]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/xfs/linux-2.6/xfs_aops.c
xfs: remove nr_to_write writeback windup.
[net-next-2.6.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
34a52c6c
CH
48/*
49 * Types of I/O for bmap clustering and I/O completion tracking.
50 */
51enum {
52 IO_READ, /* mapping for a read */
53 IO_DELAY, /* mapping covers delalloc region */
54 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
55 IO_NEW /* just allocated */
56};
25e41b3d
CH
57
58/*
59 * Prime number of hash buckets since address is used as the key.
60 */
61#define NVSYNC 37
62#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
63static wait_queue_head_t xfs_ioend_wq[NVSYNC];
64
65void __init
66xfs_ioend_init(void)
67{
68 int i;
69
70 for (i = 0; i < NVSYNC; i++)
71 init_waitqueue_head(&xfs_ioend_wq[i]);
72}
73
74void
75xfs_ioend_wait(
76 xfs_inode_t *ip)
77{
78 wait_queue_head_t *wq = to_ioend_wq(ip);
79
80 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
81}
82
83STATIC void
84xfs_ioend_wake(
85 xfs_inode_t *ip)
86{
87 if (atomic_dec_and_test(&ip->i_iocount))
88 wake_up(to_ioend_wq(ip));
89}
90
0b1b213f 91void
f51623b2
NS
92xfs_count_page_state(
93 struct page *page,
94 int *delalloc,
95 int *unmapped,
96 int *unwritten)
97{
98 struct buffer_head *bh, *head;
99
100 *delalloc = *unmapped = *unwritten = 0;
101
102 bh = head = page_buffers(page);
103 do {
104 if (buffer_uptodate(bh) && !buffer_mapped(bh))
105 (*unmapped) = 1;
f51623b2
NS
106 else if (buffer_unwritten(bh))
107 (*unwritten) = 1;
108 else if (buffer_delay(bh))
109 (*delalloc) = 1;
110 } while ((bh = bh->b_this_page) != head);
111}
112
6214ed44
CH
113STATIC struct block_device *
114xfs_find_bdev_for_inode(
046f1685 115 struct inode *inode)
6214ed44 116{
046f1685 117 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
118 struct xfs_mount *mp = ip->i_mount;
119
71ddabb9 120 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
121 return mp->m_rtdev_targp->bt_bdev;
122 else
123 return mp->m_ddev_targp->bt_bdev;
124}
125
f6d6d4fc
CH
126/*
127 * We're now finished for good with this ioend structure.
128 * Update the page state via the associated buffer_heads,
129 * release holds on the inode and bio, and finally free
130 * up memory. Do not use the ioend after this.
131 */
0829c360
CH
132STATIC void
133xfs_destroy_ioend(
134 xfs_ioend_t *ioend)
135{
f6d6d4fc 136 struct buffer_head *bh, *next;
583fa586 137 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
138
139 for (bh = ioend->io_buffer_head; bh; bh = next) {
140 next = bh->b_private;
7d04a335 141 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 142 }
583fa586
CH
143
144 /*
145 * Volume managers supporting multiple paths can send back ENODEV
146 * when the final path disappears. In this case continuing to fill
147 * the page cache with dirty data which cannot be written out is
148 * evil, so prevent that.
149 */
150 if (unlikely(ioend->io_error == -ENODEV)) {
151 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
152 __FILE__, __LINE__);
b677c210 153 }
583fa586 154
25e41b3d 155 xfs_ioend_wake(ip);
0829c360
CH
156 mempool_free(ioend, xfs_ioend_pool);
157}
158
932640e8
DC
159/*
160 * If the end of the current ioend is beyond the current EOF,
161 * return the new EOF value, otherwise zero.
162 */
163STATIC xfs_fsize_t
164xfs_ioend_new_eof(
165 xfs_ioend_t *ioend)
166{
167 xfs_inode_t *ip = XFS_I(ioend->io_inode);
168 xfs_fsize_t isize;
169 xfs_fsize_t bsize;
170
171 bsize = ioend->io_offset + ioend->io_size;
172 isize = MAX(ip->i_size, ip->i_new_size);
173 isize = MIN(isize, bsize);
174 return isize > ip->i_d.di_size ? isize : 0;
175}
176
ba87ea69 177/*
77d7a0c2
DC
178 * Update on-disk file size now that data has been written to disk. The
179 * current in-memory file size is i_size. If a write is beyond eof i_new_size
180 * will be the intended file size until i_size is updated. If this write does
181 * not extend all the way to the valid file size then restrict this update to
182 * the end of the write.
183 *
184 * This function does not block as blocking on the inode lock in IO completion
185 * can lead to IO completion order dependency deadlocks.. If it can't get the
186 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 187 */
77d7a0c2 188STATIC int
ba87ea69
LM
189xfs_setfilesize(
190 xfs_ioend_t *ioend)
191{
b677c210 192 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 193 xfs_fsize_t isize;
ba87ea69 194
ba87ea69 195 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 196 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
197
198 if (unlikely(ioend->io_error))
77d7a0c2
DC
199 return 0;
200
201 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
202 return EAGAIN;
ba87ea69 203
932640e8
DC
204 isize = xfs_ioend_new_eof(ioend);
205 if (isize) {
ba87ea69 206 ip->i_d.di_size = isize;
66d834ea 207 xfs_mark_inode_dirty(ip);
ba87ea69
LM
208 }
209
210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
211 return 0;
212}
213
214/*
215 * Schedule IO completion handling on a xfsdatad if this was
216 * the final hold on this ioend. If we are asked to wait,
217 * flush the workqueue.
218 */
219STATIC void
220xfs_finish_ioend(
221 xfs_ioend_t *ioend,
222 int wait)
223{
224 if (atomic_dec_and_test(&ioend->io_remaining)) {
225 struct workqueue_struct *wq;
226
34a52c6c 227 wq = (ioend->io_type == IO_UNWRITTEN) ?
77d7a0c2
DC
228 xfsconvertd_workqueue : xfsdatad_workqueue;
229 queue_work(wq, &ioend->io_work);
230 if (wait)
231 flush_workqueue(wq);
232 }
ba87ea69
LM
233}
234
0829c360 235/*
5ec4fabb 236 * IO write completion.
f6d6d4fc
CH
237 */
238STATIC void
5ec4fabb 239xfs_end_io(
77d7a0c2 240 struct work_struct *work)
0829c360 241{
77d7a0c2
DC
242 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
243 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 244 int error = 0;
ba87ea69 245
5ec4fabb
CH
246 /*
247 * For unwritten extents we need to issue transactions to convert a
248 * range to normal written extens after the data I/O has finished.
249 */
34a52c6c 250 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 251 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
252
253 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
254 ioend->io_size);
255 if (error)
256 ioend->io_error = error;
257 }
ba87ea69 258
5ec4fabb
CH
259 /*
260 * We might have to update the on-disk file size after extending
261 * writes.
262 */
34a52c6c 263 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
264 error = xfs_setfilesize(ioend);
265 ASSERT(!error || error == EAGAIN);
c626d174 266 }
77d7a0c2
DC
267
268 /*
269 * If we didn't complete processing of the ioend, requeue it to the
270 * tail of the workqueue for another attempt later. Otherwise destroy
271 * it.
272 */
273 if (error == EAGAIN) {
274 atomic_inc(&ioend->io_remaining);
275 xfs_finish_ioend(ioend, 0);
276 /* ensure we don't spin on blocked ioends */
277 delay(1);
278 } else
279 xfs_destroy_ioend(ioend);
c626d174
DC
280}
281
0829c360
CH
282/*
283 * Allocate and initialise an IO completion structure.
284 * We need to track unwritten extent write completion here initially.
285 * We'll need to extend this for updating the ondisk inode size later
286 * (vs. incore size).
287 */
288STATIC xfs_ioend_t *
289xfs_alloc_ioend(
f6d6d4fc
CH
290 struct inode *inode,
291 unsigned int type)
0829c360
CH
292{
293 xfs_ioend_t *ioend;
294
295 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
296
297 /*
298 * Set the count to 1 initially, which will prevent an I/O
299 * completion callback from happening before we have started
300 * all the I/O from calling the completion routine too early.
301 */
302 atomic_set(&ioend->io_remaining, 1);
7d04a335 303 ioend->io_error = 0;
f6d6d4fc
CH
304 ioend->io_list = NULL;
305 ioend->io_type = type;
b677c210 306 ioend->io_inode = inode;
c1a073bd 307 ioend->io_buffer_head = NULL;
f6d6d4fc 308 ioend->io_buffer_tail = NULL;
b677c210 309 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
310 ioend->io_offset = 0;
311 ioend->io_size = 0;
312
5ec4fabb 313 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
314 return ioend;
315}
316
1da177e4
LT
317STATIC int
318xfs_map_blocks(
319 struct inode *inode,
320 loff_t offset,
321 ssize_t count,
207d0416 322 struct xfs_bmbt_irec *imap,
1da177e4
LT
323 int flags)
324{
6bd16ff2 325 int nmaps = 1;
207d0416 326 int new = 0;
6bd16ff2 327
207d0416 328 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
329}
330
b8f82a4a 331STATIC int
558e6891 332xfs_imap_valid(
8699bb0a 333 struct inode *inode,
207d0416 334 struct xfs_bmbt_irec *imap,
558e6891 335 xfs_off_t offset)
1da177e4 336{
558e6891 337 offset >>= inode->i_blkbits;
8699bb0a 338
558e6891
CH
339 return offset >= imap->br_startoff &&
340 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
341}
342
f6d6d4fc
CH
343/*
344 * BIO completion handler for buffered IO.
345 */
782e3b3b 346STATIC void
f6d6d4fc
CH
347xfs_end_bio(
348 struct bio *bio,
f6d6d4fc
CH
349 int error)
350{
351 xfs_ioend_t *ioend = bio->bi_private;
352
f6d6d4fc 353 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 354 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
355
356 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
357 bio->bi_private = NULL;
358 bio->bi_end_io = NULL;
f6d6d4fc 359 bio_put(bio);
7d04a335 360
e927af90 361 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
362}
363
364STATIC void
365xfs_submit_ioend_bio(
06342cf8
CH
366 struct writeback_control *wbc,
367 xfs_ioend_t *ioend,
368 struct bio *bio)
f6d6d4fc
CH
369{
370 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
371 bio->bi_private = ioend;
372 bio->bi_end_io = xfs_end_bio;
373
932640e8
DC
374 /*
375 * If the I/O is beyond EOF we mark the inode dirty immediately
376 * but don't update the inode size until I/O completion.
377 */
378 if (xfs_ioend_new_eof(ioend))
66d834ea 379 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 380
06342cf8
CH
381 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
382 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
383 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
384 bio_put(bio);
385}
386
387STATIC struct bio *
388xfs_alloc_ioend_bio(
389 struct buffer_head *bh)
390{
391 struct bio *bio;
392 int nvecs = bio_get_nr_vecs(bh->b_bdev);
393
394 do {
395 bio = bio_alloc(GFP_NOIO, nvecs);
396 nvecs >>= 1;
397 } while (!bio);
398
399 ASSERT(bio->bi_private == NULL);
400 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
401 bio->bi_bdev = bh->b_bdev;
402 bio_get(bio);
403 return bio;
404}
405
406STATIC void
407xfs_start_buffer_writeback(
408 struct buffer_head *bh)
409{
410 ASSERT(buffer_mapped(bh));
411 ASSERT(buffer_locked(bh));
412 ASSERT(!buffer_delay(bh));
413 ASSERT(!buffer_unwritten(bh));
414
415 mark_buffer_async_write(bh);
416 set_buffer_uptodate(bh);
417 clear_buffer_dirty(bh);
418}
419
420STATIC void
421xfs_start_page_writeback(
422 struct page *page,
f6d6d4fc
CH
423 int clear_dirty,
424 int buffers)
425{
426 ASSERT(PageLocked(page));
427 ASSERT(!PageWriteback(page));
f6d6d4fc 428 if (clear_dirty)
92132021
DC
429 clear_page_dirty_for_io(page);
430 set_page_writeback(page);
f6d6d4fc 431 unlock_page(page);
1f7decf6
FW
432 /* If no buffers on the page are to be written, finish it here */
433 if (!buffers)
f6d6d4fc 434 end_page_writeback(page);
f6d6d4fc
CH
435}
436
437static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
438{
439 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
440}
441
442/*
d88992f6
DC
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
445 *
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
451 *
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
455 *
456 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 457 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
458 */
459STATIC void
460xfs_submit_ioend(
06342cf8 461 struct writeback_control *wbc,
f6d6d4fc
CH
462 xfs_ioend_t *ioend)
463{
d88992f6 464 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
465 xfs_ioend_t *next;
466 struct buffer_head *bh;
467 struct bio *bio;
468 sector_t lastblock = 0;
469
d88992f6
DC
470 /* Pass 1 - start writeback */
471 do {
472 next = ioend->io_list;
473 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
474 xfs_start_buffer_writeback(bh);
475 }
476 } while ((ioend = next) != NULL);
477
478 /* Pass 2 - submit I/O */
479 ioend = head;
f6d6d4fc
CH
480 do {
481 next = ioend->io_list;
482 bio = NULL;
483
484 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
485
486 if (!bio) {
487 retry:
488 bio = xfs_alloc_ioend_bio(bh);
489 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 490 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
491 goto retry;
492 }
493
494 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 495 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
496 goto retry;
497 }
498
499 lastblock = bh->b_blocknr;
500 }
501 if (bio)
06342cf8 502 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 503 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
504 } while ((ioend = next) != NULL);
505}
506
507/*
508 * Cancel submission of all buffer_heads so far in this endio.
509 * Toss the endio too. Only ever called for the initial page
510 * in a writepage request, so only ever one page.
511 */
512STATIC void
513xfs_cancel_ioend(
514 xfs_ioend_t *ioend)
515{
516 xfs_ioend_t *next;
517 struct buffer_head *bh, *next_bh;
518
519 do {
520 next = ioend->io_list;
521 bh = ioend->io_buffer_head;
522 do {
523 next_bh = bh->b_private;
524 clear_buffer_async_write(bh);
525 unlock_buffer(bh);
526 } while ((bh = next_bh) != NULL);
527
25e41b3d 528 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
529 mempool_free(ioend, xfs_ioend_pool);
530 } while ((ioend = next) != NULL);
531}
532
533/*
534 * Test to see if we've been building up a completion structure for
535 * earlier buffers -- if so, we try to append to this ioend if we
536 * can, otherwise we finish off any current ioend and start another.
537 * Return true if we've finished the given ioend.
538 */
539STATIC void
540xfs_add_to_ioend(
541 struct inode *inode,
542 struct buffer_head *bh,
7336cea8 543 xfs_off_t offset,
f6d6d4fc
CH
544 unsigned int type,
545 xfs_ioend_t **result,
546 int need_ioend)
547{
548 xfs_ioend_t *ioend = *result;
549
550 if (!ioend || need_ioend || type != ioend->io_type) {
551 xfs_ioend_t *previous = *result;
f6d6d4fc 552
f6d6d4fc
CH
553 ioend = xfs_alloc_ioend(inode, type);
554 ioend->io_offset = offset;
555 ioend->io_buffer_head = bh;
556 ioend->io_buffer_tail = bh;
557 if (previous)
558 previous->io_list = ioend;
559 *result = ioend;
560 } else {
561 ioend->io_buffer_tail->b_private = bh;
562 ioend->io_buffer_tail = bh;
563 }
564
565 bh->b_private = NULL;
566 ioend->io_size += bh->b_size;
567}
568
87cbc49c
NS
569STATIC void
570xfs_map_buffer(
046f1685 571 struct inode *inode,
87cbc49c 572 struct buffer_head *bh,
207d0416 573 struct xfs_bmbt_irec *imap,
046f1685 574 xfs_off_t offset)
87cbc49c
NS
575{
576 sector_t bn;
8699bb0a 577 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
578 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
579 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 580
207d0416
CH
581 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
582 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 583
e513182d 584 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 585 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 586
046f1685 587 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
588
589 bh->b_blocknr = bn;
590 set_buffer_mapped(bh);
591}
592
1da177e4
LT
593STATIC void
594xfs_map_at_offset(
046f1685 595 struct inode *inode,
1da177e4 596 struct buffer_head *bh,
207d0416 597 struct xfs_bmbt_irec *imap,
046f1685 598 xfs_off_t offset)
1da177e4 599{
207d0416
CH
600 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
601 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
602
603 lock_buffer(bh);
207d0416 604 xfs_map_buffer(inode, bh, imap, offset);
046f1685 605 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
606 set_buffer_mapped(bh);
607 clear_buffer_delay(bh);
f6d6d4fc 608 clear_buffer_unwritten(bh);
1da177e4
LT
609}
610
611/*
6c4fe19f 612 * Look for a page at index that is suitable for clustering.
1da177e4
LT
613 */
614STATIC unsigned int
6c4fe19f 615xfs_probe_page(
10ce4444 616 struct page *page,
6c4fe19f
CH
617 unsigned int pg_offset,
618 int mapped)
1da177e4 619{
1da177e4
LT
620 int ret = 0;
621
1da177e4 622 if (PageWriteback(page))
10ce4444 623 return 0;
1da177e4
LT
624
625 if (page->mapping && PageDirty(page)) {
626 if (page_has_buffers(page)) {
627 struct buffer_head *bh, *head;
628
629 bh = head = page_buffers(page);
630 do {
6c4fe19f
CH
631 if (!buffer_uptodate(bh))
632 break;
633 if (mapped != buffer_mapped(bh))
1da177e4
LT
634 break;
635 ret += bh->b_size;
636 if (ret >= pg_offset)
637 break;
638 } while ((bh = bh->b_this_page) != head);
639 } else
6c4fe19f 640 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
641 }
642
1da177e4
LT
643 return ret;
644}
645
f6d6d4fc 646STATIC size_t
6c4fe19f 647xfs_probe_cluster(
1da177e4
LT
648 struct inode *inode,
649 struct page *startpage,
650 struct buffer_head *bh,
6c4fe19f
CH
651 struct buffer_head *head,
652 int mapped)
1da177e4 653{
10ce4444 654 struct pagevec pvec;
1da177e4 655 pgoff_t tindex, tlast, tloff;
10ce4444
CH
656 size_t total = 0;
657 int done = 0, i;
1da177e4
LT
658
659 /* First sum forwards in this page */
660 do {
2353e8e9 661 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 662 return total;
1da177e4
LT
663 total += bh->b_size;
664 } while ((bh = bh->b_this_page) != head);
665
10ce4444
CH
666 /* if we reached the end of the page, sum forwards in following pages */
667 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
668 tindex = startpage->index + 1;
669
670 /* Prune this back to avoid pathological behavior */
671 tloff = min(tlast, startpage->index + 64);
672
673 pagevec_init(&pvec, 0);
674 while (!done && tindex <= tloff) {
675 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
676
677 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
678 break;
679
680 for (i = 0; i < pagevec_count(&pvec); i++) {
681 struct page *page = pvec.pages[i];
265c1fac 682 size_t pg_offset, pg_len = 0;
10ce4444
CH
683
684 if (tindex == tlast) {
685 pg_offset =
686 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
687 if (!pg_offset) {
688 done = 1;
10ce4444 689 break;
1defeac9 690 }
10ce4444
CH
691 } else
692 pg_offset = PAGE_CACHE_SIZE;
693
529ae9aa 694 if (page->index == tindex && trylock_page(page)) {
265c1fac 695 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
696 unlock_page(page);
697 }
698
265c1fac 699 if (!pg_len) {
10ce4444
CH
700 done = 1;
701 break;
702 }
703
265c1fac 704 total += pg_len;
1defeac9 705 tindex++;
1da177e4 706 }
10ce4444
CH
707
708 pagevec_release(&pvec);
709 cond_resched();
1da177e4 710 }
10ce4444 711
1da177e4
LT
712 return total;
713}
714
715/*
10ce4444
CH
716 * Test if a given page is suitable for writing as part of an unwritten
717 * or delayed allocate extent.
1da177e4 718 */
10ce4444
CH
719STATIC int
720xfs_is_delayed_page(
721 struct page *page,
f6d6d4fc 722 unsigned int type)
1da177e4 723{
1da177e4 724 if (PageWriteback(page))
10ce4444 725 return 0;
1da177e4
LT
726
727 if (page->mapping && page_has_buffers(page)) {
728 struct buffer_head *bh, *head;
729 int acceptable = 0;
730
731 bh = head = page_buffers(page);
732 do {
f6d6d4fc 733 if (buffer_unwritten(bh))
34a52c6c 734 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 735 else if (buffer_delay(bh))
34a52c6c 736 acceptable = (type == IO_DELAY);
2ddee844 737 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 738 acceptable = (type == IO_NEW);
f6d6d4fc 739 else
1da177e4 740 break;
1da177e4
LT
741 } while ((bh = bh->b_this_page) != head);
742
743 if (acceptable)
10ce4444 744 return 1;
1da177e4
LT
745 }
746
10ce4444 747 return 0;
1da177e4
LT
748}
749
1da177e4
LT
750/*
751 * Allocate & map buffers for page given the extent map. Write it out.
752 * except for the original page of a writepage, this is called on
753 * delalloc/unwritten pages only, for the original page it is possible
754 * that the page has no mapping at all.
755 */
f6d6d4fc 756STATIC int
1da177e4
LT
757xfs_convert_page(
758 struct inode *inode,
759 struct page *page,
10ce4444 760 loff_t tindex,
207d0416 761 struct xfs_bmbt_irec *imap,
f6d6d4fc 762 xfs_ioend_t **ioendp,
1da177e4 763 struct writeback_control *wbc,
1da177e4
LT
764 int startio,
765 int all_bh)
766{
f6d6d4fc 767 struct buffer_head *bh, *head;
9260dc6b
CH
768 xfs_off_t end_offset;
769 unsigned long p_offset;
f6d6d4fc 770 unsigned int type;
24e17b5f 771 int len, page_dirty;
f6d6d4fc 772 int count = 0, done = 0, uptodate = 1;
9260dc6b 773 xfs_off_t offset = page_offset(page);
1da177e4 774
10ce4444
CH
775 if (page->index != tindex)
776 goto fail;
529ae9aa 777 if (!trylock_page(page))
10ce4444
CH
778 goto fail;
779 if (PageWriteback(page))
780 goto fail_unlock_page;
781 if (page->mapping != inode->i_mapping)
782 goto fail_unlock_page;
783 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
784 goto fail_unlock_page;
785
24e17b5f
NS
786 /*
787 * page_dirty is initially a count of buffers on the page before
c41564b5 788 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
789 *
790 * Derivation:
791 *
792 * End offset is the highest offset that this page should represent.
793 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
794 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
795 * hence give us the correct page_dirty count. On any other page,
796 * it will be zero and in that case we need page_dirty to be the
797 * count of buffers on the page.
24e17b5f 798 */
9260dc6b
CH
799 end_offset = min_t(unsigned long long,
800 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
801 i_size_read(inode));
802
24e17b5f 803 len = 1 << inode->i_blkbits;
9260dc6b
CH
804 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
805 PAGE_CACHE_SIZE);
806 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
807 page_dirty = p_offset / len;
24e17b5f 808
1da177e4
LT
809 bh = head = page_buffers(page);
810 do {
9260dc6b 811 if (offset >= end_offset)
1da177e4 812 break;
f6d6d4fc
CH
813 if (!buffer_uptodate(bh))
814 uptodate = 0;
815 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
816 done = 1;
1da177e4 817 continue;
f6d6d4fc
CH
818 }
819
9260dc6b
CH
820 if (buffer_unwritten(bh) || buffer_delay(bh)) {
821 if (buffer_unwritten(bh))
34a52c6c 822 type = IO_UNWRITTEN;
9260dc6b 823 else
34a52c6c 824 type = IO_DELAY;
9260dc6b 825
558e6891 826 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 827 done = 1;
9260dc6b
CH
828 continue;
829 }
830
207d0416
CH
831 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
832 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 833
207d0416 834 xfs_map_at_offset(inode, bh, imap, offset);
9260dc6b 835 if (startio) {
7336cea8 836 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
837 type, ioendp, done);
838 } else {
839 set_buffer_dirty(bh);
840 unlock_buffer(bh);
841 mark_buffer_dirty(bh);
842 }
843 page_dirty--;
844 count++;
845 } else {
34a52c6c 846 type = IO_NEW;
9260dc6b 847 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 848 lock_buffer(bh);
7336cea8 849 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
850 type, ioendp, done);
851 count++;
24e17b5f 852 page_dirty--;
9260dc6b
CH
853 } else {
854 done = 1;
1da177e4 855 }
1da177e4 856 }
7336cea8 857 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 858
f6d6d4fc
CH
859 if (uptodate && bh == head)
860 SetPageUptodate(page);
861
862 if (startio) {
f5e596bb 863 if (count) {
9fddaca2 864 wbc->nr_to_write--;
0d99519e 865 if (wbc->nr_to_write <= 0)
f5e596bb 866 done = 1;
f5e596bb 867 }
b41759cf 868 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 869 }
f6d6d4fc
CH
870
871 return done;
10ce4444
CH
872 fail_unlock_page:
873 unlock_page(page);
874 fail:
875 return 1;
1da177e4
LT
876}
877
878/*
879 * Convert & write out a cluster of pages in the same extent as defined
880 * by mp and following the start page.
881 */
882STATIC void
883xfs_cluster_write(
884 struct inode *inode,
885 pgoff_t tindex,
207d0416 886 struct xfs_bmbt_irec *imap,
f6d6d4fc 887 xfs_ioend_t **ioendp,
1da177e4
LT
888 struct writeback_control *wbc,
889 int startio,
890 int all_bh,
891 pgoff_t tlast)
892{
10ce4444
CH
893 struct pagevec pvec;
894 int done = 0, i;
1da177e4 895
10ce4444
CH
896 pagevec_init(&pvec, 0);
897 while (!done && tindex <= tlast) {
898 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
899
900 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 901 break;
10ce4444
CH
902
903 for (i = 0; i < pagevec_count(&pvec); i++) {
904 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
207d0416 905 imap, ioendp, wbc, startio, all_bh);
10ce4444
CH
906 if (done)
907 break;
908 }
909
910 pagevec_release(&pvec);
911 cond_resched();
1da177e4
LT
912 }
913}
914
3ed3a434
DC
915STATIC void
916xfs_vm_invalidatepage(
917 struct page *page,
918 unsigned long offset)
919{
920 trace_xfs_invalidatepage(page->mapping->host, page, offset);
921 block_invalidatepage(page, offset);
922}
923
924/*
925 * If the page has delalloc buffers on it, we need to punch them out before we
926 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
927 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
928 * is done on that same region - the delalloc extent is returned when none is
929 * supposed to be there.
930 *
931 * We prevent this by truncating away the delalloc regions on the page before
932 * invalidating it. Because they are delalloc, we can do this without needing a
933 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
934 * truncation without a transaction as there is no space left for block
935 * reservation (typically why we see a ENOSPC in writeback).
936 *
937 * This is not a performance critical path, so for now just do the punching a
938 * buffer head at a time.
939 */
940STATIC void
941xfs_aops_discard_page(
942 struct page *page)
943{
944 struct inode *inode = page->mapping->host;
945 struct xfs_inode *ip = XFS_I(inode);
946 struct buffer_head *bh, *head;
947 loff_t offset = page_offset(page);
948 ssize_t len = 1 << inode->i_blkbits;
949
34a52c6c 950 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
951 goto out_invalidate;
952
e8c3753c
DC
953 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
954 goto out_invalidate;
955
3ed3a434
DC
956 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
957 "page discard on page %p, inode 0x%llx, offset %llu.",
958 page, ip->i_ino, offset);
959
960 xfs_ilock(ip, XFS_ILOCK_EXCL);
961 bh = head = page_buffers(page);
962 do {
963 int done;
964 xfs_fileoff_t offset_fsb;
965 xfs_bmbt_irec_t imap;
966 int nimaps = 1;
967 int error;
968 xfs_fsblock_t firstblock;
969 xfs_bmap_free_t flist;
970
971 if (!buffer_delay(bh))
972 goto next_buffer;
973
974 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
975
976 /*
977 * Map the range first and check that it is a delalloc extent
978 * before trying to unmap the range. Otherwise we will be
979 * trying to remove a real extent (which requires a
980 * transaction) or a hole, which is probably a bad idea...
981 */
982 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
983 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
984 &nimaps, NULL, NULL);
985
986 if (error) {
987 /* something screwed, just bail */
e8c3753c
DC
988 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
989 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
990 "page discard failed delalloc mapping lookup.");
991 }
3ed3a434
DC
992 break;
993 }
994 if (!nimaps) {
995 /* nothing there */
996 goto next_buffer;
997 }
998 if (imap.br_startblock != DELAYSTARTBLOCK) {
999 /* been converted, ignore */
1000 goto next_buffer;
1001 }
1002 WARN_ON(imap.br_blockcount == 0);
1003
1004 /*
1005 * Note: while we initialise the firstblock/flist pair, they
1006 * should never be used because blocks should never be
1007 * allocated or freed for a delalloc extent and hence we need
1008 * don't cancel or finish them after the xfs_bunmapi() call.
1009 */
1010 xfs_bmap_init(&flist, &firstblock);
1011 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1012 &flist, NULL, &done);
1013
1014 ASSERT(!flist.xbf_count && !flist.xbf_first);
1015 if (error) {
1016 /* something screwed, just bail */
e8c3753c
DC
1017 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1018 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1019 "page discard unable to remove delalloc mapping.");
e8c3753c 1020 }
3ed3a434
DC
1021 break;
1022 }
1023next_buffer:
1024 offset += len;
1025
1026 } while ((bh = bh->b_this_page) != head);
1027
1028 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1029out_invalidate:
1030 xfs_vm_invalidatepage(page, 0);
1031 return;
1032}
1033
1da177e4
LT
1034/*
1035 * Calling this without startio set means we are being asked to make a dirty
1036 * page ready for freeing it's buffers. When called with startio set then
1037 * we are coming from writepage.
1038 *
1039 * When called with startio set it is important that we write the WHOLE
1040 * page if possible.
1041 * The bh->b_state's cannot know if any of the blocks or which block for
1042 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1043 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1044 * may clear the page dirty flag prior to calling write page, under the
1045 * assumption the entire page will be written out; by not writing out the
1046 * whole page the page can be reused before all valid dirty data is
1047 * written out. Note: in the case of a page that has been dirty'd by
1048 * mapwrite and but partially setup by block_prepare_write the
1049 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1050 * valid state, thus the whole page must be written out thing.
1051 */
1052
1053STATIC int
1054xfs_page_state_convert(
1055 struct inode *inode,
1056 struct page *page,
1057 struct writeback_control *wbc,
1058 int startio,
1059 int unmapped) /* also implies page uptodate */
1060{
f6d6d4fc 1061 struct buffer_head *bh, *head;
207d0416 1062 struct xfs_bmbt_irec imap;
f6d6d4fc 1063 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1064 loff_t offset;
1065 unsigned long p_offset = 0;
f6d6d4fc 1066 unsigned int type;
1da177e4 1067 __uint64_t end_offset;
bd1556a1 1068 pgoff_t end_index, last_index;
d5cb48aa 1069 ssize_t size, len;
558e6891 1070 int flags, err, imap_valid = 0, uptodate = 1;
8272145c
NS
1071 int page_dirty, count = 0;
1072 int trylock = 0;
6c4fe19f 1073 int all_bh = unmapped;
1da177e4 1074
8272145c
NS
1075 if (startio) {
1076 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1077 trylock |= BMAPI_TRYLOCK;
1078 }
3ba0815a 1079
1da177e4
LT
1080 /* Is this page beyond the end of the file? */
1081 offset = i_size_read(inode);
1082 end_index = offset >> PAGE_CACHE_SHIFT;
1083 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1084 if (page->index >= end_index) {
1085 if ((page->index >= end_index + 1) ||
1086 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1087 if (startio)
1088 unlock_page(page);
1089 return 0;
1da177e4
LT
1090 }
1091 }
1092
1da177e4 1093 /*
24e17b5f 1094 * page_dirty is initially a count of buffers on the page before
c41564b5 1095 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1096 *
1097 * Derivation:
1098 *
1099 * End offset is the highest offset that this page should represent.
1100 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1101 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1102 * hence give us the correct page_dirty count. On any other page,
1103 * it will be zero and in that case we need page_dirty to be the
1104 * count of buffers on the page.
1105 */
1106 end_offset = min_t(unsigned long long,
1107 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1108 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1109 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1110 PAGE_CACHE_SIZE);
1111 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1112 page_dirty = p_offset / len;
1113
24e17b5f 1114 bh = head = page_buffers(page);
f6d6d4fc 1115 offset = page_offset(page);
df3c7244 1116 flags = BMAPI_READ;
34a52c6c 1117 type = IO_NEW;
f6d6d4fc 1118
f6d6d4fc 1119 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1120
1121 do {
1122 if (offset >= end_offset)
1123 break;
1124 if (!buffer_uptodate(bh))
1125 uptodate = 0;
f6d6d4fc 1126 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1127 /*
1128 * the iomap is actually still valid, but the ioend
1129 * isn't. shouldn't happen too often.
1130 */
558e6891 1131 imap_valid = 0;
1da177e4 1132 continue;
f6d6d4fc 1133 }
1da177e4 1134
558e6891
CH
1135 if (imap_valid)
1136 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4
LT
1137
1138 /*
1139 * First case, map an unwritten extent and prepare for
1140 * extent state conversion transaction on completion.
f6d6d4fc 1141 *
1da177e4
LT
1142 * Second case, allocate space for a delalloc buffer.
1143 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1144 *
1145 * Third case, an unmapped buffer was found, and we are
1146 * in a path where we need to write the whole page out.
df3c7244 1147 */
d5cb48aa
CH
1148 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1149 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1150 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1151 int new_ioend = 0;
1152
df3c7244 1153 /*
6c4fe19f
CH
1154 * Make sure we don't use a read-only iomap
1155 */
df3c7244 1156 if (flags == BMAPI_READ)
558e6891 1157 imap_valid = 0;
6c4fe19f 1158
f6d6d4fc 1159 if (buffer_unwritten(bh)) {
34a52c6c 1160 type = IO_UNWRITTEN;
8272145c 1161 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1162 } else if (buffer_delay(bh)) {
34a52c6c 1163 type = IO_DELAY;
8272145c 1164 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1165 } else {
34a52c6c 1166 type = IO_NEW;
8272145c 1167 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1168 }
1169
558e6891 1170 if (!imap_valid) {
effd120e
DC
1171 /*
1172 * if we didn't have a valid mapping then we
1173 * need to ensure that we put the new mapping
1174 * in a new ioend structure. This needs to be
1175 * done to ensure that the ioends correctly
1176 * reflect the block mappings at io completion
1177 * for unwritten extent conversion.
1178 */
1179 new_ioend = 1;
34a52c6c 1180 if (type == IO_NEW) {
6c4fe19f
CH
1181 size = xfs_probe_cluster(inode,
1182 page, bh, head, 0);
d5cb48aa
CH
1183 } else {
1184 size = len;
1185 }
1186
1187 err = xfs_map_blocks(inode, offset, size,
207d0416 1188 &imap, flags);
f6d6d4fc 1189 if (err)
1da177e4 1190 goto error;
558e6891
CH
1191 imap_valid = xfs_imap_valid(inode, &imap,
1192 offset);
1da177e4 1193 }
558e6891 1194 if (imap_valid) {
207d0416 1195 xfs_map_at_offset(inode, bh, &imap, offset);
1da177e4 1196 if (startio) {
7336cea8 1197 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1198 type, &ioend,
effd120e 1199 new_ioend);
1da177e4
LT
1200 } else {
1201 set_buffer_dirty(bh);
1202 unlock_buffer(bh);
1203 mark_buffer_dirty(bh);
1204 }
1205 page_dirty--;
f6d6d4fc 1206 count++;
1da177e4 1207 }
d5cb48aa 1208 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1209 /*
1210 * we got here because the buffer is already mapped.
1211 * That means it must already have extents allocated
1212 * underneath it. Map the extent by reading it.
1213 */
558e6891 1214 if (!imap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1215 flags = BMAPI_READ;
1216 size = xfs_probe_cluster(inode, page, bh,
1217 head, 1);
1218 err = xfs_map_blocks(inode, offset, size,
207d0416 1219 &imap, flags);
6c4fe19f
CH
1220 if (err)
1221 goto error;
558e6891
CH
1222 imap_valid = xfs_imap_valid(inode, &imap,
1223 offset);
6c4fe19f 1224 }
d5cb48aa 1225
df3c7244 1226 /*
34a52c6c 1227 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1228 * small write at EOF that is extending the file but
1229 * without needing an allocation. We need to update the
1230 * file size on I/O completion in this case so it is
1231 * the same case as having just allocated a new extent
1232 * that we are writing into for the first time.
1233 */
34a52c6c 1234 type = IO_NEW;
ca5de404 1235 if (trylock_buffer(bh)) {
d5cb48aa 1236 ASSERT(buffer_mapped(bh));
558e6891 1237 if (imap_valid)
6c4fe19f 1238 all_bh = 1;
7336cea8 1239 xfs_add_to_ioend(inode, bh, offset, type,
558e6891 1240 &ioend, !imap_valid);
d5cb48aa
CH
1241 page_dirty--;
1242 count++;
f6d6d4fc 1243 } else {
558e6891 1244 imap_valid = 0;
1da177e4 1245 }
d5cb48aa
CH
1246 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1247 (unmapped || startio)) {
558e6891 1248 imap_valid = 0;
1da177e4 1249 }
f6d6d4fc
CH
1250
1251 if (!iohead)
1252 iohead = ioend;
1253
1254 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1255
1256 if (uptodate && bh == head)
1257 SetPageUptodate(page);
1258
f6d6d4fc 1259 if (startio)
b41759cf 1260 xfs_start_page_writeback(page, 1, count);
1da177e4 1261
558e6891 1262 if (ioend && imap_valid) {
bd1556a1
CH
1263 xfs_off_t end_index;
1264
1265 end_index = imap.br_startoff + imap.br_blockcount;
1266
1267 /* to bytes */
1268 end_index <<= inode->i_blkbits;
1269
1270 /* to pages */
1271 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1272
1273 /* check against file size */
1274 if (end_index > last_index)
1275 end_index = last_index;
8699bb0a 1276
207d0416 1277 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
bd1556a1 1278 wbc, startio, all_bh, end_index);
1da177e4
LT
1279 }
1280
f6d6d4fc 1281 if (iohead)
06342cf8 1282 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1283
1da177e4
LT
1284 return page_dirty;
1285
1286error:
f6d6d4fc
CH
1287 if (iohead)
1288 xfs_cancel_ioend(iohead);
1da177e4
LT
1289
1290 /*
1291 * If it's delalloc and we have nowhere to put it,
1292 * throw it away, unless the lower layers told
1293 * us to try again.
1294 */
1295 if (err != -EAGAIN) {
f6d6d4fc 1296 if (!unmapped)
3ed3a434 1297 xfs_aops_discard_page(page);
1da177e4
LT
1298 ClearPageUptodate(page);
1299 }
1300 return err;
1301}
1302
f51623b2
NS
1303/*
1304 * writepage: Called from one of two places:
1305 *
1306 * 1. we are flushing a delalloc buffer head.
1307 *
1308 * 2. we are writing out a dirty page. Typically the page dirty
1309 * state is cleared before we get here. In this case is it
1310 * conceivable we have no buffer heads.
1311 *
1312 * For delalloc space on the page we need to allocate space and
1313 * flush it. For unmapped buffer heads on the page we should
1314 * allocate space if the page is uptodate. For any other dirty
1315 * buffer heads on the page we should flush them.
1316 *
1317 * If we detect that a transaction would be required to flush
1318 * the page, we have to check the process flags first, if we
1319 * are already in a transaction or disk I/O during allocations
1320 * is off, we need to fail the writepage and redirty the page.
1321 */
1322
1323STATIC int
e4c573bb 1324xfs_vm_writepage(
f51623b2
NS
1325 struct page *page,
1326 struct writeback_control *wbc)
1327{
1328 int error;
1329 int need_trans;
1330 int delalloc, unmapped, unwritten;
1331 struct inode *inode = page->mapping->host;
1332
0b1b213f 1333 trace_xfs_writepage(inode, page, 0);
f51623b2 1334
070ecdca
CH
1335 /*
1336 * Refuse to write the page out if we are called from reclaim context.
1337 *
1338 * This is primarily to avoid stack overflows when called from deep
1339 * used stacks in random callers for direct reclaim, but disabling
1340 * reclaim for kswap is a nice side-effect as kswapd causes rather
1341 * suboptimal I/O patters, too.
1342 *
1343 * This should really be done by the core VM, but until that happens
1344 * filesystems like XFS, btrfs and ext4 have to take care of this
1345 * by themselves.
1346 */
1347 if (current->flags & PF_MEMALLOC)
1348 goto out_fail;
1349
f51623b2
NS
1350 /*
1351 * We need a transaction if:
1352 * 1. There are delalloc buffers on the page
1353 * 2. The page is uptodate and we have unmapped buffers
1354 * 3. The page is uptodate and we have no buffers
1355 * 4. There are unwritten buffers on the page
1356 */
1357
1358 if (!page_has_buffers(page)) {
1359 unmapped = 1;
1360 need_trans = 1;
1361 } else {
1362 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1363 if (!PageUptodate(page))
1364 unmapped = 0;
1365 need_trans = delalloc + unmapped + unwritten;
1366 }
1367
1368 /*
1369 * If we need a transaction and the process flags say
1370 * we are already in a transaction, or no IO is allowed
1371 * then mark the page dirty again and leave the page
1372 * as is.
1373 */
59c1b082 1374 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1375 goto out_fail;
1376
1377 /*
1378 * Delay hooking up buffer heads until we have
1379 * made our go/no-go decision.
1380 */
1381 if (!page_has_buffers(page))
1382 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1383
1384 /*
1385 * Convert delayed allocate, unwritten or unmapped space
1386 * to real space and flush out to disk.
1387 */
1388 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1389 if (error == -EAGAIN)
1390 goto out_fail;
1391 if (unlikely(error < 0))
1392 goto out_unlock;
1393
1394 return 0;
1395
1396out_fail:
1397 redirty_page_for_writepage(wbc, page);
1398 unlock_page(page);
1399 return 0;
1400out_unlock:
1401 unlock_page(page);
1402 return error;
1403}
1404
7d4fb40a
NS
1405STATIC int
1406xfs_vm_writepages(
1407 struct address_space *mapping,
1408 struct writeback_control *wbc)
1409{
b3aea4ed 1410 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1411 return generic_writepages(mapping, wbc);
1412}
1413
f51623b2
NS
1414/*
1415 * Called to move a page into cleanable state - and from there
1416 * to be released. Possibly the page is already clean. We always
1417 * have buffer heads in this call.
1418 *
1419 * Returns 0 if the page is ok to release, 1 otherwise.
1420 *
1421 * Possible scenarios are:
1422 *
1423 * 1. We are being called to release a page which has been written
1424 * to via regular I/O. buffer heads will be dirty and possibly
1425 * delalloc. If no delalloc buffer heads in this case then we
1426 * can just return zero.
1427 *
1428 * 2. We are called to release a page which has been written via
1429 * mmap, all we need to do is ensure there is no delalloc
1430 * state in the buffer heads, if not we can let the caller
1431 * free them and we should come back later via writepage.
1432 */
1433STATIC int
238f4c54 1434xfs_vm_releasepage(
f51623b2
NS
1435 struct page *page,
1436 gfp_t gfp_mask)
1437{
1438 struct inode *inode = page->mapping->host;
1439 int dirty, delalloc, unmapped, unwritten;
1440 struct writeback_control wbc = {
1441 .sync_mode = WB_SYNC_ALL,
1442 .nr_to_write = 1,
1443 };
1444
0b1b213f 1445 trace_xfs_releasepage(inode, page, 0);
f51623b2 1446
238f4c54
NS
1447 if (!page_has_buffers(page))
1448 return 0;
1449
f51623b2
NS
1450 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1451 if (!delalloc && !unwritten)
1452 goto free_buffers;
1453
1454 if (!(gfp_mask & __GFP_FS))
1455 return 0;
1456
1457 /* If we are already inside a transaction or the thread cannot
1458 * do I/O, we cannot release this page.
1459 */
59c1b082 1460 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1461 return 0;
1462
1463 /*
1464 * Convert delalloc space to real space, do not flush the
1465 * data out to disk, that will be done by the caller.
1466 * Never need to allocate space here - we will always
1467 * come back to writepage in that case.
1468 */
1469 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1470 if (dirty == 0 && !unwritten)
1471 goto free_buffers;
1472 return 0;
1473
1474free_buffers:
1475 return try_to_free_buffers(page);
1476}
1477
1da177e4 1478STATIC int
c2536668 1479__xfs_get_blocks(
1da177e4
LT
1480 struct inode *inode,
1481 sector_t iblock,
1da177e4
LT
1482 struct buffer_head *bh_result,
1483 int create,
1484 int direct,
1485 bmapi_flags_t flags)
1486{
207d0416 1487 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1488 xfs_off_t offset;
1489 ssize_t size;
207d0416
CH
1490 int nimap = 1;
1491 int new = 0;
1da177e4 1492 int error;
1da177e4 1493
fdc7ed75 1494 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1495 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1496 size = bh_result->b_size;
364f358a
LM
1497
1498 if (!create && direct && offset >= i_size_read(inode))
1499 return 0;
1500
541d7d3c 1501 error = xfs_iomap(XFS_I(inode), offset, size,
207d0416 1502 create ? flags : BMAPI_READ, &imap, &nimap, &new);
1da177e4
LT
1503 if (error)
1504 return -error;
207d0416 1505 if (nimap == 0)
1da177e4
LT
1506 return 0;
1507
207d0416
CH
1508 if (imap.br_startblock != HOLESTARTBLOCK &&
1509 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1510 /*
1511 * For unwritten extents do not report a disk address on
1da177e4
LT
1512 * the read case (treat as if we're reading into a hole).
1513 */
207d0416
CH
1514 if (create || !ISUNWRITTEN(&imap))
1515 xfs_map_buffer(inode, bh_result, &imap, offset);
1516 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1517 if (direct)
1518 bh_result->b_private = inode;
1519 set_buffer_unwritten(bh_result);
1da177e4
LT
1520 }
1521 }
1522
c2536668
NS
1523 /*
1524 * If this is a realtime file, data may be on a different device.
1525 * to that pointed to from the buffer_head b_bdev currently.
1526 */
046f1685 1527 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1528
c2536668 1529 /*
549054af
DC
1530 * If we previously allocated a block out beyond eof and we are now
1531 * coming back to use it then we will need to flag it as new even if it
1532 * has a disk address.
1533 *
1534 * With sub-block writes into unwritten extents we also need to mark
1535 * the buffer as new so that the unwritten parts of the buffer gets
1536 * correctly zeroed.
1da177e4
LT
1537 */
1538 if (create &&
1539 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1540 (offset >= i_size_read(inode)) ||
207d0416 1541 (new || ISUNWRITTEN(&imap))))
1da177e4 1542 set_buffer_new(bh_result);
1da177e4 1543
207d0416 1544 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1545 BUG_ON(direct);
1546 if (create) {
1547 set_buffer_uptodate(bh_result);
1548 set_buffer_mapped(bh_result);
1549 set_buffer_delay(bh_result);
1550 }
1551 }
1552
2b8f12b7
CH
1553 /*
1554 * If this is O_DIRECT or the mpage code calling tell them how large
1555 * the mapping is, so that we can avoid repeated get_blocks calls.
1556 */
c2536668 1557 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1558 xfs_off_t mapping_size;
1559
1560 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1561 mapping_size <<= inode->i_blkbits;
1562
1563 ASSERT(mapping_size > 0);
1564 if (mapping_size > size)
1565 mapping_size = size;
1566 if (mapping_size > LONG_MAX)
1567 mapping_size = LONG_MAX;
1568
1569 bh_result->b_size = mapping_size;
1da177e4
LT
1570 }
1571
1572 return 0;
1573}
1574
1575int
c2536668 1576xfs_get_blocks(
1da177e4
LT
1577 struct inode *inode,
1578 sector_t iblock,
1579 struct buffer_head *bh_result,
1580 int create)
1581{
c2536668 1582 return __xfs_get_blocks(inode, iblock,
fa30bd05 1583 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1584}
1585
1586STATIC int
e4c573bb 1587xfs_get_blocks_direct(
1da177e4
LT
1588 struct inode *inode,
1589 sector_t iblock,
1da177e4
LT
1590 struct buffer_head *bh_result,
1591 int create)
1592{
c2536668 1593 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1594 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1595}
1596
f0973863 1597STATIC void
e4c573bb 1598xfs_end_io_direct(
f0973863
CH
1599 struct kiocb *iocb,
1600 loff_t offset,
1601 ssize_t size,
1602 void *private)
1603{
1604 xfs_ioend_t *ioend = iocb->private;
1605
1606 /*
1607 * Non-NULL private data means we need to issue a transaction to
1608 * convert a range from unwritten to written extents. This needs
c41564b5 1609 * to happen from process context but aio+dio I/O completion
f0973863 1610 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1611 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1612 * it anyway to keep the code uniform and simpler.
1613 *
e927af90
DC
1614 * Well, if only it were that simple. Because synchronous direct I/O
1615 * requires extent conversion to occur *before* we return to userspace,
1616 * we have to wait for extent conversion to complete. Look at the
1617 * iocb that has been passed to us to determine if this is AIO or
1618 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1619 * workqueue and wait for it to complete.
1620 *
f0973863
CH
1621 * The core direct I/O code might be changed to always call the
1622 * completion handler in the future, in which case all this can
1623 * go away.
1624 */
ba87ea69
LM
1625 ioend->io_offset = offset;
1626 ioend->io_size = size;
34a52c6c 1627 if (ioend->io_type == IO_READ) {
e927af90 1628 xfs_finish_ioend(ioend, 0);
ba87ea69 1629 } else if (private && size > 0) {
e927af90 1630 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1631 } else {
ba87ea69
LM
1632 /*
1633 * A direct I/O write ioend starts it's life in unwritten
1634 * state in case they map an unwritten extent. This write
1635 * didn't map an unwritten extent so switch it's completion
1636 * handler.
1637 */
34a52c6c 1638 ioend->io_type = IO_NEW;
e927af90 1639 xfs_finish_ioend(ioend, 0);
f0973863
CH
1640 }
1641
1642 /*
c41564b5 1643 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1644 * completion handler was called. Thus we need to protect
1645 * against double-freeing.
1646 */
1647 iocb->private = NULL;
1648}
1649
1da177e4 1650STATIC ssize_t
e4c573bb 1651xfs_vm_direct_IO(
1da177e4
LT
1652 int rw,
1653 struct kiocb *iocb,
1654 const struct iovec *iov,
1655 loff_t offset,
1656 unsigned long nr_segs)
1657{
1658 struct file *file = iocb->ki_filp;
1659 struct inode *inode = file->f_mapping->host;
6214ed44 1660 struct block_device *bdev;
f0973863 1661 ssize_t ret;
1da177e4 1662
046f1685 1663 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1664
5fe878ae 1665 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
34a52c6c 1666 IO_UNWRITTEN : IO_READ);
5fe878ae
CH
1667
1668 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1669 offset, nr_segs,
1670 xfs_get_blocks_direct,
1671 xfs_end_io_direct);
f0973863 1672
8459d86a 1673 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1674 xfs_destroy_ioend(iocb->private);
1675 return ret;
1da177e4
LT
1676}
1677
f51623b2 1678STATIC int
d79689c7 1679xfs_vm_write_begin(
f51623b2 1680 struct file *file,
d79689c7
NP
1681 struct address_space *mapping,
1682 loff_t pos,
1683 unsigned len,
1684 unsigned flags,
1685 struct page **pagep,
1686 void **fsdata)
f51623b2 1687{
d79689c7
NP
1688 *pagep = NULL;
1689 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1690 xfs_get_blocks);
f51623b2 1691}
1da177e4
LT
1692
1693STATIC sector_t
e4c573bb 1694xfs_vm_bmap(
1da177e4
LT
1695 struct address_space *mapping,
1696 sector_t block)
1697{
1698 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1699 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1700
cf441eeb 1701 xfs_itrace_entry(XFS_I(inode));
126468b1 1702 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1703 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1704 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1705 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1706}
1707
1708STATIC int
e4c573bb 1709xfs_vm_readpage(
1da177e4
LT
1710 struct file *unused,
1711 struct page *page)
1712{
c2536668 1713 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1714}
1715
1716STATIC int
e4c573bb 1717xfs_vm_readpages(
1da177e4
LT
1718 struct file *unused,
1719 struct address_space *mapping,
1720 struct list_head *pages,
1721 unsigned nr_pages)
1722{
c2536668 1723 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1724}
1725
f5e54d6e 1726const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1727 .readpage = xfs_vm_readpage,
1728 .readpages = xfs_vm_readpages,
1729 .writepage = xfs_vm_writepage,
7d4fb40a 1730 .writepages = xfs_vm_writepages,
1da177e4 1731 .sync_page = block_sync_page,
238f4c54
NS
1732 .releasepage = xfs_vm_releasepage,
1733 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1734 .write_begin = xfs_vm_write_begin,
1735 .write_end = generic_write_end,
e4c573bb
NS
1736 .bmap = xfs_vm_bmap,
1737 .direct_IO = xfs_vm_direct_IO,
e965f963 1738 .migratepage = buffer_migrate_page,
bddaafa1 1739 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1740 .error_remove_page = generic_error_remove_page,
1da177e4 1741};