]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page-writeback.c
lib/radix-tree.c: fix overflow in radix_tree_range_tag_if_tagged()
[net-next-2.6.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
247 if (bdi_cap_writeback_dirty(bdi)) {
248 prop_fraction_percpu(&vm_completions, &bdi->completions,
249 numerator, denominator);
250 } else {
251 *numerator = 0;
252 *denominator = 1;
253 }
254}
255
3e26c149
PZ
256static inline void task_dirties_fraction(struct task_struct *tsk,
257 long *numerator, long *denominator)
258{
259 prop_fraction_single(&vm_dirties, &tsk->dirties,
260 numerator, denominator);
261}
262
263/*
1babe183 264 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
265 *
266 * task specific dirty limit:
267 *
268 * dirty -= (dirty/8) * p_{t}
1babe183
WF
269 *
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
3e26c149 276 */
16c4042f
WF
277static unsigned long task_dirty_limit(struct task_struct *tsk,
278 unsigned long bdi_dirty)
3e26c149
PZ
279{
280 long numerator, denominator;
16c4042f 281 unsigned long dirty = bdi_dirty;
3e26c149
PZ
282 u64 inv = dirty >> 3;
283
284 task_dirties_fraction(tsk, &numerator, &denominator);
285 inv *= numerator;
286 do_div(inv, denominator);
287
288 dirty -= inv;
3e26c149 289
16c4042f 290 return max(dirty, bdi_dirty/2);
3e26c149
PZ
291}
292
189d3c4a
PZ
293/*
294 *
295 */
189d3c4a
PZ
296static unsigned int bdi_min_ratio;
297
298int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299{
300 int ret = 0;
189d3c4a 301
cfc4ba53 302 spin_lock_bh(&bdi_lock);
a42dde04 303 if (min_ratio > bdi->max_ratio) {
189d3c4a 304 ret = -EINVAL;
a42dde04
PZ
305 } else {
306 min_ratio -= bdi->min_ratio;
307 if (bdi_min_ratio + min_ratio < 100) {
308 bdi_min_ratio += min_ratio;
309 bdi->min_ratio += min_ratio;
310 } else {
311 ret = -EINVAL;
312 }
313 }
cfc4ba53 314 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
315
316 return ret;
317}
318
319int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320{
a42dde04
PZ
321 int ret = 0;
322
323 if (max_ratio > 100)
324 return -EINVAL;
325
cfc4ba53 326 spin_lock_bh(&bdi_lock);
a42dde04
PZ
327 if (bdi->min_ratio > max_ratio) {
328 ret = -EINVAL;
329 } else {
330 bdi->max_ratio = max_ratio;
331 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332 }
cfc4ba53 333 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
334
335 return ret;
336}
a42dde04 337EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 338
1da177e4
LT
339/*
340 * Work out the current dirty-memory clamping and background writeout
341 * thresholds.
342 *
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around. To avoid stressing page reclaim with lots of unreclaimable
345 * pages. It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
347 *
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349 *
350 * We don't permit the clamping level to fall below 5% - that is getting rather
351 * excessive.
352 *
353 * We make sure that the background writeout level is below the adjusted
354 * clamping level.
355 */
1b424464
CL
356
357static unsigned long highmem_dirtyable_memory(unsigned long total)
358{
359#ifdef CONFIG_HIGHMEM
360 int node;
361 unsigned long x = 0;
362
37b07e41 363 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
364 struct zone *z =
365 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
adea02a1
WF
367 x += zone_page_state(z, NR_FREE_PAGES) +
368 zone_reclaimable_pages(z);
1b424464
CL
369 }
370 /*
371 * Make sure that the number of highmem pages is never larger
372 * than the number of the total dirtyable memory. This can only
373 * occur in very strange VM situations but we want to make sure
374 * that this does not occur.
375 */
376 return min(x, total);
377#else
378 return 0;
379#endif
380}
381
3eefae99
SR
382/**
383 * determine_dirtyable_memory - amount of memory that may be used
384 *
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
387 */
388unsigned long determine_dirtyable_memory(void)
1b424464
CL
389{
390 unsigned long x;
391
adea02a1 392 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
393
394 if (!vm_highmem_is_dirtyable)
395 x -= highmem_dirtyable_memory(x);
396
1b424464
CL
397 return x + 1; /* Ensure that we never return 0 */
398}
399
03ab450f 400/*
1babe183
WF
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
402 *
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio or vm.dirty_background_bytes
405 * - vm.dirty_ratio or vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407 * runtime tasks.
408 */
16c4042f 409void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 410{
364aeb28
DR
411 unsigned long background;
412 unsigned long dirty;
1b424464 413 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
414 struct task_struct *tsk;
415
2da02997
DR
416 if (vm_dirty_bytes)
417 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
418 else {
419 int dirty_ratio;
420
421 dirty_ratio = vm_dirty_ratio;
422 if (dirty_ratio < 5)
423 dirty_ratio = 5;
424 dirty = (dirty_ratio * available_memory) / 100;
425 }
1da177e4 426
2da02997
DR
427 if (dirty_background_bytes)
428 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
429 else
430 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 431
2da02997
DR
432 if (background >= dirty)
433 background = dirty / 2;
1da177e4
LT
434 tsk = current;
435 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
436 background += background / 4;
437 dirty += dirty / 4;
438 }
439 *pbackground = background;
440 *pdirty = dirty;
16c4042f 441}
04fbfdc1 442
03ab450f 443/*
1babe183
WF
444 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
445 *
446 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
447 * - starving fast devices
448 * - piling up dirty pages (that will take long time to sync) on slow devices
449 *
450 * The bdi's share of dirty limit will be adapting to its throughput and
451 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
452 */
453unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
454{
455 u64 bdi_dirty;
456 long numerator, denominator;
04fbfdc1 457
16c4042f
WF
458 /*
459 * Calculate this BDI's share of the dirty ratio.
460 */
461 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 462
16c4042f
WF
463 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 bdi_dirty *= numerator;
465 do_div(bdi_dirty, denominator);
04fbfdc1 466
16c4042f
WF
467 bdi_dirty += (dirty * bdi->min_ratio) / 100;
468 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
469 bdi_dirty = dirty * bdi->max_ratio / 100;
470
471 return bdi_dirty;
1da177e4
LT
472}
473
474/*
475 * balance_dirty_pages() must be called by processes which are generating dirty
476 * data. It looks at the number of dirty pages in the machine and will force
477 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
478 * If we're over `background_thresh' then the writeback threads are woken to
479 * perform some writeout.
1da177e4 480 */
3a2e9a5a
WF
481static void balance_dirty_pages(struct address_space *mapping,
482 unsigned long write_chunk)
1da177e4 483{
5fce25a9
PZ
484 long nr_reclaimable, bdi_nr_reclaimable;
485 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
486 unsigned long background_thresh;
487 unsigned long dirty_thresh;
488 unsigned long bdi_thresh;
1da177e4 489 unsigned long pages_written = 0;
87c6a9b2 490 unsigned long pause = 1;
e50e3720 491 bool dirty_exceeded = false;
1da177e4
LT
492 struct backing_dev_info *bdi = mapping->backing_dev_info;
493
494 for (;;) {
495 struct writeback_control wbc = {
1da177e4
LT
496 .sync_mode = WB_SYNC_NONE,
497 .older_than_this = NULL,
498 .nr_to_write = write_chunk,
111ebb6e 499 .range_cyclic = 1,
1da177e4
LT
500 };
501
5fce25a9
PZ
502 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
503 global_page_state(NR_UNSTABLE_NFS);
504 nr_writeback = global_page_state(NR_WRITEBACK);
505
16c4042f
WF
506 global_dirty_limits(&background_thresh, &dirty_thresh);
507
508 /*
509 * Throttle it only when the background writeback cannot
510 * catch-up. This avoids (excessively) small writeouts
511 * when the bdi limits are ramping up.
512 */
513 if (nr_reclaimable + nr_writeback <
514 (background_thresh + dirty_thresh) / 2)
515 break;
516
517 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
518 bdi_thresh = task_dirty_limit(current, bdi_thresh);
519
e50e3720
WF
520 /*
521 * In order to avoid the stacked BDI deadlock we need
522 * to ensure we accurately count the 'dirty' pages when
523 * the threshold is low.
524 *
525 * Otherwise it would be possible to get thresh+n pages
526 * reported dirty, even though there are thresh-m pages
527 * actually dirty; with m+n sitting in the percpu
528 * deltas.
529 */
530 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
531 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
532 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
533 } else {
534 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
535 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
536 }
5fce25a9 537
e50e3720
WF
538 /*
539 * The bdi thresh is somehow "soft" limit derived from the
540 * global "hard" limit. The former helps to prevent heavy IO
541 * bdi or process from holding back light ones; The latter is
542 * the last resort safeguard.
543 */
544 dirty_exceeded =
545 (bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
546 || (nr_reclaimable + nr_writeback >= dirty_thresh);
547
548 if (!dirty_exceeded)
04fbfdc1 549 break;
1da177e4 550
04fbfdc1
PZ
551 if (!bdi->dirty_exceeded)
552 bdi->dirty_exceeded = 1;
1da177e4
LT
553
554 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
555 * Unstable writes are a feature of certain networked
556 * filesystems (i.e. NFS) in which data may have been
557 * written to the server's write cache, but has not yet
558 * been flushed to permanent storage.
d7831a0b
RK
559 * Only move pages to writeback if this bdi is over its
560 * threshold otherwise wait until the disk writes catch
561 * up.
1da177e4 562 */
028c2dd1 563 trace_wbc_balance_dirty_start(&wbc, bdi);
d7831a0b 564 if (bdi_nr_reclaimable > bdi_thresh) {
9c3a8ee8 565 writeback_inodes_wb(&bdi->wb, &wbc);
1da177e4 566 pages_written += write_chunk - wbc.nr_to_write;
028c2dd1 567 trace_wbc_balance_dirty_written(&wbc, bdi);
e50e3720
WF
568 if (pages_written >= write_chunk)
569 break; /* We've done our duty */
04fbfdc1 570 }
028c2dd1 571 trace_wbc_balance_dirty_wait(&wbc, bdi);
d25105e8
WF
572 __set_current_state(TASK_INTERRUPTIBLE);
573 io_schedule_timeout(pause);
87c6a9b2
JA
574
575 /*
576 * Increase the delay for each loop, up to our previous
577 * default of taking a 100ms nap.
578 */
579 pause <<= 1;
580 if (pause > HZ / 10)
581 pause = HZ / 10;
1da177e4
LT
582 }
583
e50e3720 584 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 585 bdi->dirty_exceeded = 0;
1da177e4
LT
586
587 if (writeback_in_progress(bdi))
5b0830cb 588 return;
1da177e4
LT
589
590 /*
591 * In laptop mode, we wait until hitting the higher threshold before
592 * starting background writeout, and then write out all the way down
593 * to the lower threshold. So slow writers cause minimal disk activity.
594 *
595 * In normal mode, we start background writeout at the lower
596 * background_thresh, to keep the amount of dirty memory low.
597 */
598 if ((laptop_mode && pages_written) ||
e50e3720 599 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 600 bdi_start_background_writeback(bdi);
1da177e4
LT
601}
602
a200ee18 603void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 604{
a200ee18 605 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
606 struct address_space *mapping = page_mapping(page);
607
608 if (mapping)
609 balance_dirty_pages_ratelimited(mapping);
610 }
611}
612
245b2e70
TH
613static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
614
1da177e4 615/**
fa5a734e 616 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 617 * @mapping: address_space which was dirtied
a580290c 618 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
619 *
620 * Processes which are dirtying memory should call in here once for each page
621 * which was newly dirtied. The function will periodically check the system's
622 * dirty state and will initiate writeback if needed.
623 *
624 * On really big machines, get_writeback_state is expensive, so try to avoid
625 * calling it too often (ratelimiting). But once we're over the dirty memory
626 * limit we decrease the ratelimiting by a lot, to prevent individual processes
627 * from overshooting the limit by (ratelimit_pages) each.
628 */
fa5a734e
AM
629void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
630 unsigned long nr_pages_dirtied)
1da177e4 631{
fa5a734e
AM
632 unsigned long ratelimit;
633 unsigned long *p;
1da177e4
LT
634
635 ratelimit = ratelimit_pages;
04fbfdc1 636 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
637 ratelimit = 8;
638
639 /*
640 * Check the rate limiting. Also, we do not want to throttle real-time
641 * tasks in balance_dirty_pages(). Period.
642 */
fa5a734e 643 preempt_disable();
245b2e70 644 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
645 *p += nr_pages_dirtied;
646 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 647 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
648 *p = 0;
649 preempt_enable();
3a2e9a5a 650 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
651 return;
652 }
fa5a734e 653 preempt_enable();
1da177e4 654}
fa5a734e 655EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 656
232ea4d6 657void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 658{
364aeb28
DR
659 unsigned long background_thresh;
660 unsigned long dirty_thresh;
1da177e4
LT
661
662 for ( ; ; ) {
16c4042f 663 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
664
665 /*
666 * Boost the allowable dirty threshold a bit for page
667 * allocators so they don't get DoS'ed by heavy writers
668 */
669 dirty_thresh += dirty_thresh / 10; /* wheeee... */
670
c24f21bd
CL
671 if (global_page_state(NR_UNSTABLE_NFS) +
672 global_page_state(NR_WRITEBACK) <= dirty_thresh)
673 break;
8aa7e847 674 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
675
676 /*
677 * The caller might hold locks which can prevent IO completion
678 * or progress in the filesystem. So we cannot just sit here
679 * waiting for IO to complete.
680 */
681 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
682 break;
1da177e4
LT
683 }
684}
685
1da177e4
LT
686/*
687 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
688 */
689int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 690 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 691{
8d65af78 692 proc_dointvec(table, write, buffer, length, ppos);
6423104b 693 bdi_arm_supers_timer();
1da177e4
LT
694 return 0;
695}
696
c2c4986e 697#ifdef CONFIG_BLOCK
31373d09 698void laptop_mode_timer_fn(unsigned long data)
1da177e4 699{
31373d09
MG
700 struct request_queue *q = (struct request_queue *)data;
701 int nr_pages = global_page_state(NR_FILE_DIRTY) +
702 global_page_state(NR_UNSTABLE_NFS);
1da177e4 703
31373d09
MG
704 /*
705 * We want to write everything out, not just down to the dirty
706 * threshold
707 */
31373d09 708 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 709 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
710}
711
712/*
713 * We've spun up the disk and we're in laptop mode: schedule writeback
714 * of all dirty data a few seconds from now. If the flush is already scheduled
715 * then push it back - the user is still using the disk.
716 */
31373d09 717void laptop_io_completion(struct backing_dev_info *info)
1da177e4 718{
31373d09 719 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
720}
721
722/*
723 * We're in laptop mode and we've just synced. The sync's writes will have
724 * caused another writeback to be scheduled by laptop_io_completion.
725 * Nothing needs to be written back anymore, so we unschedule the writeback.
726 */
727void laptop_sync_completion(void)
728{
31373d09
MG
729 struct backing_dev_info *bdi;
730
731 rcu_read_lock();
732
733 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
734 del_timer(&bdi->laptop_mode_wb_timer);
735
736 rcu_read_unlock();
1da177e4 737}
c2c4986e 738#endif
1da177e4
LT
739
740/*
741 * If ratelimit_pages is too high then we can get into dirty-data overload
742 * if a large number of processes all perform writes at the same time.
743 * If it is too low then SMP machines will call the (expensive)
744 * get_writeback_state too often.
745 *
746 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
747 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
748 * thresholds before writeback cuts in.
749 *
750 * But the limit should not be set too high. Because it also controls the
751 * amount of memory which the balance_dirty_pages() caller has to write back.
752 * If this is too large then the caller will block on the IO queue all the
753 * time. So limit it to four megabytes - the balance_dirty_pages() caller
754 * will write six megabyte chunks, max.
755 */
756
2d1d43f6 757void writeback_set_ratelimit(void)
1da177e4 758{
40c99aae 759 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
760 if (ratelimit_pages < 16)
761 ratelimit_pages = 16;
762 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
763 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
764}
765
26c2143b 766static int __cpuinit
1da177e4
LT
767ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
768{
2d1d43f6 769 writeback_set_ratelimit();
aa0f0303 770 return NOTIFY_DONE;
1da177e4
LT
771}
772
74b85f37 773static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
774 .notifier_call = ratelimit_handler,
775 .next = NULL,
776};
777
778/*
dc6e29da
LT
779 * Called early on to tune the page writeback dirty limits.
780 *
781 * We used to scale dirty pages according to how total memory
782 * related to pages that could be allocated for buffers (by
783 * comparing nr_free_buffer_pages() to vm_total_pages.
784 *
785 * However, that was when we used "dirty_ratio" to scale with
786 * all memory, and we don't do that any more. "dirty_ratio"
787 * is now applied to total non-HIGHPAGE memory (by subtracting
788 * totalhigh_pages from vm_total_pages), and as such we can't
789 * get into the old insane situation any more where we had
790 * large amounts of dirty pages compared to a small amount of
791 * non-HIGHMEM memory.
792 *
793 * But we might still want to scale the dirty_ratio by how
794 * much memory the box has..
1da177e4
LT
795 */
796void __init page_writeback_init(void)
797{
04fbfdc1
PZ
798 int shift;
799
2d1d43f6 800 writeback_set_ratelimit();
1da177e4 801 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
802
803 shift = calc_period_shift();
804 prop_descriptor_init(&vm_completions, shift);
3e26c149 805 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
806}
807
f446daae
JK
808/**
809 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
810 * @mapping: address space structure to write
811 * @start: starting page index
812 * @end: ending page index (inclusive)
813 *
814 * This function scans the page range from @start to @end (inclusive) and tags
815 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
816 * that write_cache_pages (or whoever calls this function) will then use
817 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
818 * used to avoid livelocking of writeback by a process steadily creating new
819 * dirty pages in the file (thus it is important for this function to be quick
820 * so that it can tag pages faster than a dirtying process can create them).
821 */
822/*
823 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
824 */
f446daae
JK
825void tag_pages_for_writeback(struct address_space *mapping,
826 pgoff_t start, pgoff_t end)
827{
3c111a07 828#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
829 unsigned long tagged;
830
831 do {
832 spin_lock_irq(&mapping->tree_lock);
833 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
834 &start, end, WRITEBACK_TAG_BATCH,
835 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
836 spin_unlock_irq(&mapping->tree_lock);
837 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
838 cond_resched();
d5ed3a4a
JK
839 /* We check 'start' to handle wrapping when end == ~0UL */
840 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
841}
842EXPORT_SYMBOL(tag_pages_for_writeback);
843
811d736f 844/**
0ea97180 845 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
846 * @mapping: address space structure to write
847 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
848 * @writepage: function called for each page
849 * @data: data passed to writepage function
811d736f 850 *
0ea97180 851 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
852 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
853 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
854 * and msync() need to guarantee that all the data which was dirty at the time
855 * the call was made get new I/O started against them. If wbc->sync_mode is
856 * WB_SYNC_ALL then we were called for data integrity and we must wait for
857 * existing IO to complete.
f446daae
JK
858 *
859 * To avoid livelocks (when other process dirties new pages), we first tag
860 * pages which should be written back with TOWRITE tag and only then start
861 * writing them. For data-integrity sync we have to be careful so that we do
862 * not miss some pages (e.g., because some other process has cleared TOWRITE
863 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
864 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 865 */
0ea97180
MS
866int write_cache_pages(struct address_space *mapping,
867 struct writeback_control *wbc, writepage_t writepage,
868 void *data)
811d736f 869{
811d736f
DH
870 int ret = 0;
871 int done = 0;
811d736f
DH
872 struct pagevec pvec;
873 int nr_pages;
31a12666 874 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
875 pgoff_t index;
876 pgoff_t end; /* Inclusive */
bd19e012 877 pgoff_t done_index;
31a12666 878 int cycled;
811d736f 879 int range_whole = 0;
f446daae 880 int tag;
811d736f 881
811d736f
DH
882 pagevec_init(&pvec, 0);
883 if (wbc->range_cyclic) {
31a12666
NP
884 writeback_index = mapping->writeback_index; /* prev offset */
885 index = writeback_index;
886 if (index == 0)
887 cycled = 1;
888 else
889 cycled = 0;
811d736f
DH
890 end = -1;
891 } else {
892 index = wbc->range_start >> PAGE_CACHE_SHIFT;
893 end = wbc->range_end >> PAGE_CACHE_SHIFT;
894 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
895 range_whole = 1;
31a12666 896 cycled = 1; /* ignore range_cyclic tests */
811d736f 897 }
f446daae
JK
898 if (wbc->sync_mode == WB_SYNC_ALL)
899 tag = PAGECACHE_TAG_TOWRITE;
900 else
901 tag = PAGECACHE_TAG_DIRTY;
811d736f 902retry:
f446daae
JK
903 if (wbc->sync_mode == WB_SYNC_ALL)
904 tag_pages_for_writeback(mapping, index, end);
bd19e012 905 done_index = index;
5a3d5c98
NP
906 while (!done && (index <= end)) {
907 int i;
908
f446daae 909 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
910 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
911 if (nr_pages == 0)
912 break;
811d736f 913
811d736f
DH
914 for (i = 0; i < nr_pages; i++) {
915 struct page *page = pvec.pages[i];
916
917 /*
d5482cdf
NP
918 * At this point, the page may be truncated or
919 * invalidated (changing page->mapping to NULL), or
920 * even swizzled back from swapper_space to tmpfs file
921 * mapping. However, page->index will not change
922 * because we have a reference on the page.
811d736f 923 */
d5482cdf
NP
924 if (page->index > end) {
925 /*
926 * can't be range_cyclic (1st pass) because
927 * end == -1 in that case.
928 */
929 done = 1;
930 break;
931 }
932
933 done_index = page->index + 1;
934
811d736f
DH
935 lock_page(page);
936
5a3d5c98
NP
937 /*
938 * Page truncated or invalidated. We can freely skip it
939 * then, even for data integrity operations: the page
940 * has disappeared concurrently, so there could be no
941 * real expectation of this data interity operation
942 * even if there is now a new, dirty page at the same
943 * pagecache address.
944 */
811d736f 945 if (unlikely(page->mapping != mapping)) {
5a3d5c98 946continue_unlock:
811d736f
DH
947 unlock_page(page);
948 continue;
949 }
950
515f4a03
NP
951 if (!PageDirty(page)) {
952 /* someone wrote it for us */
953 goto continue_unlock;
954 }
955
956 if (PageWriteback(page)) {
957 if (wbc->sync_mode != WB_SYNC_NONE)
958 wait_on_page_writeback(page);
959 else
960 goto continue_unlock;
961 }
811d736f 962
515f4a03
NP
963 BUG_ON(PageWriteback(page));
964 if (!clear_page_dirty_for_io(page))
5a3d5c98 965 goto continue_unlock;
811d736f 966
9e094383 967 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 968 ret = (*writepage)(page, wbc, data);
00266770
NP
969 if (unlikely(ret)) {
970 if (ret == AOP_WRITEPAGE_ACTIVATE) {
971 unlock_page(page);
972 ret = 0;
973 } else {
974 /*
975 * done_index is set past this page,
976 * so media errors will not choke
977 * background writeout for the entire
978 * file. This has consequences for
979 * range_cyclic semantics (ie. it may
980 * not be suitable for data integrity
981 * writeout).
982 */
983 done = 1;
984 break;
985 }
0b564927 986 }
00266770 987
0b564927
DC
988 if (wbc->nr_to_write > 0) {
989 if (--wbc->nr_to_write == 0 &&
89e12190
FC
990 wbc->sync_mode == WB_SYNC_NONE) {
991 /*
992 * We stop writing back only if we are
993 * not doing integrity sync. In case of
994 * integrity sync we have to keep going
995 * because someone may be concurrently
996 * dirtying pages, and we might have
997 * synced a lot of newly appeared dirty
998 * pages, but have not synced all of the
999 * old dirty pages.
1000 */
1001 done = 1;
1002 break;
1003 }
05fe478d 1004 }
811d736f
DH
1005 }
1006 pagevec_release(&pvec);
1007 cond_resched();
1008 }
3a4c6800 1009 if (!cycled && !done) {
811d736f 1010 /*
31a12666 1011 * range_cyclic:
811d736f
DH
1012 * We hit the last page and there is more work to be done: wrap
1013 * back to the start of the file
1014 */
31a12666 1015 cycled = 1;
811d736f 1016 index = 0;
31a12666 1017 end = writeback_index - 1;
811d736f
DH
1018 goto retry;
1019 }
0b564927
DC
1020 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1021 mapping->writeback_index = done_index;
06d6cf69 1022
811d736f
DH
1023 return ret;
1024}
0ea97180
MS
1025EXPORT_SYMBOL(write_cache_pages);
1026
1027/*
1028 * Function used by generic_writepages to call the real writepage
1029 * function and set the mapping flags on error
1030 */
1031static int __writepage(struct page *page, struct writeback_control *wbc,
1032 void *data)
1033{
1034 struct address_space *mapping = data;
1035 int ret = mapping->a_ops->writepage(page, wbc);
1036 mapping_set_error(mapping, ret);
1037 return ret;
1038}
1039
1040/**
1041 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1042 * @mapping: address space structure to write
1043 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1044 *
1045 * This is a library function, which implements the writepages()
1046 * address_space_operation.
1047 */
1048int generic_writepages(struct address_space *mapping,
1049 struct writeback_control *wbc)
1050{
1051 /* deal with chardevs and other special file */
1052 if (!mapping->a_ops->writepage)
1053 return 0;
1054
1055 return write_cache_pages(mapping, wbc, __writepage, mapping);
1056}
811d736f
DH
1057
1058EXPORT_SYMBOL(generic_writepages);
1059
1da177e4
LT
1060int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1061{
22905f77
AM
1062 int ret;
1063
1da177e4
LT
1064 if (wbc->nr_to_write <= 0)
1065 return 0;
1066 if (mapping->a_ops->writepages)
d08b3851 1067 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1068 else
1069 ret = generic_writepages(mapping, wbc);
22905f77 1070 return ret;
1da177e4
LT
1071}
1072
1073/**
1074 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1075 * @page: the page to write
1076 * @wait: if true, wait on writeout
1da177e4
LT
1077 *
1078 * The page must be locked by the caller and will be unlocked upon return.
1079 *
1080 * write_one_page() returns a negative error code if I/O failed.
1081 */
1082int write_one_page(struct page *page, int wait)
1083{
1084 struct address_space *mapping = page->mapping;
1085 int ret = 0;
1086 struct writeback_control wbc = {
1087 .sync_mode = WB_SYNC_ALL,
1088 .nr_to_write = 1,
1089 };
1090
1091 BUG_ON(!PageLocked(page));
1092
1093 if (wait)
1094 wait_on_page_writeback(page);
1095
1096 if (clear_page_dirty_for_io(page)) {
1097 page_cache_get(page);
1098 ret = mapping->a_ops->writepage(page, &wbc);
1099 if (ret == 0 && wait) {
1100 wait_on_page_writeback(page);
1101 if (PageError(page))
1102 ret = -EIO;
1103 }
1104 page_cache_release(page);
1105 } else {
1106 unlock_page(page);
1107 }
1108 return ret;
1109}
1110EXPORT_SYMBOL(write_one_page);
1111
76719325
KC
1112/*
1113 * For address_spaces which do not use buffers nor write back.
1114 */
1115int __set_page_dirty_no_writeback(struct page *page)
1116{
1117 if (!PageDirty(page))
1118 SetPageDirty(page);
1119 return 0;
1120}
1121
e3a7cca1
ES
1122/*
1123 * Helper function for set_page_dirty family.
1124 * NOTE: This relies on being atomic wrt interrupts.
1125 */
1126void account_page_dirtied(struct page *page, struct address_space *mapping)
1127{
1128 if (mapping_cap_account_dirty(mapping)) {
1129 __inc_zone_page_state(page, NR_FILE_DIRTY);
1130 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1131 task_dirty_inc(current);
1132 task_io_account_write(PAGE_CACHE_SIZE);
1133 }
1134}
1135
1da177e4
LT
1136/*
1137 * For address_spaces which do not use buffers. Just tag the page as dirty in
1138 * its radix tree.
1139 *
1140 * This is also used when a single buffer is being dirtied: we want to set the
1141 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1142 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1143 *
1144 * Most callers have locked the page, which pins the address_space in memory.
1145 * But zap_pte_range() does not lock the page, however in that case the
1146 * mapping is pinned by the vma's ->vm_file reference.
1147 *
1148 * We take care to handle the case where the page was truncated from the
183ff22b 1149 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1150 */
1151int __set_page_dirty_nobuffers(struct page *page)
1152{
1da177e4
LT
1153 if (!TestSetPageDirty(page)) {
1154 struct address_space *mapping = page_mapping(page);
1155 struct address_space *mapping2;
1156
8c08540f
AM
1157 if (!mapping)
1158 return 1;
1159
19fd6231 1160 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1161 mapping2 = page_mapping(page);
1162 if (mapping2) { /* Race with truncate? */
1163 BUG_ON(mapping2 != mapping);
787d2214 1164 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1165 account_page_dirtied(page, mapping);
8c08540f
AM
1166 radix_tree_tag_set(&mapping->page_tree,
1167 page_index(page), PAGECACHE_TAG_DIRTY);
1168 }
19fd6231 1169 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1170 if (mapping->host) {
1171 /* !PageAnon && !swapper_space */
1172 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1173 }
4741c9fd 1174 return 1;
1da177e4 1175 }
4741c9fd 1176 return 0;
1da177e4
LT
1177}
1178EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1179
1180/*
1181 * When a writepage implementation decides that it doesn't want to write this
1182 * page for some reason, it should redirty the locked page via
1183 * redirty_page_for_writepage() and it should then unlock the page and return 0
1184 */
1185int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1186{
1187 wbc->pages_skipped++;
1188 return __set_page_dirty_nobuffers(page);
1189}
1190EXPORT_SYMBOL(redirty_page_for_writepage);
1191
1192/*
6746aff7
WF
1193 * Dirty a page.
1194 *
1195 * For pages with a mapping this should be done under the page lock
1196 * for the benefit of asynchronous memory errors who prefer a consistent
1197 * dirty state. This rule can be broken in some special cases,
1198 * but should be better not to.
1199 *
1da177e4
LT
1200 * If the mapping doesn't provide a set_page_dirty a_op, then
1201 * just fall through and assume that it wants buffer_heads.
1202 */
1cf6e7d8 1203int set_page_dirty(struct page *page)
1da177e4
LT
1204{
1205 struct address_space *mapping = page_mapping(page);
1206
1207 if (likely(mapping)) {
1208 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1209#ifdef CONFIG_BLOCK
1210 if (!spd)
1211 spd = __set_page_dirty_buffers;
1212#endif
1213 return (*spd)(page);
1da177e4 1214 }
4741c9fd
AM
1215 if (!PageDirty(page)) {
1216 if (!TestSetPageDirty(page))
1217 return 1;
1218 }
1da177e4
LT
1219 return 0;
1220}
1221EXPORT_SYMBOL(set_page_dirty);
1222
1223/*
1224 * set_page_dirty() is racy if the caller has no reference against
1225 * page->mapping->host, and if the page is unlocked. This is because another
1226 * CPU could truncate the page off the mapping and then free the mapping.
1227 *
1228 * Usually, the page _is_ locked, or the caller is a user-space process which
1229 * holds a reference on the inode by having an open file.
1230 *
1231 * In other cases, the page should be locked before running set_page_dirty().
1232 */
1233int set_page_dirty_lock(struct page *page)
1234{
1235 int ret;
1236
db37648c 1237 lock_page_nosync(page);
1da177e4
LT
1238 ret = set_page_dirty(page);
1239 unlock_page(page);
1240 return ret;
1241}
1242EXPORT_SYMBOL(set_page_dirty_lock);
1243
1da177e4
LT
1244/*
1245 * Clear a page's dirty flag, while caring for dirty memory accounting.
1246 * Returns true if the page was previously dirty.
1247 *
1248 * This is for preparing to put the page under writeout. We leave the page
1249 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1250 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1251 * implementation will run either set_page_writeback() or set_page_dirty(),
1252 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1253 * back into sync.
1254 *
1255 * This incoherency between the page's dirty flag and radix-tree tag is
1256 * unfortunate, but it only exists while the page is locked.
1257 */
1258int clear_page_dirty_for_io(struct page *page)
1259{
1260 struct address_space *mapping = page_mapping(page);
1261
79352894
NP
1262 BUG_ON(!PageLocked(page));
1263
fe3cba17 1264 ClearPageReclaim(page);
7658cc28
LT
1265 if (mapping && mapping_cap_account_dirty(mapping)) {
1266 /*
1267 * Yes, Virginia, this is indeed insane.
1268 *
1269 * We use this sequence to make sure that
1270 * (a) we account for dirty stats properly
1271 * (b) we tell the low-level filesystem to
1272 * mark the whole page dirty if it was
1273 * dirty in a pagetable. Only to then
1274 * (c) clean the page again and return 1 to
1275 * cause the writeback.
1276 *
1277 * This way we avoid all nasty races with the
1278 * dirty bit in multiple places and clearing
1279 * them concurrently from different threads.
1280 *
1281 * Note! Normally the "set_page_dirty(page)"
1282 * has no effect on the actual dirty bit - since
1283 * that will already usually be set. But we
1284 * need the side effects, and it can help us
1285 * avoid races.
1286 *
1287 * We basically use the page "master dirty bit"
1288 * as a serialization point for all the different
1289 * threads doing their things.
7658cc28
LT
1290 */
1291 if (page_mkclean(page))
1292 set_page_dirty(page);
79352894
NP
1293 /*
1294 * We carefully synchronise fault handlers against
1295 * installing a dirty pte and marking the page dirty
1296 * at this point. We do this by having them hold the
1297 * page lock at some point after installing their
1298 * pte, but before marking the page dirty.
1299 * Pages are always locked coming in here, so we get
1300 * the desired exclusion. See mm/memory.c:do_wp_page()
1301 * for more comments.
1302 */
7658cc28 1303 if (TestClearPageDirty(page)) {
8c08540f 1304 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1305 dec_bdi_stat(mapping->backing_dev_info,
1306 BDI_RECLAIMABLE);
7658cc28 1307 return 1;
1da177e4 1308 }
7658cc28 1309 return 0;
1da177e4 1310 }
7658cc28 1311 return TestClearPageDirty(page);
1da177e4 1312}
58bb01a9 1313EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1314
1315int test_clear_page_writeback(struct page *page)
1316{
1317 struct address_space *mapping = page_mapping(page);
1318 int ret;
1319
1320 if (mapping) {
69cb51d1 1321 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1322 unsigned long flags;
1323
19fd6231 1324 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1325 ret = TestClearPageWriteback(page);
69cb51d1 1326 if (ret) {
1da177e4
LT
1327 radix_tree_tag_clear(&mapping->page_tree,
1328 page_index(page),
1329 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1330 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1331 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1332 __bdi_writeout_inc(bdi);
1333 }
69cb51d1 1334 }
19fd6231 1335 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1336 } else {
1337 ret = TestClearPageWriteback(page);
1338 }
d688abf5
AM
1339 if (ret)
1340 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1341 return ret;
1342}
1343
1344int test_set_page_writeback(struct page *page)
1345{
1346 struct address_space *mapping = page_mapping(page);
1347 int ret;
1348
1349 if (mapping) {
69cb51d1 1350 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1351 unsigned long flags;
1352
19fd6231 1353 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1354 ret = TestSetPageWriteback(page);
69cb51d1 1355 if (!ret) {
1da177e4
LT
1356 radix_tree_tag_set(&mapping->page_tree,
1357 page_index(page),
1358 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1359 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1360 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1361 }
1da177e4
LT
1362 if (!PageDirty(page))
1363 radix_tree_tag_clear(&mapping->page_tree,
1364 page_index(page),
1365 PAGECACHE_TAG_DIRTY);
f446daae
JK
1366 radix_tree_tag_clear(&mapping->page_tree,
1367 page_index(page),
1368 PAGECACHE_TAG_TOWRITE);
19fd6231 1369 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1370 } else {
1371 ret = TestSetPageWriteback(page);
1372 }
d688abf5
AM
1373 if (!ret)
1374 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1375 return ret;
1376
1377}
1378EXPORT_SYMBOL(test_set_page_writeback);
1379
1380/*
00128188 1381 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1382 * passed tag.
1383 */
1384int mapping_tagged(struct address_space *mapping, int tag)
1385{
1da177e4 1386 int ret;
00128188 1387 rcu_read_lock();
1da177e4 1388 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1389 rcu_read_unlock();
1da177e4
LT
1390 return ret;
1391}
1392EXPORT_SYMBOL(mapping_tagged);