]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/slub_def.h
dma-mapping: rename ARCH_KMALLOC_MINALIGN to ARCH_DMA_MINALIGN
[net-next-2.6.git] / include / linux / slub_def.h
CommitLineData
81819f0f
CL
1#ifndef _LINUX_SLUB_DEF_H
2#define _LINUX_SLUB_DEF_H
3
4/*
5 * SLUB : A Slab allocator without object queues.
6 *
cde53535 7 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
8 */
9#include <linux/types.h>
10#include <linux/gfp.h>
11#include <linux/workqueue.h>
12#include <linux/kobject.h>
e4f7c0b4 13#include <linux/kmemleak.h>
81819f0f 14
039ca4e7
LZ
15#include <trace/events/kmem.h>
16
8ff12cfc
CL
17enum stat_item {
18 ALLOC_FASTPATH, /* Allocation from cpu slab */
19 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
20 FREE_FASTPATH, /* Free to cpu slub */
21 FREE_SLOWPATH, /* Freeing not to cpu slab */
22 FREE_FROZEN, /* Freeing to frozen slab */
23 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
24 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
25 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
26 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
27 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
28 FREE_SLAB, /* Slab freed to the page allocator */
29 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
30 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
31 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
32 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
33 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
34 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
65c3376a 35 ORDER_FALLBACK, /* Number of times fallback was necessary */
8ff12cfc
CL
36 NR_SLUB_STAT_ITEMS };
37
dfb4f096 38struct kmem_cache_cpu {
da89b79e
CL
39 void **freelist; /* Pointer to first free per cpu object */
40 struct page *page; /* The slab from which we are allocating */
41 int node; /* The node of the page (or -1 for debug) */
8ff12cfc
CL
42#ifdef CONFIG_SLUB_STATS
43 unsigned stat[NR_SLUB_STAT_ITEMS];
44#endif
4c93c355 45};
dfb4f096 46
81819f0f
CL
47struct kmem_cache_node {
48 spinlock_t list_lock; /* Protect partial list and nr_partial */
49 unsigned long nr_partial;
81819f0f 50 struct list_head partial;
0c710013 51#ifdef CONFIG_SLUB_DEBUG
0f389ec6 52 atomic_long_t nr_slabs;
205ab99d 53 atomic_long_t total_objects;
643b1138 54 struct list_head full;
0c710013 55#endif
81819f0f
CL
56};
57
834f3d11
CL
58/*
59 * Word size structure that can be atomically updated or read and that
60 * contains both the order and the number of objects that a slab of the
61 * given order would contain.
62 */
63struct kmem_cache_order_objects {
64 unsigned long x;
65};
66
81819f0f
CL
67/*
68 * Slab cache management.
69 */
70struct kmem_cache {
9dfc6e68 71 struct kmem_cache_cpu *cpu_slab;
81819f0f
CL
72 /* Used for retriving partial slabs etc */
73 unsigned long flags;
74 int size; /* The size of an object including meta data */
75 int objsize; /* The size of an object without meta data */
76 int offset; /* Free pointer offset. */
834f3d11 77 struct kmem_cache_order_objects oo;
81819f0f 78
81819f0f 79 /* Allocation and freeing of slabs */
205ab99d 80 struct kmem_cache_order_objects max;
65c3376a 81 struct kmem_cache_order_objects min;
b7a49f0d 82 gfp_t allocflags; /* gfp flags to use on each alloc */
81819f0f 83 int refcount; /* Refcount for slab cache destroy */
51cc5068 84 void (*ctor)(void *);
81819f0f
CL
85 int inuse; /* Offset to metadata */
86 int align; /* Alignment */
3b89d7d8 87 unsigned long min_partial;
81819f0f
CL
88 const char *name; /* Name (only for display!) */
89 struct list_head list; /* List of slab caches */
0c710013 90#ifdef CONFIG_SLUB_DEBUG
81819f0f 91 struct kobject kobj; /* For sysfs */
0c710013 92#endif
81819f0f
CL
93
94#ifdef CONFIG_NUMA
9824601e
CL
95 /*
96 * Defragmentation by allocating from a remote node.
97 */
98 int remote_node_defrag_ratio;
81819f0f 99 struct kmem_cache_node *node[MAX_NUMNODES];
73367bd8
AD
100#else
101 /* Avoid an extra cache line for UP */
102 struct kmem_cache_node local_node;
81819f0f 103#endif
81819f0f
CL
104};
105
106/*
107 * Kmalloc subsystem.
108 */
a6eb9fe1
FT
109#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
110#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
4b356be0
CL
111#else
112#define KMALLOC_MIN_SIZE 8
113#endif
114
115#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
81819f0f 116
a6eb9fe1
FT
117#ifdef ARCH_DMA_MINALIGN
118#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
119#else
4581ced3
DW
120#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
121#endif
122
123#ifndef ARCH_SLAB_MINALIGN
124#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
125#endif
126
ffadd4d0
CL
127/*
128 * Maximum kmalloc object size handled by SLUB. Larger object allocations
129 * are passed through to the page allocator. The page allocator "fastpath"
130 * is relatively slow so we need this value sufficiently high so that
131 * performance critical objects are allocated through the SLUB fastpath.
132 *
133 * This should be dropped to PAGE_SIZE / 2 once the page allocator
134 * "fastpath" becomes competitive with the slab allocator fastpaths.
135 */
51735a7c 136#define SLUB_MAX_SIZE (2 * PAGE_SIZE)
ffadd4d0 137
51735a7c 138#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
ffadd4d0 139
756dee75
CL
140#ifdef CONFIG_ZONE_DMA
141#define SLUB_DMA __GFP_DMA
142/* Reserve extra caches for potential DMA use */
0f1f6942 143#define KMALLOC_CACHES (2 * SLUB_PAGE_SHIFT)
756dee75
CL
144#else
145/* Disable DMA functionality */
146#define SLUB_DMA (__force gfp_t)0
147#define KMALLOC_CACHES SLUB_PAGE_SHIFT
148#endif
149
81819f0f
CL
150/*
151 * We keep the general caches in an array of slab caches that are used for
152 * 2^x bytes of allocations.
153 */
756dee75 154extern struct kmem_cache kmalloc_caches[KMALLOC_CACHES];
81819f0f
CL
155
156/*
157 * Sorry that the following has to be that ugly but some versions of GCC
158 * have trouble with constant propagation and loops.
159 */
aa137f9d 160static __always_inline int kmalloc_index(size_t size)
81819f0f 161{
272c1d21
CL
162 if (!size)
163 return 0;
614410d5 164
4b356be0
CL
165 if (size <= KMALLOC_MIN_SIZE)
166 return KMALLOC_SHIFT_LOW;
167
acdfcd04 168 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
81819f0f 169 return 1;
acdfcd04 170 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
81819f0f
CL
171 return 2;
172 if (size <= 8) return 3;
173 if (size <= 16) return 4;
174 if (size <= 32) return 5;
175 if (size <= 64) return 6;
176 if (size <= 128) return 7;
177 if (size <= 256) return 8;
178 if (size <= 512) return 9;
179 if (size <= 1024) return 10;
180 if (size <= 2 * 1024) return 11;
6446faa2 181 if (size <= 4 * 1024) return 12;
aadb4bc4
CL
182/*
183 * The following is only needed to support architectures with a larger page
184 * size than 4k.
185 */
81819f0f
CL
186 if (size <= 8 * 1024) return 13;
187 if (size <= 16 * 1024) return 14;
188 if (size <= 32 * 1024) return 15;
189 if (size <= 64 * 1024) return 16;
190 if (size <= 128 * 1024) return 17;
191 if (size <= 256 * 1024) return 18;
aadb4bc4 192 if (size <= 512 * 1024) return 19;
81819f0f 193 if (size <= 1024 * 1024) return 20;
81819f0f 194 if (size <= 2 * 1024 * 1024) return 21;
81819f0f
CL
195 return -1;
196
197/*
198 * What we really wanted to do and cannot do because of compiler issues is:
199 * int i;
200 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
201 * if (size <= (1 << i))
202 * return i;
203 */
204}
205
206/*
207 * Find the slab cache for a given combination of allocation flags and size.
208 *
209 * This ought to end up with a global pointer to the right cache
210 * in kmalloc_caches.
211 */
aa137f9d 212static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
81819f0f
CL
213{
214 int index = kmalloc_index(size);
215
216 if (index == 0)
217 return NULL;
218
81819f0f
CL
219 return &kmalloc_caches[index];
220}
221
6193a2ff
PM
222void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
223void *__kmalloc(size_t size, gfp_t flags);
224
0f24f128 225#ifdef CONFIG_TRACING
5b882be4
EGM
226extern void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags);
227#else
228static __always_inline void *
229kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
230{
231 return kmem_cache_alloc(s, gfpflags);
232}
233#endif
234
eada35ef
PE
235static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
236{
5b882be4
EGM
237 unsigned int order = get_order(size);
238 void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
239
e4f7c0b4 240 kmemleak_alloc(ret, size, 1, flags);
ca2b84cb 241 trace_kmalloc(_THIS_IP_, ret, size, PAGE_SIZE << order, flags);
5b882be4
EGM
242
243 return ret;
eada35ef
PE
244}
245
aa137f9d 246static __always_inline void *kmalloc(size_t size, gfp_t flags)
81819f0f 247{
5b882be4
EGM
248 void *ret;
249
aadb4bc4 250 if (__builtin_constant_p(size)) {
ffadd4d0 251 if (size > SLUB_MAX_SIZE)
eada35ef 252 return kmalloc_large(size, flags);
81819f0f 253
aadb4bc4
CL
254 if (!(flags & SLUB_DMA)) {
255 struct kmem_cache *s = kmalloc_slab(size);
256
257 if (!s)
258 return ZERO_SIZE_PTR;
81819f0f 259
5b882be4
EGM
260 ret = kmem_cache_alloc_notrace(s, flags);
261
ca2b84cb 262 trace_kmalloc(_THIS_IP_, ret, size, s->size, flags);
5b882be4
EGM
263
264 return ret;
aadb4bc4
CL
265 }
266 }
267 return __kmalloc(size, flags);
81819f0f
CL
268}
269
81819f0f 270#ifdef CONFIG_NUMA
6193a2ff
PM
271void *__kmalloc_node(size_t size, gfp_t flags, int node);
272void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
81819f0f 273
0f24f128 274#ifdef CONFIG_TRACING
5b882be4
EGM
275extern void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
276 gfp_t gfpflags,
277 int node);
278#else
279static __always_inline void *
280kmem_cache_alloc_node_notrace(struct kmem_cache *s,
281 gfp_t gfpflags,
282 int node)
283{
284 return kmem_cache_alloc_node(s, gfpflags, node);
285}
286#endif
287
aa137f9d 288static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
81819f0f 289{
5b882be4
EGM
290 void *ret;
291
aadb4bc4 292 if (__builtin_constant_p(size) &&
ffadd4d0 293 size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
aadb4bc4 294 struct kmem_cache *s = kmalloc_slab(size);
81819f0f
CL
295
296 if (!s)
272c1d21 297 return ZERO_SIZE_PTR;
81819f0f 298
5b882be4
EGM
299 ret = kmem_cache_alloc_node_notrace(s, flags, node);
300
ca2b84cb
EGM
301 trace_kmalloc_node(_THIS_IP_, ret,
302 size, s->size, flags, node);
5b882be4
EGM
303
304 return ret;
aadb4bc4
CL
305 }
306 return __kmalloc_node(size, flags, node);
81819f0f
CL
307}
308#endif
309
310#endif /* _LINUX_SLUB_DEF_H */