]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/ceph/caps.c
ceph: cap revocation fixes
[net-next-2.6.git] / fs / ceph / caps.c
CommitLineData
a8599bd8
SW
1#include "ceph_debug.h"
2
3#include <linux/fs.h>
4#include <linux/kernel.h>
5#include <linux/sched.h>
6#include <linux/vmalloc.h>
7#include <linux/wait.h>
8
9#include "super.h"
10#include "decode.h"
11#include "messenger.h"
12
13/*
14 * Capability management
15 *
16 * The Ceph metadata servers control client access to inode metadata
17 * and file data by issuing capabilities, granting clients permission
18 * to read and/or write both inode field and file data to OSDs
19 * (storage nodes). Each capability consists of a set of bits
20 * indicating which operations are allowed.
21 *
22 * If the client holds a *_SHARED cap, the client has a coherent value
23 * that can be safely read from the cached inode.
24 *
25 * In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
26 * client is allowed to change inode attributes (e.g., file size,
27 * mtime), note its dirty state in the ceph_cap, and asynchronously
28 * flush that metadata change to the MDS.
29 *
30 * In the event of a conflicting operation (perhaps by another
31 * client), the MDS will revoke the conflicting client capabilities.
32 *
33 * In order for a client to cache an inode, it must hold a capability
34 * with at least one MDS server. When inodes are released, release
35 * notifications are batched and periodically sent en masse to the MDS
36 * cluster to release server state.
37 */
38
39
40/*
41 * Generate readable cap strings for debugging output.
42 */
43#define MAX_CAP_STR 20
44static char cap_str[MAX_CAP_STR][40];
45static DEFINE_SPINLOCK(cap_str_lock);
46static int last_cap_str;
47
48static char *gcap_string(char *s, int c)
49{
50 if (c & CEPH_CAP_GSHARED)
51 *s++ = 's';
52 if (c & CEPH_CAP_GEXCL)
53 *s++ = 'x';
54 if (c & CEPH_CAP_GCACHE)
55 *s++ = 'c';
56 if (c & CEPH_CAP_GRD)
57 *s++ = 'r';
58 if (c & CEPH_CAP_GWR)
59 *s++ = 'w';
60 if (c & CEPH_CAP_GBUFFER)
61 *s++ = 'b';
62 if (c & CEPH_CAP_GLAZYIO)
63 *s++ = 'l';
64 return s;
65}
66
67const char *ceph_cap_string(int caps)
68{
69 int i;
70 char *s;
71 int c;
72
73 spin_lock(&cap_str_lock);
74 i = last_cap_str++;
75 if (last_cap_str == MAX_CAP_STR)
76 last_cap_str = 0;
77 spin_unlock(&cap_str_lock);
78
79 s = cap_str[i];
80
81 if (caps & CEPH_CAP_PIN)
82 *s++ = 'p';
83
84 c = (caps >> CEPH_CAP_SAUTH) & 3;
85 if (c) {
86 *s++ = 'A';
87 s = gcap_string(s, c);
88 }
89
90 c = (caps >> CEPH_CAP_SLINK) & 3;
91 if (c) {
92 *s++ = 'L';
93 s = gcap_string(s, c);
94 }
95
96 c = (caps >> CEPH_CAP_SXATTR) & 3;
97 if (c) {
98 *s++ = 'X';
99 s = gcap_string(s, c);
100 }
101
102 c = caps >> CEPH_CAP_SFILE;
103 if (c) {
104 *s++ = 'F';
105 s = gcap_string(s, c);
106 }
107
108 if (s == cap_str[i])
109 *s++ = '-';
110 *s = 0;
111 return cap_str[i];
112}
113
114/*
115 * Cap reservations
116 *
117 * Maintain a global pool of preallocated struct ceph_caps, referenced
118 * by struct ceph_caps_reservations. This ensures that we preallocate
119 * memory needed to successfully process an MDS response. (If an MDS
120 * sends us cap information and we fail to process it, we will have
121 * problems due to the client and MDS being out of sync.)
122 *
123 * Reservations are 'owned' by a ceph_cap_reservation context.
124 */
125static spinlock_t caps_list_lock;
126static struct list_head caps_list; /* unused (reserved or unreserved) */
127static int caps_total_count; /* total caps allocated */
128static int caps_use_count; /* in use */
129static int caps_reserve_count; /* unused, reserved */
130static int caps_avail_count; /* unused, unreserved */
131
132void __init ceph_caps_init(void)
133{
134 INIT_LIST_HEAD(&caps_list);
135 spin_lock_init(&caps_list_lock);
136}
137
138void ceph_caps_finalize(void)
139{
140 struct ceph_cap *cap;
141
142 spin_lock(&caps_list_lock);
143 while (!list_empty(&caps_list)) {
144 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
145 list_del(&cap->caps_item);
146 kmem_cache_free(ceph_cap_cachep, cap);
147 }
148 caps_total_count = 0;
149 caps_avail_count = 0;
150 caps_use_count = 0;
151 caps_reserve_count = 0;
152 spin_unlock(&caps_list_lock);
153}
154
155int ceph_reserve_caps(struct ceph_cap_reservation *ctx, int need)
156{
157 int i;
158 struct ceph_cap *cap;
159 int have;
160 int alloc = 0;
161 LIST_HEAD(newcaps);
162 int ret = 0;
163
164 dout("reserve caps ctx=%p need=%d\n", ctx, need);
165
166 /* first reserve any caps that are already allocated */
167 spin_lock(&caps_list_lock);
168 if (caps_avail_count >= need)
169 have = need;
170 else
171 have = caps_avail_count;
172 caps_avail_count -= have;
173 caps_reserve_count += have;
174 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
175 caps_avail_count);
176 spin_unlock(&caps_list_lock);
177
178 for (i = have; i < need; i++) {
179 cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
180 if (!cap) {
181 ret = -ENOMEM;
182 goto out_alloc_count;
183 }
184 list_add(&cap->caps_item, &newcaps);
185 alloc++;
186 }
187 BUG_ON(have + alloc != need);
188
189 spin_lock(&caps_list_lock);
190 caps_total_count += alloc;
191 caps_reserve_count += alloc;
192 list_splice(&newcaps, &caps_list);
193
194 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
195 caps_avail_count);
196 spin_unlock(&caps_list_lock);
197
198 ctx->count = need;
199 dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
200 ctx, caps_total_count, caps_use_count, caps_reserve_count,
201 caps_avail_count);
202 return 0;
203
204out_alloc_count:
205 /* we didn't manage to reserve as much as we needed */
206 pr_warning("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
207 ctx, need, have);
208 return ret;
209}
210
211int ceph_unreserve_caps(struct ceph_cap_reservation *ctx)
212{
213 dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
214 if (ctx->count) {
215 spin_lock(&caps_list_lock);
216 BUG_ON(caps_reserve_count < ctx->count);
217 caps_reserve_count -= ctx->count;
218 caps_avail_count += ctx->count;
219 ctx->count = 0;
220 dout("unreserve caps %d = %d used + %d resv + %d avail\n",
221 caps_total_count, caps_use_count, caps_reserve_count,
222 caps_avail_count);
223 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
224 caps_avail_count);
225 spin_unlock(&caps_list_lock);
226 }
227 return 0;
228}
229
230static struct ceph_cap *get_cap(struct ceph_cap_reservation *ctx)
231{
232 struct ceph_cap *cap = NULL;
233
234 /* temporary, until we do something about cap import/export */
235 if (!ctx)
236 return kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
237
238 spin_lock(&caps_list_lock);
239 dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
240 ctx, ctx->count, caps_total_count, caps_use_count,
241 caps_reserve_count, caps_avail_count);
242 BUG_ON(!ctx->count);
243 BUG_ON(ctx->count > caps_reserve_count);
244 BUG_ON(list_empty(&caps_list));
245
246 ctx->count--;
247 caps_reserve_count--;
248 caps_use_count++;
249
250 cap = list_first_entry(&caps_list, struct ceph_cap, caps_item);
251 list_del(&cap->caps_item);
252
253 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
254 caps_avail_count);
255 spin_unlock(&caps_list_lock);
256 return cap;
257}
258
259static void put_cap(struct ceph_cap *cap,
260 struct ceph_cap_reservation *ctx)
261{
262 spin_lock(&caps_list_lock);
263 dout("put_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
264 ctx, ctx ? ctx->count : 0, caps_total_count, caps_use_count,
265 caps_reserve_count, caps_avail_count);
266 caps_use_count--;
267 /*
268 * Keep some preallocated caps around, at least enough to do a
269 * readdir (which needs to preallocate lots of them), to avoid
270 * lots of free/alloc churn.
271 */
272 if (caps_avail_count >= caps_reserve_count +
6b805185 273 ceph_client(cap->ci->vfs_inode.i_sb)->mount_args->max_readdir) {
a8599bd8
SW
274 caps_total_count--;
275 kmem_cache_free(ceph_cap_cachep, cap);
276 } else {
277 if (ctx) {
278 ctx->count++;
279 caps_reserve_count++;
280 } else {
281 caps_avail_count++;
282 }
283 list_add(&cap->caps_item, &caps_list);
284 }
285
286 BUG_ON(caps_total_count != caps_use_count + caps_reserve_count +
287 caps_avail_count);
288 spin_unlock(&caps_list_lock);
289}
290
291void ceph_reservation_status(struct ceph_client *client,
292 int *total, int *avail, int *used, int *reserved)
293{
294 if (total)
295 *total = caps_total_count;
296 if (avail)
297 *avail = caps_avail_count;
298 if (used)
299 *used = caps_use_count;
300 if (reserved)
301 *reserved = caps_reserve_count;
302}
303
304/*
305 * Find ceph_cap for given mds, if any.
306 *
307 * Called with i_lock held.
308 */
309static struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
310{
311 struct ceph_cap *cap;
312 struct rb_node *n = ci->i_caps.rb_node;
313
314 while (n) {
315 cap = rb_entry(n, struct ceph_cap, ci_node);
316 if (mds < cap->mds)
317 n = n->rb_left;
318 else if (mds > cap->mds)
319 n = n->rb_right;
320 else
321 return cap;
322 }
323 return NULL;
324}
325
326/*
327 * Return id of any MDS with a cap, preferably FILE_WR|WRBUFFER|EXCL, else
328 * -1.
329 */
330static int __ceph_get_cap_mds(struct ceph_inode_info *ci, u32 *mseq)
331{
332 struct ceph_cap *cap;
333 int mds = -1;
334 struct rb_node *p;
335
336 /* prefer mds with WR|WRBUFFER|EXCL caps */
337 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
338 cap = rb_entry(p, struct ceph_cap, ci_node);
339 mds = cap->mds;
340 if (mseq)
341 *mseq = cap->mseq;
342 if (cap->issued & (CEPH_CAP_FILE_WR |
343 CEPH_CAP_FILE_BUFFER |
344 CEPH_CAP_FILE_EXCL))
345 break;
346 }
347 return mds;
348}
349
350int ceph_get_cap_mds(struct inode *inode)
351{
352 int mds;
353 spin_lock(&inode->i_lock);
354 mds = __ceph_get_cap_mds(ceph_inode(inode), NULL);
355 spin_unlock(&inode->i_lock);
356 return mds;
357}
358
359/*
360 * Called under i_lock.
361 */
362static void __insert_cap_node(struct ceph_inode_info *ci,
363 struct ceph_cap *new)
364{
365 struct rb_node **p = &ci->i_caps.rb_node;
366 struct rb_node *parent = NULL;
367 struct ceph_cap *cap = NULL;
368
369 while (*p) {
370 parent = *p;
371 cap = rb_entry(parent, struct ceph_cap, ci_node);
372 if (new->mds < cap->mds)
373 p = &(*p)->rb_left;
374 else if (new->mds > cap->mds)
375 p = &(*p)->rb_right;
376 else
377 BUG();
378 }
379
380 rb_link_node(&new->ci_node, parent, p);
381 rb_insert_color(&new->ci_node, &ci->i_caps);
382}
383
384/*
385 * (re)set cap hold timeouts, which control the delayed release
386 * of unused caps back to the MDS. Should be called on cap use.
387 */
388static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
389 struct ceph_inode_info *ci)
390{
6b805185 391 struct ceph_mount_args *ma = mdsc->client->mount_args;
a8599bd8
SW
392
393 ci->i_hold_caps_min = round_jiffies(jiffies +
394 ma->caps_wanted_delay_min * HZ);
395 ci->i_hold_caps_max = round_jiffies(jiffies +
396 ma->caps_wanted_delay_max * HZ);
397 dout("__cap_set_timeouts %p min %lu max %lu\n", &ci->vfs_inode,
398 ci->i_hold_caps_min - jiffies, ci->i_hold_caps_max - jiffies);
399}
400
401/*
402 * (Re)queue cap at the end of the delayed cap release list.
403 *
404 * If I_FLUSH is set, leave the inode at the front of the list.
405 *
406 * Caller holds i_lock
407 * -> we take mdsc->cap_delay_lock
408 */
409static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
410 struct ceph_inode_info *ci)
411{
412 __cap_set_timeouts(mdsc, ci);
413 dout("__cap_delay_requeue %p flags %d at %lu\n", &ci->vfs_inode,
414 ci->i_ceph_flags, ci->i_hold_caps_max);
415 if (!mdsc->stopping) {
416 spin_lock(&mdsc->cap_delay_lock);
417 if (!list_empty(&ci->i_cap_delay_list)) {
418 if (ci->i_ceph_flags & CEPH_I_FLUSH)
419 goto no_change;
420 list_del_init(&ci->i_cap_delay_list);
421 }
422 list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
423no_change:
424 spin_unlock(&mdsc->cap_delay_lock);
425 }
426}
427
428/*
429 * Queue an inode for immediate writeback. Mark inode with I_FLUSH,
430 * indicating we should send a cap message to flush dirty metadata
431 * asap, and move to the front of the delayed cap list.
432 */
433static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
434 struct ceph_inode_info *ci)
435{
436 dout("__cap_delay_requeue_front %p\n", &ci->vfs_inode);
437 spin_lock(&mdsc->cap_delay_lock);
438 ci->i_ceph_flags |= CEPH_I_FLUSH;
439 if (!list_empty(&ci->i_cap_delay_list))
440 list_del_init(&ci->i_cap_delay_list);
441 list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
442 spin_unlock(&mdsc->cap_delay_lock);
443}
444
445/*
446 * Cancel delayed work on cap.
447 *
448 * Caller must hold i_lock.
449 */
450static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
451 struct ceph_inode_info *ci)
452{
453 dout("__cap_delay_cancel %p\n", &ci->vfs_inode);
454 if (list_empty(&ci->i_cap_delay_list))
455 return;
456 spin_lock(&mdsc->cap_delay_lock);
457 list_del_init(&ci->i_cap_delay_list);
458 spin_unlock(&mdsc->cap_delay_lock);
459}
460
461/*
462 * Common issue checks for add_cap, handle_cap_grant.
463 */
464static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
465 unsigned issued)
466{
467 unsigned had = __ceph_caps_issued(ci, NULL);
468
469 /*
470 * Each time we receive FILE_CACHE anew, we increment
471 * i_rdcache_gen.
472 */
473 if ((issued & CEPH_CAP_FILE_CACHE) &&
474 (had & CEPH_CAP_FILE_CACHE) == 0)
475 ci->i_rdcache_gen++;
476
477 /*
478 * if we are newly issued FILE_SHARED, clear I_COMPLETE; we
479 * don't know what happened to this directory while we didn't
480 * have the cap.
481 */
482 if ((issued & CEPH_CAP_FILE_SHARED) &&
483 (had & CEPH_CAP_FILE_SHARED) == 0) {
484 ci->i_shared_gen++;
485 if (S_ISDIR(ci->vfs_inode.i_mode)) {
486 dout(" marking %p NOT complete\n", &ci->vfs_inode);
487 ci->i_ceph_flags &= ~CEPH_I_COMPLETE;
488 }
489 }
490}
491
492/*
493 * Add a capability under the given MDS session.
494 *
495 * Caller should hold session snap_rwsem (read) and s_mutex.
496 *
497 * @fmode is the open file mode, if we are opening a file, otherwise
498 * it is < 0. (This is so we can atomically add the cap and add an
499 * open file reference to it.)
500 */
501int ceph_add_cap(struct inode *inode,
502 struct ceph_mds_session *session, u64 cap_id,
503 int fmode, unsigned issued, unsigned wanted,
504 unsigned seq, unsigned mseq, u64 realmino, int flags,
505 struct ceph_cap_reservation *caps_reservation)
506{
507 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
508 struct ceph_inode_info *ci = ceph_inode(inode);
509 struct ceph_cap *new_cap = NULL;
510 struct ceph_cap *cap;
511 int mds = session->s_mds;
512 int actual_wanted;
513
514 dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
515 session->s_mds, cap_id, ceph_cap_string(issued), seq);
516
517 /*
518 * If we are opening the file, include file mode wanted bits
519 * in wanted.
520 */
521 if (fmode >= 0)
522 wanted |= ceph_caps_for_mode(fmode);
523
524retry:
525 spin_lock(&inode->i_lock);
526 cap = __get_cap_for_mds(ci, mds);
527 if (!cap) {
528 if (new_cap) {
529 cap = new_cap;
530 new_cap = NULL;
531 } else {
532 spin_unlock(&inode->i_lock);
533 new_cap = get_cap(caps_reservation);
534 if (new_cap == NULL)
535 return -ENOMEM;
536 goto retry;
537 }
538
539 cap->issued = 0;
540 cap->implemented = 0;
541 cap->mds = mds;
542 cap->mds_wanted = 0;
543
544 cap->ci = ci;
545 __insert_cap_node(ci, cap);
546
547 /* clear out old exporting info? (i.e. on cap import) */
548 if (ci->i_cap_exporting_mds == mds) {
549 ci->i_cap_exporting_issued = 0;
550 ci->i_cap_exporting_mseq = 0;
551 ci->i_cap_exporting_mds = -1;
552 }
553
554 /* add to session cap list */
555 cap->session = session;
556 spin_lock(&session->s_cap_lock);
557 list_add_tail(&cap->session_caps, &session->s_caps);
558 session->s_nr_caps++;
559 spin_unlock(&session->s_cap_lock);
560 }
561
562 if (!ci->i_snap_realm) {
563 /*
564 * add this inode to the appropriate snap realm
565 */
566 struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
567 realmino);
568 if (realm) {
569 ceph_get_snap_realm(mdsc, realm);
570 spin_lock(&realm->inodes_with_caps_lock);
571 ci->i_snap_realm = realm;
572 list_add(&ci->i_snap_realm_item,
573 &realm->inodes_with_caps);
574 spin_unlock(&realm->inodes_with_caps_lock);
575 } else {
576 pr_err("ceph_add_cap: couldn't find snap realm %llx\n",
577 realmino);
578 }
579 }
580
581 __check_cap_issue(ci, cap, issued);
582
583 /*
584 * If we are issued caps we don't want, or the mds' wanted
585 * value appears to be off, queue a check so we'll release
586 * later and/or update the mds wanted value.
587 */
588 actual_wanted = __ceph_caps_wanted(ci);
589 if ((wanted & ~actual_wanted) ||
590 (issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
591 dout(" issued %s, mds wanted %s, actual %s, queueing\n",
592 ceph_cap_string(issued), ceph_cap_string(wanted),
593 ceph_cap_string(actual_wanted));
594 __cap_delay_requeue(mdsc, ci);
595 }
596
597 if (flags & CEPH_CAP_FLAG_AUTH)
598 ci->i_auth_cap = cap;
599 else if (ci->i_auth_cap == cap)
600 ci->i_auth_cap = NULL;
601
602 dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
603 inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
604 ceph_cap_string(issued|cap->issued), seq, mds);
605 cap->cap_id = cap_id;
606 cap->issued = issued;
607 cap->implemented |= issued;
608 cap->mds_wanted |= wanted;
609 cap->seq = seq;
610 cap->issue_seq = seq;
611 cap->mseq = mseq;
685f9a5d 612 cap->cap_gen = session->s_cap_gen;
a8599bd8
SW
613
614 if (fmode >= 0)
615 __ceph_get_fmode(ci, fmode);
616 spin_unlock(&inode->i_lock);
617 wake_up(&ci->i_cap_wq);
618 return 0;
619}
620
621/*
622 * Return true if cap has not timed out and belongs to the current
623 * generation of the MDS session (i.e. has not gone 'stale' due to
624 * us losing touch with the mds).
625 */
626static int __cap_is_valid(struct ceph_cap *cap)
627{
628 unsigned long ttl;
cdac8303 629 u32 gen;
a8599bd8
SW
630
631 spin_lock(&cap->session->s_cap_lock);
632 gen = cap->session->s_cap_gen;
633 ttl = cap->session->s_cap_ttl;
634 spin_unlock(&cap->session->s_cap_lock);
635
685f9a5d 636 if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
a8599bd8
SW
637 dout("__cap_is_valid %p cap %p issued %s "
638 "but STALE (gen %u vs %u)\n", &cap->ci->vfs_inode,
685f9a5d 639 cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
a8599bd8
SW
640 return 0;
641 }
642
643 return 1;
644}
645
646/*
647 * Return set of valid cap bits issued to us. Note that caps time
648 * out, and may be invalidated in bulk if the client session times out
649 * and session->s_cap_gen is bumped.
650 */
651int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
652{
653 int have = ci->i_snap_caps;
654 struct ceph_cap *cap;
655 struct rb_node *p;
656
657 if (implemented)
658 *implemented = 0;
659 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
660 cap = rb_entry(p, struct ceph_cap, ci_node);
661 if (!__cap_is_valid(cap))
662 continue;
663 dout("__ceph_caps_issued %p cap %p issued %s\n",
664 &ci->vfs_inode, cap, ceph_cap_string(cap->issued));
665 have |= cap->issued;
666 if (implemented)
667 *implemented |= cap->implemented;
668 }
669 return have;
670}
671
672/*
673 * Get cap bits issued by caps other than @ocap
674 */
675int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
676{
677 int have = ci->i_snap_caps;
678 struct ceph_cap *cap;
679 struct rb_node *p;
680
681 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
682 cap = rb_entry(p, struct ceph_cap, ci_node);
683 if (cap == ocap)
684 continue;
685 if (!__cap_is_valid(cap))
686 continue;
687 have |= cap->issued;
688 }
689 return have;
690}
691
692/*
693 * Move a cap to the end of the LRU (oldest caps at list head, newest
694 * at list tail).
695 */
696static void __touch_cap(struct ceph_cap *cap)
697{
698 struct ceph_mds_session *s = cap->session;
699
a8599bd8 700 spin_lock(&s->s_cap_lock);
5dacf091
SW
701 if (!s->s_iterating_caps) {
702 dout("__touch_cap %p cap %p mds%d\n", &cap->ci->vfs_inode, cap,
703 s->s_mds);
704 list_move_tail(&cap->session_caps, &s->s_caps);
705 } else {
706 dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
707 &cap->ci->vfs_inode, cap, s->s_mds);
708 }
a8599bd8
SW
709 spin_unlock(&s->s_cap_lock);
710}
711
712/*
713 * Check if we hold the given mask. If so, move the cap(s) to the
714 * front of their respective LRUs. (This is the preferred way for
715 * callers to check for caps they want.)
716 */
717int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
718{
719 struct ceph_cap *cap;
720 struct rb_node *p;
721 int have = ci->i_snap_caps;
722
723 if ((have & mask) == mask) {
724 dout("__ceph_caps_issued_mask %p snap issued %s"
725 " (mask %s)\n", &ci->vfs_inode,
726 ceph_cap_string(have),
727 ceph_cap_string(mask));
728 return 1;
729 }
730
731 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
732 cap = rb_entry(p, struct ceph_cap, ci_node);
733 if (!__cap_is_valid(cap))
734 continue;
735 if ((cap->issued & mask) == mask) {
736 dout("__ceph_caps_issued_mask %p cap %p issued %s"
737 " (mask %s)\n", &ci->vfs_inode, cap,
738 ceph_cap_string(cap->issued),
739 ceph_cap_string(mask));
740 if (touch)
741 __touch_cap(cap);
742 return 1;
743 }
744
745 /* does a combination of caps satisfy mask? */
746 have |= cap->issued;
747 if ((have & mask) == mask) {
748 dout("__ceph_caps_issued_mask %p combo issued %s"
749 " (mask %s)\n", &ci->vfs_inode,
750 ceph_cap_string(cap->issued),
751 ceph_cap_string(mask));
752 if (touch) {
753 struct rb_node *q;
754
755 /* touch this + preceeding caps */
756 __touch_cap(cap);
757 for (q = rb_first(&ci->i_caps); q != p;
758 q = rb_next(q)) {
759 cap = rb_entry(q, struct ceph_cap,
760 ci_node);
761 if (!__cap_is_valid(cap))
762 continue;
763 __touch_cap(cap);
764 }
765 }
766 return 1;
767 }
768 }
769
770 return 0;
771}
772
773/*
774 * Return true if mask caps are currently being revoked by an MDS.
775 */
776int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
777{
778 struct inode *inode = &ci->vfs_inode;
779 struct ceph_cap *cap;
780 struct rb_node *p;
781 int ret = 0;
782
783 spin_lock(&inode->i_lock);
784 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
785 cap = rb_entry(p, struct ceph_cap, ci_node);
786 if (__cap_is_valid(cap) &&
787 (cap->implemented & ~cap->issued & mask)) {
788 ret = 1;
789 break;
790 }
791 }
792 spin_unlock(&inode->i_lock);
793 dout("ceph_caps_revoking %p %s = %d\n", inode,
794 ceph_cap_string(mask), ret);
795 return ret;
796}
797
798int __ceph_caps_used(struct ceph_inode_info *ci)
799{
800 int used = 0;
801 if (ci->i_pin_ref)
802 used |= CEPH_CAP_PIN;
803 if (ci->i_rd_ref)
804 used |= CEPH_CAP_FILE_RD;
805 if (ci->i_rdcache_ref || ci->i_rdcache_gen)
806 used |= CEPH_CAP_FILE_CACHE;
807 if (ci->i_wr_ref)
808 used |= CEPH_CAP_FILE_WR;
809 if (ci->i_wrbuffer_ref)
810 used |= CEPH_CAP_FILE_BUFFER;
811 return used;
812}
813
814/*
815 * wanted, by virtue of open file modes
816 */
817int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
818{
819 int want = 0;
820 int mode;
821 for (mode = 0; mode < 4; mode++)
822 if (ci->i_nr_by_mode[mode])
823 want |= ceph_caps_for_mode(mode);
824 return want;
825}
826
827/*
828 * Return caps we have registered with the MDS(s) as 'wanted'.
829 */
830int __ceph_caps_mds_wanted(struct ceph_inode_info *ci)
831{
832 struct ceph_cap *cap;
833 struct rb_node *p;
834 int mds_wanted = 0;
835
836 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
837 cap = rb_entry(p, struct ceph_cap, ci_node);
838 if (!__cap_is_valid(cap))
839 continue;
840 mds_wanted |= cap->mds_wanted;
841 }
842 return mds_wanted;
843}
844
845/*
846 * called under i_lock
847 */
848static int __ceph_is_any_caps(struct ceph_inode_info *ci)
849{
850 return !RB_EMPTY_ROOT(&ci->i_caps) || ci->i_cap_exporting_mds >= 0;
851}
852
853/*
854 * caller should hold i_lock, and session s_mutex.
855 * returns true if this is the last cap. if so, caller should iput.
856 */
857void __ceph_remove_cap(struct ceph_cap *cap,
858 struct ceph_cap_reservation *ctx)
859{
860 struct ceph_mds_session *session = cap->session;
861 struct ceph_inode_info *ci = cap->ci;
862 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
863
864 dout("__ceph_remove_cap %p from %p\n", cap, &ci->vfs_inode);
865
866 /* remove from session list */
867 spin_lock(&session->s_cap_lock);
868 list_del_init(&cap->session_caps);
869 session->s_nr_caps--;
870 spin_unlock(&session->s_cap_lock);
871
872 /* remove from inode list */
873 rb_erase(&cap->ci_node, &ci->i_caps);
874 cap->session = NULL;
875 if (ci->i_auth_cap == cap)
876 ci->i_auth_cap = NULL;
877
878 put_cap(cap, ctx);
879
880 if (!__ceph_is_any_caps(ci) && ci->i_snap_realm) {
881 struct ceph_snap_realm *realm = ci->i_snap_realm;
882 spin_lock(&realm->inodes_with_caps_lock);
883 list_del_init(&ci->i_snap_realm_item);
884 ci->i_snap_realm_counter++;
885 ci->i_snap_realm = NULL;
886 spin_unlock(&realm->inodes_with_caps_lock);
887 ceph_put_snap_realm(mdsc, realm);
888 }
889 if (!__ceph_is_any_real_caps(ci))
890 __cap_delay_cancel(mdsc, ci);
891}
892
893/*
894 * Build and send a cap message to the given MDS.
895 *
896 * Caller should be holding s_mutex.
897 */
898static int send_cap_msg(struct ceph_mds_session *session,
899 u64 ino, u64 cid, int op,
900 int caps, int wanted, int dirty,
901 u32 seq, u64 flush_tid, u32 issue_seq, u32 mseq,
902 u64 size, u64 max_size,
903 struct timespec *mtime, struct timespec *atime,
904 u64 time_warp_seq,
905 uid_t uid, gid_t gid, mode_t mode,
906 u64 xattr_version,
907 struct ceph_buffer *xattrs_buf,
908 u64 follows)
909{
910 struct ceph_mds_caps *fc;
911 struct ceph_msg *msg;
912
913 dout("send_cap_msg %s %llx %llx caps %s wanted %s dirty %s"
914 " seq %u/%u mseq %u follows %lld size %llu/%llu"
915 " xattr_ver %llu xattr_len %d\n", ceph_cap_op_name(op),
916 cid, ino, ceph_cap_string(caps), ceph_cap_string(wanted),
917 ceph_cap_string(dirty),
918 seq, issue_seq, mseq, follows, size, max_size,
919 xattr_version, xattrs_buf ? (int)xattrs_buf->vec.iov_len : 0);
920
921 msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, sizeof(*fc), 0, 0, NULL);
922 if (IS_ERR(msg))
923 return PTR_ERR(msg);
924
6df058c0 925 msg->hdr.tid = cpu_to_le64(flush_tid);
a8599bd8 926
6df058c0 927 fc = msg->front.iov_base;
a8599bd8
SW
928 memset(fc, 0, sizeof(*fc));
929
930 fc->cap_id = cpu_to_le64(cid);
931 fc->op = cpu_to_le32(op);
932 fc->seq = cpu_to_le32(seq);
a8599bd8
SW
933 fc->issue_seq = cpu_to_le32(issue_seq);
934 fc->migrate_seq = cpu_to_le32(mseq);
935 fc->caps = cpu_to_le32(caps);
936 fc->wanted = cpu_to_le32(wanted);
937 fc->dirty = cpu_to_le32(dirty);
938 fc->ino = cpu_to_le64(ino);
939 fc->snap_follows = cpu_to_le64(follows);
940
941 fc->size = cpu_to_le64(size);
942 fc->max_size = cpu_to_le64(max_size);
943 if (mtime)
944 ceph_encode_timespec(&fc->mtime, mtime);
945 if (atime)
946 ceph_encode_timespec(&fc->atime, atime);
947 fc->time_warp_seq = cpu_to_le32(time_warp_seq);
948
949 fc->uid = cpu_to_le32(uid);
950 fc->gid = cpu_to_le32(gid);
951 fc->mode = cpu_to_le32(mode);
952
953 fc->xattr_version = cpu_to_le64(xattr_version);
954 if (xattrs_buf) {
955 msg->middle = ceph_buffer_get(xattrs_buf);
956 fc->xattr_len = cpu_to_le32(xattrs_buf->vec.iov_len);
957 msg->hdr.middle_len = cpu_to_le32(xattrs_buf->vec.iov_len);
958 }
959
960 ceph_con_send(&session->s_con, msg);
961 return 0;
962}
963
964/*
965 * Queue cap releases when an inode is dropped from our
966 * cache.
967 */
968void ceph_queue_caps_release(struct inode *inode)
969{
970 struct ceph_inode_info *ci = ceph_inode(inode);
971 struct rb_node *p;
972
973 spin_lock(&inode->i_lock);
974 p = rb_first(&ci->i_caps);
975 while (p) {
976 struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
977 struct ceph_mds_session *session = cap->session;
978 struct ceph_msg *msg;
979 struct ceph_mds_cap_release *head;
980 struct ceph_mds_cap_item *item;
981
982 spin_lock(&session->s_cap_lock);
983 BUG_ON(!session->s_num_cap_releases);
984 msg = list_first_entry(&session->s_cap_releases,
985 struct ceph_msg, list_head);
986
987 dout(" adding %p release to mds%d msg %p (%d left)\n",
988 inode, session->s_mds, msg, session->s_num_cap_releases);
989
990 BUG_ON(msg->front.iov_len + sizeof(*item) > PAGE_CACHE_SIZE);
991 head = msg->front.iov_base;
992 head->num = cpu_to_le32(le32_to_cpu(head->num) + 1);
993 item = msg->front.iov_base + msg->front.iov_len;
994 item->ino = cpu_to_le64(ceph_ino(inode));
995 item->cap_id = cpu_to_le64(cap->cap_id);
996 item->migrate_seq = cpu_to_le32(cap->mseq);
997 item->seq = cpu_to_le32(cap->issue_seq);
998
999 session->s_num_cap_releases--;
1000
1001 msg->front.iov_len += sizeof(*item);
1002 if (le32_to_cpu(head->num) == CEPH_CAPS_PER_RELEASE) {
1003 dout(" release msg %p full\n", msg);
1004 list_move_tail(&msg->list_head,
afcdaea3 1005 &session->s_cap_releases_done);
a8599bd8
SW
1006 } else {
1007 dout(" release msg %p at %d/%d (%d)\n", msg,
1008 (int)le32_to_cpu(head->num),
1009 (int)CEPH_CAPS_PER_RELEASE,
1010 (int)msg->front.iov_len);
1011 }
1012 spin_unlock(&session->s_cap_lock);
1013 p = rb_next(p);
1014 __ceph_remove_cap(cap, NULL);
1015
1016 }
1017 spin_unlock(&inode->i_lock);
1018}
1019
1020/*
1021 * Send a cap msg on the given inode. Update our caps state, then
1022 * drop i_lock and send the message.
1023 *
1024 * Make note of max_size reported/requested from mds, revoked caps
1025 * that have now been implemented.
1026 *
1027 * Make half-hearted attempt ot to invalidate page cache if we are
1028 * dropping RDCACHE. Note that this will leave behind locked pages
1029 * that we'll then need to deal with elsewhere.
1030 *
1031 * Return non-zero if delayed release, or we experienced an error
1032 * such that the caller should requeue + retry later.
1033 *
1034 * called with i_lock, then drops it.
1035 * caller should hold snap_rwsem (read), s_mutex.
1036 */
1037static int __send_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap,
1038 int op, int used, int want, int retain, int flushing,
1039 unsigned *pflush_tid)
1040 __releases(cap->ci->vfs_inode->i_lock)
1041{
1042 struct ceph_inode_info *ci = cap->ci;
1043 struct inode *inode = &ci->vfs_inode;
1044 u64 cap_id = cap->cap_id;
1045 int held = cap->issued | cap->implemented;
1046 int revoking = cap->implemented & ~cap->issued;
1047 int dropping = cap->issued & ~retain;
1048 int keep;
1049 u64 seq, issue_seq, mseq, time_warp_seq, follows;
1050 u64 size, max_size;
1051 struct timespec mtime, atime;
1052 int wake = 0;
1053 mode_t mode;
1054 uid_t uid;
1055 gid_t gid;
1056 struct ceph_mds_session *session;
1057 u64 xattr_version = 0;
1058 int delayed = 0;
1059 u64 flush_tid = 0;
1060 int i;
1061 int ret;
1062
1063 dout("__send_cap %p cap %p session %p %s -> %s (revoking %s)\n",
1064 inode, cap, cap->session,
1065 ceph_cap_string(held), ceph_cap_string(held & retain),
1066 ceph_cap_string(revoking));
1067 BUG_ON((retain & CEPH_CAP_PIN) == 0);
1068
1069 session = cap->session;
1070
1071 /* don't release wanted unless we've waited a bit. */
1072 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1073 time_before(jiffies, ci->i_hold_caps_min)) {
1074 dout(" delaying issued %s -> %s, wanted %s -> %s on send\n",
1075 ceph_cap_string(cap->issued),
1076 ceph_cap_string(cap->issued & retain),
1077 ceph_cap_string(cap->mds_wanted),
1078 ceph_cap_string(want));
1079 want |= cap->mds_wanted;
1080 retain |= cap->issued;
1081 delayed = 1;
1082 }
1083 ci->i_ceph_flags &= ~(CEPH_I_NODELAY | CEPH_I_FLUSH);
1084
1085 cap->issued &= retain; /* drop bits we don't want */
1086 if (cap->implemented & ~cap->issued) {
1087 /*
1088 * Wake up any waiters on wanted -> needed transition.
1089 * This is due to the weird transition from buffered
1090 * to sync IO... we need to flush dirty pages _before_
1091 * allowing sync writes to avoid reordering.
1092 */
1093 wake = 1;
1094 }
1095 cap->implemented &= cap->issued | used;
1096 cap->mds_wanted = want;
1097
1098 if (flushing) {
1099 /*
1100 * assign a tid for flush operations so we can avoid
1101 * flush1 -> dirty1 -> flush2 -> flushack1 -> mark
1102 * clean type races. track latest tid for every bit
1103 * so we can handle flush AxFw, flush Fw, and have the
1104 * first ack clean Ax.
1105 */
1106 flush_tid = ++ci->i_cap_flush_last_tid;
1107 if (pflush_tid)
1108 *pflush_tid = flush_tid;
1109 dout(" cap_flush_tid %d\n", (int)flush_tid);
1110 for (i = 0; i < CEPH_CAP_BITS; i++)
1111 if (flushing & (1 << i))
1112 ci->i_cap_flush_tid[i] = flush_tid;
1113 }
1114
1115 keep = cap->implemented;
1116 seq = cap->seq;
1117 issue_seq = cap->issue_seq;
1118 mseq = cap->mseq;
1119 size = inode->i_size;
1120 ci->i_reported_size = size;
1121 max_size = ci->i_wanted_max_size;
1122 ci->i_requested_max_size = max_size;
1123 mtime = inode->i_mtime;
1124 atime = inode->i_atime;
1125 time_warp_seq = ci->i_time_warp_seq;
1126 follows = ci->i_snap_realm->cached_context->seq;
1127 uid = inode->i_uid;
1128 gid = inode->i_gid;
1129 mode = inode->i_mode;
1130
1131 if (dropping & CEPH_CAP_XATTR_EXCL) {
1132 __ceph_build_xattrs_blob(ci);
1133 xattr_version = ci->i_xattrs.version + 1;
1134 }
1135
1136 spin_unlock(&inode->i_lock);
1137
1138 if (dropping & CEPH_CAP_FILE_CACHE) {
1139 /* invalidate what we can */
1140 dout("invalidating pages on %p\n", inode);
1141 invalidate_mapping_pages(&inode->i_data, 0, -1);
1142 }
1143
1144 ret = send_cap_msg(session, ceph_vino(inode).ino, cap_id,
1145 op, keep, want, flushing, seq, flush_tid, issue_seq, mseq,
1146 size, max_size, &mtime, &atime, time_warp_seq,
1147 uid, gid, mode,
1148 xattr_version,
1149 (flushing & CEPH_CAP_XATTR_EXCL) ? ci->i_xattrs.blob : NULL,
1150 follows);
1151 if (ret < 0) {
1152 dout("error sending cap msg, must requeue %p\n", inode);
1153 delayed = 1;
1154 }
1155
1156 if (wake)
1157 wake_up(&ci->i_cap_wq);
1158
1159 return delayed;
1160}
1161
1162/*
1163 * When a snapshot is taken, clients accumulate dirty metadata on
1164 * inodes with capabilities in ceph_cap_snaps to describe the file
1165 * state at the time the snapshot was taken. This must be flushed
1166 * asynchronously back to the MDS once sync writes complete and dirty
1167 * data is written out.
1168 *
1169 * Called under i_lock. Takes s_mutex as needed.
1170 */
1171void __ceph_flush_snaps(struct ceph_inode_info *ci,
1172 struct ceph_mds_session **psession)
1173{
1174 struct inode *inode = &ci->vfs_inode;
1175 int mds;
1176 struct ceph_cap_snap *capsnap;
1177 u32 mseq;
1178 struct ceph_mds_client *mdsc = &ceph_inode_to_client(inode)->mdsc;
1179 struct ceph_mds_session *session = NULL; /* if session != NULL, we hold
1180 session->s_mutex */
1181 u64 next_follows = 0; /* keep track of how far we've gotten through the
1182 i_cap_snaps list, and skip these entries next time
1183 around to avoid an infinite loop */
1184
1185 if (psession)
1186 session = *psession;
1187
1188 dout("__flush_snaps %p\n", inode);
1189retry:
1190 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
1191 /* avoid an infiniute loop after retry */
1192 if (capsnap->follows < next_follows)
1193 continue;
1194 /*
1195 * we need to wait for sync writes to complete and for dirty
1196 * pages to be written out.
1197 */
1198 if (capsnap->dirty_pages || capsnap->writing)
1199 continue;
1200
1201 /* pick mds, take s_mutex */
1202 mds = __ceph_get_cap_mds(ci, &mseq);
1203 if (session && session->s_mds != mds) {
1204 dout("oops, wrong session %p mutex\n", session);
1205 mutex_unlock(&session->s_mutex);
1206 ceph_put_mds_session(session);
1207 session = NULL;
1208 }
1209 if (!session) {
1210 spin_unlock(&inode->i_lock);
1211 mutex_lock(&mdsc->mutex);
1212 session = __ceph_lookup_mds_session(mdsc, mds);
1213 mutex_unlock(&mdsc->mutex);
1214 if (session) {
1215 dout("inverting session/ino locks on %p\n",
1216 session);
1217 mutex_lock(&session->s_mutex);
1218 }
1219 /*
1220 * if session == NULL, we raced against a cap
1221 * deletion. retry, and we'll get a better
1222 * @mds value next time.
1223 */
1224 spin_lock(&inode->i_lock);
1225 goto retry;
1226 }
1227
1228 capsnap->flush_tid = ++ci->i_cap_flush_last_tid;
1229 atomic_inc(&capsnap->nref);
1230 if (!list_empty(&capsnap->flushing_item))
1231 list_del_init(&capsnap->flushing_item);
1232 list_add_tail(&capsnap->flushing_item,
1233 &session->s_cap_snaps_flushing);
1234 spin_unlock(&inode->i_lock);
1235
1236 dout("flush_snaps %p cap_snap %p follows %lld size %llu\n",
1237 inode, capsnap, next_follows, capsnap->size);
1238 send_cap_msg(session, ceph_vino(inode).ino, 0,
1239 CEPH_CAP_OP_FLUSHSNAP, capsnap->issued, 0,
1240 capsnap->dirty, 0, capsnap->flush_tid, 0, mseq,
1241 capsnap->size, 0,
1242 &capsnap->mtime, &capsnap->atime,
1243 capsnap->time_warp_seq,
1244 capsnap->uid, capsnap->gid, capsnap->mode,
1245 0, NULL,
1246 capsnap->follows);
1247
1248 next_follows = capsnap->follows + 1;
1249 ceph_put_cap_snap(capsnap);
1250
1251 spin_lock(&inode->i_lock);
1252 goto retry;
1253 }
1254
1255 /* we flushed them all; remove this inode from the queue */
1256 spin_lock(&mdsc->snap_flush_lock);
1257 list_del_init(&ci->i_snap_flush_item);
1258 spin_unlock(&mdsc->snap_flush_lock);
1259
1260 if (psession)
1261 *psession = session;
1262 else if (session) {
1263 mutex_unlock(&session->s_mutex);
1264 ceph_put_mds_session(session);
1265 }
1266}
1267
1268static void ceph_flush_snaps(struct ceph_inode_info *ci)
1269{
1270 struct inode *inode = &ci->vfs_inode;
1271
1272 spin_lock(&inode->i_lock);
1273 __ceph_flush_snaps(ci, NULL);
1274 spin_unlock(&inode->i_lock);
1275}
1276
76e3b390
SW
1277/*
1278 * Mark caps dirty. If inode is newly dirty, add to the global dirty
1279 * list.
1280 */
1281void __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask)
1282{
1283 struct ceph_mds_client *mdsc = &ceph_client(ci->vfs_inode.i_sb)->mdsc;
1284 struct inode *inode = &ci->vfs_inode;
1285 int was = ci->i_dirty_caps;
1286 int dirty = 0;
1287
1288 dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->vfs_inode,
1289 ceph_cap_string(mask), ceph_cap_string(was),
1290 ceph_cap_string(was | mask));
1291 ci->i_dirty_caps |= mask;
1292 if (was == 0) {
1293 dout(" inode %p now dirty\n", &ci->vfs_inode);
1294 BUG_ON(!list_empty(&ci->i_dirty_item));
1295 spin_lock(&mdsc->cap_dirty_lock);
1296 list_add(&ci->i_dirty_item, &mdsc->cap_dirty);
1297 spin_unlock(&mdsc->cap_dirty_lock);
1298 if (ci->i_flushing_caps == 0) {
1299 igrab(inode);
1300 dirty |= I_DIRTY_SYNC;
1301 }
1302 }
1303 BUG_ON(list_empty(&ci->i_dirty_item));
1304 if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
1305 (mask & CEPH_CAP_FILE_BUFFER))
1306 dirty |= I_DIRTY_DATASYNC;
1307 if (dirty)
1308 __mark_inode_dirty(inode, dirty);
1309 __cap_delay_requeue(mdsc, ci);
1310}
1311
a8599bd8
SW
1312/*
1313 * Add dirty inode to the flushing list. Assigned a seq number so we
1314 * can wait for caps to flush without starving.
cdc35f96
SW
1315 *
1316 * Called under i_lock.
a8599bd8 1317 */
cdc35f96 1318static int __mark_caps_flushing(struct inode *inode,
a8599bd8
SW
1319 struct ceph_mds_session *session)
1320{
1321 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1322 struct ceph_inode_info *ci = ceph_inode(inode);
cdc35f96 1323 int flushing;
50b885b9 1324
cdc35f96 1325 BUG_ON(ci->i_dirty_caps == 0);
a8599bd8 1326 BUG_ON(list_empty(&ci->i_dirty_item));
cdc35f96
SW
1327
1328 flushing = ci->i_dirty_caps;
1329 dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
1330 ceph_cap_string(flushing),
1331 ceph_cap_string(ci->i_flushing_caps),
1332 ceph_cap_string(ci->i_flushing_caps | flushing));
1333 ci->i_flushing_caps |= flushing;
1334 ci->i_dirty_caps = 0;
afcdaea3 1335 dout(" inode %p now !dirty\n", inode);
cdc35f96 1336
a8599bd8 1337 spin_lock(&mdsc->cap_dirty_lock);
afcdaea3
SW
1338 list_del_init(&ci->i_dirty_item);
1339
1340 ci->i_cap_flush_seq = ++mdsc->cap_flush_seq;
a8599bd8
SW
1341 if (list_empty(&ci->i_flushing_item)) {
1342 list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1343 mdsc->num_cap_flushing++;
afcdaea3
SW
1344 dout(" inode %p now flushing seq %lld\n", inode,
1345 ci->i_cap_flush_seq);
1346 } else {
1347 list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
1348 dout(" inode %p now flushing (more) seq %lld\n", inode,
a8599bd8
SW
1349 ci->i_cap_flush_seq);
1350 }
1351 spin_unlock(&mdsc->cap_dirty_lock);
cdc35f96
SW
1352
1353 return flushing;
a8599bd8
SW
1354}
1355
1356/*
1357 * Swiss army knife function to examine currently used and wanted
1358 * versus held caps. Release, flush, ack revoked caps to mds as
1359 * appropriate.
1360 *
1361 * CHECK_CAPS_NODELAY - caller is delayed work and we should not delay
1362 * cap release further.
1363 * CHECK_CAPS_AUTHONLY - we should only check the auth cap
1364 * CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
1365 * further delay.
1366 */
1367void ceph_check_caps(struct ceph_inode_info *ci, int flags,
1368 struct ceph_mds_session *session)
1369{
1370 struct ceph_client *client = ceph_inode_to_client(&ci->vfs_inode);
1371 struct ceph_mds_client *mdsc = &client->mdsc;
1372 struct inode *inode = &ci->vfs_inode;
1373 struct ceph_cap *cap;
1374 int file_wanted, used;
1375 int took_snap_rwsem = 0; /* true if mdsc->snap_rwsem held */
1376 int drop_session_lock = session ? 0 : 1;
cbd03635 1377 int issued, implemented, want, retain, revoking, flushing = 0;
a8599bd8
SW
1378 int mds = -1; /* keep track of how far we've gone through i_caps list
1379 to avoid an infinite loop on retry */
1380 struct rb_node *p;
1381 int tried_invalidate = 0;
1382 int delayed = 0, sent = 0, force_requeue = 0, num;
cbd03635 1383 int queue_invalidate = 0;
a8599bd8
SW
1384 int is_delayed = flags & CHECK_CAPS_NODELAY;
1385
1386 /* if we are unmounting, flush any unused caps immediately. */
1387 if (mdsc->stopping)
1388 is_delayed = 1;
1389
1390 spin_lock(&inode->i_lock);
1391
1392 if (ci->i_ceph_flags & CEPH_I_FLUSH)
1393 flags |= CHECK_CAPS_FLUSH;
1394
1395 /* flush snaps first time around only */
1396 if (!list_empty(&ci->i_cap_snaps))
1397 __ceph_flush_snaps(ci, &session);
1398 goto retry_locked;
1399retry:
1400 spin_lock(&inode->i_lock);
1401retry_locked:
1402 file_wanted = __ceph_caps_file_wanted(ci);
1403 used = __ceph_caps_used(ci);
1404 want = file_wanted | used;
cbd03635
SW
1405 issued = __ceph_caps_issued(ci, &implemented);
1406 revoking = implemented & ~issued;
a8599bd8
SW
1407
1408 retain = want | CEPH_CAP_PIN;
1409 if (!mdsc->stopping && inode->i_nlink > 0) {
1410 if (want) {
1411 retain |= CEPH_CAP_ANY; /* be greedy */
1412 } else {
1413 retain |= CEPH_CAP_ANY_SHARED;
1414 /*
1415 * keep RD only if we didn't have the file open RW,
1416 * because then the mds would revoke it anyway to
1417 * journal max_size=0.
1418 */
1419 if (ci->i_max_size == 0)
1420 retain |= CEPH_CAP_ANY_RD;
1421 }
1422 }
1423
1424 dout("check_caps %p file_want %s used %s dirty %s flushing %s"
cbd03635 1425 " issued %s revoking %s retain %s %s%s%s\n", inode,
a8599bd8
SW
1426 ceph_cap_string(file_wanted),
1427 ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
1428 ceph_cap_string(ci->i_flushing_caps),
cbd03635 1429 ceph_cap_string(issued), ceph_cap_string(revoking),
a8599bd8
SW
1430 ceph_cap_string(retain),
1431 (flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
1432 (flags & CHECK_CAPS_NODELAY) ? " NODELAY" : "",
1433 (flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "");
1434
1435 /*
1436 * If we no longer need to hold onto old our caps, and we may
1437 * have cached pages, but don't want them, then try to invalidate.
1438 * If we fail, it's because pages are locked.... try again later.
1439 */
1440 if ((!is_delayed || mdsc->stopping) &&
1441 ci->i_wrbuffer_ref == 0 && /* no dirty pages... */
1442 ci->i_rdcache_gen && /* may have cached pages */
cbd03635
SW
1443 (file_wanted == 0 || /* no open files */
1444 (revoking & CEPH_CAP_FILE_CACHE)) && /* or revoking cache */
a8599bd8
SW
1445 !ci->i_truncate_pending &&
1446 !tried_invalidate) {
1447 u32 invalidating_gen = ci->i_rdcache_gen;
1448 int ret;
1449
1450 dout("check_caps trying to invalidate on %p\n", inode);
1451 spin_unlock(&inode->i_lock);
11ea8eda 1452 ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
a8599bd8
SW
1453 spin_lock(&inode->i_lock);
1454 if (ret == 0 && invalidating_gen == ci->i_rdcache_gen) {
1455 /* success. */
1456 ci->i_rdcache_gen = 0;
1457 ci->i_rdcache_revoking = 0;
cbd03635
SW
1458 } else if (revoking & CEPH_CAP_FILE_CACHE) {
1459 dout("check_caps queuing invalidate\n");
1460 queue_invalidate = 1;
1461 ci->i_rdcache_revoking = ci->i_rdcache_gen;
a8599bd8
SW
1462 } else {
1463 dout("check_caps failed to invalidate pages\n");
1464 /* we failed to invalidate pages. check these
1465 caps again later. */
1466 force_requeue = 1;
1467 __cap_set_timeouts(mdsc, ci);
1468 }
1469 tried_invalidate = 1;
1470 goto retry_locked;
1471 }
1472
1473 num = 0;
1474 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
1475 cap = rb_entry(p, struct ceph_cap, ci_node);
1476 num++;
1477
1478 /* avoid looping forever */
1479 if (mds >= cap->mds ||
1480 ((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
1481 continue;
1482
1483 /* NOTE: no side-effects allowed, until we take s_mutex */
1484
1485 revoking = cap->implemented & ~cap->issued;
1486 if (revoking)
cbd03635 1487 dout(" mds%d revoking %s\n", cap->mds,
a8599bd8
SW
1488 ceph_cap_string(revoking));
1489
1490 if (cap == ci->i_auth_cap &&
1491 (cap->issued & CEPH_CAP_FILE_WR)) {
1492 /* request larger max_size from MDS? */
1493 if (ci->i_wanted_max_size > ci->i_max_size &&
1494 ci->i_wanted_max_size > ci->i_requested_max_size) {
1495 dout("requesting new max_size\n");
1496 goto ack;
1497 }
1498
1499 /* approaching file_max? */
1500 if ((inode->i_size << 1) >= ci->i_max_size &&
1501 (ci->i_reported_size << 1) < ci->i_max_size) {
1502 dout("i_size approaching max_size\n");
1503 goto ack;
1504 }
1505 }
1506 /* flush anything dirty? */
1507 if (cap == ci->i_auth_cap && (flags & CHECK_CAPS_FLUSH) &&
1508 ci->i_dirty_caps) {
1509 dout("flushing dirty caps\n");
1510 goto ack;
1511 }
1512
1513 /* completed revocation? going down and there are no caps? */
1514 if (revoking && (revoking & used) == 0) {
1515 dout("completed revocation of %s\n",
1516 ceph_cap_string(cap->implemented & ~cap->issued));
1517 goto ack;
1518 }
1519
1520 /* want more caps from mds? */
1521 if (want & ~(cap->mds_wanted | cap->issued))
1522 goto ack;
1523
1524 /* things we might delay */
1525 if ((cap->issued & ~retain) == 0 &&
1526 cap->mds_wanted == want)
1527 continue; /* nope, all good */
1528
1529 if (is_delayed)
1530 goto ack;
1531
1532 /* delay? */
1533 if ((ci->i_ceph_flags & CEPH_I_NODELAY) == 0 &&
1534 time_before(jiffies, ci->i_hold_caps_max)) {
1535 dout(" delaying issued %s -> %s, wanted %s -> %s\n",
1536 ceph_cap_string(cap->issued),
1537 ceph_cap_string(cap->issued & retain),
1538 ceph_cap_string(cap->mds_wanted),
1539 ceph_cap_string(want));
1540 delayed++;
1541 continue;
1542 }
1543
1544ack:
1545 if (session && session != cap->session) {
1546 dout("oops, wrong session %p mutex\n", session);
1547 mutex_unlock(&session->s_mutex);
1548 session = NULL;
1549 }
1550 if (!session) {
1551 session = cap->session;
1552 if (mutex_trylock(&session->s_mutex) == 0) {
1553 dout("inverting session/ino locks on %p\n",
1554 session);
1555 spin_unlock(&inode->i_lock);
1556 if (took_snap_rwsem) {
1557 up_read(&mdsc->snap_rwsem);
1558 took_snap_rwsem = 0;
1559 }
1560 mutex_lock(&session->s_mutex);
1561 goto retry;
1562 }
1563 }
1564 /* take snap_rwsem after session mutex */
1565 if (!took_snap_rwsem) {
1566 if (down_read_trylock(&mdsc->snap_rwsem) == 0) {
1567 dout("inverting snap/in locks on %p\n",
1568 inode);
1569 spin_unlock(&inode->i_lock);
1570 down_read(&mdsc->snap_rwsem);
1571 took_snap_rwsem = 1;
1572 goto retry;
1573 }
1574 took_snap_rwsem = 1;
1575 }
1576
cdc35f96
SW
1577 if (cap == ci->i_auth_cap && ci->i_dirty_caps)
1578 flushing = __mark_caps_flushing(inode, session);
a8599bd8
SW
1579
1580 mds = cap->mds; /* remember mds, so we don't repeat */
1581 sent++;
1582
1583 /* __send_cap drops i_lock */
1584 delayed += __send_cap(mdsc, cap, CEPH_CAP_OP_UPDATE, used, want,
1585 retain, flushing, NULL);
1586 goto retry; /* retake i_lock and restart our cap scan. */
1587 }
1588
1589 /*
1590 * Reschedule delayed caps release if we delayed anything,
1591 * otherwise cancel.
1592 */
1593 if (delayed && is_delayed)
1594 force_requeue = 1; /* __send_cap delayed release; requeue */
1595 if (!delayed && !is_delayed)
1596 __cap_delay_cancel(mdsc, ci);
1597 else if (!is_delayed || force_requeue)
1598 __cap_delay_requeue(mdsc, ci);
1599
1600 spin_unlock(&inode->i_lock);
1601
cbd03635
SW
1602 if (queue_invalidate)
1603 if (ceph_queue_page_invalidation(inode))
1604 igrab(inode);
1605
a8599bd8
SW
1606 if (session && drop_session_lock)
1607 mutex_unlock(&session->s_mutex);
1608 if (took_snap_rwsem)
1609 up_read(&mdsc->snap_rwsem);
1610}
1611
a8599bd8
SW
1612/*
1613 * Try to flush dirty caps back to the auth mds.
1614 */
1615static int try_flush_caps(struct inode *inode, struct ceph_mds_session *session,
1616 unsigned *flush_tid)
1617{
1618 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1619 struct ceph_inode_info *ci = ceph_inode(inode);
1620 int unlock_session = session ? 0 : 1;
1621 int flushing = 0;
1622
1623retry:
1624 spin_lock(&inode->i_lock);
1625 if (ci->i_dirty_caps && ci->i_auth_cap) {
1626 struct ceph_cap *cap = ci->i_auth_cap;
1627 int used = __ceph_caps_used(ci);
1628 int want = __ceph_caps_wanted(ci);
1629 int delayed;
1630
1631 if (!session) {
1632 spin_unlock(&inode->i_lock);
1633 session = cap->session;
1634 mutex_lock(&session->s_mutex);
1635 goto retry;
1636 }
1637 BUG_ON(session != cap->session);
1638 if (cap->session->s_state < CEPH_MDS_SESSION_OPEN)
1639 goto out;
1640
cdc35f96 1641 flushing = __mark_caps_flushing(inode, session);
a8599bd8
SW
1642
1643 /* __send_cap drops i_lock */
1644 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH, used, want,
1645 cap->issued | cap->implemented, flushing,
1646 flush_tid);
1647 if (!delayed)
1648 goto out_unlocked;
1649
1650 spin_lock(&inode->i_lock);
1651 __cap_delay_requeue(mdsc, ci);
1652 }
1653out:
1654 spin_unlock(&inode->i_lock);
1655out_unlocked:
1656 if (session && unlock_session)
1657 mutex_unlock(&session->s_mutex);
1658 return flushing;
1659}
1660
1661/*
1662 * Return true if we've flushed caps through the given flush_tid.
1663 */
1664static int caps_are_flushed(struct inode *inode, unsigned tid)
1665{
1666 struct ceph_inode_info *ci = ceph_inode(inode);
1667 int dirty, i, ret = 1;
1668
1669 spin_lock(&inode->i_lock);
1670 dirty = __ceph_caps_dirty(ci);
1671 for (i = 0; i < CEPH_CAP_BITS; i++)
1672 if ((ci->i_flushing_caps & (1 << i)) &&
1673 ci->i_cap_flush_tid[i] <= tid) {
1674 /* still flushing this bit */
1675 ret = 0;
1676 break;
1677 }
1678 spin_unlock(&inode->i_lock);
1679 return ret;
1680}
1681
1682/*
1683 * Wait on any unsafe replies for the given inode. First wait on the
1684 * newest request, and make that the upper bound. Then, if there are
1685 * more requests, keep waiting on the oldest as long as it is still older
1686 * than the original request.
1687 */
1688static void sync_write_wait(struct inode *inode)
1689{
1690 struct ceph_inode_info *ci = ceph_inode(inode);
1691 struct list_head *head = &ci->i_unsafe_writes;
1692 struct ceph_osd_request *req;
1693 u64 last_tid;
1694
1695 spin_lock(&ci->i_unsafe_lock);
1696 if (list_empty(head))
1697 goto out;
1698
1699 /* set upper bound as _last_ entry in chain */
1700 req = list_entry(head->prev, struct ceph_osd_request,
1701 r_unsafe_item);
1702 last_tid = req->r_tid;
1703
1704 do {
1705 ceph_osdc_get_request(req);
1706 spin_unlock(&ci->i_unsafe_lock);
1707 dout("sync_write_wait on tid %llu (until %llu)\n",
1708 req->r_tid, last_tid);
1709 wait_for_completion(&req->r_safe_completion);
1710 spin_lock(&ci->i_unsafe_lock);
1711 ceph_osdc_put_request(req);
1712
1713 /*
1714 * from here on look at first entry in chain, since we
1715 * only want to wait for anything older than last_tid
1716 */
1717 if (list_empty(head))
1718 break;
1719 req = list_entry(head->next, struct ceph_osd_request,
1720 r_unsafe_item);
1721 } while (req->r_tid < last_tid);
1722out:
1723 spin_unlock(&ci->i_unsafe_lock);
1724}
1725
1726int ceph_fsync(struct file *file, struct dentry *dentry, int datasync)
1727{
1728 struct inode *inode = dentry->d_inode;
1729 struct ceph_inode_info *ci = ceph_inode(inode);
1730 unsigned flush_tid;
1731 int ret;
1732 int dirty;
1733
1734 dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
1735 sync_write_wait(inode);
1736
1737 ret = filemap_write_and_wait(inode->i_mapping);
1738 if (ret < 0)
1739 return ret;
1740
1741 dirty = try_flush_caps(inode, NULL, &flush_tid);
1742 dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
1743
1744 /*
1745 * only wait on non-file metadata writeback (the mds
1746 * can recover size and mtime, so we don't need to
1747 * wait for that)
1748 */
1749 if (!datasync && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
1750 dout("fsync waiting for flush_tid %u\n", flush_tid);
1751 ret = wait_event_interruptible(ci->i_cap_wq,
1752 caps_are_flushed(inode, flush_tid));
1753 }
1754
1755 dout("fsync %p%s done\n", inode, datasync ? " datasync" : "");
1756 return ret;
1757}
1758
1759/*
1760 * Flush any dirty caps back to the mds. If we aren't asked to wait,
1761 * queue inode for flush but don't do so immediately, because we can
1762 * get by with fewer MDS messages if we wait for data writeback to
1763 * complete first.
1764 */
1765int ceph_write_inode(struct inode *inode, int wait)
1766{
1767 struct ceph_inode_info *ci = ceph_inode(inode);
1768 unsigned flush_tid;
1769 int err = 0;
1770 int dirty;
1771
1772 dout("write_inode %p wait=%d\n", inode, wait);
1773 if (wait) {
1774 dirty = try_flush_caps(inode, NULL, &flush_tid);
1775 if (dirty)
1776 err = wait_event_interruptible(ci->i_cap_wq,
1777 caps_are_flushed(inode, flush_tid));
1778 } else {
1779 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
1780
1781 spin_lock(&inode->i_lock);
1782 if (__ceph_caps_dirty(ci))
1783 __cap_delay_requeue_front(mdsc, ci);
1784 spin_unlock(&inode->i_lock);
1785 }
1786 return err;
1787}
1788
1789/*
1790 * After a recovering MDS goes active, we need to resend any caps
1791 * we were flushing.
1792 *
1793 * Caller holds session->s_mutex.
1794 */
1795static void kick_flushing_capsnaps(struct ceph_mds_client *mdsc,
1796 struct ceph_mds_session *session)
1797{
1798 struct ceph_cap_snap *capsnap;
1799
1800 dout("kick_flushing_capsnaps mds%d\n", session->s_mds);
1801 list_for_each_entry(capsnap, &session->s_cap_snaps_flushing,
1802 flushing_item) {
1803 struct ceph_inode_info *ci = capsnap->ci;
1804 struct inode *inode = &ci->vfs_inode;
1805 struct ceph_cap *cap;
1806
1807 spin_lock(&inode->i_lock);
1808 cap = ci->i_auth_cap;
1809 if (cap && cap->session == session) {
1810 dout("kick_flushing_caps %p cap %p capsnap %p\n", inode,
1811 cap, capsnap);
1812 __ceph_flush_snaps(ci, &session);
1813 } else {
1814 pr_err("%p auth cap %p not mds%d ???\n", inode,
1815 cap, session->s_mds);
1816 spin_unlock(&inode->i_lock);
1817 }
1818 }
1819}
1820
1821void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
1822 struct ceph_mds_session *session)
1823{
1824 struct ceph_inode_info *ci;
1825
1826 kick_flushing_capsnaps(mdsc, session);
1827
1828 dout("kick_flushing_caps mds%d\n", session->s_mds);
1829 list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
1830 struct inode *inode = &ci->vfs_inode;
1831 struct ceph_cap *cap;
1832 int delayed = 0;
1833
1834 spin_lock(&inode->i_lock);
1835 cap = ci->i_auth_cap;
1836 if (cap && cap->session == session) {
1837 dout("kick_flushing_caps %p cap %p %s\n", inode,
1838 cap, ceph_cap_string(ci->i_flushing_caps));
1839 delayed = __send_cap(mdsc, cap, CEPH_CAP_OP_FLUSH,
1840 __ceph_caps_used(ci),
1841 __ceph_caps_wanted(ci),
1842 cap->issued | cap->implemented,
1843 ci->i_flushing_caps, NULL);
1844 if (delayed) {
1845 spin_lock(&inode->i_lock);
1846 __cap_delay_requeue(mdsc, ci);
1847 spin_unlock(&inode->i_lock);
1848 }
1849 } else {
1850 pr_err("%p auth cap %p not mds%d ???\n", inode,
1851 cap, session->s_mds);
1852 spin_unlock(&inode->i_lock);
1853 }
1854 }
1855}
1856
1857
1858/*
1859 * Take references to capabilities we hold, so that we don't release
1860 * them to the MDS prematurely.
1861 *
1862 * Protected by i_lock.
1863 */
1864static void __take_cap_refs(struct ceph_inode_info *ci, int got)
1865{
1866 if (got & CEPH_CAP_PIN)
1867 ci->i_pin_ref++;
1868 if (got & CEPH_CAP_FILE_RD)
1869 ci->i_rd_ref++;
1870 if (got & CEPH_CAP_FILE_CACHE)
1871 ci->i_rdcache_ref++;
1872 if (got & CEPH_CAP_FILE_WR)
1873 ci->i_wr_ref++;
1874 if (got & CEPH_CAP_FILE_BUFFER) {
1875 if (ci->i_wrbuffer_ref == 0)
1876 igrab(&ci->vfs_inode);
1877 ci->i_wrbuffer_ref++;
1878 dout("__take_cap_refs %p wrbuffer %d -> %d (?)\n",
1879 &ci->vfs_inode, ci->i_wrbuffer_ref-1, ci->i_wrbuffer_ref);
1880 }
1881}
1882
1883/*
1884 * Try to grab cap references. Specify those refs we @want, and the
1885 * minimal set we @need. Also include the larger offset we are writing
1886 * to (when applicable), and check against max_size here as well.
1887 * Note that caller is responsible for ensuring max_size increases are
1888 * requested from the MDS.
1889 */
1890static int try_get_cap_refs(struct ceph_inode_info *ci, int need, int want,
1891 int *got, loff_t endoff, int *check_max, int *err)
1892{
1893 struct inode *inode = &ci->vfs_inode;
1894 int ret = 0;
1895 int have, implemented;
1896
1897 dout("get_cap_refs %p need %s want %s\n", inode,
1898 ceph_cap_string(need), ceph_cap_string(want));
1899 spin_lock(&inode->i_lock);
1900
1901 /* make sure we _have_ some caps! */
1902 if (!__ceph_is_any_caps(ci)) {
1903 dout("get_cap_refs %p no real caps\n", inode);
1904 *err = -EBADF;
1905 ret = 1;
1906 goto out;
1907 }
1908
1909 if (need & CEPH_CAP_FILE_WR) {
1910 if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
1911 dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
1912 inode, endoff, ci->i_max_size);
1913 if (endoff > ci->i_wanted_max_size) {
1914 *check_max = 1;
1915 ret = 1;
1916 }
1917 goto out;
1918 }
1919 /*
1920 * If a sync write is in progress, we must wait, so that we
1921 * can get a final snapshot value for size+mtime.
1922 */
1923 if (__ceph_have_pending_cap_snap(ci)) {
1924 dout("get_cap_refs %p cap_snap_pending\n", inode);
1925 goto out;
1926 }
1927 }
1928 have = __ceph_caps_issued(ci, &implemented);
1929
1930 /*
1931 * disallow writes while a truncate is pending
1932 */
1933 if (ci->i_truncate_pending)
1934 have &= ~CEPH_CAP_FILE_WR;
1935
1936 if ((have & need) == need) {
1937 /*
1938 * Look at (implemented & ~have & not) so that we keep waiting
1939 * on transition from wanted -> needed caps. This is needed
1940 * for WRBUFFER|WR -> WR to avoid a new WR sync write from
1941 * going before a prior buffered writeback happens.
1942 */
1943 int not = want & ~(have & need);
1944 int revoking = implemented & ~have;
1945 dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
1946 inode, ceph_cap_string(have), ceph_cap_string(not),
1947 ceph_cap_string(revoking));
1948 if ((revoking & not) == 0) {
1949 *got = need | (have & want);
1950 __take_cap_refs(ci, *got);
1951 ret = 1;
1952 }
1953 } else {
1954 dout("get_cap_refs %p have %s needed %s\n", inode,
1955 ceph_cap_string(have), ceph_cap_string(need));
1956 }
1957out:
1958 spin_unlock(&inode->i_lock);
1959 dout("get_cap_refs %p ret %d got %s\n", inode,
1960 ret, ceph_cap_string(*got));
1961 return ret;
1962}
1963
1964/*
1965 * Check the offset we are writing up to against our current
1966 * max_size. If necessary, tell the MDS we want to write to
1967 * a larger offset.
1968 */
1969static void check_max_size(struct inode *inode, loff_t endoff)
1970{
1971 struct ceph_inode_info *ci = ceph_inode(inode);
1972 int check = 0;
1973
1974 /* do we need to explicitly request a larger max_size? */
1975 spin_lock(&inode->i_lock);
1976 if ((endoff >= ci->i_max_size ||
1977 endoff > (inode->i_size << 1)) &&
1978 endoff > ci->i_wanted_max_size) {
1979 dout("write %p at large endoff %llu, req max_size\n",
1980 inode, endoff);
1981 ci->i_wanted_max_size = endoff;
1982 check = 1;
1983 }
1984 spin_unlock(&inode->i_lock);
1985 if (check)
1986 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
1987}
1988
1989/*
1990 * Wait for caps, and take cap references. If we can't get a WR cap
1991 * due to a small max_size, make sure we check_max_size (and possibly
1992 * ask the mds) so we don't get hung up indefinitely.
1993 */
1994int ceph_get_caps(struct ceph_inode_info *ci, int need, int want, int *got,
1995 loff_t endoff)
1996{
1997 int check_max, ret, err;
1998
1999retry:
2000 if (endoff > 0)
2001 check_max_size(&ci->vfs_inode, endoff);
2002 check_max = 0;
2003 err = 0;
2004 ret = wait_event_interruptible(ci->i_cap_wq,
2005 try_get_cap_refs(ci, need, want,
2006 got, endoff,
2007 &check_max, &err));
2008 if (err)
2009 ret = err;
2010 if (check_max)
2011 goto retry;
2012 return ret;
2013}
2014
2015/*
2016 * Take cap refs. Caller must already know we hold at least one ref
2017 * on the caps in question or we don't know this is safe.
2018 */
2019void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
2020{
2021 spin_lock(&ci->vfs_inode.i_lock);
2022 __take_cap_refs(ci, caps);
2023 spin_unlock(&ci->vfs_inode.i_lock);
2024}
2025
2026/*
2027 * Release cap refs.
2028 *
2029 * If we released the last ref on any given cap, call ceph_check_caps
2030 * to release (or schedule a release).
2031 *
2032 * If we are releasing a WR cap (from a sync write), finalize any affected
2033 * cap_snap, and wake up any waiters.
2034 */
2035void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
2036{
2037 struct inode *inode = &ci->vfs_inode;
2038 int last = 0, put = 0, flushsnaps = 0, wake = 0;
2039 struct ceph_cap_snap *capsnap;
2040
2041 spin_lock(&inode->i_lock);
2042 if (had & CEPH_CAP_PIN)
2043 --ci->i_pin_ref;
2044 if (had & CEPH_CAP_FILE_RD)
2045 if (--ci->i_rd_ref == 0)
2046 last++;
2047 if (had & CEPH_CAP_FILE_CACHE)
2048 if (--ci->i_rdcache_ref == 0)
2049 last++;
2050 if (had & CEPH_CAP_FILE_BUFFER) {
2051 if (--ci->i_wrbuffer_ref == 0) {
2052 last++;
2053 put++;
2054 }
2055 dout("put_cap_refs %p wrbuffer %d -> %d (?)\n",
2056 inode, ci->i_wrbuffer_ref+1, ci->i_wrbuffer_ref);
2057 }
2058 if (had & CEPH_CAP_FILE_WR)
2059 if (--ci->i_wr_ref == 0) {
2060 last++;
2061 if (!list_empty(&ci->i_cap_snaps)) {
2062 capsnap = list_first_entry(&ci->i_cap_snaps,
2063 struct ceph_cap_snap,
2064 ci_item);
2065 if (capsnap->writing) {
2066 capsnap->writing = 0;
2067 flushsnaps =
2068 __ceph_finish_cap_snap(ci,
2069 capsnap);
2070 wake = 1;
2071 }
2072 }
2073 }
2074 spin_unlock(&inode->i_lock);
2075
2076 dout("put_cap_refs %p had %s %s\n", inode, ceph_cap_string(had),
2077 last ? "last" : "");
2078
2079 if (last && !flushsnaps)
2080 ceph_check_caps(ci, 0, NULL);
2081 else if (flushsnaps)
2082 ceph_flush_snaps(ci);
2083 if (wake)
2084 wake_up(&ci->i_cap_wq);
2085 if (put)
2086 iput(inode);
2087}
2088
2089/*
2090 * Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
2091 * context. Adjust per-snap dirty page accounting as appropriate.
2092 * Once all dirty data for a cap_snap is flushed, flush snapped file
2093 * metadata back to the MDS. If we dropped the last ref, call
2094 * ceph_check_caps.
2095 */
2096void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
2097 struct ceph_snap_context *snapc)
2098{
2099 struct inode *inode = &ci->vfs_inode;
2100 int last = 0;
2101 int last_snap = 0;
2102 int found = 0;
2103 struct ceph_cap_snap *capsnap = NULL;
2104
2105 spin_lock(&inode->i_lock);
2106 ci->i_wrbuffer_ref -= nr;
2107 last = !ci->i_wrbuffer_ref;
2108
2109 if (ci->i_head_snapc == snapc) {
2110 ci->i_wrbuffer_ref_head -= nr;
2111 if (!ci->i_wrbuffer_ref_head) {
2112 ceph_put_snap_context(ci->i_head_snapc);
2113 ci->i_head_snapc = NULL;
2114 }
2115 dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
2116 inode,
2117 ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
2118 ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
2119 last ? " LAST" : "");
2120 } else {
2121 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2122 if (capsnap->context == snapc) {
2123 found = 1;
2124 capsnap->dirty_pages -= nr;
2125 last_snap = !capsnap->dirty_pages;
2126 break;
2127 }
2128 }
2129 BUG_ON(!found);
2130 dout("put_wrbuffer_cap_refs on %p cap_snap %p "
2131 " snap %lld %d/%d -> %d/%d %s%s\n",
2132 inode, capsnap, capsnap->context->seq,
2133 ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
2134 ci->i_wrbuffer_ref, capsnap->dirty_pages,
2135 last ? " (wrbuffer last)" : "",
2136 last_snap ? " (capsnap last)" : "");
2137 }
2138
2139 spin_unlock(&inode->i_lock);
2140
2141 if (last) {
2142 ceph_check_caps(ci, CHECK_CAPS_AUTHONLY, NULL);
2143 iput(inode);
2144 } else if (last_snap) {
2145 ceph_flush_snaps(ci);
2146 wake_up(&ci->i_cap_wq);
2147 }
2148}
2149
2150/*
2151 * Handle a cap GRANT message from the MDS. (Note that a GRANT may
2152 * actually be a revocation if it specifies a smaller cap set.)
2153 *
2154 * caller holds s_mutex.
2155 * return value:
2156 * 0 - ok
2157 * 1 - check_caps on auth cap only (writeback)
2158 * 2 - check_caps (ack revoke)
2159 */
2160static int handle_cap_grant(struct inode *inode, struct ceph_mds_caps *grant,
2161 struct ceph_mds_session *session,
2162 struct ceph_cap *cap,
2163 struct ceph_buffer *xattr_buf)
2164 __releases(inode->i_lock)
2165
2166{
2167 struct ceph_inode_info *ci = ceph_inode(inode);
2168 int mds = session->s_mds;
2169 int seq = le32_to_cpu(grant->seq);
2170 int newcaps = le32_to_cpu(grant->caps);
2171 int issued, implemented, used, wanted, dirty;
2172 u64 size = le64_to_cpu(grant->size);
2173 u64 max_size = le64_to_cpu(grant->max_size);
2174 struct timespec mtime, atime, ctime;
2175 int reply = 0;
2176 int wake = 0;
2177 int writeback = 0;
2178 int revoked_rdcache = 0;
2179 int invalidate_async = 0;
2180 int tried_invalidate = 0;
2181 int ret;
2182
2183 dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
2184 inode, cap, mds, seq, ceph_cap_string(newcaps));
2185 dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
2186 inode->i_size);
2187
2188 /*
2189 * If CACHE is being revoked, and we have no dirty buffers,
2190 * try to invalidate (once). (If there are dirty buffers, we
2191 * will invalidate _after_ writeback.)
2192 */
2193restart:
2194 if (((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
2195 !ci->i_wrbuffer_ref && !tried_invalidate) {
2196 dout("CACHE invalidation\n");
2197 spin_unlock(&inode->i_lock);
2198 tried_invalidate = 1;
2199
11ea8eda 2200 ret = invalidate_mapping_pages(&inode->i_data, 0, -1);
a8599bd8
SW
2201 spin_lock(&inode->i_lock);
2202 if (ret < 0) {
2203 /* there were locked pages.. invalidate later
2204 in a separate thread. */
2205 if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
2206 invalidate_async = 1;
2207 ci->i_rdcache_revoking = ci->i_rdcache_gen;
2208 }
2209 } else {
2210 /* we successfully invalidated those pages */
2211 revoked_rdcache = 1;
2212 ci->i_rdcache_gen = 0;
2213 ci->i_rdcache_revoking = 0;
2214 }
2215 goto restart;
2216 }
2217
2218 /* side effects now are allowed */
2219
2220 issued = __ceph_caps_issued(ci, &implemented);
2221 issued |= implemented | __ceph_caps_dirty(ci);
2222
685f9a5d 2223 cap->cap_gen = session->s_cap_gen;
a8599bd8
SW
2224
2225 __check_cap_issue(ci, cap, newcaps);
2226
2227 if ((issued & CEPH_CAP_AUTH_EXCL) == 0) {
2228 inode->i_mode = le32_to_cpu(grant->mode);
2229 inode->i_uid = le32_to_cpu(grant->uid);
2230 inode->i_gid = le32_to_cpu(grant->gid);
2231 dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
2232 inode->i_uid, inode->i_gid);
2233 }
2234
2235 if ((issued & CEPH_CAP_LINK_EXCL) == 0)
2236 inode->i_nlink = le32_to_cpu(grant->nlink);
2237
2238 if ((issued & CEPH_CAP_XATTR_EXCL) == 0 && grant->xattr_len) {
2239 int len = le32_to_cpu(grant->xattr_len);
2240 u64 version = le64_to_cpu(grant->xattr_version);
2241
2242 if (version > ci->i_xattrs.version) {
2243 dout(" got new xattrs v%llu on %p len %d\n",
2244 version, inode, len);
2245 if (ci->i_xattrs.blob)
2246 ceph_buffer_put(ci->i_xattrs.blob);
2247 ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
2248 ci->i_xattrs.version = version;
2249 }
2250 }
2251
2252 /* size/ctime/mtime/atime? */
2253 ceph_fill_file_size(inode, issued,
2254 le32_to_cpu(grant->truncate_seq),
2255 le64_to_cpu(grant->truncate_size), size);
2256 ceph_decode_timespec(&mtime, &grant->mtime);
2257 ceph_decode_timespec(&atime, &grant->atime);
2258 ceph_decode_timespec(&ctime, &grant->ctime);
2259 ceph_fill_file_time(inode, issued,
2260 le32_to_cpu(grant->time_warp_seq), &ctime, &mtime,
2261 &atime);
2262
2263 /* max size increase? */
2264 if (max_size != ci->i_max_size) {
2265 dout("max_size %lld -> %llu\n", ci->i_max_size, max_size);
2266 ci->i_max_size = max_size;
2267 if (max_size >= ci->i_wanted_max_size) {
2268 ci->i_wanted_max_size = 0; /* reset */
2269 ci->i_requested_max_size = 0;
2270 }
2271 wake = 1;
2272 }
2273
2274 /* check cap bits */
2275 wanted = __ceph_caps_wanted(ci);
2276 used = __ceph_caps_used(ci);
2277 dirty = __ceph_caps_dirty(ci);
2278 dout(" my wanted = %s, used = %s, dirty %s\n",
2279 ceph_cap_string(wanted),
2280 ceph_cap_string(used),
2281 ceph_cap_string(dirty));
2282 if (wanted != le32_to_cpu(grant->wanted)) {
2283 dout("mds wanted %s -> %s\n",
2284 ceph_cap_string(le32_to_cpu(grant->wanted)),
2285 ceph_cap_string(wanted));
2286 grant->wanted = cpu_to_le32(wanted);
2287 }
2288
2289 cap->seq = seq;
2290
2291 /* file layout may have changed */
2292 ci->i_layout = grant->layout;
2293
2294 /* revocation, grant, or no-op? */
2295 if (cap->issued & ~newcaps) {
2296 dout("revocation: %s -> %s\n", ceph_cap_string(cap->issued),
2297 ceph_cap_string(newcaps));
2298 if ((used & ~newcaps) & CEPH_CAP_FILE_BUFFER)
2299 writeback = 1; /* will delay ack */
2300 else if (dirty & ~newcaps)
2301 reply = 1; /* initiate writeback in check_caps */
2302 else if (((used & ~newcaps) & CEPH_CAP_FILE_CACHE) == 0 ||
2303 revoked_rdcache)
2304 reply = 2; /* send revoke ack in check_caps */
2305 cap->issued = newcaps;
2306 } else if (cap->issued == newcaps) {
2307 dout("caps unchanged: %s -> %s\n",
2308 ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
2309 } else {
2310 dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
2311 ceph_cap_string(newcaps));
2312 cap->issued = newcaps;
2313 cap->implemented |= newcaps; /* add bits only, to
2314 * avoid stepping on a
2315 * pending revocation */
2316 wake = 1;
2317 }
2318
2319 spin_unlock(&inode->i_lock);
2320 if (writeback) {
2321 /*
2322 * queue inode for writeback: we can't actually call
2323 * filemap_write_and_wait, etc. from message handler
2324 * context.
2325 */
2326 dout("queueing %p for writeback\n", inode);
2327 if (ceph_queue_writeback(inode))
2328 igrab(inode);
2329 }
2330 if (invalidate_async) {
2331 dout("queueing %p for page invalidation\n", inode);
2332 if (ceph_queue_page_invalidation(inode))
2333 igrab(inode);
2334 }
2335 if (wake)
2336 wake_up(&ci->i_cap_wq);
2337 return reply;
2338}
2339
2340/*
2341 * Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
2342 * MDS has been safely committed.
2343 */
6df058c0 2344static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
a8599bd8
SW
2345 struct ceph_mds_caps *m,
2346 struct ceph_mds_session *session,
2347 struct ceph_cap *cap)
2348 __releases(inode->i_lock)
2349{
2350 struct ceph_inode_info *ci = ceph_inode(inode);
2351 struct ceph_mds_client *mdsc = &ceph_client(inode->i_sb)->mdsc;
2352 unsigned seq = le32_to_cpu(m->seq);
2353 int dirty = le32_to_cpu(m->dirty);
2354 int cleaned = 0;
afcdaea3 2355 int drop = 0;
a8599bd8
SW
2356 int i;
2357
2358 for (i = 0; i < CEPH_CAP_BITS; i++)
2359 if ((dirty & (1 << i)) &&
2360 flush_tid == ci->i_cap_flush_tid[i])
2361 cleaned |= 1 << i;
2362
2363 dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
2364 " flushing %s -> %s\n",
2365 inode, session->s_mds, seq, ceph_cap_string(dirty),
2366 ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
2367 ceph_cap_string(ci->i_flushing_caps & ~cleaned));
2368
2369 if (ci->i_flushing_caps == (ci->i_flushing_caps & ~cleaned))
2370 goto out;
2371
a8599bd8 2372 ci->i_flushing_caps &= ~cleaned;
a8599bd8
SW
2373
2374 spin_lock(&mdsc->cap_dirty_lock);
2375 if (ci->i_flushing_caps == 0) {
2376 list_del_init(&ci->i_flushing_item);
2377 if (!list_empty(&session->s_cap_flushing))
2378 dout(" mds%d still flushing cap on %p\n",
2379 session->s_mds,
2380 &list_entry(session->s_cap_flushing.next,
2381 struct ceph_inode_info,
2382 i_flushing_item)->vfs_inode);
2383 mdsc->num_cap_flushing--;
2384 wake_up(&mdsc->cap_flushing_wq);
2385 dout(" inode %p now !flushing\n", inode);
afcdaea3
SW
2386
2387 if (ci->i_dirty_caps == 0) {
2388 dout(" inode %p now clean\n", inode);
2389 BUG_ON(!list_empty(&ci->i_dirty_item));
2390 drop = 1;
76e3b390
SW
2391 } else {
2392 BUG_ON(list_empty(&ci->i_dirty_item));
afcdaea3 2393 }
a8599bd8
SW
2394 }
2395 spin_unlock(&mdsc->cap_dirty_lock);
2396 wake_up(&ci->i_cap_wq);
2397
2398out:
2399 spin_unlock(&inode->i_lock);
afcdaea3 2400 if (drop)
a8599bd8
SW
2401 iput(inode);
2402}
2403
2404/*
2405 * Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
2406 * throw away our cap_snap.
2407 *
2408 * Caller hold s_mutex.
2409 */
6df058c0 2410static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
a8599bd8
SW
2411 struct ceph_mds_caps *m,
2412 struct ceph_mds_session *session)
2413{
2414 struct ceph_inode_info *ci = ceph_inode(inode);
2415 u64 follows = le64_to_cpu(m->snap_follows);
a8599bd8
SW
2416 struct ceph_cap_snap *capsnap;
2417 int drop = 0;
2418
2419 dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
2420 inode, ci, session->s_mds, follows);
2421
2422 spin_lock(&inode->i_lock);
2423 list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
2424 if (capsnap->follows == follows) {
2425 if (capsnap->flush_tid != flush_tid) {
2426 dout(" cap_snap %p follows %lld tid %lld !="
2427 " %lld\n", capsnap, follows,
2428 flush_tid, capsnap->flush_tid);
2429 break;
2430 }
2431 WARN_ON(capsnap->dirty_pages || capsnap->writing);
2432 dout(" removing cap_snap %p follows %lld\n",
2433 capsnap, follows);
2434 ceph_put_snap_context(capsnap->context);
2435 list_del(&capsnap->ci_item);
2436 list_del(&capsnap->flushing_item);
2437 ceph_put_cap_snap(capsnap);
2438 drop = 1;
2439 break;
2440 } else {
2441 dout(" skipping cap_snap %p follows %lld\n",
2442 capsnap, capsnap->follows);
2443 }
2444 }
2445 spin_unlock(&inode->i_lock);
2446 if (drop)
2447 iput(inode);
2448}
2449
2450/*
2451 * Handle TRUNC from MDS, indicating file truncation.
2452 *
2453 * caller hold s_mutex.
2454 */
2455static void handle_cap_trunc(struct inode *inode,
2456 struct ceph_mds_caps *trunc,
2457 struct ceph_mds_session *session)
2458 __releases(inode->i_lock)
2459{
2460 struct ceph_inode_info *ci = ceph_inode(inode);
2461 int mds = session->s_mds;
2462 int seq = le32_to_cpu(trunc->seq);
2463 u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
2464 u64 truncate_size = le64_to_cpu(trunc->truncate_size);
2465 u64 size = le64_to_cpu(trunc->size);
2466 int implemented = 0;
2467 int dirty = __ceph_caps_dirty(ci);
2468 int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
2469 int queue_trunc = 0;
2470
2471 issued |= implemented | dirty;
2472
2473 dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
2474 inode, mds, seq, truncate_size, truncate_seq);
2475 queue_trunc = ceph_fill_file_size(inode, issued,
2476 truncate_seq, truncate_size, size);
2477 spin_unlock(&inode->i_lock);
2478
2479 if (queue_trunc)
2480 if (queue_work(ceph_client(inode->i_sb)->trunc_wq,
2481 &ci->i_vmtruncate_work))
2482 igrab(inode);
2483}
2484
2485/*
2486 * Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
2487 * different one. If we are the most recent migration we've seen (as
2488 * indicated by mseq), make note of the migrating cap bits for the
2489 * duration (until we see the corresponding IMPORT).
2490 *
2491 * caller holds s_mutex
2492 */
2493static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
2494 struct ceph_mds_session *session)
2495{
2496 struct ceph_inode_info *ci = ceph_inode(inode);
2497 int mds = session->s_mds;
2498 unsigned mseq = le32_to_cpu(ex->migrate_seq);
2499 struct ceph_cap *cap = NULL, *t;
2500 struct rb_node *p;
2501 int remember = 1;
2502
2503 dout("handle_cap_export inode %p ci %p mds%d mseq %d\n",
2504 inode, ci, mds, mseq);
2505
2506 spin_lock(&inode->i_lock);
2507
2508 /* make sure we haven't seen a higher mseq */
2509 for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
2510 t = rb_entry(p, struct ceph_cap, ci_node);
2511 if (ceph_seq_cmp(t->mseq, mseq) > 0) {
2512 dout(" higher mseq on cap from mds%d\n",
2513 t->session->s_mds);
2514 remember = 0;
2515 }
2516 if (t->session->s_mds == mds)
2517 cap = t;
2518 }
2519
2520 if (cap) {
2521 if (remember) {
2522 /* make note */
2523 ci->i_cap_exporting_mds = mds;
2524 ci->i_cap_exporting_mseq = mseq;
2525 ci->i_cap_exporting_issued = cap->issued;
2526 }
2527 __ceph_remove_cap(cap, NULL);
2528 } else {
2529 WARN_ON(!cap);
2530 }
2531
2532 spin_unlock(&inode->i_lock);
2533}
2534
2535/*
2536 * Handle cap IMPORT. If there are temp bits from an older EXPORT,
2537 * clean them up.
2538 *
2539 * caller holds s_mutex.
2540 */
2541static void handle_cap_import(struct ceph_mds_client *mdsc,
2542 struct inode *inode, struct ceph_mds_caps *im,
2543 struct ceph_mds_session *session,
2544 void *snaptrace, int snaptrace_len)
2545{
2546 struct ceph_inode_info *ci = ceph_inode(inode);
2547 int mds = session->s_mds;
2548 unsigned issued = le32_to_cpu(im->caps);
2549 unsigned wanted = le32_to_cpu(im->wanted);
2550 unsigned seq = le32_to_cpu(im->seq);
2551 unsigned mseq = le32_to_cpu(im->migrate_seq);
2552 u64 realmino = le64_to_cpu(im->realm);
2553 u64 cap_id = le64_to_cpu(im->cap_id);
2554
2555 if (ci->i_cap_exporting_mds >= 0 &&
2556 ceph_seq_cmp(ci->i_cap_exporting_mseq, mseq) < 0) {
2557 dout("handle_cap_import inode %p ci %p mds%d mseq %d"
2558 " - cleared exporting from mds%d\n",
2559 inode, ci, mds, mseq,
2560 ci->i_cap_exporting_mds);
2561 ci->i_cap_exporting_issued = 0;
2562 ci->i_cap_exporting_mseq = 0;
2563 ci->i_cap_exporting_mds = -1;
2564 } else {
2565 dout("handle_cap_import inode %p ci %p mds%d mseq %d\n",
2566 inode, ci, mds, mseq);
2567 }
2568
2569 down_write(&mdsc->snap_rwsem);
2570 ceph_update_snap_trace(mdsc, snaptrace, snaptrace+snaptrace_len,
2571 false);
2572 downgrade_write(&mdsc->snap_rwsem);
2573 ceph_add_cap(inode, session, cap_id, -1,
2574 issued, wanted, seq, mseq, realmino, CEPH_CAP_FLAG_AUTH,
2575 NULL /* no caps context */);
2576 try_flush_caps(inode, session, NULL);
2577 up_read(&mdsc->snap_rwsem);
2578}
2579
2580/*
2581 * Handle a caps message from the MDS.
2582 *
2583 * Identify the appropriate session, inode, and call the right handler
2584 * based on the cap op.
2585 */
2586void ceph_handle_caps(struct ceph_mds_session *session,
2587 struct ceph_msg *msg)
2588{
2589 struct ceph_mds_client *mdsc = session->s_mdsc;
2590 struct super_block *sb = mdsc->client->sb;
2591 struct inode *inode;
2592 struct ceph_cap *cap;
2593 struct ceph_mds_caps *h;
2594 int mds = le64_to_cpu(msg->hdr.src.name.num);
2595 int op;
2596 u32 seq;
2597 struct ceph_vino vino;
2598 u64 cap_id;
2599 u64 size, max_size;
6df058c0 2600 u64 tid;
a8599bd8
SW
2601 int check_caps = 0;
2602 int r;
2603
2604 dout("handle_caps from mds%d\n", mds);
2605
2606 /* decode */
6df058c0 2607 tid = le64_to_cpu(msg->hdr.tid);
a8599bd8
SW
2608 if (msg->front.iov_len < sizeof(*h))
2609 goto bad;
2610 h = msg->front.iov_base;
2611 op = le32_to_cpu(h->op);
2612 vino.ino = le64_to_cpu(h->ino);
2613 vino.snap = CEPH_NOSNAP;
2614 cap_id = le64_to_cpu(h->cap_id);
2615 seq = le32_to_cpu(h->seq);
2616 size = le64_to_cpu(h->size);
2617 max_size = le64_to_cpu(h->max_size);
2618
2619 mutex_lock(&session->s_mutex);
2620 session->s_seq++;
2621 dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
2622 (unsigned)seq);
2623
2624 /* lookup ino */
2625 inode = ceph_find_inode(sb, vino);
2626 dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
2627 vino.snap, inode);
2628 if (!inode) {
2629 dout(" i don't have ino %llx\n", vino.ino);
2630 goto done;
2631 }
2632
2633 /* these will work even if we don't have a cap yet */
2634 switch (op) {
2635 case CEPH_CAP_OP_FLUSHSNAP_ACK:
6df058c0 2636 handle_cap_flushsnap_ack(inode, tid, h, session);
a8599bd8
SW
2637 goto done;
2638
2639 case CEPH_CAP_OP_EXPORT:
2640 handle_cap_export(inode, h, session);
2641 goto done;
2642
2643 case CEPH_CAP_OP_IMPORT:
2644 handle_cap_import(mdsc, inode, h, session,
2645 msg->middle,
2646 le32_to_cpu(h->snap_trace_len));
2647 check_caps = 1; /* we may have sent a RELEASE to the old auth */
2648 goto done;
2649 }
2650
2651 /* the rest require a cap */
2652 spin_lock(&inode->i_lock);
2653 cap = __get_cap_for_mds(ceph_inode(inode), mds);
2654 if (!cap) {
2655 dout("no cap on %p ino %llx.%llx from mds%d, releasing\n",
2656 inode, ceph_ino(inode), ceph_snap(inode), mds);
2657 spin_unlock(&inode->i_lock);
2658 goto done;
2659 }
2660
2661 /* note that each of these drops i_lock for us */
2662 switch (op) {
2663 case CEPH_CAP_OP_REVOKE:
2664 case CEPH_CAP_OP_GRANT:
2665 r = handle_cap_grant(inode, h, session, cap, msg->middle);
2666 if (r == 1)
2667 ceph_check_caps(ceph_inode(inode),
2668 CHECK_CAPS_NODELAY|CHECK_CAPS_AUTHONLY,
2669 session);
2670 else if (r == 2)
2671 ceph_check_caps(ceph_inode(inode),
2672 CHECK_CAPS_NODELAY,
2673 session);
2674 break;
2675
2676 case CEPH_CAP_OP_FLUSH_ACK:
6df058c0 2677 handle_cap_flush_ack(inode, tid, h, session, cap);
a8599bd8
SW
2678 break;
2679
2680 case CEPH_CAP_OP_TRUNC:
2681 handle_cap_trunc(inode, h, session);
2682 break;
2683
2684 default:
2685 spin_unlock(&inode->i_lock);
2686 pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
2687 ceph_cap_op_name(op));
2688 }
2689
2690done:
2691 mutex_unlock(&session->s_mutex);
2692
2693 if (check_caps)
2694 ceph_check_caps(ceph_inode(inode), CHECK_CAPS_NODELAY, NULL);
2695 if (inode)
2696 iput(inode);
2697 return;
2698
2699bad:
2700 pr_err("ceph_handle_caps: corrupt message\n");
9ec7cab1 2701 ceph_msg_dump(msg);
a8599bd8
SW
2702 return;
2703}
2704
2705/*
2706 * Delayed work handler to process end of delayed cap release LRU list.
2707 */
afcdaea3 2708void ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
a8599bd8
SW
2709{
2710 struct ceph_inode_info *ci;
2711 int flags = CHECK_CAPS_NODELAY;
2712
a8599bd8
SW
2713 dout("check_delayed_caps\n");
2714 while (1) {
2715 spin_lock(&mdsc->cap_delay_lock);
2716 if (list_empty(&mdsc->cap_delay_list))
2717 break;
2718 ci = list_first_entry(&mdsc->cap_delay_list,
2719 struct ceph_inode_info,
2720 i_cap_delay_list);
2721 if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
2722 time_before(jiffies, ci->i_hold_caps_max))
2723 break;
2724 list_del_init(&ci->i_cap_delay_list);
2725 spin_unlock(&mdsc->cap_delay_lock);
2726 dout("check_delayed_caps on %p\n", &ci->vfs_inode);
2727 ceph_check_caps(ci, flags, NULL);
2728 }
2729 spin_unlock(&mdsc->cap_delay_lock);
2730}
2731
afcdaea3
SW
2732/*
2733 * Flush all dirty caps to the mds
2734 */
2735void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
2736{
2737 struct ceph_inode_info *ci;
2738 struct inode *inode;
2739
2740 dout("flush_dirty_caps\n");
2741 spin_lock(&mdsc->cap_dirty_lock);
2742 while (!list_empty(&mdsc->cap_dirty)) {
2743 ci = list_first_entry(&mdsc->cap_dirty,
2744 struct ceph_inode_info,
2745 i_dirty_item);
2746 inode = igrab(&ci->vfs_inode);
2747 spin_unlock(&mdsc->cap_dirty_lock);
2748 if (inode) {
2749 ceph_check_caps(ci, CHECK_CAPS_NODELAY|CHECK_CAPS_FLUSH,
2750 NULL);
2751 iput(inode);
2752 }
2753 spin_lock(&mdsc->cap_dirty_lock);
2754 }
2755 spin_unlock(&mdsc->cap_dirty_lock);
2756}
2757
a8599bd8
SW
2758/*
2759 * Drop open file reference. If we were the last open file,
2760 * we may need to release capabilities to the MDS (or schedule
2761 * their delayed release).
2762 */
2763void ceph_put_fmode(struct ceph_inode_info *ci, int fmode)
2764{
2765 struct inode *inode = &ci->vfs_inode;
2766 int last = 0;
2767
2768 spin_lock(&inode->i_lock);
2769 dout("put_fmode %p fmode %d %d -> %d\n", inode, fmode,
2770 ci->i_nr_by_mode[fmode], ci->i_nr_by_mode[fmode]-1);
2771 BUG_ON(ci->i_nr_by_mode[fmode] == 0);
2772 if (--ci->i_nr_by_mode[fmode] == 0)
2773 last++;
2774 spin_unlock(&inode->i_lock);
2775
2776 if (last && ci->i_vino.snap == CEPH_NOSNAP)
2777 ceph_check_caps(ci, 0, NULL);
2778}
2779
2780/*
2781 * Helpers for embedding cap and dentry lease releases into mds
2782 * requests.
2783 *
2784 * @force is used by dentry_release (below) to force inclusion of a
2785 * record for the directory inode, even when there aren't any caps to
2786 * drop.
2787 */
2788int ceph_encode_inode_release(void **p, struct inode *inode,
2789 int mds, int drop, int unless, int force)
2790{
2791 struct ceph_inode_info *ci = ceph_inode(inode);
2792 struct ceph_cap *cap;
2793 struct ceph_mds_request_release *rel = *p;
2794 int ret = 0;
2795
2796 dout("encode_inode_release %p mds%d drop %s unless %s\n", inode,
2797 mds, ceph_cap_string(drop), ceph_cap_string(unless));
2798
2799 spin_lock(&inode->i_lock);
2800 cap = __get_cap_for_mds(ci, mds);
2801 if (cap && __cap_is_valid(cap)) {
2802 if (force ||
2803 ((cap->issued & drop) &&
2804 (cap->issued & unless) == 0)) {
2805 if ((cap->issued & drop) &&
2806 (cap->issued & unless) == 0) {
2807 dout("encode_inode_release %p cap %p %s -> "
2808 "%s\n", inode, cap,
2809 ceph_cap_string(cap->issued),
2810 ceph_cap_string(cap->issued & ~drop));
2811 cap->issued &= ~drop;
2812 cap->implemented &= ~drop;
2813 if (ci->i_ceph_flags & CEPH_I_NODELAY) {
2814 int wanted = __ceph_caps_wanted(ci);
2815 dout(" wanted %s -> %s (act %s)\n",
2816 ceph_cap_string(cap->mds_wanted),
2817 ceph_cap_string(cap->mds_wanted &
2818 ~wanted),
2819 ceph_cap_string(wanted));
2820 cap->mds_wanted &= wanted;
2821 }
2822 } else {
2823 dout("encode_inode_release %p cap %p %s"
2824 " (force)\n", inode, cap,
2825 ceph_cap_string(cap->issued));
2826 }
2827
2828 rel->ino = cpu_to_le64(ceph_ino(inode));
2829 rel->cap_id = cpu_to_le64(cap->cap_id);
2830 rel->seq = cpu_to_le32(cap->seq);
2831 rel->issue_seq = cpu_to_le32(cap->issue_seq),
2832 rel->mseq = cpu_to_le32(cap->mseq);
2833 rel->caps = cpu_to_le32(cap->issued);
2834 rel->wanted = cpu_to_le32(cap->mds_wanted);
2835 rel->dname_len = 0;
2836 rel->dname_seq = 0;
2837 *p += sizeof(*rel);
2838 ret = 1;
2839 } else {
2840 dout("encode_inode_release %p cap %p %s\n",
2841 inode, cap, ceph_cap_string(cap->issued));
2842 }
2843 }
2844 spin_unlock(&inode->i_lock);
2845 return ret;
2846}
2847
2848int ceph_encode_dentry_release(void **p, struct dentry *dentry,
2849 int mds, int drop, int unless)
2850{
2851 struct inode *dir = dentry->d_parent->d_inode;
2852 struct ceph_mds_request_release *rel = *p;
2853 struct ceph_dentry_info *di = ceph_dentry(dentry);
2854 int force = 0;
2855 int ret;
2856
2857 /*
2858 * force an record for the directory caps if we have a dentry lease.
2859 * this is racy (can't take i_lock and d_lock together), but it
2860 * doesn't have to be perfect; the mds will revoke anything we don't
2861 * release.
2862 */
2863 spin_lock(&dentry->d_lock);
2864 if (di->lease_session && di->lease_session->s_mds == mds)
2865 force = 1;
2866 spin_unlock(&dentry->d_lock);
2867
2868 ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
2869
2870 spin_lock(&dentry->d_lock);
2871 if (ret && di->lease_session && di->lease_session->s_mds == mds) {
2872 dout("encode_dentry_release %p mds%d seq %d\n",
2873 dentry, mds, (int)di->lease_seq);
2874 rel->dname_len = cpu_to_le32(dentry->d_name.len);
2875 memcpy(*p, dentry->d_name.name, dentry->d_name.len);
2876 *p += dentry->d_name.len;
2877 rel->dname_seq = cpu_to_le32(di->lease_seq);
2878 }
2879 spin_unlock(&dentry->d_lock);
2880 return ret;
2881}