]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/workqueue.c
kernel/: convert cpu notifier to return encapsulate errno value
[net-next-2.6.git] / kernel / workqueue.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/workqueue.c
3 *
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
6 *
7 * Started by Ingo Molnar, Copyright (C) 2002
8 *
9 * Derived from the taskqueue/keventd code by:
10 *
11 * David Woodhouse <dwmw2@infradead.org>
e1f8e874 12 * Andrew Morton
1da177e4
LT
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
89ada679 15 *
cde53535 16 * Made to use alloc_percpu by Christoph Lameter.
1da177e4
LT
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/sched.h>
22#include <linux/init.h>
23#include <linux/signal.h>
24#include <linux/completion.h>
25#include <linux/workqueue.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/notifier.h>
29#include <linux/kthread.h>
1fa44eca 30#include <linux/hardirq.h>
46934023 31#include <linux/mempolicy.h>
341a5958 32#include <linux/freezer.h>
d5abe669
PZ
33#include <linux/kallsyms.h>
34#include <linux/debug_locks.h>
4e6045f1 35#include <linux/lockdep.h>
fb39125f
Z
36#define CREATE_TRACE_POINTS
37#include <trace/events/workqueue.h>
1da177e4
LT
38
39/*
f756d5e2
NL
40 * The per-CPU workqueue (if single thread, we always use the first
41 * possible cpu).
1da177e4
LT
42 */
43struct cpu_workqueue_struct {
44
45 spinlock_t lock;
46
1da177e4
LT
47 struct list_head worklist;
48 wait_queue_head_t more_work;
3af24433 49 struct work_struct *current_work;
1da177e4
LT
50
51 struct workqueue_struct *wq;
36c8b586 52 struct task_struct *thread;
1da177e4
LT
53} ____cacheline_aligned;
54
55/*
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
58 */
59struct workqueue_struct {
89ada679 60 struct cpu_workqueue_struct *cpu_wq;
cce1a165 61 struct list_head list;
1da177e4 62 const char *name;
cce1a165 63 int singlethread;
319c2a98 64 int freezeable; /* Freeze threads during suspend */
0d557dc9 65 int rt;
4e6045f1
JB
66#ifdef CONFIG_LOCKDEP
67 struct lockdep_map lockdep_map;
68#endif
1da177e4
LT
69};
70
dc186ad7
TG
71#ifdef CONFIG_DEBUG_OBJECTS_WORK
72
73static struct debug_obj_descr work_debug_descr;
74
75/*
76 * fixup_init is called when:
77 * - an active object is initialized
78 */
79static int work_fixup_init(void *addr, enum debug_obj_state state)
80{
81 struct work_struct *work = addr;
82
83 switch (state) {
84 case ODEBUG_STATE_ACTIVE:
85 cancel_work_sync(work);
86 debug_object_init(work, &work_debug_descr);
87 return 1;
88 default:
89 return 0;
90 }
91}
92
93/*
94 * fixup_activate is called when:
95 * - an active object is activated
96 * - an unknown object is activated (might be a statically initialized object)
97 */
98static int work_fixup_activate(void *addr, enum debug_obj_state state)
99{
100 struct work_struct *work = addr;
101
102 switch (state) {
103
104 case ODEBUG_STATE_NOTAVAILABLE:
105 /*
106 * This is not really a fixup. The work struct was
107 * statically initialized. We just make sure that it
108 * is tracked in the object tracker.
109 */
110 if (test_bit(WORK_STRUCT_STATIC, work_data_bits(work))) {
111 debug_object_init(work, &work_debug_descr);
112 debug_object_activate(work, &work_debug_descr);
113 return 0;
114 }
115 WARN_ON_ONCE(1);
116 return 0;
117
118 case ODEBUG_STATE_ACTIVE:
119 WARN_ON(1);
120
121 default:
122 return 0;
123 }
124}
125
126/*
127 * fixup_free is called when:
128 * - an active object is freed
129 */
130static int work_fixup_free(void *addr, enum debug_obj_state state)
131{
132 struct work_struct *work = addr;
133
134 switch (state) {
135 case ODEBUG_STATE_ACTIVE:
136 cancel_work_sync(work);
137 debug_object_free(work, &work_debug_descr);
138 return 1;
139 default:
140 return 0;
141 }
142}
143
144static struct debug_obj_descr work_debug_descr = {
145 .name = "work_struct",
146 .fixup_init = work_fixup_init,
147 .fixup_activate = work_fixup_activate,
148 .fixup_free = work_fixup_free,
149};
150
151static inline void debug_work_activate(struct work_struct *work)
152{
153 debug_object_activate(work, &work_debug_descr);
154}
155
156static inline void debug_work_deactivate(struct work_struct *work)
157{
158 debug_object_deactivate(work, &work_debug_descr);
159}
160
161void __init_work(struct work_struct *work, int onstack)
162{
163 if (onstack)
164 debug_object_init_on_stack(work, &work_debug_descr);
165 else
166 debug_object_init(work, &work_debug_descr);
167}
168EXPORT_SYMBOL_GPL(__init_work);
169
170void destroy_work_on_stack(struct work_struct *work)
171{
172 debug_object_free(work, &work_debug_descr);
173}
174EXPORT_SYMBOL_GPL(destroy_work_on_stack);
175
176#else
177static inline void debug_work_activate(struct work_struct *work) { }
178static inline void debug_work_deactivate(struct work_struct *work) { }
179#endif
180
95402b38
GS
181/* Serializes the accesses to the list of workqueues. */
182static DEFINE_SPINLOCK(workqueue_lock);
1da177e4
LT
183static LIST_HEAD(workqueues);
184
3af24433 185static int singlethread_cpu __read_mostly;
e7577c50 186static const struct cpumask *cpu_singlethread_map __read_mostly;
14441960
ON
187/*
188 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
189 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
190 * which comes in between can't use for_each_online_cpu(). We could
191 * use cpu_possible_map, the cpumask below is more a documentation
192 * than optimization.
193 */
e7577c50 194static cpumask_var_t cpu_populated_map __read_mostly;
f756d5e2 195
1da177e4 196/* If it's single threaded, it isn't in the list of workqueues. */
6cc88bc4 197static inline int is_wq_single_threaded(struct workqueue_struct *wq)
1da177e4 198{
cce1a165 199 return wq->singlethread;
1da177e4
LT
200}
201
e7577c50 202static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
b1f4ec17 203{
6cc88bc4 204 return is_wq_single_threaded(wq)
e7577c50 205 ? cpu_singlethread_map : cpu_populated_map;
b1f4ec17
ON
206}
207
a848e3b6
ON
208static
209struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
210{
6cc88bc4 211 if (unlikely(is_wq_single_threaded(wq)))
a848e3b6
ON
212 cpu = singlethread_cpu;
213 return per_cpu_ptr(wq->cpu_wq, cpu);
214}
215
4594bf15
DH
216/*
217 * Set the workqueue on which a work item is to be run
218 * - Must *only* be called if the pending flag is set
219 */
ed7c0fee
ON
220static inline void set_wq_data(struct work_struct *work,
221 struct cpu_workqueue_struct *cwq)
365970a1 222{
4594bf15
DH
223 unsigned long new;
224
225 BUG_ON(!work_pending(work));
365970a1 226
ed7c0fee 227 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
a08727ba
LT
228 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
229 atomic_long_set(&work->data, new);
365970a1
DH
230}
231
4d707b9f
ON
232/*
233 * Clear WORK_STRUCT_PENDING and the workqueue on which it was queued.
234 */
235static inline void clear_wq_data(struct work_struct *work)
236{
237 unsigned long flags = *work_data_bits(work) &
238 (1UL << WORK_STRUCT_STATIC);
239 atomic_long_set(&work->data, flags);
240}
241
ed7c0fee
ON
242static inline
243struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
365970a1 244{
a08727ba 245 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
365970a1
DH
246}
247
b89deed3 248static void insert_work(struct cpu_workqueue_struct *cwq,
1a4d9b0a 249 struct work_struct *work, struct list_head *head)
b89deed3 250{
e1d8aa9f
FW
251 trace_workqueue_insertion(cwq->thread, work);
252
b89deed3 253 set_wq_data(work, cwq);
6e84d644
ON
254 /*
255 * Ensure that we get the right work->data if we see the
256 * result of list_add() below, see try_to_grab_pending().
257 */
258 smp_wmb();
1a4d9b0a 259 list_add_tail(&work->entry, head);
b89deed3
ON
260 wake_up(&cwq->more_work);
261}
262
1da177e4
LT
263static void __queue_work(struct cpu_workqueue_struct *cwq,
264 struct work_struct *work)
265{
266 unsigned long flags;
267
dc186ad7 268 debug_work_activate(work);
1da177e4 269 spin_lock_irqsave(&cwq->lock, flags);
1a4d9b0a 270 insert_work(cwq, work, &cwq->worklist);
1da177e4
LT
271 spin_unlock_irqrestore(&cwq->lock, flags);
272}
273
0fcb78c2
REB
274/**
275 * queue_work - queue work on a workqueue
276 * @wq: workqueue to use
277 * @work: work to queue
278 *
057647fc 279 * Returns 0 if @work was already on a queue, non-zero otherwise.
1da177e4 280 *
00dfcaf7
ON
281 * We queue the work to the CPU on which it was submitted, but if the CPU dies
282 * it can be processed by another CPU.
1da177e4 283 */
7ad5b3a5 284int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1da177e4 285{
ef1ca236
ON
286 int ret;
287
288 ret = queue_work_on(get_cpu(), wq, work);
289 put_cpu();
290
1da177e4
LT
291 return ret;
292}
ae90dd5d 293EXPORT_SYMBOL_GPL(queue_work);
1da177e4 294
c1a220e7
ZR
295/**
296 * queue_work_on - queue work on specific cpu
297 * @cpu: CPU number to execute work on
298 * @wq: workqueue to use
299 * @work: work to queue
300 *
301 * Returns 0 if @work was already on a queue, non-zero otherwise.
302 *
303 * We queue the work to a specific CPU, the caller must ensure it
304 * can't go away.
305 */
306int
307queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
308{
309 int ret = 0;
310
311 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
312 BUG_ON(!list_empty(&work->entry));
313 __queue_work(wq_per_cpu(wq, cpu), work);
314 ret = 1;
315 }
316 return ret;
317}
318EXPORT_SYMBOL_GPL(queue_work_on);
319
6d141c3f 320static void delayed_work_timer_fn(unsigned long __data)
1da177e4 321{
52bad64d 322 struct delayed_work *dwork = (struct delayed_work *)__data;
ed7c0fee
ON
323 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
324 struct workqueue_struct *wq = cwq->wq;
1da177e4 325
a848e3b6 326 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
1da177e4
LT
327}
328
0fcb78c2
REB
329/**
330 * queue_delayed_work - queue work on a workqueue after delay
331 * @wq: workqueue to use
af9997e4 332 * @dwork: delayable work to queue
0fcb78c2
REB
333 * @delay: number of jiffies to wait before queueing
334 *
057647fc 335 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 336 */
7ad5b3a5 337int queue_delayed_work(struct workqueue_struct *wq,
52bad64d 338 struct delayed_work *dwork, unsigned long delay)
1da177e4 339{
52bad64d 340 if (delay == 0)
63bc0362 341 return queue_work(wq, &dwork->work);
1da177e4 342
63bc0362 343 return queue_delayed_work_on(-1, wq, dwork, delay);
1da177e4 344}
ae90dd5d 345EXPORT_SYMBOL_GPL(queue_delayed_work);
1da177e4 346
0fcb78c2
REB
347/**
348 * queue_delayed_work_on - queue work on specific CPU after delay
349 * @cpu: CPU number to execute work on
350 * @wq: workqueue to use
af9997e4 351 * @dwork: work to queue
0fcb78c2
REB
352 * @delay: number of jiffies to wait before queueing
353 *
057647fc 354 * Returns 0 if @work was already on a queue, non-zero otherwise.
0fcb78c2 355 */
7a6bc1cd 356int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
52bad64d 357 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd
VP
358{
359 int ret = 0;
52bad64d
DH
360 struct timer_list *timer = &dwork->timer;
361 struct work_struct *work = &dwork->work;
7a6bc1cd 362
a08727ba 363 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
7a6bc1cd
VP
364 BUG_ON(timer_pending(timer));
365 BUG_ON(!list_empty(&work->entry));
366
8a3e77cc
AL
367 timer_stats_timer_set_start_info(&dwork->timer);
368
ed7c0fee 369 /* This stores cwq for the moment, for the timer_fn */
a848e3b6 370 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
7a6bc1cd 371 timer->expires = jiffies + delay;
52bad64d 372 timer->data = (unsigned long)dwork;
7a6bc1cd 373 timer->function = delayed_work_timer_fn;
63bc0362
ON
374
375 if (unlikely(cpu >= 0))
376 add_timer_on(timer, cpu);
377 else
378 add_timer(timer);
7a6bc1cd
VP
379 ret = 1;
380 }
381 return ret;
382}
ae90dd5d 383EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1da177e4 384
858119e1 385static void run_workqueue(struct cpu_workqueue_struct *cwq)
1da177e4 386{
f293ea92 387 spin_lock_irq(&cwq->lock);
1da177e4
LT
388 while (!list_empty(&cwq->worklist)) {
389 struct work_struct *work = list_entry(cwq->worklist.next,
390 struct work_struct, entry);
6bb49e59 391 work_func_t f = work->func;
4e6045f1
JB
392#ifdef CONFIG_LOCKDEP
393 /*
394 * It is permissible to free the struct work_struct
395 * from inside the function that is called from it,
396 * this we need to take into account for lockdep too.
397 * To avoid bogus "held lock freed" warnings as well
398 * as problems when looking into work->lockdep_map,
399 * make a copy and use that here.
400 */
401 struct lockdep_map lockdep_map = work->lockdep_map;
402#endif
e1d8aa9f 403 trace_workqueue_execution(cwq->thread, work);
dc186ad7 404 debug_work_deactivate(work);
b89deed3 405 cwq->current_work = work;
1da177e4 406 list_del_init(cwq->worklist.next);
f293ea92 407 spin_unlock_irq(&cwq->lock);
1da177e4 408
365970a1 409 BUG_ON(get_wq_data(work) != cwq);
23b2e599 410 work_clear_pending(work);
3295f0ef
IM
411 lock_map_acquire(&cwq->wq->lockdep_map);
412 lock_map_acquire(&lockdep_map);
65f27f38 413 f(work);
3295f0ef
IM
414 lock_map_release(&lockdep_map);
415 lock_map_release(&cwq->wq->lockdep_map);
1da177e4 416
d5abe669
PZ
417 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
418 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
419 "%s/0x%08x/%d\n",
420 current->comm, preempt_count(),
ba25f9dc 421 task_pid_nr(current));
d5abe669
PZ
422 printk(KERN_ERR " last function: ");
423 print_symbol("%s\n", (unsigned long)f);
424 debug_show_held_locks(current);
425 dump_stack();
426 }
427
f293ea92 428 spin_lock_irq(&cwq->lock);
b89deed3 429 cwq->current_work = NULL;
1da177e4 430 }
f293ea92 431 spin_unlock_irq(&cwq->lock);
1da177e4
LT
432}
433
434static int worker_thread(void *__cwq)
435{
436 struct cpu_workqueue_struct *cwq = __cwq;
3af24433 437 DEFINE_WAIT(wait);
1da177e4 438
83144186
RW
439 if (cwq->wq->freezeable)
440 set_freezable();
1da177e4 441
3af24433 442 for (;;) {
3af24433 443 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
14441960
ON
444 if (!freezing(current) &&
445 !kthread_should_stop() &&
446 list_empty(&cwq->worklist))
1da177e4 447 schedule();
3af24433
ON
448 finish_wait(&cwq->more_work, &wait);
449
85f4186a
ON
450 try_to_freeze();
451
14441960 452 if (kthread_should_stop())
3af24433 453 break;
1da177e4 454
3af24433 455 run_workqueue(cwq);
1da177e4 456 }
3af24433 457
1da177e4
LT
458 return 0;
459}
460
fc2e4d70
ON
461struct wq_barrier {
462 struct work_struct work;
463 struct completion done;
464};
465
466static void wq_barrier_func(struct work_struct *work)
467{
468 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
469 complete(&barr->done);
470}
471
83c22520 472static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
1a4d9b0a 473 struct wq_barrier *barr, struct list_head *head)
fc2e4d70 474{
dc186ad7
TG
475 /*
476 * debugobject calls are safe here even with cwq->lock locked
477 * as we know for sure that this will not trigger any of the
478 * checks and call back into the fixup functions where we
479 * might deadlock.
480 */
481 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
fc2e4d70
ON
482 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
483
484 init_completion(&barr->done);
83c22520 485
dc186ad7 486 debug_work_activate(&barr->work);
1a4d9b0a 487 insert_work(cwq, &barr->work, head);
fc2e4d70
ON
488}
489
14441960 490static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
1da177e4 491{
2355b70f
LJ
492 int active = 0;
493 struct wq_barrier barr;
1da177e4 494
2355b70f 495 WARN_ON(cwq->thread == current);
1da177e4 496
2355b70f
LJ
497 spin_lock_irq(&cwq->lock);
498 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
499 insert_wq_barrier(cwq, &barr, &cwq->worklist);
500 active = 1;
1da177e4 501 }
2355b70f
LJ
502 spin_unlock_irq(&cwq->lock);
503
dc186ad7 504 if (active) {
2355b70f 505 wait_for_completion(&barr.done);
dc186ad7
TG
506 destroy_work_on_stack(&barr.work);
507 }
14441960
ON
508
509 return active;
1da177e4
LT
510}
511
0fcb78c2 512/**
1da177e4 513 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 514 * @wq: workqueue to flush
1da177e4
LT
515 *
516 * Forces execution of the workqueue and blocks until its completion.
517 * This is typically used in driver shutdown handlers.
518 *
fc2e4d70
ON
519 * We sleep until all works which were queued on entry have been handled,
520 * but we are not livelocked by new incoming ones.
1da177e4
LT
521 *
522 * This function used to run the workqueues itself. Now we just wait for the
523 * helper threads to do it.
524 */
7ad5b3a5 525void flush_workqueue(struct workqueue_struct *wq)
1da177e4 526{
e7577c50 527 const struct cpumask *cpu_map = wq_cpu_map(wq);
cce1a165 528 int cpu;
1da177e4 529
b1f4ec17 530 might_sleep();
3295f0ef
IM
531 lock_map_acquire(&wq->lockdep_map);
532 lock_map_release(&wq->lockdep_map);
aa85ea5b 533 for_each_cpu(cpu, cpu_map)
b1f4ec17 534 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
1da177e4 535}
ae90dd5d 536EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 537
db700897
ON
538/**
539 * flush_work - block until a work_struct's callback has terminated
540 * @work: the work which is to be flushed
541 *
a67da70d
ON
542 * Returns false if @work has already terminated.
543 *
db700897
ON
544 * It is expected that, prior to calling flush_work(), the caller has
545 * arranged for the work to not be requeued, otherwise it doesn't make
546 * sense to use this function.
547 */
548int flush_work(struct work_struct *work)
549{
550 struct cpu_workqueue_struct *cwq;
551 struct list_head *prev;
552 struct wq_barrier barr;
553
554 might_sleep();
555 cwq = get_wq_data(work);
556 if (!cwq)
557 return 0;
558
3295f0ef
IM
559 lock_map_acquire(&cwq->wq->lockdep_map);
560 lock_map_release(&cwq->wq->lockdep_map);
a67da70d 561
db700897
ON
562 prev = NULL;
563 spin_lock_irq(&cwq->lock);
564 if (!list_empty(&work->entry)) {
565 /*
566 * See the comment near try_to_grab_pending()->smp_rmb().
567 * If it was re-queued under us we are not going to wait.
568 */
569 smp_rmb();
570 if (unlikely(cwq != get_wq_data(work)))
571 goto out;
572 prev = &work->entry;
573 } else {
574 if (cwq->current_work != work)
575 goto out;
576 prev = &cwq->worklist;
577 }
578 insert_wq_barrier(cwq, &barr, prev->next);
579out:
580 spin_unlock_irq(&cwq->lock);
581 if (!prev)
582 return 0;
583
584 wait_for_completion(&barr.done);
dc186ad7 585 destroy_work_on_stack(&barr.work);
db700897
ON
586 return 1;
587}
588EXPORT_SYMBOL_GPL(flush_work);
589
6e84d644 590/*
1f1f642e 591 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
6e84d644
ON
592 * so this work can't be re-armed in any way.
593 */
594static int try_to_grab_pending(struct work_struct *work)
595{
596 struct cpu_workqueue_struct *cwq;
1f1f642e 597 int ret = -1;
6e84d644
ON
598
599 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
1f1f642e 600 return 0;
6e84d644
ON
601
602 /*
603 * The queueing is in progress, or it is already queued. Try to
604 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
605 */
606
607 cwq = get_wq_data(work);
608 if (!cwq)
609 return ret;
610
611 spin_lock_irq(&cwq->lock);
612 if (!list_empty(&work->entry)) {
613 /*
614 * This work is queued, but perhaps we locked the wrong cwq.
615 * In that case we must see the new value after rmb(), see
616 * insert_work()->wmb().
617 */
618 smp_rmb();
619 if (cwq == get_wq_data(work)) {
dc186ad7 620 debug_work_deactivate(work);
6e84d644
ON
621 list_del_init(&work->entry);
622 ret = 1;
623 }
624 }
625 spin_unlock_irq(&cwq->lock);
626
627 return ret;
628}
629
630static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
b89deed3
ON
631 struct work_struct *work)
632{
633 struct wq_barrier barr;
634 int running = 0;
635
636 spin_lock_irq(&cwq->lock);
637 if (unlikely(cwq->current_work == work)) {
1a4d9b0a 638 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
b89deed3
ON
639 running = 1;
640 }
641 spin_unlock_irq(&cwq->lock);
642
dc186ad7 643 if (unlikely(running)) {
b89deed3 644 wait_for_completion(&barr.done);
dc186ad7
TG
645 destroy_work_on_stack(&barr.work);
646 }
b89deed3
ON
647}
648
6e84d644 649static void wait_on_work(struct work_struct *work)
b89deed3
ON
650{
651 struct cpu_workqueue_struct *cwq;
28e53bdd 652 struct workqueue_struct *wq;
e7577c50 653 const struct cpumask *cpu_map;
b1f4ec17 654 int cpu;
b89deed3 655
f293ea92
ON
656 might_sleep();
657
3295f0ef
IM
658 lock_map_acquire(&work->lockdep_map);
659 lock_map_release(&work->lockdep_map);
4e6045f1 660
b89deed3 661 cwq = get_wq_data(work);
b89deed3 662 if (!cwq)
3af24433 663 return;
b89deed3 664
28e53bdd
ON
665 wq = cwq->wq;
666 cpu_map = wq_cpu_map(wq);
667
aa85ea5b 668 for_each_cpu(cpu, cpu_map)
6e84d644
ON
669 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
670}
671
1f1f642e
ON
672static int __cancel_work_timer(struct work_struct *work,
673 struct timer_list* timer)
674{
675 int ret;
676
677 do {
678 ret = (timer && likely(del_timer(timer)));
679 if (!ret)
680 ret = try_to_grab_pending(work);
681 wait_on_work(work);
682 } while (unlikely(ret < 0));
683
4d707b9f 684 clear_wq_data(work);
1f1f642e
ON
685 return ret;
686}
687
6e84d644
ON
688/**
689 * cancel_work_sync - block until a work_struct's callback has terminated
690 * @work: the work which is to be flushed
691 *
1f1f642e
ON
692 * Returns true if @work was pending.
693 *
6e84d644
ON
694 * cancel_work_sync() will cancel the work if it is queued. If the work's
695 * callback appears to be running, cancel_work_sync() will block until it
696 * has completed.
697 *
698 * It is possible to use this function if the work re-queues itself. It can
699 * cancel the work even if it migrates to another workqueue, however in that
700 * case it only guarantees that work->func() has completed on the last queued
701 * workqueue.
702 *
703 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
704 * pending, otherwise it goes into a busy-wait loop until the timer expires.
705 *
706 * The caller must ensure that workqueue_struct on which this work was last
707 * queued can't be destroyed before this function returns.
708 */
1f1f642e 709int cancel_work_sync(struct work_struct *work)
6e84d644 710{
1f1f642e 711 return __cancel_work_timer(work, NULL);
b89deed3 712}
28e53bdd 713EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 714
6e84d644 715/**
f5a421a4 716 * cancel_delayed_work_sync - reliably kill off a delayed work.
6e84d644
ON
717 * @dwork: the delayed work struct
718 *
1f1f642e
ON
719 * Returns true if @dwork was pending.
720 *
6e84d644
ON
721 * It is possible to use this function if @dwork rearms itself via queue_work()
722 * or queue_delayed_work(). See also the comment for cancel_work_sync().
723 */
1f1f642e 724int cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 725{
1f1f642e 726 return __cancel_work_timer(&dwork->work, &dwork->timer);
6e84d644 727}
f5a421a4 728EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 729
6e84d644 730static struct workqueue_struct *keventd_wq __read_mostly;
1da177e4 731
0fcb78c2
REB
732/**
733 * schedule_work - put work task in global workqueue
734 * @work: job to be done
735 *
5b0f437d
BVA
736 * Returns zero if @work was already on the kernel-global workqueue and
737 * non-zero otherwise.
738 *
739 * This puts a job in the kernel-global workqueue if it was not already
740 * queued and leaves it in the same position on the kernel-global
741 * workqueue otherwise.
0fcb78c2 742 */
7ad5b3a5 743int schedule_work(struct work_struct *work)
1da177e4
LT
744{
745 return queue_work(keventd_wq, work);
746}
ae90dd5d 747EXPORT_SYMBOL(schedule_work);
1da177e4 748
c1a220e7
ZR
749/*
750 * schedule_work_on - put work task on a specific cpu
751 * @cpu: cpu to put the work task on
752 * @work: job to be done
753 *
754 * This puts a job on a specific cpu
755 */
756int schedule_work_on(int cpu, struct work_struct *work)
757{
758 return queue_work_on(cpu, keventd_wq, work);
759}
760EXPORT_SYMBOL(schedule_work_on);
761
0fcb78c2
REB
762/**
763 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
764 * @dwork: job to be done
765 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
766 *
767 * After waiting for a given time this puts a job in the kernel-global
768 * workqueue.
769 */
7ad5b3a5 770int schedule_delayed_work(struct delayed_work *dwork,
82f67cd9 771 unsigned long delay)
1da177e4 772{
52bad64d 773 return queue_delayed_work(keventd_wq, dwork, delay);
1da177e4 774}
ae90dd5d 775EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 776
8c53e463
LT
777/**
778 * flush_delayed_work - block until a dwork_struct's callback has terminated
779 * @dwork: the delayed work which is to be flushed
780 *
781 * Any timeout is cancelled, and any pending work is run immediately.
782 */
783void flush_delayed_work(struct delayed_work *dwork)
784{
785 if (del_timer_sync(&dwork->timer)) {
786 struct cpu_workqueue_struct *cwq;
47dd5be2 787 cwq = wq_per_cpu(get_wq_data(&dwork->work)->wq, get_cpu());
8c53e463
LT
788 __queue_work(cwq, &dwork->work);
789 put_cpu();
790 }
791 flush_work(&dwork->work);
792}
793EXPORT_SYMBOL(flush_delayed_work);
794
0fcb78c2
REB
795/**
796 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
797 * @cpu: cpu to use
52bad64d 798 * @dwork: job to be done
0fcb78c2
REB
799 * @delay: number of jiffies to wait
800 *
801 * After waiting for a given time this puts a job in the kernel-global
802 * workqueue on the specified CPU.
803 */
1da177e4 804int schedule_delayed_work_on(int cpu,
52bad64d 805 struct delayed_work *dwork, unsigned long delay)
1da177e4 806{
52bad64d 807 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
1da177e4 808}
ae90dd5d 809EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 810
b6136773
AM
811/**
812 * schedule_on_each_cpu - call a function on each online CPU from keventd
813 * @func: the function to call
b6136773
AM
814 *
815 * Returns zero on success.
816 * Returns -ve errno on failure.
817 *
b6136773
AM
818 * schedule_on_each_cpu() is very slow.
819 */
65f27f38 820int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
821{
822 int cpu;
65a64464 823 int orig = -1;
b6136773 824 struct work_struct *works;
15316ba8 825
b6136773
AM
826 works = alloc_percpu(struct work_struct);
827 if (!works)
15316ba8 828 return -ENOMEM;
b6136773 829
93981800
TH
830 get_online_cpus();
831
65a64464 832 /*
93981800
TH
833 * When running in keventd don't schedule a work item on
834 * itself. Can just call directly because the work queue is
835 * already bound. This also is faster.
65a64464 836 */
93981800 837 if (current_is_keventd())
65a64464 838 orig = raw_smp_processor_id();
65a64464 839
15316ba8 840 for_each_online_cpu(cpu) {
9bfb1839
IM
841 struct work_struct *work = per_cpu_ptr(works, cpu);
842
843 INIT_WORK(work, func);
65a64464 844 if (cpu != orig)
93981800 845 schedule_work_on(cpu, work);
65a64464 846 }
93981800
TH
847 if (orig >= 0)
848 func(per_cpu_ptr(works, orig));
849
850 for_each_online_cpu(cpu)
851 flush_work(per_cpu_ptr(works, cpu));
852
95402b38 853 put_online_cpus();
b6136773 854 free_percpu(works);
15316ba8
CL
855 return 0;
856}
857
eef6a7d5
AS
858/**
859 * flush_scheduled_work - ensure that any scheduled work has run to completion.
860 *
861 * Forces execution of the kernel-global workqueue and blocks until its
862 * completion.
863 *
864 * Think twice before calling this function! It's very easy to get into
865 * trouble if you don't take great care. Either of the following situations
866 * will lead to deadlock:
867 *
868 * One of the work items currently on the workqueue needs to acquire
869 * a lock held by your code or its caller.
870 *
871 * Your code is running in the context of a work routine.
872 *
873 * They will be detected by lockdep when they occur, but the first might not
874 * occur very often. It depends on what work items are on the workqueue and
875 * what locks they need, which you have no control over.
876 *
877 * In most situations flushing the entire workqueue is overkill; you merely
878 * need to know that a particular work item isn't queued and isn't running.
879 * In such cases you should use cancel_delayed_work_sync() or
880 * cancel_work_sync() instead.
881 */
1da177e4
LT
882void flush_scheduled_work(void)
883{
884 flush_workqueue(keventd_wq);
885}
ae90dd5d 886EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 887
1fa44eca
JB
888/**
889 * execute_in_process_context - reliably execute the routine with user context
890 * @fn: the function to execute
1fa44eca
JB
891 * @ew: guaranteed storage for the execute work structure (must
892 * be available when the work executes)
893 *
894 * Executes the function immediately if process context is available,
895 * otherwise schedules the function for delayed execution.
896 *
897 * Returns: 0 - function was executed
898 * 1 - function was scheduled for execution
899 */
65f27f38 900int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
901{
902 if (!in_interrupt()) {
65f27f38 903 fn(&ew->work);
1fa44eca
JB
904 return 0;
905 }
906
65f27f38 907 INIT_WORK(&ew->work, fn);
1fa44eca
JB
908 schedule_work(&ew->work);
909
910 return 1;
911}
912EXPORT_SYMBOL_GPL(execute_in_process_context);
913
1da177e4
LT
914int keventd_up(void)
915{
916 return keventd_wq != NULL;
917}
918
919int current_is_keventd(void)
920{
921 struct cpu_workqueue_struct *cwq;
d243769d 922 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
1da177e4
LT
923 int ret = 0;
924
925 BUG_ON(!keventd_wq);
926
89ada679 927 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
1da177e4
LT
928 if (current == cwq->thread)
929 ret = 1;
930
931 return ret;
932
933}
934
3af24433
ON
935static struct cpu_workqueue_struct *
936init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
1da177e4 937{
89ada679 938 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1da177e4 939
3af24433
ON
940 cwq->wq = wq;
941 spin_lock_init(&cwq->lock);
942 INIT_LIST_HEAD(&cwq->worklist);
943 init_waitqueue_head(&cwq->more_work);
944
945 return cwq;
1da177e4
LT
946}
947
3af24433
ON
948static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
949{
0d557dc9 950 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
3af24433 951 struct workqueue_struct *wq = cwq->wq;
6cc88bc4 952 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
3af24433
ON
953 struct task_struct *p;
954
955 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
956 /*
957 * Nobody can add the work_struct to this cwq,
958 * if (caller is __create_workqueue)
959 * nobody should see this wq
960 * else // caller is CPU_UP_PREPARE
961 * cpu is not on cpu_online_map
962 * so we can abort safely.
963 */
964 if (IS_ERR(p))
965 return PTR_ERR(p);
0d557dc9
HC
966 if (cwq->wq->rt)
967 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
3af24433 968 cwq->thread = p;
3af24433 969
e1d8aa9f
FW
970 trace_workqueue_creation(cwq->thread, cpu);
971
3af24433
ON
972 return 0;
973}
974
06ba38a9
ON
975static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
976{
977 struct task_struct *p = cwq->thread;
978
979 if (p != NULL) {
980 if (cpu >= 0)
981 kthread_bind(p, cpu);
982 wake_up_process(p);
983 }
984}
985
4e6045f1
JB
986struct workqueue_struct *__create_workqueue_key(const char *name,
987 int singlethread,
988 int freezeable,
0d557dc9 989 int rt,
eb13ba87
JB
990 struct lock_class_key *key,
991 const char *lock_name)
1da177e4 992{
1da177e4 993 struct workqueue_struct *wq;
3af24433
ON
994 struct cpu_workqueue_struct *cwq;
995 int err = 0, cpu;
1da177e4 996
3af24433
ON
997 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
998 if (!wq)
999 return NULL;
1000
1001 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
1002 if (!wq->cpu_wq) {
1003 kfree(wq);
1004 return NULL;
1005 }
1006
1007 wq->name = name;
eb13ba87 1008 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 1009 wq->singlethread = singlethread;
3af24433 1010 wq->freezeable = freezeable;
0d557dc9 1011 wq->rt = rt;
cce1a165 1012 INIT_LIST_HEAD(&wq->list);
3af24433
ON
1013
1014 if (singlethread) {
3af24433
ON
1015 cwq = init_cpu_workqueue(wq, singlethread_cpu);
1016 err = create_workqueue_thread(cwq, singlethread_cpu);
06ba38a9 1017 start_workqueue_thread(cwq, -1);
3af24433 1018 } else {
3da1c84c 1019 cpu_maps_update_begin();
6af8bf3d
ON
1020 /*
1021 * We must place this wq on list even if the code below fails.
1022 * cpu_down(cpu) can remove cpu from cpu_populated_map before
1023 * destroy_workqueue() takes the lock, in that case we leak
1024 * cwq[cpu]->thread.
1025 */
95402b38 1026 spin_lock(&workqueue_lock);
3af24433 1027 list_add(&wq->list, &workqueues);
95402b38 1028 spin_unlock(&workqueue_lock);
6af8bf3d
ON
1029 /*
1030 * We must initialize cwqs for each possible cpu even if we
1031 * are going to call destroy_workqueue() finally. Otherwise
1032 * cpu_up() can hit the uninitialized cwq once we drop the
1033 * lock.
1034 */
3af24433
ON
1035 for_each_possible_cpu(cpu) {
1036 cwq = init_cpu_workqueue(wq, cpu);
1037 if (err || !cpu_online(cpu))
1038 continue;
1039 err = create_workqueue_thread(cwq, cpu);
06ba38a9 1040 start_workqueue_thread(cwq, cpu);
1da177e4 1041 }
3da1c84c 1042 cpu_maps_update_done();
3af24433
ON
1043 }
1044
1045 if (err) {
1046 destroy_workqueue(wq);
1047 wq = NULL;
1048 }
1049 return wq;
1050}
4e6045f1 1051EXPORT_SYMBOL_GPL(__create_workqueue_key);
1da177e4 1052
1e35eaa2 1053static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
3af24433 1054{
14441960 1055 /*
3da1c84c
ON
1056 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1057 * cpu_add_remove_lock protects cwq->thread.
14441960
ON
1058 */
1059 if (cwq->thread == NULL)
1060 return;
3af24433 1061
3295f0ef
IM
1062 lock_map_acquire(&cwq->wq->lockdep_map);
1063 lock_map_release(&cwq->wq->lockdep_map);
4e6045f1 1064
13c22168 1065 flush_cpu_workqueue(cwq);
14441960 1066 /*
3da1c84c 1067 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
13c22168
ON
1068 * a concurrent flush_workqueue() can insert a barrier after us.
1069 * However, in that case run_workqueue() won't return and check
1070 * kthread_should_stop() until it flushes all work_struct's.
14441960
ON
1071 * When ->worklist becomes empty it is safe to exit because no
1072 * more work_structs can be queued on this cwq: flush_workqueue
1073 * checks list_empty(), and a "normal" queue_work() can't use
1074 * a dead CPU.
1075 */
e1d8aa9f 1076 trace_workqueue_destruction(cwq->thread);
14441960
ON
1077 kthread_stop(cwq->thread);
1078 cwq->thread = NULL;
3af24433
ON
1079}
1080
1081/**
1082 * destroy_workqueue - safely terminate a workqueue
1083 * @wq: target workqueue
1084 *
1085 * Safely destroy a workqueue. All work currently pending will be done first.
1086 */
1087void destroy_workqueue(struct workqueue_struct *wq)
1088{
e7577c50 1089 const struct cpumask *cpu_map = wq_cpu_map(wq);
b1f4ec17 1090 int cpu;
3af24433 1091
3da1c84c 1092 cpu_maps_update_begin();
95402b38 1093 spin_lock(&workqueue_lock);
b1f4ec17 1094 list_del(&wq->list);
95402b38 1095 spin_unlock(&workqueue_lock);
3af24433 1096
aa85ea5b 1097 for_each_cpu(cpu, cpu_map)
1e35eaa2 1098 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
3da1c84c 1099 cpu_maps_update_done();
9b41ea72 1100
3af24433
ON
1101 free_percpu(wq->cpu_wq);
1102 kfree(wq);
1103}
1104EXPORT_SYMBOL_GPL(destroy_workqueue);
1105
1106static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
1107 unsigned long action,
1108 void *hcpu)
1109{
1110 unsigned int cpu = (unsigned long)hcpu;
1111 struct cpu_workqueue_struct *cwq;
1112 struct workqueue_struct *wq;
80b5184c 1113 int err = 0;
3af24433 1114
8bb78442
RW
1115 action &= ~CPU_TASKS_FROZEN;
1116
3af24433 1117 switch (action) {
3af24433 1118 case CPU_UP_PREPARE:
e7577c50 1119 cpumask_set_cpu(cpu, cpu_populated_map);
3af24433 1120 }
8448502c 1121undo:
3af24433
ON
1122 list_for_each_entry(wq, &workqueues, list) {
1123 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
1124
1125 switch (action) {
1126 case CPU_UP_PREPARE:
80b5184c
AM
1127 err = create_workqueue_thread(cwq, cpu);
1128 if (!err)
3af24433 1129 break;
95402b38
GS
1130 printk(KERN_ERR "workqueue [%s] for %i failed\n",
1131 wq->name, cpu);
8448502c 1132 action = CPU_UP_CANCELED;
80b5184c 1133 err = -ENOMEM;
8448502c 1134 goto undo;
3af24433
ON
1135
1136 case CPU_ONLINE:
06ba38a9 1137 start_workqueue_thread(cwq, cpu);
3af24433
ON
1138 break;
1139
1140 case CPU_UP_CANCELED:
06ba38a9 1141 start_workqueue_thread(cwq, -1);
3da1c84c 1142 case CPU_POST_DEAD:
1e35eaa2 1143 cleanup_workqueue_thread(cwq);
3af24433
ON
1144 break;
1145 }
1da177e4
LT
1146 }
1147
00dfcaf7
ON
1148 switch (action) {
1149 case CPU_UP_CANCELED:
3da1c84c 1150 case CPU_POST_DEAD:
e7577c50 1151 cpumask_clear_cpu(cpu, cpu_populated_map);
00dfcaf7
ON
1152 }
1153
80b5184c 1154 return notifier_from_errno(err);
1da177e4 1155}
1da177e4 1156
2d3854a3 1157#ifdef CONFIG_SMP
8ccad40d 1158
2d3854a3 1159struct work_for_cpu {
6b44003e 1160 struct completion completion;
2d3854a3
RR
1161 long (*fn)(void *);
1162 void *arg;
1163 long ret;
1164};
1165
6b44003e 1166static int do_work_for_cpu(void *_wfc)
2d3854a3 1167{
6b44003e 1168 struct work_for_cpu *wfc = _wfc;
2d3854a3 1169 wfc->ret = wfc->fn(wfc->arg);
6b44003e
AM
1170 complete(&wfc->completion);
1171 return 0;
2d3854a3
RR
1172}
1173
1174/**
1175 * work_on_cpu - run a function in user context on a particular cpu
1176 * @cpu: the cpu to run on
1177 * @fn: the function to run
1178 * @arg: the function arg
1179 *
31ad9081
RR
1180 * This will return the value @fn returns.
1181 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 1182 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
1183 */
1184long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1185{
6b44003e
AM
1186 struct task_struct *sub_thread;
1187 struct work_for_cpu wfc = {
1188 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1189 .fn = fn,
1190 .arg = arg,
1191 };
1192
1193 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1194 if (IS_ERR(sub_thread))
1195 return PTR_ERR(sub_thread);
1196 kthread_bind(sub_thread, cpu);
1197 wake_up_process(sub_thread);
1198 wait_for_completion(&wfc.completion);
2d3854a3
RR
1199 return wfc.ret;
1200}
1201EXPORT_SYMBOL_GPL(work_on_cpu);
1202#endif /* CONFIG_SMP */
1203
c12920d1 1204void __init init_workqueues(void)
1da177e4 1205{
e7577c50
RR
1206 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1207
1208 cpumask_copy(cpu_populated_map, cpu_online_mask);
1209 singlethread_cpu = cpumask_first(cpu_possible_mask);
1210 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1da177e4
LT
1211 hotcpu_notifier(workqueue_cpu_callback, 0);
1212 keventd_wq = create_workqueue("events");
1213 BUG_ON(!keventd_wq);
1214}