]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/debug/kdb/kdb_main.c
module: fix kdb's illicit use of struct module_use.
[net-next-2.6.git] / kernel / debug / kdb / kdb_main.c
CommitLineData
5d5314d6
JW
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[50];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 "BTARGS=9", /* 9 possible args in bt */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328/*
329 * kdb_set - This function implements the 'set' command. Alter an
330 * existing environment variable or create a new one.
331 */
332int kdb_set(int argc, const char **argv)
333{
334 int i;
335 char *ep;
336 size_t varlen, vallen;
337
338 /*
339 * we can be invoked two ways:
340 * set var=value argv[1]="var", argv[2]="value"
341 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
342 * - if the latter, shift 'em down.
343 */
344 if (argc == 3) {
345 argv[2] = argv[3];
346 argc--;
347 }
348
349 if (argc != 2)
350 return KDB_ARGCOUNT;
351
352 /*
353 * Check for internal variables
354 */
355 if (strcmp(argv[1], "KDBDEBUG") == 0) {
356 unsigned int debugflags;
357 char *cp;
358
359 debugflags = simple_strtoul(argv[2], &cp, 0);
360 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
361 kdb_printf("kdb: illegal debug flags '%s'\n",
362 argv[2]);
363 return 0;
364 }
365 kdb_flags = (kdb_flags &
366 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
367 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
368
369 return 0;
370 }
371
372 /*
373 * Tokenizer squashed the '=' sign. argv[1] is variable
374 * name, argv[2] = value.
375 */
376 varlen = strlen(argv[1]);
377 vallen = strlen(argv[2]);
378 ep = kdballocenv(varlen + vallen + 2);
379 if (ep == (char *)0)
380 return KDB_ENVBUFFULL;
381
382 sprintf(ep, "%s=%s", argv[1], argv[2]);
383
384 ep[varlen+vallen+1] = '\0';
385
386 for (i = 0; i < __nenv; i++) {
387 if (__env[i]
388 && ((strncmp(__env[i], argv[1], varlen) == 0)
389 && ((__env[i][varlen] == '\0')
390 || (__env[i][varlen] == '=')))) {
391 __env[i] = ep;
392 return 0;
393 }
394 }
395
396 /*
397 * Wasn't existing variable. Fit into slot.
398 */
399 for (i = 0; i < __nenv-1; i++) {
400 if (__env[i] == (char *)0) {
401 __env[i] = ep;
402 return 0;
403 }
404 }
405
406 return KDB_ENVFULL;
407}
408
409static int kdb_check_regs(void)
410{
411 if (!kdb_current_regs) {
412 kdb_printf("No current kdb registers."
413 " You may need to select another task\n");
414 return KDB_BADREG;
415 }
416 return 0;
417}
418
419/*
420 * kdbgetaddrarg - This function is responsible for parsing an
421 * address-expression and returning the value of the expression,
422 * symbol name, and offset to the caller.
423 *
424 * The argument may consist of a numeric value (decimal or
425 * hexidecimal), a symbol name, a register name (preceeded by the
426 * percent sign), an environment variable with a numeric value
427 * (preceeded by a dollar sign) or a simple arithmetic expression
428 * consisting of a symbol name, +/-, and a numeric constant value
429 * (offset).
430 * Parameters:
431 * argc - count of arguments in argv
432 * argv - argument vector
433 * *nextarg - index to next unparsed argument in argv[]
434 * regs - Register state at time of KDB entry
435 * Outputs:
436 * *value - receives the value of the address-expression
437 * *offset - receives the offset specified, if any
438 * *name - receives the symbol name, if any
439 * *nextarg - index to next unparsed argument in argv[]
440 * Returns:
441 * zero is returned on success, a kdb diagnostic code is
442 * returned on error.
443 */
444int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
445 unsigned long *value, long *offset,
446 char **name)
447{
448 unsigned long addr;
449 unsigned long off = 0;
450 int positive;
451 int diag;
452 int found = 0;
453 char *symname;
454 char symbol = '\0';
455 char *cp;
456 kdb_symtab_t symtab;
457
458 /*
459 * Process arguments which follow the following syntax:
460 *
461 * symbol | numeric-address [+/- numeric-offset]
462 * %register
463 * $environment-variable
464 */
465
466 if (*nextarg > argc)
467 return KDB_ARGCOUNT;
468
469 symname = (char *)argv[*nextarg];
470
471 /*
472 * If there is no whitespace between the symbol
473 * or address and the '+' or '-' symbols, we
474 * remember the character and replace it with a
475 * null so the symbol/value can be properly parsed
476 */
477 cp = strpbrk(symname, "+-");
478 if (cp != NULL) {
479 symbol = *cp;
480 *cp++ = '\0';
481 }
482
483 if (symname[0] == '$') {
484 diag = kdbgetulenv(&symname[1], &addr);
485 if (diag)
486 return diag;
487 } else if (symname[0] == '%') {
488 diag = kdb_check_regs();
489 if (diag)
490 return diag;
491 /* Implement register values with % at a later time as it is
492 * arch optional.
493 */
494 return KDB_NOTIMP;
495 } else {
496 found = kdbgetsymval(symname, &symtab);
497 if (found) {
498 addr = symtab.sym_start;
499 } else {
500 diag = kdbgetularg(argv[*nextarg], &addr);
501 if (diag)
502 return diag;
503 }
504 }
505
506 if (!found)
507 found = kdbnearsym(addr, &symtab);
508
509 (*nextarg)++;
510
511 if (name)
512 *name = symname;
513 if (value)
514 *value = addr;
515 if (offset && name && *name)
516 *offset = addr - symtab.sym_start;
517
518 if ((*nextarg > argc)
519 && (symbol == '\0'))
520 return 0;
521
522 /*
523 * check for +/- and offset
524 */
525
526 if (symbol == '\0') {
527 if ((argv[*nextarg][0] != '+')
528 && (argv[*nextarg][0] != '-')) {
529 /*
530 * Not our argument. Return.
531 */
532 return 0;
533 } else {
534 positive = (argv[*nextarg][0] == '+');
535 (*nextarg)++;
536 }
537 } else
538 positive = (symbol == '+');
539
540 /*
541 * Now there must be an offset!
542 */
543 if ((*nextarg > argc)
544 && (symbol == '\0')) {
545 return KDB_INVADDRFMT;
546 }
547
548 if (!symbol) {
549 cp = (char *)argv[*nextarg];
550 (*nextarg)++;
551 }
552
553 diag = kdbgetularg(cp, &off);
554 if (diag)
555 return diag;
556
557 if (!positive)
558 off = -off;
559
560 if (offset)
561 *offset += off;
562
563 if (value)
564 *value += off;
565
566 return 0;
567}
568
569static void kdb_cmderror(int diag)
570{
571 int i;
572
573 if (diag >= 0) {
574 kdb_printf("no error detected (diagnostic is %d)\n", diag);
575 return;
576 }
577
578 for (i = 0; i < __nkdb_err; i++) {
579 if (kdbmsgs[i].km_diag == diag) {
580 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
581 return;
582 }
583 }
584
585 kdb_printf("Unknown diag %d\n", -diag);
586}
587
588/*
589 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
590 * command which defines one command as a set of other commands,
591 * terminated by endefcmd. kdb_defcmd processes the initial
592 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
593 * the following commands until 'endefcmd'.
594 * Inputs:
595 * argc argument count
596 * argv argument vector
597 * Returns:
598 * zero for success, a kdb diagnostic if error
599 */
600struct defcmd_set {
601 int count;
602 int usable;
603 char *name;
604 char *usage;
605 char *help;
606 char **command;
607};
608static struct defcmd_set *defcmd_set;
609static int defcmd_set_count;
610static int defcmd_in_progress;
611
612/* Forward references */
613static int kdb_exec_defcmd(int argc, const char **argv);
614
615static int kdb_defcmd2(const char *cmdstr, const char *argv0)
616{
617 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
618 char **save_command = s->command;
619 if (strcmp(argv0, "endefcmd") == 0) {
620 defcmd_in_progress = 0;
621 if (!s->count)
622 s->usable = 0;
623 if (s->usable)
624 kdb_register(s->name, kdb_exec_defcmd,
625 s->usage, s->help, 0);
626 return 0;
627 }
628 if (!s->usable)
629 return KDB_NOTIMP;
630 s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
631 if (!s->command) {
632 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
633 cmdstr);
634 s->usable = 0;
635 return KDB_NOTIMP;
636 }
637 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
638 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
639 kfree(save_command);
640 return 0;
641}
642
643static int kdb_defcmd(int argc, const char **argv)
644{
645 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
646 if (defcmd_in_progress) {
647 kdb_printf("kdb: nested defcmd detected, assuming missing "
648 "endefcmd\n");
649 kdb_defcmd2("endefcmd", "endefcmd");
650 }
651 if (argc == 0) {
652 int i;
653 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
654 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
655 s->usage, s->help);
656 for (i = 0; i < s->count; ++i)
657 kdb_printf("%s", s->command[i]);
658 kdb_printf("endefcmd\n");
659 }
660 return 0;
661 }
662 if (argc != 3)
663 return KDB_ARGCOUNT;
664 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
665 GFP_KDB);
666 if (!defcmd_set) {
667 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
668 argv[1]);
669 defcmd_set = save_defcmd_set;
670 return KDB_NOTIMP;
671 }
672 memcpy(defcmd_set, save_defcmd_set,
673 defcmd_set_count * sizeof(*defcmd_set));
674 kfree(save_defcmd_set);
675 s = defcmd_set + defcmd_set_count;
676 memset(s, 0, sizeof(*s));
677 s->usable = 1;
678 s->name = kdb_strdup(argv[1], GFP_KDB);
679 s->usage = kdb_strdup(argv[2], GFP_KDB);
680 s->help = kdb_strdup(argv[3], GFP_KDB);
681 if (s->usage[0] == '"') {
682 strcpy(s->usage, s->usage+1);
683 s->usage[strlen(s->usage)-1] = '\0';
684 }
685 if (s->help[0] == '"') {
686 strcpy(s->help, s->help+1);
687 s->help[strlen(s->help)-1] = '\0';
688 }
689 ++defcmd_set_count;
690 defcmd_in_progress = 1;
691 return 0;
692}
693
694/*
695 * kdb_exec_defcmd - Execute the set of commands associated with this
696 * defcmd name.
697 * Inputs:
698 * argc argument count
699 * argv argument vector
700 * Returns:
701 * zero for success, a kdb diagnostic if error
702 */
703static int kdb_exec_defcmd(int argc, const char **argv)
704{
705 int i, ret;
706 struct defcmd_set *s;
707 if (argc != 0)
708 return KDB_ARGCOUNT;
709 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
710 if (strcmp(s->name, argv[0]) == 0)
711 break;
712 }
713 if (i == defcmd_set_count) {
714 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
715 argv[0]);
716 return KDB_NOTIMP;
717 }
718 for (i = 0; i < s->count; ++i) {
719 /* Recursive use of kdb_parse, do not use argv after
720 * this point */
721 argv = NULL;
722 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
723 ret = kdb_parse(s->command[i]);
724 if (ret)
725 return ret;
726 }
727 return 0;
728}
729
730/* Command history */
731#define KDB_CMD_HISTORY_COUNT 32
732#define CMD_BUFLEN 200 /* kdb_printf: max printline
733 * size == 256 */
734static unsigned int cmd_head, cmd_tail;
735static unsigned int cmdptr;
736static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
737static char cmd_cur[CMD_BUFLEN];
738
739/*
740 * The "str" argument may point to something like | grep xyz
741 */
742static void parse_grep(const char *str)
743{
744 int len;
745 char *cp = (char *)str, *cp2;
746
747 /* sanity check: we should have been called with the \ first */
748 if (*cp != '|')
749 return;
750 cp++;
751 while (isspace(*cp))
752 cp++;
753 if (strncmp(cp, "grep ", 5)) {
754 kdb_printf("invalid 'pipe', see grephelp\n");
755 return;
756 }
757 cp += 5;
758 while (isspace(*cp))
759 cp++;
760 cp2 = strchr(cp, '\n');
761 if (cp2)
762 *cp2 = '\0'; /* remove the trailing newline */
763 len = strlen(cp);
764 if (len == 0) {
765 kdb_printf("invalid 'pipe', see grephelp\n");
766 return;
767 }
768 /* now cp points to a nonzero length search string */
769 if (*cp == '"') {
770 /* allow it be "x y z" by removing the "'s - there must
771 be two of them */
772 cp++;
773 cp2 = strchr(cp, '"');
774 if (!cp2) {
775 kdb_printf("invalid quoted string, see grephelp\n");
776 return;
777 }
778 *cp2 = '\0'; /* end the string where the 2nd " was */
779 }
780 kdb_grep_leading = 0;
781 if (*cp == '^') {
782 kdb_grep_leading = 1;
783 cp++;
784 }
785 len = strlen(cp);
786 kdb_grep_trailing = 0;
787 if (*(cp+len-1) == '$') {
788 kdb_grep_trailing = 1;
789 *(cp+len-1) = '\0';
790 }
791 len = strlen(cp);
792 if (!len)
793 return;
794 if (len >= GREP_LEN) {
795 kdb_printf("search string too long\n");
796 return;
797 }
798 strcpy(kdb_grep_string, cp);
799 kdb_grepping_flag++;
800 return;
801}
802
803/*
804 * kdb_parse - Parse the command line, search the command table for a
805 * matching command and invoke the command function. This
806 * function may be called recursively, if it is, the second call
807 * will overwrite argv and cbuf. It is the caller's
808 * responsibility to save their argv if they recursively call
809 * kdb_parse().
810 * Parameters:
811 * cmdstr The input command line to be parsed.
812 * regs The registers at the time kdb was entered.
813 * Returns:
814 * Zero for success, a kdb diagnostic if failure.
815 * Remarks:
816 * Limited to 20 tokens.
817 *
818 * Real rudimentary tokenization. Basically only whitespace
819 * is considered a token delimeter (but special consideration
820 * is taken of the '=' sign as used by the 'set' command).
821 *
822 * The algorithm used to tokenize the input string relies on
823 * there being at least one whitespace (or otherwise useless)
824 * character between tokens as the character immediately following
825 * the token is altered in-place to a null-byte to terminate the
826 * token string.
827 */
828
829#define MAXARGC 20
830
831int kdb_parse(const char *cmdstr)
832{
833 static char *argv[MAXARGC];
834 static int argc;
835 static char cbuf[CMD_BUFLEN+2];
836 char *cp;
837 char *cpp, quoted;
838 kdbtab_t *tp;
839 int i, escaped, ignore_errors = 0, check_grep;
840
841 /*
842 * First tokenize the command string.
843 */
844 cp = (char *)cmdstr;
845 kdb_grepping_flag = check_grep = 0;
846
847 if (KDB_FLAG(CMD_INTERRUPT)) {
848 /* Previous command was interrupted, newline must not
849 * repeat the command */
850 KDB_FLAG_CLEAR(CMD_INTERRUPT);
851 KDB_STATE_SET(PAGER);
852 argc = 0; /* no repeat */
853 }
854
855 if (*cp != '\n' && *cp != '\0') {
856 argc = 0;
857 cpp = cbuf;
858 while (*cp) {
859 /* skip whitespace */
860 while (isspace(*cp))
861 cp++;
862 if ((*cp == '\0') || (*cp == '\n') ||
863 (*cp == '#' && !defcmd_in_progress))
864 break;
865 /* special case: check for | grep pattern */
866 if (*cp == '|') {
867 check_grep++;
868 break;
869 }
870 if (cpp >= cbuf + CMD_BUFLEN) {
871 kdb_printf("kdb_parse: command buffer "
872 "overflow, command ignored\n%s\n",
873 cmdstr);
874 return KDB_NOTFOUND;
875 }
876 if (argc >= MAXARGC - 1) {
877 kdb_printf("kdb_parse: too many arguments, "
878 "command ignored\n%s\n", cmdstr);
879 return KDB_NOTFOUND;
880 }
881 argv[argc++] = cpp;
882 escaped = 0;
883 quoted = '\0';
884 /* Copy to next unquoted and unescaped
885 * whitespace or '=' */
886 while (*cp && *cp != '\n' &&
887 (escaped || quoted || !isspace(*cp))) {
888 if (cpp >= cbuf + CMD_BUFLEN)
889 break;
890 if (escaped) {
891 escaped = 0;
892 *cpp++ = *cp++;
893 continue;
894 }
895 if (*cp == '\\') {
896 escaped = 1;
897 ++cp;
898 continue;
899 }
900 if (*cp == quoted)
901 quoted = '\0';
902 else if (*cp == '\'' || *cp == '"')
903 quoted = *cp;
904 *cpp = *cp++;
905 if (*cpp == '=' && !quoted)
906 break;
907 ++cpp;
908 }
909 *cpp++ = '\0'; /* Squash a ws or '=' character */
910 }
911 }
912 if (!argc)
913 return 0;
914 if (check_grep)
915 parse_grep(cp);
916 if (defcmd_in_progress) {
917 int result = kdb_defcmd2(cmdstr, argv[0]);
918 if (!defcmd_in_progress) {
919 argc = 0; /* avoid repeat on endefcmd */
920 *(argv[0]) = '\0';
921 }
922 return result;
923 }
924 if (argv[0][0] == '-' && argv[0][1] &&
925 (argv[0][1] < '0' || argv[0][1] > '9')) {
926 ignore_errors = 1;
927 ++argv[0];
928 }
929
930 for_each_kdbcmd(tp, i) {
931 if (tp->cmd_name) {
932 /*
933 * If this command is allowed to be abbreviated,
934 * check to see if this is it.
935 */
936
937 if (tp->cmd_minlen
938 && (strlen(argv[0]) <= tp->cmd_minlen)) {
939 if (strncmp(argv[0],
940 tp->cmd_name,
941 tp->cmd_minlen) == 0) {
942 break;
943 }
944 }
945
946 if (strcmp(argv[0], tp->cmd_name) == 0)
947 break;
948 }
949 }
950
951 /*
952 * If we don't find a command by this name, see if the first
953 * few characters of this match any of the known commands.
954 * e.g., md1c20 should match md.
955 */
956 if (i == kdb_max_commands) {
957 for_each_kdbcmd(tp, i) {
958 if (tp->cmd_name) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 strlen(tp->cmd_name)) == 0) {
962 break;
963 }
964 }
965 }
966 }
967
968 if (i < kdb_max_commands) {
969 int result;
970 KDB_STATE_SET(CMD);
971 result = (*tp->cmd_func)(argc-1, (const char **)argv);
972 if (result && ignore_errors && result > KDB_CMD_GO)
973 result = 0;
974 KDB_STATE_CLEAR(CMD);
975 switch (tp->cmd_repeat) {
976 case KDB_REPEAT_NONE:
977 argc = 0;
978 if (argv[0])
979 *(argv[0]) = '\0';
980 break;
981 case KDB_REPEAT_NO_ARGS:
982 argc = 1;
983 if (argv[1])
984 *(argv[1]) = '\0';
985 break;
986 case KDB_REPEAT_WITH_ARGS:
987 break;
988 }
989 return result;
990 }
991
992 /*
993 * If the input with which we were presented does not
994 * map to an existing command, attempt to parse it as an
995 * address argument and display the result. Useful for
996 * obtaining the address of a variable, or the nearest symbol
997 * to an address contained in a register.
998 */
999 {
1000 unsigned long value;
1001 char *name = NULL;
1002 long offset;
1003 int nextarg = 0;
1004
1005 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1006 &value, &offset, &name)) {
1007 return KDB_NOTFOUND;
1008 }
1009
1010 kdb_printf("%s = ", argv[0]);
1011 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1012 kdb_printf("\n");
1013 return 0;
1014 }
1015}
1016
1017
1018static int handle_ctrl_cmd(char *cmd)
1019{
1020#define CTRL_P 16
1021#define CTRL_N 14
1022
1023 /* initial situation */
1024 if (cmd_head == cmd_tail)
1025 return 0;
1026 switch (*cmd) {
1027 case CTRL_P:
1028 if (cmdptr != cmd_tail)
1029 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1030 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1031 return 1;
1032 case CTRL_N:
1033 if (cmdptr != cmd_head)
1034 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1035 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1036 return 1;
1037 }
1038 return 0;
1039}
1040
1041/*
1042 * kdb_reboot - This function implements the 'reboot' command. Reboot
1043 * the system immediately, or loop for ever on failure.
1044 */
1045static int kdb_reboot(int argc, const char **argv)
1046{
1047 emergency_restart();
1048 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1049 while (1)
1050 cpu_relax();
1051 /* NOTREACHED */
1052 return 0;
1053}
1054
1055static void kdb_dumpregs(struct pt_regs *regs)
1056{
1057 int old_lvl = console_loglevel;
1058 console_loglevel = 15;
d37d39ae 1059 kdb_trap_printk++;
5d5314d6 1060 show_regs(regs);
d37d39ae 1061 kdb_trap_printk--;
5d5314d6
JW
1062 kdb_printf("\n");
1063 console_loglevel = old_lvl;
1064}
1065
1066void kdb_set_current_task(struct task_struct *p)
1067{
1068 kdb_current_task = p;
1069
1070 if (kdb_task_has_cpu(p)) {
1071 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1072 return;
1073 }
1074 kdb_current_regs = NULL;
1075}
1076
1077/*
1078 * kdb_local - The main code for kdb. This routine is invoked on a
1079 * specific processor, it is not global. The main kdb() routine
1080 * ensures that only one processor at a time is in this routine.
1081 * This code is called with the real reason code on the first
1082 * entry to a kdb session, thereafter it is called with reason
1083 * SWITCH, even if the user goes back to the original cpu.
1084 * Inputs:
1085 * reason The reason KDB was invoked
1086 * error The hardware-defined error code
1087 * regs The exception frame at time of fault/breakpoint.
1088 * db_result Result code from the break or debug point.
1089 * Returns:
1090 * 0 KDB was invoked for an event which it wasn't responsible
1091 * 1 KDB handled the event for which it was invoked.
1092 * KDB_CMD_GO User typed 'go'.
1093 * KDB_CMD_CPU User switched to another cpu.
1094 * KDB_CMD_SS Single step.
1095 * KDB_CMD_SSB Single step until branch.
1096 */
1097static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1098 kdb_dbtrap_t db_result)
1099{
1100 char *cmdbuf;
1101 int diag;
1102 struct task_struct *kdb_current =
1103 kdb_curr_task(raw_smp_processor_id());
1104
1105 KDB_DEBUG_STATE("kdb_local 1", reason);
1106 kdb_go_count = 0;
1107 if (reason == KDB_REASON_DEBUG) {
1108 /* special case below */
1109 } else {
1110 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1111 kdb_current, kdb_current->pid);
1112#if defined(CONFIG_SMP)
1113 kdb_printf("on processor %d ", raw_smp_processor_id());
1114#endif
1115 }
1116
1117 switch (reason) {
1118 case KDB_REASON_DEBUG:
1119 {
1120 /*
1121 * If re-entering kdb after a single step
1122 * command, don't print the message.
1123 */
1124 switch (db_result) {
1125 case KDB_DB_BPT:
1126 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1127 kdb_current, kdb_current->pid);
1128#if defined(CONFIG_SMP)
1129 kdb_printf("on processor %d ", raw_smp_processor_id());
1130#endif
1131 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1132 instruction_pointer(regs));
1133 break;
1134 case KDB_DB_SSB:
1135 /*
1136 * In the midst of ssb command. Just return.
1137 */
1138 KDB_DEBUG_STATE("kdb_local 3", reason);
1139 return KDB_CMD_SSB; /* Continue with SSB command */
1140
1141 break;
1142 case KDB_DB_SS:
1143 break;
1144 case KDB_DB_SSBPT:
1145 KDB_DEBUG_STATE("kdb_local 4", reason);
1146 return 1; /* kdba_db_trap did the work */
1147 default:
1148 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1149 db_result);
1150 break;
1151 }
1152
1153 }
1154 break;
1155 case KDB_REASON_ENTER:
1156 if (KDB_STATE(KEYBOARD))
1157 kdb_printf("due to Keyboard Entry\n");
1158 else
1159 kdb_printf("due to KDB_ENTER()\n");
1160 break;
1161 case KDB_REASON_KEYBOARD:
1162 KDB_STATE_SET(KEYBOARD);
1163 kdb_printf("due to Keyboard Entry\n");
1164 break;
1165 case KDB_REASON_ENTER_SLAVE:
1166 /* drop through, slaves only get released via cpu switch */
1167 case KDB_REASON_SWITCH:
1168 kdb_printf("due to cpu switch\n");
1169 break;
1170 case KDB_REASON_OOPS:
1171 kdb_printf("Oops: %s\n", kdb_diemsg);
1172 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1173 instruction_pointer(regs));
1174 kdb_dumpregs(regs);
1175 break;
1176 case KDB_REASON_NMI:
1177 kdb_printf("due to NonMaskable Interrupt @ "
1178 kdb_machreg_fmt "\n",
1179 instruction_pointer(regs));
1180 kdb_dumpregs(regs);
1181 break;
1182 case KDB_REASON_SSTEP:
1183 case KDB_REASON_BREAK:
1184 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1185 reason == KDB_REASON_BREAK ?
1186 "Breakpoint" : "SS trap", instruction_pointer(regs));
1187 /*
1188 * Determine if this breakpoint is one that we
1189 * are interested in.
1190 */
1191 if (db_result != KDB_DB_BPT) {
1192 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1193 db_result);
1194 KDB_DEBUG_STATE("kdb_local 6", reason);
1195 return 0; /* Not for us, dismiss it */
1196 }
1197 break;
1198 case KDB_REASON_RECURSE:
1199 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1200 instruction_pointer(regs));
1201 break;
1202 default:
1203 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1204 KDB_DEBUG_STATE("kdb_local 8", reason);
1205 return 0; /* Not for us, dismiss it */
1206 }
1207
1208 while (1) {
1209 /*
1210 * Initialize pager context.
1211 */
1212 kdb_nextline = 1;
1213 KDB_STATE_CLEAR(SUPPRESS);
1214
1215 cmdbuf = cmd_cur;
1216 *cmdbuf = '\0';
1217 *(cmd_hist[cmd_head]) = '\0';
1218
1219 if (KDB_FLAG(ONLY_DO_DUMP)) {
1220 /* kdb is off but a catastrophic error requires a dump.
1221 * Take the dump and reboot.
1222 * Turn on logging so the kdb output appears in the log
1223 * buffer in the dump.
1224 */
1225 const char *setargs[] = { "set", "LOGGING", "1" };
1226 kdb_set(2, setargs);
1227 kdb_reboot(0, NULL);
1228 /*NOTREACHED*/
1229 }
1230
1231do_full_getstr:
1232#if defined(CONFIG_SMP)
1233 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1234 raw_smp_processor_id());
1235#else
1236 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1237#endif
1238 if (defcmd_in_progress)
1239 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1240
1241 /*
1242 * Fetch command from keyboard
1243 */
1244 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1245 if (*cmdbuf != '\n') {
1246 if (*cmdbuf < 32) {
1247 if (cmdptr == cmd_head) {
1248 strncpy(cmd_hist[cmd_head], cmd_cur,
1249 CMD_BUFLEN);
1250 *(cmd_hist[cmd_head] +
1251 strlen(cmd_hist[cmd_head])-1) = '\0';
1252 }
1253 if (!handle_ctrl_cmd(cmdbuf))
1254 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1255 cmdbuf = cmd_cur;
1256 goto do_full_getstr;
1257 } else {
1258 strncpy(cmd_hist[cmd_head], cmd_cur,
1259 CMD_BUFLEN);
1260 }
1261
1262 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1263 if (cmd_head == cmd_tail)
1264 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1265 }
1266
1267 cmdptr = cmd_head;
1268 diag = kdb_parse(cmdbuf);
1269 if (diag == KDB_NOTFOUND) {
1270 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1271 diag = 0;
1272 }
1273 if (diag == KDB_CMD_GO
1274 || diag == KDB_CMD_CPU
1275 || diag == KDB_CMD_SS
1276 || diag == KDB_CMD_SSB
1277 || diag == KDB_CMD_KGDB)
1278 break;
1279
1280 if (diag)
1281 kdb_cmderror(diag);
1282 }
1283 KDB_DEBUG_STATE("kdb_local 9", diag);
1284 return diag;
1285}
1286
1287
1288/*
1289 * kdb_print_state - Print the state data for the current processor
1290 * for debugging.
1291 * Inputs:
1292 * text Identifies the debug point
1293 * value Any integer value to be printed, e.g. reason code.
1294 */
1295void kdb_print_state(const char *text, int value)
1296{
1297 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1298 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1299 kdb_state);
1300}
1301
1302/*
1303 * kdb_main_loop - After initial setup and assignment of the
1304 * controlling cpu, all cpus are in this loop. One cpu is in
1305 * control and will issue the kdb prompt, the others will spin
1306 * until 'go' or cpu switch.
1307 *
1308 * To get a consistent view of the kernel stacks for all
1309 * processes, this routine is invoked from the main kdb code via
1310 * an architecture specific routine. kdba_main_loop is
1311 * responsible for making the kernel stacks consistent for all
1312 * processes, there should be no difference between a blocked
1313 * process and a running process as far as kdb is concerned.
1314 * Inputs:
1315 * reason The reason KDB was invoked
1316 * error The hardware-defined error code
1317 * reason2 kdb's current reason code.
1318 * Initially error but can change
1319 * acording to kdb state.
1320 * db_result Result code from break or debug point.
1321 * regs The exception frame at time of fault/breakpoint.
1322 * should always be valid.
1323 * Returns:
1324 * 0 KDB was invoked for an event which it wasn't responsible
1325 * 1 KDB handled the event for which it was invoked.
1326 */
1327int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1328 kdb_dbtrap_t db_result, struct pt_regs *regs)
1329{
1330 int result = 1;
1331 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1332 while (1) {
1333 /*
1334 * All processors except the one that is in control
1335 * will spin here.
1336 */
1337 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1338 while (KDB_STATE(HOLD_CPU)) {
1339 /* state KDB is turned off by kdb_cpu to see if the
1340 * other cpus are still live, each cpu in this loop
1341 * turns it back on.
1342 */
1343 if (!KDB_STATE(KDB))
1344 KDB_STATE_SET(KDB);
1345 }
1346
1347 KDB_STATE_CLEAR(SUPPRESS);
1348 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1349 if (KDB_STATE(LEAVING))
1350 break; /* Another cpu said 'go' */
1351 /* Still using kdb, this processor is in control */
1352 result = kdb_local(reason2, error, regs, db_result);
1353 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1354
1355 if (result == KDB_CMD_CPU)
1356 break;
1357
1358 if (result == KDB_CMD_SS) {
1359 KDB_STATE_SET(DOING_SS);
1360 break;
1361 }
1362
1363 if (result == KDB_CMD_SSB) {
1364 KDB_STATE_SET(DOING_SS);
1365 KDB_STATE_SET(DOING_SSB);
1366 break;
1367 }
1368
1369 if (result == KDB_CMD_KGDB) {
1370 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1371 kdb_printf("Entering please attach debugger "
1372 "or use $D#44+ or $3#33\n");
1373 break;
1374 }
1375 if (result && result != 1 && result != KDB_CMD_GO)
1376 kdb_printf("\nUnexpected kdb_local return code %d\n",
1377 result);
1378 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1379 break;
1380 }
1381 if (KDB_STATE(DOING_SS))
1382 KDB_STATE_CLEAR(SSBPT);
1383
1384 return result;
1385}
1386
1387/*
1388 * kdb_mdr - This function implements the guts of the 'mdr', memory
1389 * read command.
1390 * mdr <addr arg>,<byte count>
1391 * Inputs:
1392 * addr Start address
1393 * count Number of bytes
1394 * Returns:
1395 * Always 0. Any errors are detected and printed by kdb_getarea.
1396 */
1397static int kdb_mdr(unsigned long addr, unsigned int count)
1398{
1399 unsigned char c;
1400 while (count--) {
1401 if (kdb_getarea(c, addr))
1402 return 0;
1403 kdb_printf("%02x", c);
1404 addr++;
1405 }
1406 kdb_printf("\n");
1407 return 0;
1408}
1409
1410/*
1411 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1412 * 'md8' 'mdr' and 'mds' commands.
1413 *
1414 * md|mds [<addr arg> [<line count> [<radix>]]]
1415 * mdWcN [<addr arg> [<line count> [<radix>]]]
1416 * where W = is the width (1, 2, 4 or 8) and N is the count.
1417 * for eg., md1c20 reads 20 bytes, 1 at a time.
1418 * mdr <addr arg>,<byte count>
1419 */
1420static void kdb_md_line(const char *fmtstr, unsigned long addr,
1421 int symbolic, int nosect, int bytesperword,
1422 int num, int repeat, int phys)
1423{
1424 /* print just one line of data */
1425 kdb_symtab_t symtab;
1426 char cbuf[32];
1427 char *c = cbuf;
1428 int i;
1429 unsigned long word;
1430
1431 memset(cbuf, '\0', sizeof(cbuf));
1432 if (phys)
1433 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1434 else
1435 kdb_printf(kdb_machreg_fmt0 " ", addr);
1436
1437 for (i = 0; i < num && repeat--; i++) {
1438 if (phys) {
1439 if (kdb_getphysword(&word, addr, bytesperword))
1440 break;
1441 } else if (kdb_getword(&word, addr, bytesperword))
1442 break;
1443 kdb_printf(fmtstr, word);
1444 if (symbolic)
1445 kdbnearsym(word, &symtab);
1446 else
1447 memset(&symtab, 0, sizeof(symtab));
1448 if (symtab.sym_name) {
1449 kdb_symbol_print(word, &symtab, 0);
1450 if (!nosect) {
1451 kdb_printf("\n");
1452 kdb_printf(" %s %s "
1453 kdb_machreg_fmt " "
1454 kdb_machreg_fmt " "
1455 kdb_machreg_fmt, symtab.mod_name,
1456 symtab.sec_name, symtab.sec_start,
1457 symtab.sym_start, symtab.sym_end);
1458 }
1459 addr += bytesperword;
1460 } else {
1461 union {
1462 u64 word;
1463 unsigned char c[8];
1464 } wc;
1465 unsigned char *cp;
1466#ifdef __BIG_ENDIAN
1467 cp = wc.c + 8 - bytesperword;
1468#else
1469 cp = wc.c;
1470#endif
1471 wc.word = word;
1472#define printable_char(c) \
1473 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1474 switch (bytesperword) {
1475 case 8:
1476 *c++ = printable_char(*cp++);
1477 *c++ = printable_char(*cp++);
1478 *c++ = printable_char(*cp++);
1479 *c++ = printable_char(*cp++);
1480 addr += 4;
1481 case 4:
1482 *c++ = printable_char(*cp++);
1483 *c++ = printable_char(*cp++);
1484 addr += 2;
1485 case 2:
1486 *c++ = printable_char(*cp++);
1487 addr++;
1488 case 1:
1489 *c++ = printable_char(*cp++);
1490 addr++;
1491 break;
1492 }
1493#undef printable_char
1494 }
1495 }
1496 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1497 " ", cbuf);
1498}
1499
1500static int kdb_md(int argc, const char **argv)
1501{
1502 static unsigned long last_addr;
1503 static int last_radix, last_bytesperword, last_repeat;
1504 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1505 int nosect = 0;
1506 char fmtchar, fmtstr[64];
1507 unsigned long addr;
1508 unsigned long word;
1509 long offset = 0;
1510 int symbolic = 0;
1511 int valid = 0;
1512 int phys = 0;
1513
1514 kdbgetintenv("MDCOUNT", &mdcount);
1515 kdbgetintenv("RADIX", &radix);
1516 kdbgetintenv("BYTESPERWORD", &bytesperword);
1517
1518 /* Assume 'md <addr>' and start with environment values */
1519 repeat = mdcount * 16 / bytesperword;
1520
1521 if (strcmp(argv[0], "mdr") == 0) {
1522 if (argc != 2)
1523 return KDB_ARGCOUNT;
1524 valid = 1;
1525 } else if (isdigit(argv[0][2])) {
1526 bytesperword = (int)(argv[0][2] - '0');
1527 if (bytesperword == 0) {
1528 bytesperword = last_bytesperword;
1529 if (bytesperword == 0)
1530 bytesperword = 4;
1531 }
1532 last_bytesperword = bytesperword;
1533 repeat = mdcount * 16 / bytesperword;
1534 if (!argv[0][3])
1535 valid = 1;
1536 else if (argv[0][3] == 'c' && argv[0][4]) {
1537 char *p;
1538 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1539 mdcount = ((repeat * bytesperword) + 15) / 16;
1540 valid = !*p;
1541 }
1542 last_repeat = repeat;
1543 } else if (strcmp(argv[0], "md") == 0)
1544 valid = 1;
1545 else if (strcmp(argv[0], "mds") == 0)
1546 valid = 1;
1547 else if (strcmp(argv[0], "mdp") == 0) {
1548 phys = valid = 1;
1549 }
1550 if (!valid)
1551 return KDB_NOTFOUND;
1552
1553 if (argc == 0) {
1554 if (last_addr == 0)
1555 return KDB_ARGCOUNT;
1556 addr = last_addr;
1557 radix = last_radix;
1558 bytesperword = last_bytesperword;
1559 repeat = last_repeat;
1560 mdcount = ((repeat * bytesperword) + 15) / 16;
1561 }
1562
1563 if (argc) {
1564 unsigned long val;
1565 int diag, nextarg = 1;
1566 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1567 &offset, NULL);
1568 if (diag)
1569 return diag;
1570 if (argc > nextarg+2)
1571 return KDB_ARGCOUNT;
1572
1573 if (argc >= nextarg) {
1574 diag = kdbgetularg(argv[nextarg], &val);
1575 if (!diag) {
1576 mdcount = (int) val;
1577 repeat = mdcount * 16 / bytesperword;
1578 }
1579 }
1580 if (argc >= nextarg+1) {
1581 diag = kdbgetularg(argv[nextarg+1], &val);
1582 if (!diag)
1583 radix = (int) val;
1584 }
1585 }
1586
1587 if (strcmp(argv[0], "mdr") == 0)
1588 return kdb_mdr(addr, mdcount);
1589
1590 switch (radix) {
1591 case 10:
1592 fmtchar = 'd';
1593 break;
1594 case 16:
1595 fmtchar = 'x';
1596 break;
1597 case 8:
1598 fmtchar = 'o';
1599 break;
1600 default:
1601 return KDB_BADRADIX;
1602 }
1603
1604 last_radix = radix;
1605
1606 if (bytesperword > KDB_WORD_SIZE)
1607 return KDB_BADWIDTH;
1608
1609 switch (bytesperword) {
1610 case 8:
1611 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1612 break;
1613 case 4:
1614 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1615 break;
1616 case 2:
1617 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1618 break;
1619 case 1:
1620 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1621 break;
1622 default:
1623 return KDB_BADWIDTH;
1624 }
1625
1626 last_repeat = repeat;
1627 last_bytesperword = bytesperword;
1628
1629 if (strcmp(argv[0], "mds") == 0) {
1630 symbolic = 1;
1631 /* Do not save these changes as last_*, they are temporary mds
1632 * overrides.
1633 */
1634 bytesperword = KDB_WORD_SIZE;
1635 repeat = mdcount;
1636 kdbgetintenv("NOSECT", &nosect);
1637 }
1638
1639 /* Round address down modulo BYTESPERWORD */
1640
1641 addr &= ~(bytesperword-1);
1642
1643 while (repeat > 0) {
1644 unsigned long a;
1645 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1646
1647 if (KDB_FLAG(CMD_INTERRUPT))
1648 return 0;
1649 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1650 if (phys) {
1651 if (kdb_getphysword(&word, a, bytesperword)
1652 || word)
1653 break;
1654 } else if (kdb_getword(&word, a, bytesperword) || word)
1655 break;
1656 }
1657 n = min(num, repeat);
1658 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1659 num, repeat, phys);
1660 addr += bytesperword * n;
1661 repeat -= n;
1662 z = (z + num - 1) / num;
1663 if (z > 2) {
1664 int s = num * (z-2);
1665 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1666 " zero suppressed\n",
1667 addr, addr + bytesperword * s - 1);
1668 addr += bytesperword * s;
1669 repeat -= s;
1670 }
1671 }
1672 last_addr = addr;
1673
1674 return 0;
1675}
1676
1677/*
1678 * kdb_mm - This function implements the 'mm' command.
1679 * mm address-expression new-value
1680 * Remarks:
1681 * mm works on machine words, mmW works on bytes.
1682 */
1683static int kdb_mm(int argc, const char **argv)
1684{
1685 int diag;
1686 unsigned long addr;
1687 long offset = 0;
1688 unsigned long contents;
1689 int nextarg;
1690 int width;
1691
1692 if (argv[0][2] && !isdigit(argv[0][2]))
1693 return KDB_NOTFOUND;
1694
1695 if (argc < 2)
1696 return KDB_ARGCOUNT;
1697
1698 nextarg = 1;
1699 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1700 if (diag)
1701 return diag;
1702
1703 if (nextarg > argc)
1704 return KDB_ARGCOUNT;
1705 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1706 if (diag)
1707 return diag;
1708
1709 if (nextarg != argc + 1)
1710 return KDB_ARGCOUNT;
1711
1712 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1713 diag = kdb_putword(addr, contents, width);
1714 if (diag)
1715 return diag;
1716
1717 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1718
1719 return 0;
1720}
1721
1722/*
1723 * kdb_go - This function implements the 'go' command.
1724 * go [address-expression]
1725 */
1726static int kdb_go(int argc, const char **argv)
1727{
1728 unsigned long addr;
1729 int diag;
1730 int nextarg;
1731 long offset;
1732
1733 if (argc == 1) {
1734 if (raw_smp_processor_id() != kdb_initial_cpu) {
1735 kdb_printf("go <address> must be issued from the "
1736 "initial cpu, do cpu %d first\n",
1737 kdb_initial_cpu);
1738 return KDB_ARGCOUNT;
1739 }
1740 nextarg = 1;
1741 diag = kdbgetaddrarg(argc, argv, &nextarg,
1742 &addr, &offset, NULL);
1743 if (diag)
1744 return diag;
1745 } else if (argc) {
1746 return KDB_ARGCOUNT;
1747 }
1748
1749 diag = KDB_CMD_GO;
1750 if (KDB_FLAG(CATASTROPHIC)) {
1751 kdb_printf("Catastrophic error detected\n");
1752 kdb_printf("kdb_continue_catastrophic=%d, ",
1753 kdb_continue_catastrophic);
1754 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1755 kdb_printf("type go a second time if you really want "
1756 "to continue\n");
1757 return 0;
1758 }
1759 if (kdb_continue_catastrophic == 2) {
1760 kdb_printf("forcing reboot\n");
1761 kdb_reboot(0, NULL);
1762 }
1763 kdb_printf("attempting to continue\n");
1764 }
1765 return diag;
1766}
1767
1768/*
1769 * kdb_rd - This function implements the 'rd' command.
1770 */
1771static int kdb_rd(int argc, const char **argv)
1772{
1773 int diag = kdb_check_regs();
1774 if (diag)
1775 return diag;
1776
1777 kdb_dumpregs(kdb_current_regs);
1778 return 0;
1779}
1780
1781/*
1782 * kdb_rm - This function implements the 'rm' (register modify) command.
1783 * rm register-name new-contents
1784 * Remarks:
1785 * Currently doesn't allow modification of control or
1786 * debug registers.
1787 */
1788static int kdb_rm(int argc, const char **argv)
1789{
1790 int diag;
1791 int ind = 0;
1792 unsigned long contents;
1793
1794 if (argc != 2)
1795 return KDB_ARGCOUNT;
1796 /*
1797 * Allow presence or absence of leading '%' symbol.
1798 */
1799 if (argv[1][0] == '%')
1800 ind = 1;
1801
1802 diag = kdbgetularg(argv[2], &contents);
1803 if (diag)
1804 return diag;
1805
1806 diag = kdb_check_regs();
1807 if (diag)
1808 return diag;
1809 kdb_printf("ERROR: Register set currently not implemented\n");
1810 return 0;
1811}
1812
1813#if defined(CONFIG_MAGIC_SYSRQ)
1814/*
1815 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1816 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1817 * sr <magic-sysrq-code>
1818 */
1819static int kdb_sr(int argc, const char **argv)
1820{
1821 if (argc != 1)
1822 return KDB_ARGCOUNT;
1823 sysrq_toggle_support(1);
d37d39ae 1824 kdb_trap_printk++;
5d5314d6 1825 handle_sysrq(*argv[1], NULL);
d37d39ae 1826 kdb_trap_printk--;
5d5314d6
JW
1827
1828 return 0;
1829}
1830#endif /* CONFIG_MAGIC_SYSRQ */
1831
1832/*
1833 * kdb_ef - This function implements the 'regs' (display exception
1834 * frame) command. This command takes an address and expects to
1835 * find an exception frame at that address, formats and prints
1836 * it.
1837 * regs address-expression
1838 * Remarks:
1839 * Not done yet.
1840 */
1841static int kdb_ef(int argc, const char **argv)
1842{
1843 int diag;
1844 unsigned long addr;
1845 long offset;
1846 int nextarg;
1847
1848 if (argc != 1)
1849 return KDB_ARGCOUNT;
1850
1851 nextarg = 1;
1852 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1853 if (diag)
1854 return diag;
1855 show_regs((struct pt_regs *)addr);
1856 return 0;
1857}
1858
1859#if defined(CONFIG_MODULES)
5d5314d6
JW
1860/*
1861 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1862 * currently loaded kernel modules.
1863 * Mostly taken from userland lsmod.
1864 */
1865static int kdb_lsmod(int argc, const char **argv)
1866{
1867 struct module *mod;
1868
1869 if (argc != 0)
1870 return KDB_ARGCOUNT;
1871
1872 kdb_printf("Module Size modstruct Used by\n");
1873 list_for_each_entry(mod, kdb_modules, list) {
1874
1875 kdb_printf("%-20s%8u 0x%p ", mod->name,
1876 mod->core_size, (void *)mod);
1877#ifdef CONFIG_MODULE_UNLOAD
1878 kdb_printf("%4d ", module_refcount(mod));
1879#endif
1880 if (mod->state == MODULE_STATE_GOING)
1881 kdb_printf(" (Unloading)");
1882 else if (mod->state == MODULE_STATE_COMING)
1883 kdb_printf(" (Loading)");
1884 else
1885 kdb_printf(" (Live)");
1886
1887#ifdef CONFIG_MODULE_UNLOAD
1888 {
1889 struct module_use *use;
1890 kdb_printf(" [ ");
c8e21ced
RR
1891 list_for_each_entry(use, &mod->source_list,
1892 source_list)
1893 kdb_printf("%s ", use->target->name);
5d5314d6
JW
1894 kdb_printf("]\n");
1895 }
1896#endif
1897 }
1898
1899 return 0;
1900}
1901
1902#endif /* CONFIG_MODULES */
1903
1904/*
1905 * kdb_env - This function implements the 'env' command. Display the
1906 * current environment variables.
1907 */
1908
1909static int kdb_env(int argc, const char **argv)
1910{
1911 int i;
1912
1913 for (i = 0; i < __nenv; i++) {
1914 if (__env[i])
1915 kdb_printf("%s\n", __env[i]);
1916 }
1917
1918 if (KDB_DEBUG(MASK))
1919 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
1920
1921 return 0;
1922}
1923
1924#ifdef CONFIG_PRINTK
1925/*
1926 * kdb_dmesg - This function implements the 'dmesg' command to display
1927 * the contents of the syslog buffer.
1928 * dmesg [lines] [adjust]
1929 */
1930static int kdb_dmesg(int argc, const char **argv)
1931{
1932 char *syslog_data[4], *start, *end, c = '\0', *p;
1933 int diag, logging, logsize, lines = 0, adjust = 0, n;
1934
1935 if (argc > 2)
1936 return KDB_ARGCOUNT;
1937 if (argc) {
1938 char *cp;
1939 lines = simple_strtol(argv[1], &cp, 0);
1940 if (*cp)
1941 lines = 0;
1942 if (argc > 1) {
1943 adjust = simple_strtoul(argv[2], &cp, 0);
1944 if (*cp || adjust < 0)
1945 adjust = 0;
1946 }
1947 }
1948
1949 /* disable LOGGING if set */
1950 diag = kdbgetintenv("LOGGING", &logging);
1951 if (!diag && logging) {
1952 const char *setargs[] = { "set", "LOGGING", "0" };
1953 kdb_set(2, setargs);
1954 }
1955
1956 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
1957 * logical start, end+1. */
1958 kdb_syslog_data(syslog_data);
1959 if (syslog_data[2] == syslog_data[3])
1960 return 0;
1961 logsize = syslog_data[1] - syslog_data[0];
1962 start = syslog_data[2];
1963 end = syslog_data[3];
1964#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
1965 for (n = 0, p = start; p < end; ++p) {
1966 c = *KDB_WRAP(p);
1967 if (c == '\n')
1968 ++n;
1969 }
1970 if (c != '\n')
1971 ++n;
1972 if (lines < 0) {
1973 if (adjust >= n)
1974 kdb_printf("buffer only contains %d lines, nothing "
1975 "printed\n", n);
1976 else if (adjust - lines >= n)
1977 kdb_printf("buffer only contains %d lines, last %d "
1978 "lines printed\n", n, n - adjust);
1979 if (adjust) {
1980 for (; start < end && adjust; ++start) {
1981 if (*KDB_WRAP(start) == '\n')
1982 --adjust;
1983 }
1984 if (start < end)
1985 ++start;
1986 }
1987 for (p = start; p < end && lines; ++p) {
1988 if (*KDB_WRAP(p) == '\n')
1989 ++lines;
1990 }
1991 end = p;
1992 } else if (lines > 0) {
1993 int skip = n - (adjust + lines);
1994 if (adjust >= n) {
1995 kdb_printf("buffer only contains %d lines, "
1996 "nothing printed\n", n);
1997 skip = n;
1998 } else if (skip < 0) {
1999 lines += skip;
2000 skip = 0;
2001 kdb_printf("buffer only contains %d lines, first "
2002 "%d lines printed\n", n, lines);
2003 }
2004 for (; start < end && skip; ++start) {
2005 if (*KDB_WRAP(start) == '\n')
2006 --skip;
2007 }
2008 for (p = start; p < end && lines; ++p) {
2009 if (*KDB_WRAP(p) == '\n')
2010 --lines;
2011 }
2012 end = p;
2013 }
2014 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2015 c = '\n';
2016 while (start != end) {
2017 char buf[201];
2018 p = buf;
2019 if (KDB_FLAG(CMD_INTERRUPT))
2020 return 0;
2021 while (start < end && (c = *KDB_WRAP(start)) &&
2022 (p - buf) < sizeof(buf)-1) {
2023 ++start;
2024 *p++ = c;
2025 if (c == '\n')
2026 break;
2027 }
2028 *p = '\0';
2029 kdb_printf("%s", buf);
2030 }
2031 if (c != '\n')
2032 kdb_printf("\n");
2033
2034 return 0;
2035}
2036#endif /* CONFIG_PRINTK */
2037/*
2038 * kdb_cpu - This function implements the 'cpu' command.
2039 * cpu [<cpunum>]
2040 * Returns:
2041 * KDB_CMD_CPU for success, a kdb diagnostic if error
2042 */
2043static void kdb_cpu_status(void)
2044{
2045 int i, start_cpu, first_print = 1;
2046 char state, prev_state = '?';
2047
2048 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2049 kdb_printf("Available cpus: ");
2050 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2051 if (!cpu_online(i)) {
2052 state = 'F'; /* cpu is offline */
2053 } else {
2054 state = ' '; /* cpu is responding to kdb */
2055 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2056 state = 'I'; /* idle task */
2057 }
2058 if (state != prev_state) {
2059 if (prev_state != '?') {
2060 if (!first_print)
2061 kdb_printf(", ");
2062 first_print = 0;
2063 kdb_printf("%d", start_cpu);
2064 if (start_cpu < i-1)
2065 kdb_printf("-%d", i-1);
2066 if (prev_state != ' ')
2067 kdb_printf("(%c)", prev_state);
2068 }
2069 prev_state = state;
2070 start_cpu = i;
2071 }
2072 }
2073 /* print the trailing cpus, ignoring them if they are all offline */
2074 if (prev_state != 'F') {
2075 if (!first_print)
2076 kdb_printf(", ");
2077 kdb_printf("%d", start_cpu);
2078 if (start_cpu < i-1)
2079 kdb_printf("-%d", i-1);
2080 if (prev_state != ' ')
2081 kdb_printf("(%c)", prev_state);
2082 }
2083 kdb_printf("\n");
2084}
2085
2086static int kdb_cpu(int argc, const char **argv)
2087{
2088 unsigned long cpunum;
2089 int diag;
2090
2091 if (argc == 0) {
2092 kdb_cpu_status();
2093 return 0;
2094 }
2095
2096 if (argc != 1)
2097 return KDB_ARGCOUNT;
2098
2099 diag = kdbgetularg(argv[1], &cpunum);
2100 if (diag)
2101 return diag;
2102
2103 /*
2104 * Validate cpunum
2105 */
2106 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2107 return KDB_BADCPUNUM;
2108
2109 dbg_switch_cpu = cpunum;
2110
2111 /*
2112 * Switch to other cpu
2113 */
2114 return KDB_CMD_CPU;
2115}
2116
2117/* The user may not realize that ps/bta with no parameters does not print idle
2118 * or sleeping system daemon processes, so tell them how many were suppressed.
2119 */
2120void kdb_ps_suppressed(void)
2121{
2122 int idle = 0, daemon = 0;
2123 unsigned long mask_I = kdb_task_state_string("I"),
2124 mask_M = kdb_task_state_string("M");
2125 unsigned long cpu;
2126 const struct task_struct *p, *g;
2127 for_each_online_cpu(cpu) {
2128 p = kdb_curr_task(cpu);
2129 if (kdb_task_state(p, mask_I))
2130 ++idle;
2131 }
2132 kdb_do_each_thread(g, p) {
2133 if (kdb_task_state(p, mask_M))
2134 ++daemon;
2135 } kdb_while_each_thread(g, p);
2136 if (idle || daemon) {
2137 if (idle)
2138 kdb_printf("%d idle process%s (state I)%s\n",
2139 idle, idle == 1 ? "" : "es",
2140 daemon ? " and " : "");
2141 if (daemon)
2142 kdb_printf("%d sleeping system daemon (state M) "
2143 "process%s", daemon,
2144 daemon == 1 ? "" : "es");
2145 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2146 }
2147}
2148
2149/*
2150 * kdb_ps - This function implements the 'ps' command which shows a
2151 * list of the active processes.
2152 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2153 */
2154void kdb_ps1(const struct task_struct *p)
2155{
2156 int cpu;
2157 unsigned long tmp;
2158
2159 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2160 return;
2161
2162 cpu = kdb_process_cpu(p);
2163 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2164 (void *)p, p->pid, p->parent->pid,
2165 kdb_task_has_cpu(p), kdb_process_cpu(p),
2166 kdb_task_state_char(p),
2167 (void *)(&p->thread),
2168 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2169 p->comm);
2170 if (kdb_task_has_cpu(p)) {
2171 if (!KDB_TSK(cpu)) {
2172 kdb_printf(" Error: no saved data for this cpu\n");
2173 } else {
2174 if (KDB_TSK(cpu) != p)
2175 kdb_printf(" Error: does not match running "
2176 "process table (0x%p)\n", KDB_TSK(cpu));
2177 }
2178 }
2179}
2180
2181static int kdb_ps(int argc, const char **argv)
2182{
2183 struct task_struct *g, *p;
2184 unsigned long mask, cpu;
2185
2186 if (argc == 0)
2187 kdb_ps_suppressed();
2188 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2189 (int)(2*sizeof(void *))+2, "Task Addr",
2190 (int)(2*sizeof(void *))+2, "Thread");
2191 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2192 /* Run the active tasks first */
2193 for_each_online_cpu(cpu) {
2194 if (KDB_FLAG(CMD_INTERRUPT))
2195 return 0;
2196 p = kdb_curr_task(cpu);
2197 if (kdb_task_state(p, mask))
2198 kdb_ps1(p);
2199 }
2200 kdb_printf("\n");
2201 /* Now the real tasks */
2202 kdb_do_each_thread(g, p) {
2203 if (KDB_FLAG(CMD_INTERRUPT))
2204 return 0;
2205 if (kdb_task_state(p, mask))
2206 kdb_ps1(p);
2207 } kdb_while_each_thread(g, p);
2208
2209 return 0;
2210}
2211
2212/*
2213 * kdb_pid - This function implements the 'pid' command which switches
2214 * the currently active process.
2215 * pid [<pid> | R]
2216 */
2217static int kdb_pid(int argc, const char **argv)
2218{
2219 struct task_struct *p;
2220 unsigned long val;
2221 int diag;
2222
2223 if (argc > 1)
2224 return KDB_ARGCOUNT;
2225
2226 if (argc) {
2227 if (strcmp(argv[1], "R") == 0) {
2228 p = KDB_TSK(kdb_initial_cpu);
2229 } else {
2230 diag = kdbgetularg(argv[1], &val);
2231 if (diag)
2232 return KDB_BADINT;
2233
2234 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2235 if (!p) {
2236 kdb_printf("No task with pid=%d\n", (pid_t)val);
2237 return 0;
2238 }
2239 }
2240 kdb_set_current_task(p);
2241 }
2242 kdb_printf("KDB current process is %s(pid=%d)\n",
2243 kdb_current_task->comm,
2244 kdb_current_task->pid);
2245
2246 return 0;
2247}
2248
2249/*
2250 * kdb_ll - This function implements the 'll' command which follows a
2251 * linked list and executes an arbitrary command for each
2252 * element.
2253 */
2254static int kdb_ll(int argc, const char **argv)
2255{
2256 int diag;
2257 unsigned long addr;
2258 long offset = 0;
2259 unsigned long va;
2260 unsigned long linkoffset;
2261 int nextarg;
2262 const char *command;
2263
2264 if (argc != 3)
2265 return KDB_ARGCOUNT;
2266
2267 nextarg = 1;
2268 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2269 if (diag)
2270 return diag;
2271
2272 diag = kdbgetularg(argv[2], &linkoffset);
2273 if (diag)
2274 return diag;
2275
2276 /*
2277 * Using the starting address as
2278 * the first element in the list, and assuming that
2279 * the list ends with a null pointer.
2280 */
2281
2282 va = addr;
2283 command = kdb_strdup(argv[3], GFP_KDB);
2284 if (!command) {
2285 kdb_printf("%s: cannot duplicate command\n", __func__);
2286 return 0;
2287 }
2288 /* Recursive use of kdb_parse, do not use argv after this point */
2289 argv = NULL;
2290
2291 while (va) {
2292 char buf[80];
2293
2294 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2295 diag = kdb_parse(buf);
2296 if (diag)
2297 return diag;
2298
2299 addr = va + linkoffset;
2300 if (kdb_getword(&va, addr, sizeof(va)))
2301 return 0;
2302 }
2303 kfree(command);
2304
2305 return 0;
2306}
2307
2308static int kdb_kgdb(int argc, const char **argv)
2309{
2310 return KDB_CMD_KGDB;
2311}
2312
2313/*
2314 * kdb_help - This function implements the 'help' and '?' commands.
2315 */
2316static int kdb_help(int argc, const char **argv)
2317{
2318 kdbtab_t *kt;
2319 int i;
2320
2321 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2322 kdb_printf("-----------------------------"
2323 "-----------------------------\n");
2324 for_each_kdbcmd(kt, i) {
2325 if (kt->cmd_name)
2326 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2327 kt->cmd_usage, kt->cmd_help);
2328 if (KDB_FLAG(CMD_INTERRUPT))
2329 return 0;
2330 }
2331 return 0;
2332}
2333
2334/*
2335 * kdb_kill - This function implements the 'kill' commands.
2336 */
2337static int kdb_kill(int argc, const char **argv)
2338{
2339 long sig, pid;
2340 char *endp;
2341 struct task_struct *p;
2342 struct siginfo info;
2343
2344 if (argc != 2)
2345 return KDB_ARGCOUNT;
2346
2347 sig = simple_strtol(argv[1], &endp, 0);
2348 if (*endp)
2349 return KDB_BADINT;
2350 if (sig >= 0) {
2351 kdb_printf("Invalid signal parameter.<-signal>\n");
2352 return 0;
2353 }
2354 sig = -sig;
2355
2356 pid = simple_strtol(argv[2], &endp, 0);
2357 if (*endp)
2358 return KDB_BADINT;
2359 if (pid <= 0) {
2360 kdb_printf("Process ID must be large than 0.\n");
2361 return 0;
2362 }
2363
2364 /* Find the process. */
2365 p = find_task_by_pid_ns(pid, &init_pid_ns);
2366 if (!p) {
2367 kdb_printf("The specified process isn't found.\n");
2368 return 0;
2369 }
2370 p = p->group_leader;
2371 info.si_signo = sig;
2372 info.si_errno = 0;
2373 info.si_code = SI_USER;
2374 info.si_pid = pid; /* same capabilities as process being signalled */
2375 info.si_uid = 0; /* kdb has root authority */
2376 kdb_send_sig_info(p, &info);
2377 return 0;
2378}
2379
2380struct kdb_tm {
2381 int tm_sec; /* seconds */
2382 int tm_min; /* minutes */
2383 int tm_hour; /* hours */
2384 int tm_mday; /* day of the month */
2385 int tm_mon; /* month */
2386 int tm_year; /* year */
2387};
2388
2389static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2390{
2391 /* This will work from 1970-2099, 2100 is not a leap year */
2392 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2393 31, 30, 31, 30, 31 };
2394 memset(tm, 0, sizeof(*tm));
2395 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2396 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2397 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2398 tm->tm_min = tm->tm_sec / 60 % 60;
2399 tm->tm_hour = tm->tm_sec / 60 / 60;
2400 tm->tm_sec = tm->tm_sec % 60;
2401 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2402 tm->tm_mday %= (4*365+1);
2403 mon_day[1] = 29;
2404 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2405 tm->tm_mday -= mon_day[tm->tm_mon];
2406 if (++tm->tm_mon == 12) {
2407 tm->tm_mon = 0;
2408 ++tm->tm_year;
2409 mon_day[1] = 28;
2410 }
2411 }
2412 ++tm->tm_mday;
2413}
2414
2415/*
2416 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2417 * I cannot call that code directly from kdb, it has an unconditional
2418 * cli()/sti() and calls routines that take locks which can stop the debugger.
2419 */
2420static void kdb_sysinfo(struct sysinfo *val)
2421{
2422 struct timespec uptime;
2423 do_posix_clock_monotonic_gettime(&uptime);
2424 memset(val, 0, sizeof(*val));
2425 val->uptime = uptime.tv_sec;
2426 val->loads[0] = avenrun[0];
2427 val->loads[1] = avenrun[1];
2428 val->loads[2] = avenrun[2];
2429 val->procs = nr_threads-1;
2430 si_meminfo(val);
2431
2432 return;
2433}
2434
2435/*
2436 * kdb_summary - This function implements the 'summary' command.
2437 */
2438static int kdb_summary(int argc, const char **argv)
2439{
2440 struct kdb_tm tm;
2441 struct sysinfo val;
2442
2443 if (argc)
2444 return KDB_ARGCOUNT;
2445
2446 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2447 kdb_printf("release %s\n", init_uts_ns.name.release);
2448 kdb_printf("version %s\n", init_uts_ns.name.version);
2449 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2450 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2451 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2452 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2453
2454 kdb_gmtime(&xtime, &tm);
2455 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2456 "tz_minuteswest %d\n",
2457 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2458 tm.tm_hour, tm.tm_min, tm.tm_sec,
2459 sys_tz.tz_minuteswest);
2460
2461 kdb_sysinfo(&val);
2462 kdb_printf("uptime ");
2463 if (val.uptime > (24*60*60)) {
2464 int days = val.uptime / (24*60*60);
2465 val.uptime %= (24*60*60);
2466 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2467 }
2468 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2469
2470 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2471
2472#define LOAD_INT(x) ((x) >> FSHIFT)
2473#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2474 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2475 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2476 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2477 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2478#undef LOAD_INT
2479#undef LOAD_FRAC
2480 /* Display in kilobytes */
2481#define K(x) ((x) << (PAGE_SHIFT - 10))
2482 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2483 "Buffers: %8lu kB\n",
2484 val.totalram, val.freeram, val.bufferram);
2485 return 0;
2486}
2487
2488/*
2489 * kdb_per_cpu - This function implements the 'per_cpu' command.
2490 */
2491static int kdb_per_cpu(int argc, const char **argv)
2492{
2493 char buf[256], fmtstr[64];
2494 kdb_symtab_t symtab;
2495 cpumask_t suppress = CPU_MASK_NONE;
2496 int cpu, diag;
2497 unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL;
2498
2499 if (argc < 1 || argc > 3)
2500 return KDB_ARGCOUNT;
2501
2502 snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]);
2503 if (!kdbgetsymval(buf, &symtab)) {
2504 kdb_printf("%s is not a per_cpu variable\n", argv[1]);
2505 return KDB_BADADDR;
2506 }
2507 if (argc >= 2) {
2508 diag = kdbgetularg(argv[2], &bytesperword);
2509 if (diag)
2510 return diag;
2511 }
2512 if (!bytesperword)
2513 bytesperword = KDB_WORD_SIZE;
2514 else if (bytesperword > KDB_WORD_SIZE)
2515 return KDB_BADWIDTH;
2516 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2517 if (argc >= 3) {
2518 diag = kdbgetularg(argv[3], &whichcpu);
2519 if (diag)
2520 return diag;
2521 if (!cpu_online(whichcpu)) {
2522 kdb_printf("cpu %ld is not online\n", whichcpu);
2523 return KDB_BADCPUNUM;
2524 }
2525 }
2526
2527 /* Most architectures use __per_cpu_offset[cpu], some use
2528 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2529 */
2530#ifdef __per_cpu_offset
2531#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2532#else
2533#ifdef CONFIG_SMP
2534#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2535#else
2536#define KDB_PCU(cpu) 0
2537#endif
2538#endif
2539
2540 for_each_online_cpu(cpu) {
2541 if (whichcpu != ~0UL && whichcpu != cpu)
2542 continue;
2543 addr = symtab.sym_start + KDB_PCU(cpu);
2544 diag = kdb_getword(&val, addr, bytesperword);
2545 if (diag) {
2546 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2547 "read, diag=%d\n", cpu, addr, diag);
2548 continue;
2549 }
2550#ifdef CONFIG_SMP
2551 if (!val) {
2552 cpu_set(cpu, suppress);
2553 continue;
2554 }
2555#endif /* CONFIG_SMP */
2556 kdb_printf("%5d ", cpu);
2557 kdb_md_line(fmtstr, addr,
2558 bytesperword == KDB_WORD_SIZE,
2559 1, bytesperword, 1, 1, 0);
2560 }
2561 if (cpus_weight(suppress) == 0)
2562 return 0;
2563 kdb_printf("Zero suppressed cpu(s):");
2564 for (cpu = first_cpu(suppress); cpu < num_possible_cpus();
2565 cpu = next_cpu(cpu, suppress)) {
2566 kdb_printf(" %d", cpu);
2567 if (cpu == num_possible_cpus() - 1 ||
2568 next_cpu(cpu, suppress) != cpu + 1)
2569 continue;
2570 while (cpu < num_possible_cpus() &&
2571 next_cpu(cpu, suppress) == cpu + 1)
2572 ++cpu;
2573 kdb_printf("-%d", cpu);
2574 }
2575 kdb_printf("\n");
2576
2577#undef KDB_PCU
2578
2579 return 0;
2580}
2581
2582/*
2583 * display help for the use of cmd | grep pattern
2584 */
2585static int kdb_grep_help(int argc, const char **argv)
2586{
2587 kdb_printf("Usage of cmd args | grep pattern:\n");
2588 kdb_printf(" Any command's output may be filtered through an ");
2589 kdb_printf("emulated 'pipe'.\n");
2590 kdb_printf(" 'grep' is just a key word.\n");
2591 kdb_printf(" The pattern may include a very limited set of "
2592 "metacharacters:\n");
2593 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2594 kdb_printf(" And if there are spaces in the pattern, you may "
2595 "quote it:\n");
2596 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2597 " or \"^pat tern$\"\n");
2598 return 0;
2599}
2600
2601/*
2602 * kdb_register_repeat - This function is used to register a kernel
2603 * debugger command.
2604 * Inputs:
2605 * cmd Command name
2606 * func Function to execute the command
2607 * usage A simple usage string showing arguments
2608 * help A simple help string describing command
2609 * repeat Does the command auto repeat on enter?
2610 * Returns:
2611 * zero for success, one if a duplicate command.
2612 */
2613#define kdb_command_extend 50 /* arbitrary */
2614int kdb_register_repeat(char *cmd,
2615 kdb_func_t func,
2616 char *usage,
2617 char *help,
2618 short minlen,
2619 kdb_repeat_t repeat)
2620{
2621 int i;
2622 kdbtab_t *kp;
2623
2624 /*
2625 * Brute force method to determine duplicates
2626 */
2627 for_each_kdbcmd(kp, i) {
2628 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2629 kdb_printf("Duplicate kdb command registered: "
2630 "%s, func %p help %s\n", cmd, func, help);
2631 return 1;
2632 }
2633 }
2634
2635 /*
2636 * Insert command into first available location in table
2637 */
2638 for_each_kdbcmd(kp, i) {
2639 if (kp->cmd_name == NULL)
2640 break;
2641 }
2642
2643 if (i >= kdb_max_commands) {
2644 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2645 kdb_command_extend) * sizeof(*new), GFP_KDB);
2646 if (!new) {
2647 kdb_printf("Could not allocate new kdb_command "
2648 "table\n");
2649 return 1;
2650 }
2651 if (kdb_commands) {
2652 memcpy(new, kdb_commands,
2653 kdb_max_commands * sizeof(*new));
2654 kfree(kdb_commands);
2655 }
2656 memset(new + kdb_max_commands, 0,
2657 kdb_command_extend * sizeof(*new));
2658 kdb_commands = new;
2659 kp = kdb_commands + kdb_max_commands;
2660 kdb_max_commands += kdb_command_extend;
2661 }
2662
2663 kp->cmd_name = cmd;
2664 kp->cmd_func = func;
2665 kp->cmd_usage = usage;
2666 kp->cmd_help = help;
2667 kp->cmd_flags = 0;
2668 kp->cmd_minlen = minlen;
2669 kp->cmd_repeat = repeat;
2670
2671 return 0;
2672}
2673
2674/*
2675 * kdb_register - Compatibility register function for commands that do
2676 * not need to specify a repeat state. Equivalent to
2677 * kdb_register_repeat with KDB_REPEAT_NONE.
2678 * Inputs:
2679 * cmd Command name
2680 * func Function to execute the command
2681 * usage A simple usage string showing arguments
2682 * help A simple help string describing command
2683 * Returns:
2684 * zero for success, one if a duplicate command.
2685 */
2686int kdb_register(char *cmd,
2687 kdb_func_t func,
2688 char *usage,
2689 char *help,
2690 short minlen)
2691{
2692 return kdb_register_repeat(cmd, func, usage, help, minlen,
2693 KDB_REPEAT_NONE);
2694}
2695
2696/*
2697 * kdb_unregister - This function is used to unregister a kernel
2698 * debugger command. It is generally called when a module which
2699 * implements kdb commands is unloaded.
2700 * Inputs:
2701 * cmd Command name
2702 * Returns:
2703 * zero for success, one command not registered.
2704 */
2705int kdb_unregister(char *cmd)
2706{
2707 int i;
2708 kdbtab_t *kp;
2709
2710 /*
2711 * find the command.
2712 */
2713 for (i = 0, kp = kdb_commands; i < kdb_max_commands; i++, kp++) {
2714 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2715 kp->cmd_name = NULL;
2716 return 0;
2717 }
2718 }
2719
2720 /* Couldn't find it. */
2721 return 1;
2722}
2723
2724/* Initialize the kdb command table. */
2725static void __init kdb_inittab(void)
2726{
2727 int i;
2728 kdbtab_t *kp;
2729
2730 for_each_kdbcmd(kp, i)
2731 kp->cmd_name = NULL;
2732
2733 kdb_register_repeat("md", kdb_md, "<vaddr>",
2734 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2735 KDB_REPEAT_NO_ARGS);
2736 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2737 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2738 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2739 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2740 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2741 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2742 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2743 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2744 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2745 "Continue Execution", 1, KDB_REPEAT_NONE);
2746 kdb_register_repeat("rd", kdb_rd, "",
2747 "Display Registers", 0, KDB_REPEAT_NONE);
2748 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2749 "Modify Registers", 0, KDB_REPEAT_NONE);
2750 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2751 "Display exception frame", 0, KDB_REPEAT_NONE);
2752 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2753 "Stack traceback", 1, KDB_REPEAT_NONE);
2754 kdb_register_repeat("btp", kdb_bt, "<pid>",
2755 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2756 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2757 "Display stack all processes", 0, KDB_REPEAT_NONE);
2758 kdb_register_repeat("btc", kdb_bt, "",
2759 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2760 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2761 "Backtrace process given its struct task address", 0,
2762 KDB_REPEAT_NONE);
2763 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2764 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2765 kdb_register_repeat("env", kdb_env, "",
2766 "Show environment variables", 0, KDB_REPEAT_NONE);
2767 kdb_register_repeat("set", kdb_set, "",
2768 "Set environment variables", 0, KDB_REPEAT_NONE);
2769 kdb_register_repeat("help", kdb_help, "",
2770 "Display Help Message", 1, KDB_REPEAT_NONE);
2771 kdb_register_repeat("?", kdb_help, "",
2772 "Display Help Message", 0, KDB_REPEAT_NONE);
2773 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2774 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2775 kdb_register_repeat("kgdb", kdb_kgdb, "",
2776 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2777 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2778 "Display active task list", 0, KDB_REPEAT_NONE);
2779 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2780 "Switch to another task", 0, KDB_REPEAT_NONE);
2781 kdb_register_repeat("reboot", kdb_reboot, "",
2782 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2783#if defined(CONFIG_MODULES)
2784 kdb_register_repeat("lsmod", kdb_lsmod, "",
2785 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2786#endif
2787#if defined(CONFIG_MAGIC_SYSRQ)
2788 kdb_register_repeat("sr", kdb_sr, "<key>",
2789 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2790#endif
2791#if defined(CONFIG_PRINTK)
2792 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2793 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2794#endif
2795 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2796 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2797 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2798 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2799 kdb_register_repeat("summary", kdb_summary, "",
2800 "Summarize the system", 4, KDB_REPEAT_NONE);
2801 kdb_register_repeat("per_cpu", kdb_per_cpu, "",
2802 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2803 kdb_register_repeat("grephelp", kdb_grep_help, "",
2804 "Display help on | grep", 0, KDB_REPEAT_NONE);
2805}
2806
2807/* Execute any commands defined in kdb_cmds. */
2808static void __init kdb_cmd_init(void)
2809{
2810 int i, diag;
2811 for (i = 0; kdb_cmds[i]; ++i) {
2812 diag = kdb_parse(kdb_cmds[i]);
2813 if (diag)
2814 kdb_printf("kdb command %s failed, kdb diag %d\n",
2815 kdb_cmds[i], diag);
2816 }
2817 if (defcmd_in_progress) {
2818 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2819 kdb_parse("endefcmd");
2820 }
2821}
2822
2823/* Intialize kdb_printf, breakpoint tables and kdb state */
2824void __init kdb_init(int lvl)
2825{
2826 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2827 int i;
2828
2829 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2830 return;
2831 for (i = kdb_init_lvl; i < lvl; i++) {
2832 switch (i) {
2833 case KDB_NOT_INITIALIZED:
2834 kdb_inittab(); /* Initialize Command Table */
2835 kdb_initbptab(); /* Initialize Breakpoints */
2836 break;
2837 case KDB_INIT_EARLY:
2838 kdb_cmd_init(); /* Build kdb_cmds tables */
2839 break;
2840 }
2841 }
2842 kdb_init_lvl = lvl;
2843}