
1718 */
1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720 return 1;
cf40bd16 1721
11e33f6a
MG
1722 /*
1723 * Don't let big-order allocations loop unless the caller
1724 * explicitly requests that.
1725 */
1726 if (gfp_mask & __GFP_NOFAIL)
1727 return 1;
1da177e4 1728
11e33f6a
MG
1729 return 0;
1730}
933e312e 1731
11e33f6a
MG
1732static inline struct page *
1733__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1735 nodemask_t *nodemask, struct zone *preferred_zone,
1736 int migratetype)
11e33f6a
MG
1737{
1738 struct page *page;
1739
1740 /* Acquire the OOM killer lock for the zones in zonelist */
1741 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1742 schedule_timeout_uninterruptible(1);
1da177e4
LT
1743 return NULL;
1744 }
6b1de916 1745
11e33f6a
MG
1746 /*
1747 * Go through the zonelist yet one more time, keep very high watermark
1748 * here, this is only to catch a parallel oom killing, we must fail if
1749 * we're still under heavy pressure.
1750 */
1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752 order, zonelist, high_zoneidx,
5117f45d 1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1754 preferred_zone, migratetype);
7fb1d9fc 1755 if (page)
11e33f6a
MG
1756 goto out;
1757
4365a567
KH
1758 if (!(gfp_mask & __GFP_NOFAIL)) {
1759 /* The OOM killer will not help higher order allocs */
1760 if (order > PAGE_ALLOC_COSTLY_ORDER)
1761 goto out;
1762 /*
1763 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765 * The caller should handle page allocation failure by itself if
1766 * it specifies __GFP_THISNODE.
1767 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1768 */
1769 if (gfp_mask & __GFP_THISNODE)
1770 goto out;
1771 }
11e33f6a 1772 /* Exhausted what can be done so it's blamo time */
4365a567 1773 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1774
1775out:
1776 clear_zonelist_oom(zonelist, gfp_mask);
1777 return page;
1778}
1779
56de7263
MG
1780#ifdef CONFIG_COMPACTION
1781/* Try memory compaction for high-order allocations before reclaim */
1782static struct page *
1783__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1784 struct zonelist *zonelist, enum zone_type high_zoneidx,
1785 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1786 int migratetype, unsigned long *did_some_progress)
1787{
1788 struct page *page;
1789
4f92e258 1790 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1791 return NULL;
1792
1793 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1794 nodemask);
1795 if (*did_some_progress != COMPACT_SKIPPED) {
1796
1797 /* Page migration frees to the PCP lists but we want merging */
1798 drain_pages(get_cpu());
1799 put_cpu();
1800
1801 page = get_page_from_freelist(gfp_mask, nodemask,
1802 order, zonelist, high_zoneidx,
1803 alloc_flags, preferred_zone,
1804 migratetype);
1805 if (page) {
4f92e258
MG
1806 preferred_zone->compact_considered = 0;
1807 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1808 count_vm_event(COMPACTSUCCESS);
1809 return page;
1810 }
1811
1812 /*
1813 * It's bad if compaction run occurs and fails.
1814 * The most likely reason is that pages exist,
1815 * but not enough to satisfy watermarks.
1816 */
1817 count_vm_event(COMPACTFAIL);
4f92e258 1818 defer_compaction(preferred_zone);
56de7263
MG
1819
1820 cond_resched();
1821 }
1822
1823 return NULL;
1824}
1825#else
1826static inline struct page *
1827__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828 struct zonelist *zonelist, enum zone_type high_zoneidx,
1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830 int migratetype, unsigned long *did_some_progress)
1831{
1832 return NULL;
1833}
1834#endif /* CONFIG_COMPACTION */
1835
11e33f6a
MG
1836/* The really slow allocator path where we enter direct reclaim */
1837static inline struct page *
1838__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1839 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1840 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1841 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1842{
1843 struct page *page = NULL;
1844 struct reclaim_state reclaim_state;
1845 struct task_struct *p = current;
1846
1847 cond_resched();
1848
1849 /* We now go into synchronous reclaim */
1850 cpuset_memory_pressure_bump();
11e33f6a
MG
1851 p->flags |= PF_MEMALLOC;
1852 lockdep_set_current_reclaim_state(gfp_mask);
1853 reclaim_state.reclaimed_slab = 0;
1854 p->reclaim_state = &reclaim_state;
1855
1856 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1857
1858 p->reclaim_state = NULL;
1859 lockdep_clear_current_reclaim_state();
1860 p->flags &= ~PF_MEMALLOC;
1861
1862 cond_resched();
1863
1864 if (order != 0)
1865 drain_all_pages();
1866
1867 if (likely(*did_some_progress))
1868 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1869 zonelist, high_zoneidx,
3dd28266
MG
1870 alloc_flags, preferred_zone,
1871 migratetype);
11e33f6a
MG
1872 return page;
1873}
1874
1da177e4 1875/*
11e33f6a
MG
1876 * This is called in the allocator slow-path if the allocation request is of
1877 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1878 */
11e33f6a
MG
1879static inline struct page *
1880__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1881 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1882 nodemask_t *nodemask, struct zone *preferred_zone,
1883 int migratetype)
11e33f6a
MG
1884{
1885 struct page *page;
1886
1887 do {
1888 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1889 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1890 preferred_zone, migratetype);
11e33f6a
MG
1891
1892 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1893 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1894 } while (!page && (gfp_mask & __GFP_NOFAIL));
1895
1896 return page;
1897}
1898
1899static inline
1900void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1901 enum zone_type high_zoneidx)
1da177e4 1902{
dd1a239f
MG
1903 struct zoneref *z;
1904 struct zone *zone;
1da177e4 1905
11e33f6a
MG
1906 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1907 wakeup_kswapd(zone, order);
1908}
cf40bd16 1909
341ce06f
PZ
1910static inline int
1911gfp_to_alloc_flags(gfp_t gfp_mask)
1912{
1913 struct task_struct *p = current;
1914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1915 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1916
a56f57ff
MG
1917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1919
341ce06f
PZ
1920 /*
1921 * The caller may dip into page reserves a bit more if the caller
1922 * cannot run direct reclaim, or if the caller has realtime scheduling
1923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1924 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1925 */
a56f57ff 1926 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1927
341ce06f
PZ
1928 if (!wait) {
1929 alloc_flags |= ALLOC_HARDER;
523b9458 1930 /*
341ce06f
PZ
1931 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1933 */
341ce06f 1934 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1935 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1936 alloc_flags |= ALLOC_HARDER;
1937
1938 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1939 if (!in_interrupt() &&
1940 ((p->flags & PF_MEMALLOC) ||
1941 unlikely(test_thread_flag(TIF_MEMDIE))))
1942 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1943 }
6b1de916 1944
341ce06f
PZ
1945 return alloc_flags;
1946}
1947
11e33f6a
MG
1948static inline struct page *
1949__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1950 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1951 nodemask_t *nodemask, struct zone *preferred_zone,
1952 int migratetype)
11e33f6a
MG
1953{
1954 const gfp_t wait = gfp_mask & __GFP_WAIT;
1955 struct page *page = NULL;
1956 int alloc_flags;
1957 unsigned long pages_reclaimed = 0;
1958 unsigned long did_some_progress;
1959 struct task_struct *p = current;
1da177e4 1960
72807a74
MG
1961 /*
1962 * In the slowpath, we sanity check order to avoid ever trying to
1963 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964 * be using allocators in order of preference for an area that is
1965 * too large.
1966 */
1fc28b70
MG
1967 if (order >= MAX_ORDER) {
1968 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1969 return NULL;
1fc28b70 1970 }
1da177e4 1971
952f3b51
CL
1972 /*
1973 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976 * using a larger set of nodes after it has established that the
1977 * allowed per node queues are empty and that nodes are
1978 * over allocated.
1979 */
1980 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1981 goto nopage;
1982
cc4a6851 1983restart:
11e33f6a 1984 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1985
9bf2229f 1986 /*
7fb1d9fc
RS
1987 * OK, we're below the kswapd watermark and have kicked background
1988 * reclaim. Now things get more complex, so set up alloc_flags according
1989 * to how we want to proceed.
9bf2229f 1990 */
341ce06f 1991 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1992
341ce06f 1993 /* This is the last chance, in general, before the goto nopage. */
19770b32 1994 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1995 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1996 preferred_zone, migratetype);
7fb1d9fc
RS
1997 if (page)
1998 goto got_pg;
1da177e4 1999
b43a57bb 2000rebalance:
11e33f6a 2001 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2002 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2003 page = __alloc_pages_high_priority(gfp_mask, order,
2004 zonelist, high_zoneidx, nodemask,
2005 preferred_zone, migratetype);
2006 if (page)
2007 goto got_pg;
1da177e4
LT
2008 }
2009
2010 /* Atomic allocations - we can't balance anything */
2011 if (!wait)
2012 goto nopage;
2013
341ce06f
PZ
2014 /* Avoid recursion of direct reclaim */
2015 if (p->flags & PF_MEMALLOC)
2016 goto nopage;
2017
6583bb64
DR
2018 /* Avoid allocations with no watermarks from looping endlessly */
2019 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2020 goto nopage;
2021
56de7263
MG
2022 /* Try direct compaction */
2023 page = __alloc_pages_direct_compact(gfp_mask, order,
2024 zonelist, high_zoneidx,
2025 nodemask,
2026 alloc_flags, preferred_zone,
2027 migratetype, &did_some_progress);
2028 if (page)
2029 goto got_pg;
2030
11e33f6a
MG
2031 /* Try direct reclaim and then allocating */
2032 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2033 zonelist, high_zoneidx,
2034 nodemask,
5117f45d 2035 alloc_flags, preferred_zone,
3dd28266 2036 migratetype, &did_some_progress);
11e33f6a
MG
2037 if (page)
2038 goto got_pg;
1da177e4 2039
e33c3b5e 2040 /*
11e33f6a
MG
2041 * If we failed to make any progress reclaiming, then we are
2042 * running out of options and have to consider going OOM
e33c3b5e 2043 */
11e33f6a
MG
2044 if (!did_some_progress) {
2045 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2046 if (oom_killer_disabled)
2047 goto nopage;
11e33f6a
MG
2048 page = __alloc_pages_may_oom(gfp_mask, order,
2049 zonelist, high_zoneidx,
3dd28266
MG
2050 nodemask, preferred_zone,
2051 migratetype);
11e33f6a
MG
2052 if (page)
2053 goto got_pg;
1da177e4 2054
11e33f6a 2055 /*
82553a93
DR
2056 * The OOM killer does not trigger for high-order
2057 * ~__GFP_NOFAIL allocations so if no progress is being
2058 * made, there are no other options and retrying is
2059 * unlikely to help.
11e33f6a 2060 */
82553a93
DR
2061 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2062 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 2063 goto nopage;
e2c55dc8 2064
ff0ceb9d
DR
2065 goto restart;
2066 }
1da177e4
LT
2067 }
2068
11e33f6a 2069 /* Check if we should retry the allocation */
a41f24ea 2070 pages_reclaimed += did_some_progress;
11e33f6a
MG
2071 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2072 /* Wait for some write requests to complete then retry */
8aa7e847 2073 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2074 goto rebalance;
2075 }
2076
2077nopage:
2078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2079 printk(KERN_WARNING "%s: page allocation failure."
2080 " order:%d, mode:0x%x\n",
2081 p->comm, order, gfp_mask);
2082 dump_stack();
578c2fd6 2083 show_mem();
1da177e4 2084 }
b1eeab67 2085 return page;
1da177e4 2086got_pg:
b1eeab67
VN
2087 if (kmemcheck_enabled)
2088 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2089 return page;
11e33f6a 2090
1da177e4 2091}
11e33f6a
MG
2092
2093/*
2094 * This is the 'heart' of the zoned buddy allocator.
2095 */
2096struct page *
2097__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2098 struct zonelist *zonelist, nodemask_t *nodemask)
2099{
2100 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2101 struct zone *preferred_zone;
11e33f6a 2102 struct page *page;
3dd28266 2103 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2104
dcce284a
BH
2105 gfp_mask &= gfp_allowed_mask;
2106
11e33f6a
MG
2107 lockdep_trace_alloc(gfp_mask);
2108
2109 might_sleep_if(gfp_mask & __GFP_WAIT);
2110
2111 if (should_fail_alloc_page(gfp_mask, order))
2112 return NULL;
2113
2114 /*
2115 * Check the zones suitable for the gfp_mask contain at least one
2116 * valid zone. It's possible to have an empty zonelist as a result
2117 * of GFP_THISNODE and a memoryless node
2118 */
2119 if (unlikely(!zonelist->_zonerefs->zone))
2120 return NULL;
2121
c0ff7453 2122 get_mems_allowed();
5117f45d
MG
2123 /* The preferred zone is used for statistics later */
2124 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2125 if (!preferred_zone) {
2126 put_mems_allowed();
5117f45d 2127 return NULL;
c0ff7453 2128 }
5117f45d
MG
2129
2130 /* First allocation attempt */
11e33f6a 2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2132 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2133 preferred_zone, migratetype);
11e33f6a
MG
2134 if (unlikely(!page))
2135 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2136 zonelist, high_zoneidx, nodemask,
3dd28266 2137 preferred_zone, migratetype);
c0ff7453 2138 put_mems_allowed();
11e33f6a 2139
4b4f278c 2140 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2141 return page;
1da177e4 2142}
d239171e 2143EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2144
2145/*
2146 * Common helper functions.
2147 */
920c7a5d 2148unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2149{
945a1113
AM
2150 struct page *page;
2151
2152 /*
2153 * __get_free_pages() returns a 32-bit address, which cannot represent
2154 * a highmem page
2155 */
2156 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2157
1da177e4
LT
2158 page = alloc_pages(gfp_mask, order);
2159 if (!page)
2160 return 0;
2161 return (unsigned long) page_address(page);
2162}
1da177e4
LT
2163EXPORT_SYMBOL(__get_free_pages);
2164
920c7a5d 2165unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2166{
945a1113 2167 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2168}
1da177e4
LT
2169EXPORT_SYMBOL(get_zeroed_page);
2170
2171void __pagevec_free(struct pagevec *pvec)
2172{
2173 int i = pagevec_count(pvec);
2174
4b4f278c
MG
2175 while (--i >= 0) {
2176 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2177 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2178 }
1da177e4
LT
2179}
2180
920c7a5d 2181void __free_pages(struct page *page, unsigned int order)
1da177e4 2182{
b5810039 2183 if (put_page_testzero(page)) {
1da177e4 2184 if (order == 0)
fc91668e 2185 free_hot_cold_page(page, 0);
1da177e4
LT
2186 else
2187 __free_pages_ok(page, order);
2188 }
2189}
2190
2191EXPORT_SYMBOL(__free_pages);
2192
920c7a5d 2193void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2194{
2195 if (addr != 0) {
725d704e 2196 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2197 __free_pages(virt_to_page((void *)addr), order);
2198 }
2199}
2200
2201EXPORT_SYMBOL(free_pages);
2202
2be0ffe2
TT
2203/**
2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205 * @size: the number of bytes to allocate
2206 * @gfp_mask: GFP flags for the allocation
2207 *
2208 * This function is similar to alloc_pages(), except that it allocates the
2209 * minimum number of pages to satisfy the request. alloc_pages() can only
2210 * allocate memory in power-of-two pages.
2211 *
2212 * This function is also limited by MAX_ORDER.
2213 *
2214 * Memory allocated by this function must be released by free_pages_exact().
2215 */
2216void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2217{
2218 unsigned int order = get_order(size);
2219 unsigned long addr;
2220
2221 addr = __get_free_pages(gfp_mask, order);
2222 if (addr) {
2223 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2224 unsigned long used = addr + PAGE_ALIGN(size);
2225
5bfd7560 2226 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2227 while (used < alloc_end) {
2228 free_page(used);
2229 used += PAGE_SIZE;
2230 }
2231 }
2232
2233 return (void *)addr;
2234}
2235EXPORT_SYMBOL(alloc_pages_exact);
2236
2237/**
2238 * free_pages_exact - release memory allocated via alloc_pages_exact()
2239 * @virt: the value returned by alloc_pages_exact.
2240 * @size: size of allocation, same value as passed to alloc_pages_exact().
2241 *
2242 * Release the memory allocated by a previous call to alloc_pages_exact.
2243 */
2244void free_pages_exact(void *virt, size_t size)
2245{
2246 unsigned long addr = (unsigned long)virt;
2247 unsigned long end = addr + PAGE_ALIGN(size);
2248
2249 while (addr < end) {
2250 free_page(addr);
2251 addr += PAGE_SIZE;
2252 }
2253}
2254EXPORT_SYMBOL(free_pages_exact);
2255
1da177e4
LT
2256static unsigned int nr_free_zone_pages(int offset)
2257{
dd1a239f 2258 struct zoneref *z;
54a6eb5c
MG
2259 struct zone *zone;
2260
e310fd43 2261 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2262 unsigned int sum = 0;
2263
0e88460d 2264 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2265
54a6eb5c 2266 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2267 unsigned long size = zone->present_pages;
41858966 2268 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2269 if (size > high)
2270 sum += size - high;
1da177e4
LT
2271 }
2272
2273 return sum;
2274}
2275
2276/*
2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2278 */
2279unsigned int nr_free_buffer_pages(void)
2280{
af4ca457 2281 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2282}
c2f1a551 2283EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2284
2285/*
2286 * Amount of free RAM allocatable within all zones
2287 */
2288unsigned int nr_free_pagecache_pages(void)
2289{
2a1e274a 2290 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2291}
08e0f6a9
CL
2292
2293static inline void show_node(struct zone *zone)
1da177e4 2294{
08e0f6a9 2295 if (NUMA_BUILD)
25ba77c1 2296 printk("Node %d ", zone_to_nid(zone));
1da177e4 2297}
1da177e4 2298
1da177e4
LT
2299void si_meminfo(struct sysinfo *val)
2300{
2301 val->totalram = totalram_pages;
2302 val->sharedram = 0;
d23ad423 2303 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2304 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2305 val->totalhigh = totalhigh_pages;
2306 val->freehigh = nr_free_highpages();
1da177e4
LT
2307 val->mem_unit = PAGE_SIZE;
2308}
2309
2310EXPORT_SYMBOL(si_meminfo);
2311
2312#ifdef CONFIG_NUMA
2313void si_meminfo_node(struct sysinfo *val, int nid)
2314{
2315 pg_data_t *pgdat = NODE_DATA(nid);
2316
2317 val->totalram = pgdat->node_present_pages;
d23ad423 2318 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2319#ifdef CONFIG_HIGHMEM
1da177e4 2320 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2321 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2322 NR_FREE_PAGES);
98d2b0eb
CL
2323#else
2324 val->totalhigh = 0;
2325 val->freehigh = 0;
2326#endif
1da177e4
LT
2327 val->mem_unit = PAGE_SIZE;
2328}
2329#endif
2330
2331#define K(x) ((x) << (PAGE_SHIFT-10))
2332
2333/*
2334 * Show free area list (used inside shift_scroll-lock stuff)
2335 * We also calculate the percentage fragmentation. We do this by counting the
2336 * memory on each free list with the exception of the first item on the list.
2337 */
2338void show_free_areas(void)
2339{
c7241913 2340 int cpu;
1da177e4
LT
2341 struct zone *zone;
2342
ee99c71c 2343 for_each_populated_zone(zone) {
c7241913
JS
2344 show_node(zone);
2345 printk("%s per-cpu:\n", zone->name);
1da177e4 2346
6b482c67 2347 for_each_online_cpu(cpu) {
1da177e4
LT
2348 struct per_cpu_pageset *pageset;
2349
99dcc3e5 2350 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2351
3dfa5721
CL
2352 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353 cpu, pageset->pcp.high,
2354 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2355 }
2356 }
2357
a731286d
KM
2358 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2360 " unevictable:%lu"
b76146ed 2361 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2362 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2364 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2365 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2366 global_page_state(NR_ISOLATED_ANON),
2367 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2368 global_page_state(NR_INACTIVE_FILE),
a731286d 2369 global_page_state(NR_ISOLATED_FILE),
7b854121 2370 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2371 global_page_state(NR_FILE_DIRTY),
ce866b34 2372 global_page_state(NR_WRITEBACK),
fd39fc85 2373 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2374 global_page_state(NR_FREE_PAGES),
3701b033
KM
2375 global_page_state(NR_SLAB_RECLAIMABLE),
2376 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2377 global_page_state(NR_FILE_MAPPED),
4b02108a 2378 global_page_state(NR_SHMEM),
a25700a5
AM
2379 global_page_state(NR_PAGETABLE),
2380 global_page_state(NR_BOUNCE));
1da177e4 2381
ee99c71c 2382 for_each_populated_zone(zone) {
1da177e4
LT
2383 int i;
2384
2385 show_node(zone);
2386 printk("%s"
2387 " free:%lukB"
2388 " min:%lukB"
2389 " low:%lukB"
2390 " high:%lukB"
4f98a2fe
RR
2391 " active_anon:%lukB"
2392 " inactive_anon:%lukB"
2393 " active_file:%lukB"
2394 " inactive_file:%lukB"
7b854121 2395 " unevictable:%lukB"
a731286d
KM
2396 " isolated(anon):%lukB"
2397 " isolated(file):%lukB"
1da177e4 2398 " present:%lukB"
4a0aa73f
KM
2399 " mlocked:%lukB"
2400 " dirty:%lukB"
2401 " writeback:%lukB"
2402 " mapped:%lukB"
4b02108a 2403 " shmem:%lukB"
4a0aa73f
KM
2404 " slab_reclaimable:%lukB"
2405 " slab_unreclaimable:%lukB"
c6a7f572 2406 " kernel_stack:%lukB"
4a0aa73f
KM
2407 " pagetables:%lukB"
2408 " unstable:%lukB"
2409 " bounce:%lukB"
2410 " writeback_tmp:%lukB"
1da177e4
LT
2411 " pages_scanned:%lu"
2412 " all_unreclaimable? %s"
2413 "\n",
2414 zone->name,
d23ad423 2415 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2416 K(min_wmark_pages(zone)),
2417 K(low_wmark_pages(zone)),
2418 K(high_wmark_pages(zone)),
4f98a2fe
RR
2419 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2420 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2421 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2422 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2423 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2424 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2425 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2426 K(zone->present_pages),
4a0aa73f
KM
2427 K(zone_page_state(zone, NR_MLOCK)),
2428 K(zone_page_state(zone, NR_FILE_DIRTY)),
2429 K(zone_page_state(zone, NR_WRITEBACK)),
2430 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2431 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2432 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2433 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2434 zone_page_state(zone, NR_KERNEL_STACK) *
2435 THREAD_SIZE / 1024,
4a0aa73f
KM
2436 K(zone_page_state(zone, NR_PAGETABLE)),
2437 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2438 K(zone_page_state(zone, NR_BOUNCE)),
2439 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2440 zone->pages_scanned,
93e4a89a 2441 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2442 );
2443 printk("lowmem_reserve[]:");
2444 for (i = 0; i < MAX_NR_ZONES; i++)
2445 printk(" %lu", zone->lowmem_reserve[i]);
2446 printk("\n");
2447 }
2448
ee99c71c 2449 for_each_populated_zone(zone) {
8f9de51a 2450 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2451
2452 show_node(zone);
2453 printk("%s: ", zone->name);
1da177e4
LT
2454
2455 spin_lock_irqsave(&zone->lock, flags);
2456 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2457 nr[order] = zone->free_area[order].nr_free;
2458 total += nr[order] << order;
1da177e4
LT
2459 }
2460 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2461 for (order = 0; order < MAX_ORDER; order++)
2462 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2463 printk("= %lukB\n", K(total));
2464 }
2465
e6f3602d
LW
2466 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2467
1da177e4
LT
2468 show_swap_cache_info();
2469}
2470
19770b32
MG
2471static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2472{
2473 zoneref->zone = zone;
2474 zoneref->zone_idx = zone_idx(zone);
2475}
2476
1da177e4
LT
2477/*
2478 * Builds allocation fallback zone lists.
1a93205b
CL
2479 *
2480 * Add all populated zones of a node to the zonelist.
1da177e4 2481 */
f0c0b2b8
KH
2482static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2483 int nr_zones, enum zone_type zone_type)
1da177e4 2484{
1a93205b
CL
2485 struct zone *zone;
2486
98d2b0eb 2487 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2488 zone_type++;
02a68a5e
CL
2489
2490 do {
2f6726e5 2491 zone_type--;
070f8032 2492 zone = pgdat->node_zones + zone_type;
1a93205b 2493 if (populated_zone(zone)) {
dd1a239f
MG
2494 zoneref_set_zone(zone,
2495 &zonelist->_zonerefs[nr_zones++]);
070f8032 2496 check_highest_zone(zone_type);
1da177e4 2497 }
02a68a5e 2498
2f6726e5 2499 } while (zone_type);
070f8032 2500 return nr_zones;
1da177e4
LT
2501}
2502
f0c0b2b8
KH
2503
2504/*
2505 * zonelist_order:
2506 * 0 = automatic detection of better ordering.
2507 * 1 = order by ([node] distance, -zonetype)
2508 * 2 = order by (-zonetype, [node] distance)
2509 *
2510 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511 * the same zonelist. So only NUMA can configure this param.
2512 */
2513#define ZONELIST_ORDER_DEFAULT 0
2514#define ZONELIST_ORDER_NODE 1
2515#define ZONELIST_ORDER_ZONE 2
2516
2517/* zonelist order in the kernel.
2518 * set_zonelist_order() will set this to NODE or ZONE.
2519 */
2520static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2521static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2522
2523
1da177e4 2524#ifdef CONFIG_NUMA
f0c0b2b8
KH
2525/* The value user specified ....changed by config */
2526static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527/* string for sysctl */
2528#define NUMA_ZONELIST_ORDER_LEN 16
2529char numa_zonelist_order[16] = "default";
2530
2531/*
2532 * interface for configure zonelist ordering.
2533 * command line option "numa_zonelist_order"
2534 * = "[dD]efault - default, automatic configuration.
2535 * = "[nN]ode - order by node locality, then by zone within node
2536 * = "[zZ]one - order by zone, then by locality within zone
2537 */
2538
2539static int __parse_numa_zonelist_order(char *s)
2540{
2541 if (*s == 'd' || *s == 'D') {
2542 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2543 } else if (*s == 'n' || *s == 'N') {
2544 user_zonelist_order = ZONELIST_ORDER_NODE;
2545 } else if (*s == 'z' || *s == 'Z') {
2546 user_zonelist_order = ZONELIST_ORDER_ZONE;
2547 } else {
2548 printk(KERN_WARNING
2549 "Ignoring invalid numa_zonelist_order value: "
2550 "%s\n", s);
2551 return -EINVAL;
2552 }
2553 return 0;
2554}
2555
2556static __init int setup_numa_zonelist_order(char *s)
2557{
2558 if (s)
2559 return __parse_numa_zonelist_order(s);
2560 return 0;
2561}
2562early_param("numa_zonelist_order", setup_numa_zonelist_order);
2563
2564/*
2565 * sysctl handler for numa_zonelist_order
2566 */
2567int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2568 void __user *buffer, size_t *length,
f0c0b2b8
KH
2569 loff_t *ppos)
2570{
2571 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2572 int ret;
443c6f14 2573 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2574
443c6f14 2575 mutex_lock(&zl_order_mutex);
f0c0b2b8 2576 if (write)
443c6f14 2577 strcpy(saved_string, (char*)table->data);
8d65af78 2578 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2579 if (ret)
443c6f14 2580 goto out;
f0c0b2b8
KH
2581 if (write) {
2582 int oldval = user_zonelist_order;
2583 if (__parse_numa_zonelist_order((char*)table->data)) {
2584 /*
2585 * bogus value. restore saved string
2586 */
2587 strncpy((char*)table->data, saved_string,
2588 NUMA_ZONELIST_ORDER_LEN);
2589 user_zonelist_order = oldval;
4eaf3f64
HL
2590 } else if (oldval != user_zonelist_order) {
2591 mutex_lock(&zonelists_mutex);
1f522509 2592 build_all_zonelists(NULL);
4eaf3f64
HL
2593 mutex_unlock(&zonelists_mutex);
2594 }
f0c0b2b8 2595 }
443c6f14
AK
2596out:
2597 mutex_unlock(&zl_order_mutex);
2598 return ret;
f0c0b2b8
KH
2599}
2600
2601
62bc62a8 2602#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2603static int node_load[MAX_NUMNODES];
2604
1da177e4 2605/**
4dc3b16b 2606 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2607 * @node: node whose fallback list we're appending
2608 * @used_node_mask: nodemask_t of already used nodes
2609 *
2610 * We use a number of factors to determine which is the next node that should
2611 * appear on a given node's fallback list. The node should not have appeared
2612 * already in @node's fallback list, and it should be the next closest node
2613 * according to the distance array (which contains arbitrary distance values
2614 * from each node to each node in the system), and should also prefer nodes
2615 * with no CPUs, since presumably they'll have very little allocation pressure
2616 * on them otherwise.
2617 * It returns -1 if no node is found.
2618 */
f0c0b2b8 2619static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2620{
4cf808eb 2621 int n, val;
1da177e4
LT
2622 int min_val = INT_MAX;
2623 int best_node = -1;
a70f7302 2624 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2625
4cf808eb
LT
2626 /* Use the local node if we haven't already */
2627 if (!node_isset(node, *used_node_mask)) {
2628 node_set(node, *used_node_mask);
2629 return node;
2630 }
1da177e4 2631
37b07e41 2632 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2633
2634 /* Don't want a node to appear more than once */
2635 if (node_isset(n, *used_node_mask))
2636 continue;
2637
1da177e4
LT
2638 /* Use the distance array to find the distance */
2639 val = node_distance(node, n);
2640
4cf808eb
LT
2641 /* Penalize nodes under us ("prefer the next node") */
2642 val += (n < node);
2643
1da177e4 2644 /* Give preference to headless and unused nodes */
a70f7302
RR
2645 tmp = cpumask_of_node(n);
2646 if (!cpumask_empty(tmp))
1da177e4
LT
2647 val += PENALTY_FOR_NODE_WITH_CPUS;
2648
2649 /* Slight preference for less loaded node */
2650 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2651 val += node_load[n];
2652
2653 if (val < min_val) {
2654 min_val = val;
2655 best_node = n;
2656 }
2657 }
2658
2659 if (best_node >= 0)
2660 node_set(best_node, *used_node_mask);
2661
2662 return best_node;
2663}
2664
f0c0b2b8
KH
2665
2666/*
2667 * Build zonelists ordered by node and zones within node.
2668 * This results in maximum locality--normal zone overflows into local
2669 * DMA zone, if any--but risks exhausting DMA zone.
2670 */
2671static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2672{
f0c0b2b8 2673 int j;
1da177e4 2674 struct zonelist *zonelist;
f0c0b2b8 2675
54a6eb5c 2676 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2677 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2678 ;
2679 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2680 MAX_NR_ZONES - 1);
dd1a239f
MG
2681 zonelist->_zonerefs[j].zone = NULL;
2682 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2683}
2684
523b9458
CL
2685/*
2686 * Build gfp_thisnode zonelists
2687 */
2688static void build_thisnode_zonelists(pg_data_t *pgdat)
2689{
523b9458
CL
2690 int j;
2691 struct zonelist *zonelist;
2692
54a6eb5c
MG
2693 zonelist = &pgdat->node_zonelists[1];
2694 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2695 zonelist->_zonerefs[j].zone = NULL;
2696 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2697}
2698
f0c0b2b8
KH
2699/*
2700 * Build zonelists ordered by zone and nodes within zones.
2701 * This results in conserving DMA zone[s] until all Normal memory is
2702 * exhausted, but results in overflowing to remote node while memory
2703 * may still exist in local DMA zone.
2704 */
2705static int node_order[MAX_NUMNODES];
2706
2707static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2708{
f0c0b2b8
KH
2709 int pos, j, node;
2710 int zone_type; /* needs to be signed */
2711 struct zone *z;
2712 struct zonelist *zonelist;
2713
54a6eb5c
MG
2714 zonelist = &pgdat->node_zonelists[0];
2715 pos = 0;
2716 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2717 for (j = 0; j < nr_nodes; j++) {
2718 node = node_order[j];
2719 z = &NODE_DATA(node)->node_zones[zone_type];
2720 if (populated_zone(z)) {
dd1a239f
MG
2721 zoneref_set_zone(z,
2722 &zonelist->_zonerefs[pos++]);
54a6eb5c 2723 check_highest_zone(zone_type);
f0c0b2b8
KH
2724 }
2725 }
f0c0b2b8 2726 }
dd1a239f
MG
2727 zonelist->_zonerefs[pos].zone = NULL;
2728 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2729}
2730
2731static int default_zonelist_order(void)
2732{
2733 int nid, zone_type;
2734 unsigned long low_kmem_size,total_size;
2735 struct zone *z;
2736 int average_size;
2737 /*
88393161 2738 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2739 * If they are really small and used heavily, the system can fall
2740 * into OOM very easily.
e325c90f 2741 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2742 */
2743 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2744 low_kmem_size = 0;
2745 total_size = 0;
2746 for_each_online_node(nid) {
2747 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2748 z = &NODE_DATA(nid)->node_zones[zone_type];
2749 if (populated_zone(z)) {
2750 if (zone_type < ZONE_NORMAL)
2751 low_kmem_size += z->present_pages;
2752 total_size += z->present_pages;
e325c90f
DR
2753 } else if (zone_type == ZONE_NORMAL) {
2754 /*
2755 * If any node has only lowmem, then node order
2756 * is preferred to allow kernel allocations
2757 * locally; otherwise, they can easily infringe
2758 * on other nodes when there is an abundance of
2759 * lowmem available to allocate from.
2760 */
2761 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2762 }
2763 }
2764 }
2765 if (!low_kmem_size || /* there are no DMA area. */
2766 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2767 return ZONELIST_ORDER_NODE;
2768 /*
2769 * look into each node's config.
2770 * If there is a node whose DMA/DMA32 memory is very big area on
2771 * local memory, NODE_ORDER may be suitable.
2772 */
37b07e41
LS
2773 average_size = total_size /
2774 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2775 for_each_online_node(nid) {
2776 low_kmem_size = 0;
2777 total_size = 0;
2778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2779 z = &NODE_DATA(nid)->node_zones[zone_type];
2780 if (populated_zone(z)) {
2781 if (zone_type < ZONE_NORMAL)
2782 low_kmem_size += z->present_pages;
2783 total_size += z->present_pages;
2784 }
2785 }
2786 if (low_kmem_size &&
2787 total_size > average_size && /* ignore small node */
2788 low_kmem_size > total_size * 70/100)
2789 return ZONELIST_ORDER_NODE;
2790 }
2791 return ZONELIST_ORDER_ZONE;
2792}
2793
2794static void set_zonelist_order(void)
2795{
2796 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2797 current_zonelist_order = default_zonelist_order();
2798 else
2799 current_zonelist_order = user_zonelist_order;
2800}
2801
2802static void build_zonelists(pg_data_t *pgdat)
2803{
2804 int j, node, load;
2805 enum zone_type i;
1da177e4 2806 nodemask_t used_mask;
f0c0b2b8
KH
2807 int local_node, prev_node;
2808 struct zonelist *zonelist;
2809 int order = current_zonelist_order;
1da177e4
LT
2810
2811 /* initialize zonelists */
523b9458 2812 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2813 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2814 zonelist->_zonerefs[0].zone = NULL;
2815 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2816 }
2817
2818 /* NUMA-aware ordering of nodes */
2819 local_node = pgdat->node_id;
62bc62a8 2820 load = nr_online_nodes;
1da177e4
LT
2821 prev_node = local_node;
2822 nodes_clear(used_mask);
f0c0b2b8 2823
f0c0b2b8
KH
2824 memset(node_order, 0, sizeof(node_order));
2825 j = 0;
2826
1da177e4 2827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2828 int distance = node_distance(local_node, node);
2829
2830 /*
2831 * If another node is sufficiently far away then it is better
2832 * to reclaim pages in a zone before going off node.
2833 */
2834 if (distance > RECLAIM_DISTANCE)
2835 zone_reclaim_mode = 1;
2836
1da177e4
LT
2837 /*
2838 * We don't want to pressure a particular node.
2839 * So adding penalty to the first node in same
2840 * distance group to make it round-robin.
2841 */
9eeff239 2842 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2843 node_load[node] = load;
2844
1da177e4
LT
2845 prev_node = node;
2846 load--;
f0c0b2b8
KH
2847 if (order == ZONELIST_ORDER_NODE)
2848 build_zonelists_in_node_order(pgdat, node);
2849 else
2850 node_order[j++] = node; /* remember order */
2851 }
1da177e4 2852
f0c0b2b8
KH
2853 if (order == ZONELIST_ORDER_ZONE) {
2854 /* calculate node order -- i.e., DMA last! */
2855 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2856 }
523b9458
CL
2857
2858 build_thisnode_zonelists(pgdat);
1da177e4
LT
2859}
2860
9276b1bc 2861/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2862static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2863{
54a6eb5c
MG
2864 struct zonelist *zonelist;
2865 struct zonelist_cache *zlc;
dd1a239f 2866 struct zoneref *z;
9276b1bc 2867
54a6eb5c
MG
2868 zonelist = &pgdat->node_zonelists[0];
2869 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2870 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2871 for (z = zonelist->_zonerefs; z->zone; z++)
2872 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2873}
2874
7aac7898
LS
2875#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2876/*
2877 * Return node id of node used for "local" allocations.
2878 * I.e., first node id of first zone in arg node's generic zonelist.
2879 * Used for initializing percpu 'numa_mem', which is used primarily
2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2881 */
2882int local_memory_node(int node)
2883{
2884 struct zone *zone;
2885
2886 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2887 gfp_zone(GFP_KERNEL),
2888 NULL,
2889 &zone);
2890 return zone->node;
2891}
2892#endif
f0c0b2b8 2893
1da177e4
LT
2894#else /* CONFIG_NUMA */
2895
f0c0b2b8
KH
2896static void set_zonelist_order(void)
2897{
2898 current_zonelist_order = ZONELIST_ORDER_ZONE;
2899}
2900
2901static void build_zonelists(pg_data_t *pgdat)
1da177e4 2902{
19655d34 2903 int node, local_node;
54a6eb5c
MG
2904 enum zone_type j;
2905 struct zonelist *zonelist;
1da177e4
LT
2906
2907 local_node = pgdat->node_id;
1da177e4 2908
54a6eb5c
MG
2909 zonelist = &pgdat->node_zonelists[0];
2910 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2911
54a6eb5c
MG
2912 /*
2913 * Now we build the zonelist so that it contains the zones
2914 * of all the other nodes.
2915 * We don't want to pressure a particular node, so when
2916 * building the zones for node N, we make sure that the
2917 * zones coming right after the local ones are those from
2918 * node N+1 (modulo N)
2919 */
2920 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2921 if (!node_online(node))
2922 continue;
2923 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2924 MAX_NR_ZONES - 1);
1da177e4 2925 }
54a6eb5c
MG
2926 for (node = 0; node < local_node; node++) {
2927 if (!node_online(node))
2928 continue;
2929 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2930 MAX_NR_ZONES - 1);
2931 }
2932
dd1a239f
MG
2933 zonelist->_zonerefs[j].zone = NULL;
2934 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2935}
2936
9276b1bc 2937/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2938static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2939{
54a6eb5c 2940 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2941}
2942
1da177e4
LT
2943#endif /* CONFIG_NUMA */
2944
99dcc3e5
CL
2945/*
2946 * Boot pageset table. One per cpu which is going to be used for all
2947 * zones and all nodes. The parameters will be set in such a way
2948 * that an item put on a list will immediately be handed over to
2949 * the buddy list. This is safe since pageset manipulation is done
2950 * with interrupts disabled.
2951 *
2952 * The boot_pagesets must be kept even after bootup is complete for
2953 * unused processors and/or zones. They do play a role for bootstrapping
2954 * hotplugged processors.
2955 *
2956 * zoneinfo_show() and maybe other functions do
2957 * not check if the processor is online before following the pageset pointer.
2958 * Other parts of the kernel may not check if the zone is available.
2959 */
2960static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2961static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 2962static void setup_zone_pageset(struct zone *zone);
99dcc3e5 2963
4eaf3f64
HL
2964/*
2965 * Global mutex to protect against size modification of zonelists
2966 * as well as to serialize pageset setup for the new populated zone.
2967 */
2968DEFINE_MUTEX(zonelists_mutex);
2969
9b1a4d38 2970/* return values int ....just for stop_machine() */
1f522509 2971static __init_refok int __build_all_zonelists(void *data)
1da177e4 2972{
6811378e 2973 int nid;
99dcc3e5 2974 int cpu;
9276b1bc 2975
7f9cfb31
BL
2976#ifdef CONFIG_NUMA
2977 memset(node_load, 0, sizeof(node_load));
2978#endif
9276b1bc 2979 for_each_online_node(nid) {
7ea1530a
CL
2980 pg_data_t *pgdat = NODE_DATA(nid);
2981
2982 build_zonelists(pgdat);
2983 build_zonelist_cache(pgdat);
9276b1bc 2984 }
99dcc3e5 2985
1f522509
HL
2986#ifdef CONFIG_MEMORY_HOTPLUG
2987 /* Setup real pagesets for the new zone */
2988 if (data) {
2989 struct zone *zone = data;
2990 setup_zone_pageset(zone);
2991 }
2992#endif
2993
99dcc3e5
CL
2994 /*
2995 * Initialize the boot_pagesets that are going to be used
2996 * for bootstrapping processors. The real pagesets for
2997 * each zone will be allocated later when the per cpu
2998 * allocator is available.
2999 *
3000 * boot_pagesets are used also for bootstrapping offline
3001 * cpus if the system is already booted because the pagesets
3002 * are needed to initialize allocators on a specific cpu too.
3003 * F.e. the percpu allocator needs the page allocator which
3004 * needs the percpu allocator in order to allocate its pagesets
3005 * (a chicken-egg dilemma).
3006 */
7aac7898 3007 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3008 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3009
7aac7898
LS
3010#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3011 /*
3012 * We now know the "local memory node" for each node--
3013 * i.e., the node of the first zone in the generic zonelist.
3014 * Set up numa_mem percpu variable for on-line cpus. During
3015 * boot, only the boot cpu should be on-line; we'll init the
3016 * secondary cpus' numa_mem as they come on-line. During
3017 * node/memory hotplug, we'll fixup all on-line cpus.
3018 */
3019 if (cpu_online(cpu))
3020 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3021#endif
3022 }
3023
6811378e
YG
3024 return 0;
3025}
3026
4eaf3f64
HL
3027/*
3028 * Called with zonelists_mutex held always
3029 * unless system_state == SYSTEM_BOOTING.
3030 */
1f522509 3031void build_all_zonelists(void *data)
6811378e 3032{
f0c0b2b8
KH
3033 set_zonelist_order();
3034
6811378e 3035 if (system_state == SYSTEM_BOOTING) {
423b41d7 3036 __build_all_zonelists(NULL);
68ad8df4 3037 mminit_verify_zonelist();
6811378e
YG
3038 cpuset_init_current_mems_allowed();
3039 } else {
183ff22b 3040 /* we have to stop all cpus to guarantee there is no user
6811378e 3041 of zonelist */
1f522509 3042 stop_machine(__build_all_zonelists, data, NULL);
6811378e
YG
3043 /* cpuset refresh routine should be here */
3044 }
bd1e22b8 3045 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3046 /*
3047 * Disable grouping by mobility if the number of pages in the
3048 * system is too low to allow the mechanism to work. It would be
3049 * more accurate, but expensive to check per-zone. This check is
3050 * made on memory-hotadd so a system can start with mobility
3051 * disabled and enable it later
3052 */
d9c23400 3053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3054 page_group_by_mobility_disabled = 1;
3055 else
3056 page_group_by_mobility_disabled = 0;
3057
3058 printk("Built %i zonelists in %s order, mobility grouping %s. "
3059 "Total pages: %ld\n",
62bc62a8 3060 nr_online_nodes,
f0c0b2b8 3061 zonelist_order_name[current_zonelist_order],
9ef9acb0 3062 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3063 vm_total_pages);
3064#ifdef CONFIG_NUMA
3065 printk("Policy zone: %s\n", zone_names[policy_zone]);
3066#endif
1da177e4
LT
3067}
3068
3069/*
3070 * Helper functions to size the waitqueue hash table.
3071 * Essentially these want to choose hash table sizes sufficiently
3072 * large so that collisions trying to wait on pages are rare.
3073 * But in fact, the number of active page waitqueues on typical
3074 * systems is ridiculously low, less than 200. So this is even
3075 * conservative, even though it seems large.
3076 *
3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078 * waitqueues, i.e. the size of the waitq table given the number of pages.
3079 */
3080#define PAGES_PER_WAITQUEUE 256
3081
cca448fe 3082#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3083static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3084{
3085 unsigned long size = 1;
3086
3087 pages /= PAGES_PER_WAITQUEUE;
3088
3089 while (size < pages)
3090 size <<= 1;
3091
3092 /*
3093 * Once we have dozens or even hundreds of threads sleeping
3094 * on IO we've got bigger problems than wait queue collision.
3095 * Limit the size of the wait table to a reasonable size.
3096 */
3097 size = min(size, 4096UL);
3098
3099 return max(size, 4UL);
3100}
cca448fe
YG
3101#else
3102/*
3103 * A zone's size might be changed by hot-add, so it is not possible to determine
3104 * a suitable size for its wait_table. So we use the maximum size now.
3105 *
3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3107 *
3108 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3111 *
3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113 * or more by the traditional way. (See above). It equals:
3114 *
3115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3116 * ia64(16K page size) : = ( 8G + 4M)byte.
3117 * powerpc (64K page size) : = (32G +16M)byte.
3118 */
3119static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3120{
3121 return 4096UL;
3122}
3123#endif
1da177e4
LT
3124
3125/*
3126 * This is an integer logarithm so that shifts can be used later
3127 * to extract the more random high bits from the multiplicative
3128 * hash function before the remainder is taken.
3129 */
3130static inline unsigned long wait_table_bits(unsigned long size)
3131{
3132 return ffz(~size);
3133}
3134
3135#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3136
56fd56b8 3137/*
d9c23400 3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3141 * higher will lead to a bigger reserve which will get freed as contiguous
3142 * blocks as reclaim kicks in
3143 */
3144static void setup_zone_migrate_reserve(struct zone *zone)
3145{
3146 unsigned long start_pfn, pfn, end_pfn;
3147 struct page *page;
78986a67
MG
3148 unsigned long block_migratetype;
3149 int reserve;
56fd56b8
MG
3150
3151 /* Get the start pfn, end pfn and the number of blocks to reserve */
3152 start_pfn = zone->zone_start_pfn;
3153 end_pfn = start_pfn + zone->spanned_pages;
41858966 3154 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3155 pageblock_order;
56fd56b8 3156
78986a67
MG
3157 /*
3158 * Reserve blocks are generally in place to help high-order atomic
3159 * allocations that are short-lived. A min_free_kbytes value that
3160 * would result in more than 2 reserve blocks for atomic allocations
3161 * is assumed to be in place to help anti-fragmentation for the
3162 * future allocation of hugepages at runtime.
3163 */
3164 reserve = min(2, reserve);
3165
d9c23400 3166 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3167 if (!pfn_valid(pfn))
3168 continue;
3169 page = pfn_to_page(pfn);
3170
344c790e
AL
3171 /* Watch out for overlapping nodes */
3172 if (page_to_nid(page) != zone_to_nid(zone))
3173 continue;
3174
56fd56b8
MG
3175 /* Blocks with reserved pages will never free, skip them. */
3176 if (PageReserved(page))
3177 continue;
3178
3179 block_migratetype = get_pageblock_migratetype(page);
3180
3181 /* If this block is reserved, account for it */
3182 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3183 reserve--;
3184 continue;
3185 }
3186
3187 /* Suitable for reserving if this block is movable */
3188 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3189 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3190 move_freepages_block(zone, page, MIGRATE_RESERVE);
3191 reserve--;
3192 continue;
3193 }
3194
3195 /*
3196 * If the reserve is met and this is a previous reserved block,
3197 * take it back
3198 */
3199 if (block_migratetype == MIGRATE_RESERVE) {
3200 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3201 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3202 }
3203 }
3204}
ac0e5b7a 3205
1da177e4
LT
3206/*
3207 * Initially all pages are reserved - free ones are freed
3208 * up by free_all_bootmem() once the early boot process is
3209 * done. Non-atomic initialization, single-pass.
3210 */
c09b4240 3211void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3212 unsigned long start_pfn, enum memmap_context context)
1da177e4 3213{
1da177e4 3214 struct page *page;
29751f69
AW
3215 unsigned long end_pfn = start_pfn + size;
3216 unsigned long pfn;
86051ca5 3217 struct zone *z;
1da177e4 3218
22b31eec
HD
3219 if (highest_memmap_pfn < end_pfn - 1)
3220 highest_memmap_pfn = end_pfn - 1;
3221
86051ca5 3222 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3223 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3224 /*
3225 * There can be holes in boot-time mem_map[]s
3226 * handed to this function. They do not
3227 * exist on hotplugged memory.
3228 */
3229 if (context == MEMMAP_EARLY) {
3230 if (!early_pfn_valid(pfn))
3231 continue;
3232 if (!early_pfn_in_nid(pfn, nid))
3233 continue;
3234 }
d41dee36
AW
3235 page = pfn_to_page(pfn);
3236 set_page_links(page, zone, nid, pfn);
708614e6 3237 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3238 init_page_count(page);
1da177e4
LT
3239 reset_page_mapcount(page);
3240 SetPageReserved(page);
b2a0ac88
MG
3241 /*
3242 * Mark the block movable so that blocks are reserved for
3243 * movable at startup. This will force kernel allocations
3244 * to reserve their blocks rather than leaking throughout
3245 * the address space during boot when many long-lived
56fd56b8
MG
3246 * kernel allocations are made. Later some blocks near
3247 * the start are marked MIGRATE_RESERVE by
3248 * setup_zone_migrate_reserve()
86051ca5
KH
3249 *
3250 * bitmap is created for zone's valid pfn range. but memmap
3251 * can be created for invalid pages (for alignment)
3252 * check here not to call set_pageblock_migratetype() against
3253 * pfn out of zone.
b2a0ac88 3254 */
86051ca5
KH
3255 if ((z->zone_start_pfn <= pfn)
3256 && (pfn < z->zone_start_pfn + z->spanned_pages)
3257 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3258 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3259
1da177e4
LT
3260 INIT_LIST_HEAD(&page->lru);
3261#ifdef WANT_PAGE_VIRTUAL
3262 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263 if (!is_highmem_idx(zone))
3212c6be 3264 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3265#endif
1da177e4
LT
3266 }
3267}
3268
1e548deb 3269static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3270{
b2a0ac88
MG
3271 int order, t;
3272 for_each_migratetype_order(order, t) {
3273 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3274 zone->free_area[order].nr_free = 0;
3275 }
3276}
3277
3278#ifndef __HAVE_ARCH_MEMMAP_INIT
3279#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3280 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3281#endif
3282
1d6f4e60 3283static int zone_batchsize(struct zone *zone)
e7c8d5c9 3284{
3a6be87f 3285#ifdef CONFIG_MMU
e7c8d5c9
CL
3286 int batch;
3287
3288 /*
3289 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3290 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3291 *
3292 * OK, so we don't know how big the cache is. So guess.
3293 */
3294 batch = zone->present_pages / 1024;
ba56e91c
SR
3295 if (batch * PAGE_SIZE > 512 * 1024)
3296 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3297 batch /= 4; /* We effectively *= 4 below */
3298 if (batch < 1)
3299 batch = 1;
3300
3301 /*
0ceaacc9
NP
3302 * Clamp the batch to a 2^n - 1 value. Having a power
3303 * of 2 value was found to be more likely to have
3304 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3305 *
0ceaacc9
NP
3306 * For example if 2 tasks are alternately allocating
3307 * batches of pages, one task can end up with a lot
3308 * of pages of one half of the possible page colors
3309 * and the other with pages of the other colors.
e7c8d5c9 3310 */
9155203a 3311 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3312
e7c8d5c9 3313 return batch;
3a6be87f
DH
3314
3315#else
3316 /* The deferral and batching of frees should be suppressed under NOMMU
3317 * conditions.
3318 *
3319 * The problem is that NOMMU needs to be able to allocate large chunks
3320 * of contiguous memory as there's no hardware page translation to
3321 * assemble apparent contiguous memory from discontiguous pages.
3322 *
3323 * Queueing large contiguous runs of pages for batching, however,
3324 * causes the pages to actually be freed in smaller chunks. As there
3325 * can be a significant delay between the individual batches being
3326 * recycled, this leads to the once large chunks of space being
3327 * fragmented and becoming unavailable for high-order allocations.
3328 */
3329 return 0;
3330#endif
e7c8d5c9
CL
3331}
3332
b69a7288 3333static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3334{
3335 struct per_cpu_pages *pcp;
5f8dcc21 3336 int migratetype;
2caaad41 3337
1c6fe946
MD
3338 memset(p, 0, sizeof(*p));
3339
3dfa5721 3340 pcp = &p->pcp;
2caaad41 3341 pcp->count = 0;
2caaad41
CL
3342 pcp->high = 6 * batch;
3343 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3344 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3345 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3346}
3347
8ad4b1fb
RS
3348/*
3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350 * to the value high for the pageset p.
3351 */
3352
3353static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3354 unsigned long high)
3355{
3356 struct per_cpu_pages *pcp;
3357
3dfa5721 3358 pcp = &p->pcp;
8ad4b1fb
RS
3359 pcp->high = high;
3360 pcp->batch = max(1UL, high/4);
3361 if ((high/4) > (PAGE_SHIFT * 8))
3362 pcp->batch = PAGE_SHIFT * 8;
3363}
3364
319774e2
WF
3365static __meminit void setup_zone_pageset(struct zone *zone)
3366{
3367 int cpu;
3368
3369 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3370
3371 for_each_possible_cpu(cpu) {
3372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3373
3374 setup_pageset(pcp, zone_batchsize(zone));
3375
3376 if (percpu_pagelist_fraction)
3377 setup_pagelist_highmark(pcp,
3378 (zone->present_pages /
3379 percpu_pagelist_fraction));
3380 }
3381}
3382
2caaad41 3383/*
99dcc3e5
CL
3384 * Allocate per cpu pagesets and initialize them.
3385 * Before this call only boot pagesets were available.
e7c8d5c9 3386 */
99dcc3e5 3387void __init setup_per_cpu_pageset(void)
e7c8d5c9 3388{
99dcc3e5 3389 struct zone *zone;
e7c8d5c9 3390
319774e2
WF
3391 for_each_populated_zone(zone)
3392 setup_zone_pageset(zone);
e7c8d5c9
CL
3393}
3394
577a32f6 3395static noinline __init_refok
cca448fe 3396int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3397{
3398 int i;
3399 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3400 size_t alloc_size;
ed8ece2e
DH
3401
3402 /*
3403 * The per-page waitqueue mechanism uses hashed waitqueues
3404 * per zone.
3405 */
02b694de
YG
3406 zone->wait_table_hash_nr_entries =
3407 wait_table_hash_nr_entries(zone_size_pages);
3408 zone->wait_table_bits =
3409 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3410 alloc_size = zone->wait_table_hash_nr_entries
3411 * sizeof(wait_queue_head_t);
3412
cd94b9db 3413 if (!slab_is_available()) {
cca448fe
YG
3414 zone->wait_table = (wait_queue_head_t *)
3415 alloc_bootmem_node(pgdat, alloc_size);
3416 } else {
3417 /*
3418 * This case means that a zone whose size was 0 gets new memory
3419 * via memory hot-add.
3420 * But it may be the case that a new node was hot-added. In
3421 * this case vmalloc() will not be able to use this new node's
3422 * memory - this wait_table must be initialized to use this new
3423 * node itself as well.
3424 * To use this new node's memory, further consideration will be
3425 * necessary.
3426 */
8691f3a7 3427 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3428 }
3429 if (!zone->wait_table)
3430 return -ENOMEM;
ed8ece2e 3431
02b694de 3432 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3433 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3434
3435 return 0;
ed8ece2e
DH
3436}
3437
112067f0
SL
3438static int __zone_pcp_update(void *data)
3439{
3440 struct zone *zone = data;
3441 int cpu;
3442 unsigned long batch = zone_batchsize(zone), flags;
3443
2d30a1f6 3444 for_each_possible_cpu(cpu) {
112067f0
SL
3445 struct per_cpu_pageset *pset;
3446 struct per_cpu_pages *pcp;
3447
99dcc3e5 3448 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3449 pcp = &pset->pcp;
3450
3451 local_irq_save(flags);
5f8dcc21 3452 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3453 setup_pageset(pset, batch);
3454 local_irq_restore(flags);
3455 }
3456 return 0;
3457}
3458
3459void zone_pcp_update(struct zone *zone)
3460{
3461 stop_machine(__zone_pcp_update, zone, NULL);
3462}
3463
c09b4240 3464static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3465{
99dcc3e5
CL
3466 /*
3467 * per cpu subsystem is not up at this point. The following code
3468 * relies on the ability of the linker to provide the
3469 * offset of a (static) per cpu variable into the per cpu area.
3470 */
3471 zone->pageset = &boot_pageset;
ed8ece2e 3472
f5335c0f 3473 if (zone->present_pages)
99dcc3e5
CL
3474 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3475 zone->name, zone->present_pages,
3476 zone_batchsize(zone));
ed8ece2e
DH
3477}
3478
718127cc
YG
3479__meminit int init_currently_empty_zone(struct zone *zone,
3480 unsigned long zone_start_pfn,
a2f3aa02
DH
3481 unsigned long size,
3482 enum memmap_context context)
ed8ece2e
DH
3483{
3484 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3485 int ret;
3486 ret = zone_wait_table_init(zone, size);
3487 if (ret)
3488 return ret;
ed8ece2e
DH
3489 pgdat->nr_zones = zone_idx(zone) + 1;
3490
ed8ece2e
DH
3491 zone->zone_start_pfn = zone_start_pfn;
3492
708614e6
MG
3493 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3494 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3495 pgdat->node_id,
3496 (unsigned long)zone_idx(zone),
3497 zone_start_pfn, (zone_start_pfn + size));
3498
1e548deb 3499 zone_init_free_lists(zone);
718127cc
YG
3500
3501 return 0;
ed8ece2e
DH
3502}
3503
c713216d
MG
3504#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3505/*
3506 * Basic iterator support. Return the first range of PFNs for a node
3507 * Note: nid == MAX_NUMNODES returns first region regardless of node
3508 */
a3142c8e 3509static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3510{
3511 int i;
3512
3513 for (i = 0; i < nr_nodemap_entries; i++)
3514 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3515 return i;
3516
3517 return -1;
3518}
3519
3520/*
3521 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3522 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3523 */
a3142c8e 3524static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3525{
3526 for (index = index + 1; index < nr_nodemap_entries; index++)
3527 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3528 return index;
3529
3530 return -1;
3531}
3532
3533#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3534/*
3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536 * Architectures may implement their own version but if add_active_range()
3537 * was used and there are no special requirements, this is a convenient
3538 * alternative
3539 */
f2dbcfa7 3540int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3541{
3542 int i;
3543
3544 for (i = 0; i < nr_nodemap_entries; i++) {
3545 unsigned long start_pfn = early_node_map[i].start_pfn;
3546 unsigned long end_pfn = early_node_map[i].end_pfn;
3547
3548 if (start_pfn <= pfn && pfn < end_pfn)
3549 return early_node_map[i].nid;
3550 }
cc2559bc
KH
3551 /* This is a memory hole */
3552 return -1;
c713216d
MG
3553}
3554#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3555
f2dbcfa7
KH
3556int __meminit early_pfn_to_nid(unsigned long pfn)
3557{
cc2559bc
KH
3558 int nid;
3559
3560 nid = __early_pfn_to_nid(pfn);
3561 if (nid >= 0)
3562 return nid;
3563 /* just returns 0 */
3564 return 0;
f2dbcfa7
KH
3565}
3566
cc2559bc
KH
3567#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3569{
3570 int nid;
3571
3572 nid = __early_pfn_to_nid(pfn);
3573 if (nid >= 0 && nid != node)
3574 return false;
3575 return true;
3576}
3577#endif
f2dbcfa7 3578
c713216d
MG
3579/* Basic iterator support to walk early_node_map[] */
3580#define for_each_active_range_index_in_nid(i, nid) \
3581 for (i = first_active_region_index_in_nid(nid); i != -1; \
3582 i = next_active_region_index_in_nid(i, nid))
3583
3584/**
3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3588 *
3589 * If an architecture guarantees that all ranges registered with
3590 * add_active_ranges() contain no holes and may be freed, this
3591 * this function may be used instead of calling free_bootmem() manually.
3592 */
3593void __init free_bootmem_with_active_regions(int nid,
3594 unsigned long max_low_pfn)
3595{
3596 int i;
3597
3598 for_each_active_range_index_in_nid(i, nid) {
3599 unsigned long size_pages = 0;
3600 unsigned long end_pfn = early_node_map[i].end_pfn;
3601
3602 if (early_node_map[i].start_pfn >= max_low_pfn)
3603 continue;
3604
3605 if (end_pfn > max_low_pfn)
3606 end_pfn = max_low_pfn;
3607
3608 size_pages = end_pfn - early_node_map[i].start_pfn;
3609 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3610 PFN_PHYS(early_node_map[i].start_pfn),
3611 size_pages << PAGE_SHIFT);
3612 }
3613}
3614
08677214
YL
3615int __init add_from_early_node_map(struct range *range, int az,
3616 int nr_range, int nid)
3617{
3618 int i;
3619 u64 start, end;
3620
3621 /* need to go over early_node_map to find out good range for node */
3622 for_each_active_range_index_in_nid(i, nid) {
3623 start = early_node_map[i].start_pfn;
3624 end = early_node_map[i].end_pfn;
3625 nr_range = add_range(range, az, nr_range, start, end);
3626 }
3627 return nr_range;
3628}
3629
2ee78f7b 3630#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3631void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3632 u64 goal, u64 limit)
3633{
3634 int i;
3635 void *ptr;
3636
b8ab9f82
YL
3637 if (limit > get_max_mapped())
3638 limit = get_max_mapped();
3639
08677214
YL
3640 /* need to go over early_node_map to find out good range for node */
3641 for_each_active_range_index_in_nid(i, nid) {
3642 u64 addr;
3643 u64 ei_start, ei_last;
3644
3645 ei_last = early_node_map[i].end_pfn;
3646 ei_last <<= PAGE_SHIFT;
3647 ei_start = early_node_map[i].start_pfn;
3648 ei_start <<= PAGE_SHIFT;
3649 addr = find_early_area(ei_start, ei_last,
3650 goal, limit, size, align);
3651
3652 if (addr == -1ULL)
3653 continue;
3654
3655#if 0
3656 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3657 nid,
3658 ei_start, ei_last, goal, limit, size,
3659 align, addr);
3660#endif
3661
3662 ptr = phys_to_virt(addr);
3663 memset(ptr, 0, size);
3664 reserve_early_without_check(addr, addr + size, "BOOTMEM");
9078370c
CM
3665 /*
3666 * The min_count is set to 0 so that bootmem allocated blocks
3667 * are never reported as leaks.
3668 */
3669 kmemleak_alloc(ptr, size, 0, 0);
08677214
YL
3670 return ptr;
3671 }
3672
3673 return NULL;
3674}
2ee78f7b 3675#endif
08677214
YL
3676
3677
b5bc6c0e
YL
3678void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3679{
3680 int i;
d52d53b8 3681 int ret;
b5bc6c0e 3682
d52d53b8
YL
3683 for_each_active_range_index_in_nid(i, nid) {
3684 ret = work_fn(early_node_map[i].start_pfn,
3685 early_node_map[i].end_pfn, data);
3686 if (ret)
3687 break;
3688 }
b5bc6c0e 3689}
c713216d
MG
3690/**
3691 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3692 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3693 *
3694 * If an architecture guarantees that all ranges registered with
3695 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3696 * function may be used instead of calling memory_present() manually.
c713216d
MG
3697 */
3698void __init sparse_memory_present_with_active_regions(int nid)
3699{
3700 int i;
3701
3702 for_each_active_range_index_in_nid(i, nid)
3703 memory_present(early_node_map[i].nid,
3704 early_node_map[i].start_pfn,
3705 early_node_map[i].end_pfn);
3706}
3707
3708/**
3709 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3710 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3711 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3712 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3713 *
3714 * It returns the start and end page frame of a node based on information
3715 * provided by an arch calling add_active_range(). If called for a node
3716 * with no available memory, a warning is printed and the start and end
88ca3b94 3717 * PFNs will be 0.
c713216d 3718 */
a3142c8e 3719void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3720 unsigned long *start_pfn, unsigned long *end_pfn)
3721{
3722 int i;
3723 *start_pfn = -1UL;
3724 *end_pfn = 0;
3725
3726 for_each_active_range_index_in_nid(i, nid) {
3727 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3728 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3729 }
3730
633c0666 3731 if (*start_pfn == -1UL)
c713216d 3732 *start_pfn = 0;
c713216d
MG
3733}
3734
2a1e274a
MG
3735/*
3736 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3737 * assumption is made that zones within a node are ordered in monotonic
3738 * increasing memory addresses so that the "highest" populated zone is used
3739 */
b69a7288 3740static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3741{
3742 int zone_index;
3743 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3744 if (zone_index == ZONE_MOVABLE)
3745 continue;
3746
3747 if (arch_zone_highest_possible_pfn[zone_index] >
3748 arch_zone_lowest_possible_pfn[zone_index])
3749 break;
3750 }
3751
3752 VM_BUG_ON(zone_index == -1);
3753 movable_zone = zone_index;
3754}
3755
3756/*
3757 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3758 * because it is sized independant of architecture. Unlike the other zones,
3759 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3760 * in each node depending on the size of each node and how evenly kernelcore
3761 * is distributed. This helper function adjusts the zone ranges
3762 * provided by the architecture for a given node by using the end of the
3763 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3764 * zones within a node are in order of monotonic increases memory addresses
3765 */
b69a7288 3766static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3767 unsigned long zone_type,
3768 unsigned long node_start_pfn,
3769 unsigned long node_end_pfn,
3770 unsigned long *zone_start_pfn,
3771 unsigned long *zone_end_pfn)
3772{
3773 /* Only adjust if ZONE_MOVABLE is on this node */
3774 if (zone_movable_pfn[nid]) {
3775 /* Size ZONE_MOVABLE */
3776 if (zone_type == ZONE_MOVABLE) {
3777 *zone_start_pfn = zone_movable_pfn[nid];
3778 *zone_end_pfn = min(node_end_pfn,
3779 arch_zone_highest_possible_pfn[movable_zone]);
3780
3781 /* Adjust for ZONE_MOVABLE starting within this range */
3782 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3783 *zone_end_pfn > zone_movable_pfn[nid]) {
3784 *zone_end_pfn = zone_movable_pfn[nid];
3785
3786 /* Check if this whole range is within ZONE_MOVABLE */
3787 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3788 *zone_start_pfn = *zone_end_pfn;
3789 }
3790}
3791
c713216d
MG
3792/*
3793 * Return the number of pages a zone spans in a node, including holes
3794 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3795 */
6ea6e688 3796static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3797 unsigned long zone_type,
3798 unsigned long *ignored)
3799{
3800 unsigned long node_start_pfn, node_end_pfn;
3801 unsigned long zone_start_pfn, zone_end_pfn;
3802
3803 /* Get the start and end of the node and zone */
3804 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3805 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3806 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3807 adjust_zone_range_for_zone_movable(nid, zone_type,
3808 node_start_pfn, node_end_pfn,
3809 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3810
3811 /* Check that this node has pages within the zone's required range */
3812 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3813 return 0;
3814
3815 /* Move the zone boundaries inside the node if necessary */
3816 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3817 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3818
3819 /* Return the spanned pages */
3820 return zone_end_pfn - zone_start_pfn;
3821}
3822
3823/*
3824 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3825 * then all holes in the requested range will be accounted for.
c713216d 3826 */
32996250 3827unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3828 unsigned long range_start_pfn,
3829 unsigned long range_end_pfn)
3830{
3831 int i = 0;
3832 unsigned long prev_end_pfn = 0, hole_pages = 0;
3833 unsigned long start_pfn;
3834
3835 /* Find the end_pfn of the first active range of pfns in the node */
3836 i = first_active_region_index_in_nid(nid);
3837 if (i == -1)
3838 return 0;
3839
b5445f95
MG
3840 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3841
9c7cd687
MG
3842 /* Account for ranges before physical memory on this node */
3843 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3844 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3845
3846 /* Find all holes for the zone within the node */
3847 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3848
3849 /* No need to continue if prev_end_pfn is outside the zone */
3850 if (prev_end_pfn >= range_end_pfn)
3851 break;
3852
3853 /* Make sure the end of the zone is not within the hole */
3854 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3855 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3856
3857 /* Update the hole size cound and move on */
3858 if (start_pfn > range_start_pfn) {
3859 BUG_ON(prev_end_pfn > start_pfn);
3860 hole_pages += start_pfn - prev_end_pfn;
3861 }
3862 prev_end_pfn = early_node_map[i].end_pfn;
3863 }
3864
9c7cd687
MG
3865 /* Account for ranges past physical memory on this node */
3866 if (range_end_pfn > prev_end_pfn)
0c6cb974 3867 hole_pages += range_end_pfn -
9c7cd687
MG
3868 max(range_start_pfn, prev_end_pfn);
3869
c713216d
MG
3870 return hole_pages;
3871}
3872
3873/**
3874 * absent_pages_in_range - Return number of page frames in holes within a range
3875 * @start_pfn: The start PFN to start searching for holes
3876 * @end_pfn: The end PFN to stop searching for holes
3877 *
88ca3b94 3878 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3879 */
3880unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3881 unsigned long end_pfn)
3882{
3883 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3884}
3885
3886/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3887static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3888 unsigned long zone_type,
3889 unsigned long *ignored)
3890{
9c7cd687
MG
3891 unsigned long node_start_pfn, node_end_pfn;
3892 unsigned long zone_start_pfn, zone_end_pfn;
3893
3894 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3895 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3896 node_start_pfn);
3897 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3898 node_end_pfn);
3899
2a1e274a
MG
3900 adjust_zone_range_for_zone_movable(nid, zone_type,
3901 node_start_pfn, node_end_pfn,
3902 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3903 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3904}
0e0b864e 3905
c713216d 3906#else
6ea6e688 3907static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3908 unsigned long zone_type,
3909 unsigned long *zones_size)
3910{
3911 return zones_size[zone_type];
3912}
3913
6ea6e688 3914static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3915 unsigned long zone_type,
3916 unsigned long *zholes_size)
3917{
3918 if (!zholes_size)
3919 return 0;
3920
3921 return zholes_size[zone_type];
3922}
0e0b864e 3923
c713216d
MG
3924#endif
3925
a3142c8e 3926static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3927 unsigned long *zones_size, unsigned long *zholes_size)
3928{
3929 unsigned long realtotalpages, totalpages = 0;
3930 enum zone_type i;
3931
3932 for (i = 0; i < MAX_NR_ZONES; i++)
3933 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3934 zones_size);
3935 pgdat->node_spanned_pages = totalpages;
3936
3937 realtotalpages = totalpages;
3938 for (i = 0; i < MAX_NR_ZONES; i++)
3939 realtotalpages -=
3940 zone_absent_pages_in_node(pgdat->node_id, i,
3941 zholes_size);
3942 pgdat->node_present_pages = realtotalpages;
3943 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3944 realtotalpages);
3945}
3946
835c134e
MG
3947#ifndef CONFIG_SPARSEMEM
3948/*
3949 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3950 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3951 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3952 * round what is now in bits to nearest long in bits, then return it in
3953 * bytes.
3954 */
3955static unsigned long __init usemap_size(unsigned long zonesize)
3956{
3957 unsigned long usemapsize;
3958
d9c23400
MG
3959 usemapsize = roundup(zonesize, pageblock_nr_pages);
3960 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3961 usemapsize *= NR_PAGEBLOCK_BITS;
3962 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3963
3964 return usemapsize / 8;
3965}
3966
3967static void __init setup_usemap(struct pglist_data *pgdat,
3968 struct zone *zone, unsigned long zonesize)
3969{
3970 unsigned long usemapsize = usemap_size(zonesize);
3971 zone->pageblock_flags = NULL;
58a01a45 3972 if (usemapsize)
835c134e 3973 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3974}
3975#else
3976static void inline setup_usemap(struct pglist_data *pgdat,
3977 struct zone *zone, unsigned long zonesize) {}
3978#endif /* CONFIG_SPARSEMEM */
3979
d9c23400 3980#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3981
3982/* Return a sensible default order for the pageblock size. */
3983static inline int pageblock_default_order(void)
3984{
3985 if (HPAGE_SHIFT > PAGE_SHIFT)
3986 return HUGETLB_PAGE_ORDER;
3987
3988 return MAX_ORDER-1;
3989}
3990
d9c23400
MG
3991/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3992static inline void __init set_pageblock_order(unsigned int order)
3993{
3994 /* Check that pageblock_nr_pages has not already been setup */
3995 if (pageblock_order)
3996 return;
3997
3998 /*
3999 * Assume the largest contiguous order of interest is a huge page.
4000 * This value may be variable depending on boot parameters on IA64
4001 */
4002 pageblock_order = order;
4003}
4004#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4005
ba72cb8c
MG
4006/*
4007 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4008 * and pageblock_default_order() are unused as pageblock_order is set
4009 * at compile-time. See include/linux/pageblock-flags.h for the values of
4010 * pageblock_order based on the kernel config
4011 */
4012static inline int pageblock_default_order(unsigned int order)
4013{
4014 return MAX_ORDER-1;
4015}
d9c23400
MG
4016#define set_pageblock_order(x) do {} while (0)
4017
4018#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4019
1da177e4
LT
4020/*
4021 * Set up the zone data structures:
4022 * - mark all pages reserved
4023 * - mark all memory queues empty
4024 * - clear the memory bitmaps
4025 */
b5a0e011 4026static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4027 unsigned long *zones_size, unsigned long *zholes_size)
4028{
2f1b6248 4029 enum zone_type j;
ed8ece2e 4030 int nid = pgdat->node_id;
1da177e4 4031 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4032 int ret;
1da177e4 4033
208d54e5 4034 pgdat_resize_init(pgdat);
1da177e4
LT
4035 pgdat->nr_zones = 0;
4036 init_waitqueue_head(&pgdat->kswapd_wait);
4037 pgdat->kswapd_max_order = 0;
52d4b9ac 4038 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4039
4040 for (j = 0; j < MAX_NR_ZONES; j++) {
4041 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4042 unsigned long size, realsize, memmap_pages;
b69408e8 4043 enum lru_list l;
1da177e4 4044
c713216d
MG
4045 size = zone_spanned_pages_in_node(nid, j, zones_size);
4046 realsize = size - zone_absent_pages_in_node(nid, j,
4047 zholes_size);
1da177e4 4048
0e0b864e
MG
4049 /*
4050 * Adjust realsize so that it accounts for how much memory
4051 * is used by this zone for memmap. This affects the watermark
4052 * and per-cpu initialisations
4053 */
f7232154
JW
4054 memmap_pages =
4055 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4056 if (realsize >= memmap_pages) {
4057 realsize -= memmap_pages;
5594c8c8
YL
4058 if (memmap_pages)
4059 printk(KERN_DEBUG
4060 " %s zone: %lu pages used for memmap\n",
4061 zone_names[j], memmap_pages);
0e0b864e
MG
4062 } else
4063 printk(KERN_WARNING
4064 " %s zone: %lu pages exceeds realsize %lu\n",
4065 zone_names[j], memmap_pages, realsize);
4066
6267276f
CL
4067 /* Account for reserved pages */
4068 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4069 realsize -= dma_reserve;
d903ef9f 4070 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4071 zone_names[0], dma_reserve);
0e0b864e
MG
4072 }
4073
98d2b0eb 4074 if (!is_highmem_idx(j))
1da177e4
LT
4075 nr_kernel_pages += realsize;
4076 nr_all_pages += realsize;
4077
4078 zone->spanned_pages = size;
4079 zone->present_pages = realsize;
9614634f 4080#ifdef CONFIG_NUMA
d5f541ed 4081 zone->node = nid;
8417bba4 4082 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4083 / 100;
0ff38490 4084 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4085#endif
1da177e4
LT
4086 zone->name = zone_names[j];
4087 spin_lock_init(&zone->lock);
4088 spin_lock_init(&zone->lru_lock);
bdc8cb98 4089 zone_seqlock_init(zone);
1da177e4 4090 zone->zone_pgdat = pgdat;
1da177e4 4091
3bb1a852 4092 zone->prev_priority = DEF_PRIORITY;
1da177e4 4093
ed8ece2e 4094 zone_pcp_init(zone);
b69408e8
CL
4095 for_each_lru(l) {
4096 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4097 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4098 }
6e901571
KM
4099 zone->reclaim_stat.recent_rotated[0] = 0;
4100 zone->reclaim_stat.recent_rotated[1] = 0;
4101 zone->reclaim_stat.recent_scanned[0] = 0;
4102 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4103 zap_zone_vm_stats(zone);
e815af95 4104 zone->flags = 0;
1da177e4
LT
4105 if (!size)
4106 continue;
4107
ba72cb8c 4108 set_pageblock_order(pageblock_default_order());
835c134e 4109 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4110 ret = init_currently_empty_zone(zone, zone_start_pfn,
4111 size, MEMMAP_EARLY);
718127cc 4112 BUG_ON(ret);
76cdd58e 4113 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4114 zone_start_pfn += size;
1da177e4
LT
4115 }
4116}
4117
577a32f6 4118static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4119{
1da177e4
LT
4120 /* Skip empty nodes */
4121 if (!pgdat->node_spanned_pages)
4122 return;
4123
d41dee36 4124#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4125 /* ia64 gets its own node_mem_map, before this, without bootmem */
4126 if (!pgdat->node_mem_map) {
e984bb43 4127 unsigned long size, start, end;
d41dee36
AW
4128 struct page *map;
4129
e984bb43
BP
4130 /*
4131 * The zone's endpoints aren't required to be MAX_ORDER
4132 * aligned but the node_mem_map endpoints must be in order
4133 * for the buddy allocator to function correctly.
4134 */
4135 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4136 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4137 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4138 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4139 map = alloc_remap(pgdat->node_id, size);
4140 if (!map)
4141 map = alloc_bootmem_node(pgdat, size);
e984bb43 4142 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4143 }
12d810c1 4144#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4145 /*
4146 * With no DISCONTIG, the global mem_map is just set as node 0's
4147 */
c713216d 4148 if (pgdat == NODE_DATA(0)) {
1da177e4 4149 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4150#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4151 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4152 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4153#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4154 }
1da177e4 4155#endif
d41dee36 4156#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4157}
4158
9109fb7b
JW
4159void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4160 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4161{
9109fb7b
JW
4162 pg_data_t *pgdat = NODE_DATA(nid);
4163
1da177e4
LT
4164 pgdat->node_id = nid;
4165 pgdat->node_start_pfn = node_start_pfn;
c713216d 4166 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4167
4168 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4169#ifdef CONFIG_FLAT_NODE_MEM_MAP
4170 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4171 nid, (unsigned long)pgdat,
4172 (unsigned long)pgdat->node_mem_map);
4173#endif
1da177e4
LT
4174
4175 free_area_init_core(pgdat, zones_size, zholes_size);
4176}
4177
c713216d 4178#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4179
4180#if MAX_NUMNODES > 1
4181/*
4182 * Figure out the number of possible node ids.
4183 */
4184static void __init setup_nr_node_ids(void)
4185{
4186 unsigned int node;
4187 unsigned int highest = 0;
4188
4189 for_each_node_mask(node, node_possible_map)
4190 highest = node;
4191 nr_node_ids = highest + 1;
4192}
4193#else
4194static inline void setup_nr_node_ids(void)
4195{
4196}
4197#endif
4198
c713216d
MG
4199/**
4200 * add_active_range - Register a range of PFNs backed by physical memory
4201 * @nid: The node ID the range resides on
4202 * @start_pfn: The start PFN of the available physical memory
4203 * @end_pfn: The end PFN of the available physical memory
4204 *
4205 * These ranges are stored in an early_node_map[] and later used by
4206 * free_area_init_nodes() to calculate zone sizes and holes. If the
4207 * range spans a memory hole, it is up to the architecture to ensure
4208 * the memory is not freed by the bootmem allocator. If possible
4209 * the range being registered will be merged with existing ranges.
4210 */
4211void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4212 unsigned long end_pfn)
4213{
4214 int i;
4215
6b74ab97
MG
4216 mminit_dprintk(MMINIT_TRACE, "memory_register",
4217 "Entering add_active_range(%d, %#lx, %#lx) "
4218 "%d entries of %d used\n",
4219 nid, start_pfn, end_pfn,
4220 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4221
2dbb51c4
MG
4222 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4223
c713216d
MG
4224 /* Merge with existing active regions if possible */
4225 for (i = 0; i < nr_nodemap_entries; i++) {
4226 if (early_node_map[i].nid != nid)
4227 continue;
4228
4229 /* Skip if an existing region covers this new one */
4230 if (start_pfn >= early_node_map[i].start_pfn &&
4231 end_pfn <= early_node_map[i].end_pfn)
4232 return;
4233
4234 /* Merge forward if suitable */
4235 if (start_pfn <= early_node_map[i].end_pfn &&
4236 end_pfn > early_node_map[i].end_pfn) {
4237 early_node_map[i].end_pfn = end_pfn;
4238 return;
4239 }
4240
4241 /* Merge backward if suitable */
d2dbe08d 4242 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4243 end_pfn >= early_node_map[i].start_pfn) {
4244 early_node_map[i].start_pfn = start_pfn;
4245 return;
4246 }
4247 }
4248
4249 /* Check that early_node_map is large enough */
4250 if (i >= MAX_ACTIVE_REGIONS) {
4251 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4252 MAX_ACTIVE_REGIONS);
4253 return;
4254 }
4255
4256 early_node_map[i].nid = nid;
4257 early_node_map[i].start_pfn = start_pfn;
4258 early_node_map[i].end_pfn = end_pfn;
4259 nr_nodemap_entries = i + 1;
4260}
4261
4262/**
cc1050ba 4263 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4264 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4265 * @start_pfn: The new PFN of the range
4266 * @end_pfn: The new PFN of the range
c713216d
MG
4267 *
4268 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4269 * The map is kept near the end physical page range that has already been
4270 * registered. This function allows an arch to shrink an existing registered
4271 * range.
c713216d 4272 */
cc1050ba
YL
4273void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4274 unsigned long end_pfn)
c713216d 4275{
cc1a9d86
YL
4276 int i, j;
4277 int removed = 0;
c713216d 4278
cc1050ba
YL
4279 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4280 nid, start_pfn, end_pfn);
4281
c713216d 4282 /* Find the old active region end and shrink */
cc1a9d86 4283 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4284 if (early_node_map[i].start_pfn >= start_pfn &&
4285 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4286 /* clear it */
cc1050ba 4287 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4288 early_node_map[i].end_pfn = 0;
4289 removed = 1;
4290 continue;
4291 }
cc1050ba
YL
4292 if (early_node_map[i].start_pfn < start_pfn &&
4293 early_node_map[i].end_pfn > start_pfn) {
4294 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4295 early_node_map[i].end_pfn = start_pfn;
4296 if (temp_end_pfn > end_pfn)
4297 add_active_range(nid, end_pfn, temp_end_pfn);
4298 continue;
4299 }
4300 if (early_node_map[i].start_pfn >= start_pfn &&
4301 early_node_map[i].end_pfn > end_pfn &&
4302 early_node_map[i].start_pfn < end_pfn) {
4303 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4304 continue;
c713216d 4305 }
cc1a9d86
YL
4306 }
4307
4308 if (!removed)
4309 return;
4310
4311 /* remove the blank ones */
4312 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4313 if (early_node_map[i].nid != nid)
4314 continue;
4315 if (early_node_map[i].end_pfn)
4316 continue;
4317 /* we found it, get rid of it */
4318 for (j = i; j < nr_nodemap_entries - 1; j++)
4319 memcpy(&early_node_map[j], &early_node_map[j+1],
4320 sizeof(early_node_map[j]));
4321 j = nr_nodemap_entries - 1;
4322 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4323 nr_nodemap_entries--;
4324 }
c713216d
MG
4325}
4326
4327/**
4328 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4329 *
c713216d
MG
4330 * During discovery, it may be found that a table like SRAT is invalid
4331 * and an alternative discovery method must be used. This function removes
4332 * all currently registered regions.
4333 */
88ca3b94 4334void __init remove_all_active_ranges(void)
c713216d
MG
4335{
4336 memset(early_node_map, 0, sizeof(early_node_map));
4337 nr_nodemap_entries = 0;
4338}
4339
4340/* Compare two active node_active_regions */
4341static int __init cmp_node_active_region(const void *a, const void *b)
4342{
4343 struct node_active_region *arange = (struct node_active_region *)a;
4344 struct node_active_region *brange = (struct node_active_region *)b;
4345
4346 /* Done this way to avoid overflows */
4347 if (arange->start_pfn > brange->start_pfn)
4348 return 1;
4349 if (arange->start_pfn < brange->start_pfn)
4350 return -1;
4351
4352 return 0;
4353}
4354
4355/* sort the node_map by start_pfn */
32996250 4356void __init sort_node_map(void)
c713216d
MG
4357{
4358 sort(early_node_map, (size_t)nr_nodemap_entries,
4359 sizeof(struct node_active_region),
4360 cmp_node_active_region, NULL);
4361}
4362
a6af2bc3 4363/* Find the lowest pfn for a node */
b69a7288 4364static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4365{
4366 int i;
a6af2bc3 4367 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4368
c713216d
MG
4369 /* Assuming a sorted map, the first range found has the starting pfn */
4370 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4371 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4372
a6af2bc3
MG
4373 if (min_pfn == ULONG_MAX) {
4374 printk(KERN_WARNING
2bc0d261 4375 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4376 return 0;
4377 }
4378
4379 return min_pfn;
c713216d
MG
4380}
4381
4382/**
4383 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4384 *
4385 * It returns the minimum PFN based on information provided via
88ca3b94 4386 * add_active_range().
c713216d
MG
4387 */
4388unsigned long __init find_min_pfn_with_active_regions(void)
4389{
4390 return find_min_pfn_for_node(MAX_NUMNODES);
4391}
4392
37b07e41
LS
4393/*
4394 * early_calculate_totalpages()
4395 * Sum pages in active regions for movable zone.
4396 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4397 */
484f51f8 4398static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4399{
4400 int i;
4401 unsigned long totalpages = 0;
4402
37b07e41
LS
4403 for (i = 0; i < nr_nodemap_entries; i++) {
4404 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4405 early_node_map[i].start_pfn;
37b07e41
LS
4406 totalpages += pages;
4407 if (pages)
4408 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4409 }
4410 return totalpages;
7e63efef
MG
4411}
4412
2a1e274a
MG
4413/*
4414 * Find the PFN the Movable zone begins in each node. Kernel memory
4415 * is spread evenly between nodes as long as the nodes have enough
4416 * memory. When they don't, some nodes will have more kernelcore than
4417 * others
4418 */
b69a7288 4419static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4420{
4421 int i, nid;
4422 unsigned long usable_startpfn;
4423 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4424 /* save the state before borrow the nodemask */
4425 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4426 unsigned long totalpages = early_calculate_totalpages();
4427 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4428
7e63efef
MG
4429 /*
4430 * If movablecore was specified, calculate what size of
4431 * kernelcore that corresponds so that memory usable for
4432 * any allocation type is evenly spread. If both kernelcore
4433 * and movablecore are specified, then the value of kernelcore
4434 * will be used for required_kernelcore if it's greater than
4435 * what movablecore would have allowed.
4436 */
4437 if (required_movablecore) {
7e63efef
MG
4438 unsigned long corepages;
4439
4440 /*
4441 * Round-up so that ZONE_MOVABLE is at least as large as what
4442 * was requested by the user
4443 */
4444 required_movablecore =
4445 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4446 corepages = totalpages - required_movablecore;
4447
4448 required_kernelcore = max(required_kernelcore, corepages);
4449 }
4450
2a1e274a
MG
4451 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4452 if (!required_kernelcore)
66918dcd 4453 goto out;
2a1e274a
MG
4454
4455 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4456 find_usable_zone_for_movable();
4457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4458
4459restart:
4460 /* Spread kernelcore memory as evenly as possible throughout nodes */
4461 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4462 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4463 /*
4464 * Recalculate kernelcore_node if the division per node
4465 * now exceeds what is necessary to satisfy the requested
4466 * amount of memory for the kernel
4467 */
4468 if (required_kernelcore < kernelcore_node)
4469 kernelcore_node = required_kernelcore / usable_nodes;
4470
4471 /*
4472 * As the map is walked, we track how much memory is usable
4473 * by the kernel using kernelcore_remaining. When it is
4474 * 0, the rest of the node is usable by ZONE_MOVABLE
4475 */
4476 kernelcore_remaining = kernelcore_node;
4477
4478 /* Go through each range of PFNs within this node */
4479 for_each_active_range_index_in_nid(i, nid) {
4480 unsigned long start_pfn, end_pfn;
4481 unsigned long size_pages;
4482
4483 start_pfn = max(early_node_map[i].start_pfn,
4484 zone_movable_pfn[nid]);
4485 end_pfn = early_node_map[i].end_pfn;
4486 if (start_pfn >= end_pfn)
4487 continue;
4488
4489 /* Account for what is only usable for kernelcore */
4490 if (start_pfn < usable_startpfn) {
4491 unsigned long kernel_pages;
4492 kernel_pages = min(end_pfn, usable_startpfn)
4493 - start_pfn;
4494
4495 kernelcore_remaining -= min(kernel_pages,
4496 kernelcore_remaining);
4497 required_kernelcore -= min(kernel_pages,
4498 required_kernelcore);
4499
4500 /* Continue if range is now fully accounted */
4501 if (end_pfn <= usable_startpfn) {
4502
4503 /*
4504 * Push zone_movable_pfn to the end so
4505 * that if we have to rebalance
4506 * kernelcore across nodes, we will
4507 * not double account here
4508 */
4509 zone_movable_pfn[nid] = end_pfn;
4510 continue;
4511 }
4512 start_pfn = usable_startpfn;
4513 }
4514
4515 /*
4516 * The usable PFN range for ZONE_MOVABLE is from
4517 * start_pfn->end_pfn. Calculate size_pages as the
4518 * number of pages used as kernelcore
4519 */
4520 size_pages = end_pfn - start_pfn;
4521 if (size_pages > kernelcore_remaining)
4522 size_pages = kernelcore_remaining;
4523 zone_movable_pfn[nid] = start_pfn + size_pages;
4524
4525 /*
4526 * Some kernelcore has been met, update counts and
4527 * break if the kernelcore for this node has been
4528 * satisified
4529 */
4530 required_kernelcore -= min(required_kernelcore,
4531 size_pages);
4532 kernelcore_remaining -= size_pages;
4533 if (!kernelcore_remaining)
4534 break;
4535 }
4536 }
4537
4538 /*
4539 * If there is still required_kernelcore, we do another pass with one
4540 * less node in the count. This will push zone_movable_pfn[nid] further
4541 * along on the nodes that still have memory until kernelcore is
4542 * satisified
4543 */
4544 usable_nodes--;
4545 if (usable_nodes && required_kernelcore > usable_nodes)
4546 goto restart;
4547
4548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4549 for (nid = 0; nid < MAX_NUMNODES; nid++)
4550 zone_movable_pfn[nid] =
4551 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4552
4553out:
4554 /* restore the node_state */
4555 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4556}
4557
37b07e41
LS
4558/* Any regular memory on that node ? */
4559static void check_for_regular_memory(pg_data_t *pgdat)
4560{
4561#ifdef CONFIG_HIGHMEM
4562 enum zone_type zone_type;
4563
4564 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4565 struct zone *zone = &pgdat->node_zones[zone_type];
4566 if (zone->present_pages)
4567 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4568 }
4569#endif
4570}
4571
c713216d
MG
4572/**
4573 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4574 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4575 *
4576 * This will call free_area_init_node() for each active node in the system.
4577 * Using the page ranges provided by add_active_range(), the size of each
4578 * zone in each node and their holes is calculated. If the maximum PFN
4579 * between two adjacent zones match, it is assumed that the zone is empty.
4580 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4581 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4582 * starts where the previous one ended. For example, ZONE_DMA32 starts
4583 * at arch_max_dma_pfn.
4584 */
4585void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4586{
4587 unsigned long nid;
db99100d 4588 int i;
c713216d 4589
a6af2bc3
MG
4590 /* Sort early_node_map as initialisation assumes it is sorted */
4591 sort_node_map();
4592
c713216d
MG
4593 /* Record where the zone boundaries are */
4594 memset(arch_zone_lowest_possible_pfn, 0,
4595 sizeof(arch_zone_lowest_possible_pfn));
4596 memset(arch_zone_highest_possible_pfn, 0,
4597 sizeof(arch_zone_highest_possible_pfn));
4598 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4599 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4600 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4601 if (i == ZONE_MOVABLE)
4602 continue;
c713216d
MG
4603 arch_zone_lowest_possible_pfn[i] =
4604 arch_zone_highest_possible_pfn[i-1];
4605 arch_zone_highest_possible_pfn[i] =
4606 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4607 }
2a1e274a
MG
4608 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4609 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4610
4611 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4612 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4613 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4614
c713216d
MG
4615 /* Print out the zone ranges */
4616 printk("Zone PFN ranges:\n");
2a1e274a
MG
4617 for (i = 0; i < MAX_NR_ZONES; i++) {
4618 if (i == ZONE_MOVABLE)
4619 continue;
72f0ba02
DR
4620 printk(" %-8s ", zone_names[i]);
4621 if (arch_zone_lowest_possible_pfn[i] ==
4622 arch_zone_highest_possible_pfn[i])
4623 printk("empty\n");
4624 else
4625 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4626 arch_zone_lowest_possible_pfn[i],
4627 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4628 }
4629
4630 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4631 printk("Movable zone start PFN for each node\n");
4632 for (i = 0; i < MAX_NUMNODES; i++) {
4633 if (zone_movable_pfn[i])
4634 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4635 }
c713216d
MG
4636
4637 /* Print out the early_node_map[] */
4638 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4639 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4640 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4641 early_node_map[i].start_pfn,
4642 early_node_map[i].end_pfn);
4643
4644 /* Initialise every node */
708614e6 4645 mminit_verify_pageflags_layout();
8ef82866 4646 setup_nr_node_ids();
c713216d
MG
4647 for_each_online_node(nid) {
4648 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4649 free_area_init_node(nid, NULL,
c713216d 4650 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4651
4652 /* Any memory on that node */
4653 if (pgdat->node_present_pages)
4654 node_set_state(nid, N_HIGH_MEMORY);
4655 check_for_regular_memory(pgdat);
c713216d
MG
4656 }
4657}
2a1e274a 4658
7e63efef 4659static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4660{
4661 unsigned long long coremem;
4662 if (!p)
4663 return -EINVAL;
4664
4665 coremem = memparse(p, &p);
7e63efef 4666 *core = coremem >> PAGE_SHIFT;
2a1e274a 4667
7e63efef 4668 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4669 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4670
4671 return 0;
4672}
ed7ed365 4673
7e63efef
MG
4674/*
4675 * kernelcore=size sets the amount of memory for use for allocations that
4676 * cannot be reclaimed or migrated.
4677 */
4678static int __init cmdline_parse_kernelcore(char *p)
4679{
4680 return cmdline_parse_core(p, &required_kernelcore);
4681}
4682
4683/*
4684 * movablecore=size sets the amount of memory for use for allocations that
4685 * can be reclaimed or migrated.
4686 */
4687static int __init cmdline_parse_movablecore(char *p)
4688{
4689 return cmdline_parse_core(p, &required_movablecore);
4690}
4691
ed7ed365 4692early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4693early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4694
c713216d
MG
4695#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4696
0e0b864e 4697/**
88ca3b94
RD
4698 * set_dma_reserve - set the specified number of pages reserved in the first zone
4699 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4700 *
4701 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4702 * In the DMA zone, a significant percentage may be consumed by kernel image
4703 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4704 * function may optionally be used to account for unfreeable pages in the
4705 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4706 * smaller per-cpu batchsize.
0e0b864e
MG
4707 */
4708void __init set_dma_reserve(unsigned long new_dma_reserve)
4709{
4710 dma_reserve = new_dma_reserve;
4711}
4712
93b7504e 4713#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4714struct pglist_data __refdata contig_page_data = {
4715#ifndef CONFIG_NO_BOOTMEM
4716 .bdata = &bootmem_node_data[0]
4717#endif
4718 };
1da177e4 4719EXPORT_SYMBOL(contig_page_data);
93b7504e 4720#endif
1da177e4
LT
4721
4722void __init free_area_init(unsigned long *zones_size)
4723{
9109fb7b 4724 free_area_init_node(0, zones_size,
1da177e4
LT
4725 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4726}
1da177e4 4727
1da177e4
LT
4728static int page_alloc_cpu_notify(struct notifier_block *self,
4729 unsigned long action, void *hcpu)
4730{
4731 int cpu = (unsigned long)hcpu;
1da177e4 4732
8bb78442 4733 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4734 drain_pages(cpu);
4735
4736 /*
4737 * Spill the event counters of the dead processor
4738 * into the current processors event counters.
4739 * This artificially elevates the count of the current
4740 * processor.
4741 */
f8891e5e 4742 vm_events_fold_cpu(cpu);
9f8f2172
CL
4743
4744 /*
4745 * Zero the differential counters of the dead processor
4746 * so that the vm statistics are consistent.
4747 *
4748 * This is only okay since the processor is dead and cannot
4749 * race with what we are doing.
4750 */
2244b95a 4751 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4752 }
4753 return NOTIFY_OK;
4754}
1da177e4
LT
4755
4756void __init page_alloc_init(void)
4757{
4758 hotcpu_notifier(page_alloc_cpu_notify, 0);
4759}
4760
cb45b0e9
HA
4761/*
4762 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4763 * or min_free_kbytes changes.
4764 */
4765static void calculate_totalreserve_pages(void)
4766{
4767 struct pglist_data *pgdat;
4768 unsigned long reserve_pages = 0;
2f6726e5 4769 enum zone_type i, j;
cb45b0e9
HA
4770
4771 for_each_online_pgdat(pgdat) {
4772 for (i = 0; i < MAX_NR_ZONES; i++) {
4773 struct zone *zone = pgdat->node_zones + i;
4774 unsigned long max = 0;
4775
4776 /* Find valid and maximum lowmem_reserve in the zone */
4777 for (j = i; j < MAX_NR_ZONES; j++) {
4778 if (zone->lowmem_reserve[j] > max)
4779 max = zone->lowmem_reserve[j];
4780 }
4781
41858966
MG
4782 /* we treat the high watermark as reserved pages. */
4783 max += high_wmark_pages(zone);
cb45b0e9
HA
4784
4785 if (max > zone->present_pages)
4786 max = zone->present_pages;
4787 reserve_pages += max;
4788 }
4789 }
4790 totalreserve_pages = reserve_pages;
4791}
4792
1da177e4
LT
4793/*
4794 * setup_per_zone_lowmem_reserve - called whenever
4795 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4796 * has a correct pages reserved value, so an adequate number of
4797 * pages are left in the zone after a successful __alloc_pages().
4798 */
4799static void setup_per_zone_lowmem_reserve(void)
4800{
4801 struct pglist_data *pgdat;
2f6726e5 4802 enum zone_type j, idx;
1da177e4 4803
ec936fc5 4804 for_each_online_pgdat(pgdat) {
1da177e4
LT
4805 for (j = 0; j < MAX_NR_ZONES; j++) {
4806 struct zone *zone = pgdat->node_zones + j;
4807 unsigned long present_pages = zone->present_pages;
4808
4809 zone->lowmem_reserve[j] = 0;
4810
2f6726e5
CL
4811 idx = j;
4812 while (idx) {
1da177e4
LT
4813 struct zone *lower_zone;
4814
2f6726e5
CL
4815 idx--;
4816
1da177e4
LT
4817 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4818 sysctl_lowmem_reserve_ratio[idx] = 1;
4819
4820 lower_zone = pgdat->node_zones + idx;
4821 lower_zone->lowmem_reserve[j] = present_pages /
4822 sysctl_lowmem_reserve_ratio[idx];
4823 present_pages += lower_zone->present_pages;
4824 }
4825 }
4826 }
cb45b0e9
HA
4827
4828 /* update totalreserve_pages */
4829 calculate_totalreserve_pages();
1da177e4
LT
4830}
4831
88ca3b94 4832/**
bc75d33f 4833 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4834 * or when memory is hot-{added|removed}
88ca3b94 4835 *
bc75d33f
MK
4836 * Ensures that the watermark[min,low,high] values for each zone are set
4837 * correctly with respect to min_free_kbytes.
1da177e4 4838 */
bc75d33f 4839void setup_per_zone_wmarks(void)
1da177e4
LT
4840{
4841 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4842 unsigned long lowmem_pages = 0;
4843 struct zone *zone;
4844 unsigned long flags;
4845
4846 /* Calculate total number of !ZONE_HIGHMEM pages */
4847 for_each_zone(zone) {
4848 if (!is_highmem(zone))
4849 lowmem_pages += zone->present_pages;
4850 }
4851
4852 for_each_zone(zone) {
ac924c60
AM
4853 u64 tmp;
4854
1125b4e3 4855 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4856 tmp = (u64)pages_min * zone->present_pages;
4857 do_div(tmp, lowmem_pages);
1da177e4
LT
4858 if (is_highmem(zone)) {
4859 /*
669ed175
NP
4860 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4861 * need highmem pages, so cap pages_min to a small
4862 * value here.
4863 *
41858966 4864 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4865 * deltas controls asynch page reclaim, and so should
4866 * not be capped for highmem.
1da177e4
LT
4867 */
4868 int min_pages;
4869
4870 min_pages = zone->present_pages / 1024;
4871 if (min_pages < SWAP_CLUSTER_MAX)
4872 min_pages = SWAP_CLUSTER_MAX;
4873 if (min_pages > 128)
4874 min_pages = 128;
41858966 4875 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4876 } else {
669ed175
NP
4877 /*
4878 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4879 * proportionate to the zone's size.
4880 */
41858966 4881 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4882 }
4883
41858966
MG
4884 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4885 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4886 setup_zone_migrate_reserve(zone);
1125b4e3 4887 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4888 }
cb45b0e9
HA
4889
4890 /* update totalreserve_pages */
4891 calculate_totalreserve_pages();
1da177e4
LT
4892}
4893
55a4462a 4894/*
556adecb
RR
4895 * The inactive anon list should be small enough that the VM never has to
4896 * do too much work, but large enough that each inactive page has a chance
4897 * to be referenced again before it is swapped out.
4898 *
4899 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4900 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4901 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4902 * the anonymous pages are kept on the inactive list.
4903 *
4904 * total target max
4905 * memory ratio inactive anon
4906 * -------------------------------------
4907 * 10MB 1 5MB
4908 * 100MB 1 50MB
4909 * 1GB 3 250MB
4910 * 10GB 10 0.9GB
4911 * 100GB 31 3GB
4912 * 1TB 101 10GB
4913 * 10TB 320 32GB
4914 */
96cb4df5 4915void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4916{
96cb4df5 4917 unsigned int gb, ratio;
556adecb 4918
96cb4df5
MK
4919 /* Zone size in gigabytes */
4920 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4921 if (gb)
556adecb 4922 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4923 else
4924 ratio = 1;
556adecb 4925
96cb4df5
MK
4926 zone->inactive_ratio = ratio;
4927}
556adecb 4928
96cb4df5
MK
4929static void __init setup_per_zone_inactive_ratio(void)
4930{
4931 struct zone *zone;
4932
4933 for_each_zone(zone)
4934 calculate_zone_inactive_ratio(zone);
556adecb
RR
4935}
4936
1da177e4
LT
4937/*
4938 * Initialise min_free_kbytes.
4939 *
4940 * For small machines we want it small (128k min). For large machines
4941 * we want it large (64MB max). But it is not linear, because network
4942 * bandwidth does not increase linearly with machine size. We use
4943 *
4944 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4945 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4946 *
4947 * which yields
4948 *
4949 * 16MB: 512k
4950 * 32MB: 724k
4951 * 64MB: 1024k
4952 * 128MB: 1448k
4953 * 256MB: 2048k
4954 * 512MB: 2896k
4955 * 1024MB: 4096k
4956 * 2048MB: 5792k
4957 * 4096MB: 8192k
4958 * 8192MB: 11584k
4959 * 16384MB: 16384k
4960 */
bc75d33f 4961static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4962{
4963 unsigned long lowmem_kbytes;
4964
4965 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4966
4967 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4968 if (min_free_kbytes < 128)
4969 min_free_kbytes = 128;
4970 if (min_free_kbytes > 65536)
4971 min_free_kbytes = 65536;
bc75d33f 4972 setup_per_zone_wmarks();
1da177e4 4973 setup_per_zone_lowmem_reserve();
556adecb 4974 setup_per_zone_inactive_ratio();
1da177e4
LT
4975 return 0;
4976}
bc75d33f 4977module_init(init_per_zone_wmark_min)
1da177e4
LT
4978
4979/*
4980 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4981 * that we can call two helper functions whenever min_free_kbytes
4982 * changes.
4983 */
4984int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4985 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4986{
8d65af78 4987 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4988 if (write)
bc75d33f 4989 setup_per_zone_wmarks();
1da177e4
LT
4990 return 0;
4991}
4992
9614634f
CL
4993#ifdef CONFIG_NUMA
4994int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4995 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4996{
4997 struct zone *zone;
4998 int rc;
4999
8d65af78 5000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5001 if (rc)
5002 return rc;
5003
5004 for_each_zone(zone)
8417bba4 5005 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5006 sysctl_min_unmapped_ratio) / 100;
5007 return 0;
5008}
0ff38490
CL
5009
5010int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5011 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5012{
5013 struct zone *zone;
5014 int rc;
5015
8d65af78 5016 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5017 if (rc)
5018 return rc;
5019
5020 for_each_zone(zone)
5021 zone->min_slab_pages = (zone->present_pages *
5022 sysctl_min_slab_ratio) / 100;
5023 return 0;
5024}
9614634f
CL
5025#endif
5026
1da177e4
LT
5027/*
5028 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5029 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5030 * whenever sysctl_lowmem_reserve_ratio changes.
5031 *
5032 * The reserve ratio obviously has absolutely no relation with the
41858966 5033 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5034 * if in function of the boot time zone sizes.
5035 */
5036int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5037 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5038{
8d65af78 5039 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5040 setup_per_zone_lowmem_reserve();
5041 return 0;
5042}
5043
8ad4b1fb
RS
5044/*
5045 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5046 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5047 * can have before it gets flushed back to buddy allocator.
5048 */
5049
5050int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5051 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5052{
5053 struct zone *zone;
5054 unsigned int cpu;
5055 int ret;
5056
8d65af78 5057 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5058 if (!write || (ret == -EINVAL))
5059 return ret;
364df0eb 5060 for_each_populated_zone(zone) {
99dcc3e5 5061 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5062 unsigned long high;
5063 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5064 setup_pagelist_highmark(
5065 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5066 }
5067 }
5068 return 0;
5069}
5070
f034b5d4 5071int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5072
5073#ifdef CONFIG_NUMA
5074static int __init set_hashdist(char *str)
5075{
5076 if (!str)
5077 return 0;
5078 hashdist = simple_strtoul(str, &str, 0);
5079 return 1;
5080}
5081__setup("hashdist=", set_hashdist);
5082#endif
5083
5084/*
5085 * allocate a large system hash table from bootmem
5086 * - it is assumed that the hash table must contain an exact power-of-2
5087 * quantity of entries
5088 * - limit is the number of hash buckets, not the total allocation size
5089 */
5090void *__init alloc_large_system_hash(const char *tablename,
5091 unsigned long bucketsize,
5092 unsigned long numentries,
5093 int scale,
5094 int flags,
5095 unsigned int *_hash_shift,
5096 unsigned int *_hash_mask,
5097 unsigned long limit)
5098{
5099 unsigned long long max = limit;
5100 unsigned long log2qty, size;
5101 void *table = NULL;
5102
5103 /* allow the kernel cmdline to have a say */
5104 if (!numentries) {
5105 /* round applicable memory size up to nearest megabyte */
04903664 5106 numentries = nr_kernel_pages;
1da177e4
LT
5107 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5108 numentries >>= 20 - PAGE_SHIFT;
5109 numentries <<= 20 - PAGE_SHIFT;
5110
5111 /* limit to 1 bucket per 2^scale bytes of low memory */
5112 if (scale > PAGE_SHIFT)
5113 numentries >>= (scale - PAGE_SHIFT);
5114 else
5115 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5116
5117 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5118 if (unlikely(flags & HASH_SMALL)) {
5119 /* Makes no sense without HASH_EARLY */
5120 WARN_ON(!(flags & HASH_EARLY));
5121 if (!(numentries >> *_hash_shift)) {
5122 numentries = 1UL << *_hash_shift;
5123 BUG_ON(!numentries);
5124 }
5125 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5126 numentries = PAGE_SIZE / bucketsize;
1da177e4 5127 }
6e692ed3 5128 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5129
5130 /* limit allocation size to 1/16 total memory by default */
5131 if (max == 0) {
5132 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5133 do_div(max, bucketsize);
5134 }
5135
5136 if (numentries > max)
5137 numentries = max;
5138
f0d1b0b3 5139 log2qty = ilog2(numentries);
1da177e4
LT
5140
5141 do {
5142 size = bucketsize << log2qty;
5143 if (flags & HASH_EARLY)
74768ed8 5144 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5145 else if (hashdist)
5146 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5147 else {
1037b83b
ED
5148 /*
5149 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5150 * some pages at the end of hash table which
5151 * alloc_pages_exact() automatically does
1037b83b 5152 */
264ef8a9 5153 if (get_order(size) < MAX_ORDER) {
a1dd268c 5154 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5155 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5156 }
1da177e4
LT
5157 }
5158 } while (!table && size > PAGE_SIZE && --log2qty);
5159
5160 if (!table)
5161 panic("Failed to allocate %s hash table\n", tablename);
5162
b49ad484 5163 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5164 tablename,
5165 (1U << log2qty),
f0d1b0b3 5166 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5167 size);
5168
5169 if (_hash_shift)
5170 *_hash_shift = log2qty;
5171 if (_hash_mask)
5172 *_hash_mask = (1 << log2qty) - 1;
5173
5174 return table;
5175}
a117e66e 5176
835c134e
MG
5177/* Return a pointer to the bitmap storing bits affecting a block of pages */
5178static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5179 unsigned long pfn)
5180{
5181#ifdef CONFIG_SPARSEMEM
5182 return __pfn_to_section(pfn)->pageblock_flags;
5183#else
5184 return zone->pageblock_flags;
5185#endif /* CONFIG_SPARSEMEM */
5186}
5187
5188static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5189{
5190#ifdef CONFIG_SPARSEMEM
5191 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5192 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5193#else
5194 pfn = pfn - zone->zone_start_pfn;
d9c23400 5195 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5196#endif /* CONFIG_SPARSEMEM */
5197}
5198
5199/**
d9c23400 5200 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5201 * @page: The page within the block of interest
5202 * @start_bitidx: The first bit of interest to retrieve
5203 * @end_bitidx: The last bit of interest
5204 * returns pageblock_bits flags
5205 */
5206unsigned long get_pageblock_flags_group(struct page *page,
5207 int start_bitidx, int end_bitidx)
5208{
5209 struct zone *zone;
5210 unsigned long *bitmap;
5211 unsigned long pfn, bitidx;
5212 unsigned long flags = 0;
5213 unsigned long value = 1;
5214
5215 zone = page_zone(page);
5216 pfn = page_to_pfn(page);
5217 bitmap = get_pageblock_bitmap(zone, pfn);
5218 bitidx = pfn_to_bitidx(zone, pfn);
5219
5220 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5221 if (test_bit(bitidx + start_bitidx, bitmap))
5222 flags |= value;
6220ec78 5223
835c134e
MG
5224 return flags;
5225}
5226
5227/**
d9c23400 5228 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5229 * @page: The page within the block of interest
5230 * @start_bitidx: The first bit of interest
5231 * @end_bitidx: The last bit of interest
5232 * @flags: The flags to set
5233 */
5234void set_pageblock_flags_group(struct page *page, unsigned long flags,
5235 int start_bitidx, int end_bitidx)
5236{
5237 struct zone *zone;
5238 unsigned long *bitmap;
5239 unsigned long pfn, bitidx;
5240 unsigned long value = 1;
5241
5242 zone = page_zone(page);
5243 pfn = page_to_pfn(page);
5244 bitmap = get_pageblock_bitmap(zone, pfn);
5245 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5246 VM_BUG_ON(pfn < zone->zone_start_pfn);
5247 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5248
5249 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5250 if (flags & value)
5251 __set_bit(bitidx + start_bitidx, bitmap);
5252 else
5253 __clear_bit(bitidx + start_bitidx, bitmap);
5254}
a5d76b54
KH
5255
5256/*
5257 * This is designed as sub function...plz see page_isolation.c also.
5258 * set/clear page block's type to be ISOLATE.
5259 * page allocater never alloc memory from ISOLATE block.
5260 */
5261
5262int set_migratetype_isolate(struct page *page)
5263{
5264 struct zone *zone;
925cc71e
RJ
5265 struct page *curr_page;
5266 unsigned long flags, pfn, iter;
5267 unsigned long immobile = 0;
5268 struct memory_isolate_notify arg;
5269 int notifier_ret;
a5d76b54 5270 int ret = -EBUSY;
8e7e40d9 5271 int zone_idx;
a5d76b54
KH
5272
5273 zone = page_zone(page);
8e7e40d9 5274 zone_idx = zone_idx(zone);
925cc71e 5275
a5d76b54 5276 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5277 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5278 zone_idx == ZONE_MOVABLE) {
5279 ret = 0;
5280 goto out;
5281 }
5282
5283 pfn = page_to_pfn(page);
5284 arg.start_pfn = pfn;
5285 arg.nr_pages = pageblock_nr_pages;
5286 arg.pages_found = 0;
5287
a5d76b54 5288 /*
925cc71e
RJ
5289 * It may be possible to isolate a pageblock even if the
5290 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5291 * notifier chain is used by balloon drivers to return the
5292 * number of pages in a range that are held by the balloon
5293 * driver to shrink memory. If all the pages are accounted for
5294 * by balloons, are free, or on the LRU, isolation can continue.
5295 * Later, for example, when memory hotplug notifier runs, these
5296 * pages reported as "can be isolated" should be isolated(freed)
5297 * by the balloon driver through the memory notifier chain.
a5d76b54 5298 */
925cc71e
RJ
5299 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5300 notifier_ret = notifier_to_errno(notifier_ret);
5301 if (notifier_ret || !arg.pages_found)
a5d76b54 5302 goto out;
925cc71e
RJ
5303
5304 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5305 if (!pfn_valid_within(pfn))
5306 continue;
5307
5308 curr_page = pfn_to_page(iter);
5309 if (!page_count(curr_page) || PageLRU(curr_page))
5310 continue;
5311
5312 immobile++;
5313 }
5314
5315 if (arg.pages_found == immobile)
5316 ret = 0;
5317
a5d76b54 5318out:
925cc71e
RJ
5319 if (!ret) {
5320 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5321 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5322 }
5323
a5d76b54
KH
5324 spin_unlock_irqrestore(&zone->lock, flags);
5325 if (!ret)
9f8f2172 5326 drain_all_pages();
a5d76b54
KH
5327 return ret;
5328}
5329
5330void unset_migratetype_isolate(struct page *page)
5331{
5332 struct zone *zone;
5333 unsigned long flags;
5334 zone = page_zone(page);
5335 spin_lock_irqsave(&zone->lock, flags);
5336 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5337 goto out;
5338 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5339 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5340out:
5341 spin_unlock_irqrestore(&zone->lock, flags);
5342}
0c0e6195
KH
5343
5344#ifdef CONFIG_MEMORY_HOTREMOVE
5345/*
5346 * All pages in the range must be isolated before calling this.
5347 */
5348void
5349__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5350{
5351 struct page *page;
5352 struct zone *zone;
5353 int order, i;
5354 unsigned long pfn;
5355 unsigned long flags;
5356 /* find the first valid pfn */
5357 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5358 if (pfn_valid(pfn))
5359 break;
5360 if (pfn == end_pfn)
5361 return;
5362 zone = page_zone(pfn_to_page(pfn));
5363 spin_lock_irqsave(&zone->lock, flags);
5364 pfn = start_pfn;
5365 while (pfn < end_pfn) {
5366 if (!pfn_valid(pfn)) {
5367 pfn++;
5368 continue;
5369 }
5370 page = pfn_to_page(pfn);
5371 BUG_ON(page_count(page));
5372 BUG_ON(!PageBuddy(page));
5373 order = page_order(page);
5374#ifdef CONFIG_DEBUG_VM
5375 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5376 pfn, 1 << order, end_pfn);
5377#endif
5378 list_del(&page->lru);
5379 rmv_page_order(page);
5380 zone->free_area[order].nr_free--;
5381 __mod_zone_page_state(zone, NR_FREE_PAGES,
5382 - (1UL << order));
5383 for (i = 0; i < (1 << order); i++)
5384 SetPageReserved((page+i));
5385 pfn += (1 << order);
5386 }
5387 spin_unlock_irqrestore(&zone->lock, flags);
5388}
5389#endif
8d22ba1b
WF
5390
5391#ifdef CONFIG_MEMORY_FAILURE
5392bool is_free_buddy_page(struct page *page)
5393{
5394 struct zone *zone = page_zone(page);
5395 unsigned long pfn = page_to_pfn(page);
5396 unsigned long flags;
5397 int order;
5398
5399 spin_lock_irqsave(&zone->lock, flags);
5400 for (order = 0; order < MAX_ORDER; order++) {
5401 struct page *page_head = page - (pfn & ((1 << order) - 1));
5402
5403 if (PageBuddy(page_head) && page_order(page_head) >= order)
5404 break;
5405 }
5406 spin_unlock_irqrestore(&zone->lock, flags);
5407
5408 return order < MAX_ORDER;
5409}
5410#endif
718a3821
WF
5411
5412static struct trace_print_flags pageflag_names[] = {
5413 {1UL << PG_locked, "locked" },
5414 {1UL << PG_error, "error" },
5415 {1UL << PG_referenced, "referenced" },
5416 {1UL << PG_uptodate, "uptodate" },
5417 {1UL << PG_dirty, "dirty" },
5418 {1UL << PG_lru, "lru" },
5419 {1UL << PG_active, "active" },
5420 {1UL << PG_slab, "slab" },
5421 {1UL << PG_owner_priv_1, "owner_priv_1" },
5422 {1UL << PG_arch_1, "arch_1" },
5423 {1UL << PG_reserved, "reserved" },
5424 {1UL << PG_private, "private" },
5425 {1UL << PG_private_2, "private_2" },
5426 {1UL << PG_writeback, "writeback" },
5427#ifdef CONFIG_PAGEFLAGS_EXTENDED
5428 {1UL << PG_head, "head" },
5429 {1UL << PG_tail, "tail" },
5430#else
5431 {1UL << PG_compound, "compound" },
5432#endif
5433 {1UL << PG_swapcache, "swapcache" },
5434 {1UL << PG_mappedtodisk, "mappedtodisk" },
5435 {1UL << PG_reclaim, "reclaim" },
5436 {1UL << PG_buddy, "buddy" },
5437 {1UL << PG_swapbacked, "swapbacked" },
5438 {1UL << PG_unevictable, "unevictable" },
5439#ifdef CONFIG_MMU
5440 {1UL << PG_mlocked, "mlocked" },
5441#endif
5442#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5443 {1UL << PG_uncached, "uncached" },
5444#endif
5445#ifdef CONFIG_MEMORY_FAILURE
5446 {1UL << PG_hwpoison, "hwpoison" },
5447#endif
5448 {-1UL, NULL },
5449};
5450
5451static void dump_page_flags(unsigned long flags)
5452{
5453 const char *delim = "";
5454 unsigned long mask;
5455 int i;
5456
5457 printk(KERN_ALERT "page flags: %#lx(", flags);
5458
5459 /* remove zone id */
5460 flags &= (1UL << NR_PAGEFLAGS) - 1;
5461
5462 for (i = 0; pageflag_names[i].name && flags; i++) {
5463
5464 mask = pageflag_names[i].mask;
5465 if ((flags & mask) != mask)
5466 continue;
5467
5468 flags &= ~mask;
5469 printk("%s%s", delim, pageflag_names[i].name);
5470 delim = "|";
5471 }
5472
5473 /* check for left over flags */
5474 if (flags)
5475 printk("%s%#lx", delim, flags);
5476
5477 printk(")\n");
5478}
5479
5480void dump_page(struct page *page)
5481{
5482 printk(KERN_ALERT
5483 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5484 page, page_count(page), page_mapcount(page),
5485 page->mapping, page->index);
5486 dump_page_flags(page->flags);
5487}