]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/mtd/devices/m25p80.c
mtd/maps: gpio-addr-flash: depend on GPIO arch support
[net-next-2.6.git] / drivers / mtd / devices / m25p80.c
CommitLineData
2f9f7628 1/*
fa0a8c71 2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
2f9f7628
ML
3 *
4 * Author: Mike Lavender, mike@steroidmicros.com
5 *
6 * Copyright (c) 2005, Intec Automation Inc.
7 *
8 * Some parts are based on lart.c by Abraham Van Der Merwe
9 *
10 * Cleaned up and generalized based on mtd_dataflash.c
11 *
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/device.h>
21#include <linux/interrupt.h>
7d5230ea 22#include <linux/mutex.h>
d85316ac 23#include <linux/math64.h>
7d5230ea 24
2f9f7628
ML
25#include <linux/mtd/mtd.h>
26#include <linux/mtd/partitions.h>
7d5230ea 27
2f9f7628
ML
28#include <linux/spi/spi.h>
29#include <linux/spi/flash.h>
30
2f9f7628 31
2f9f7628
ML
32#define FLASH_PAGESIZE 256
33
34/* Flash opcodes. */
fa0a8c71
DB
35#define OPCODE_WREN 0x06 /* Write enable */
36#define OPCODE_RDSR 0x05 /* Read status register */
72289824 37#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
2230b76b 38#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
fa0a8c71
DB
39#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
40#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
7854643a 41#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
02d087db 42#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
7854643a 43#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
02d087db 44#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
2f9f7628
ML
45#define OPCODE_RDID 0x9f /* Read JEDEC ID */
46
49aac4ae
GY
47/* Used for SST flashes only. */
48#define OPCODE_BP 0x02 /* Byte program */
49#define OPCODE_WRDI 0x04 /* Write disable */
50#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
51
2f9f7628
ML
52/* Status Register bits. */
53#define SR_WIP 1 /* Write in progress */
54#define SR_WEL 2 /* Write enable latch */
fa0a8c71 55/* meaning of other SR_* bits may differ between vendors */
2f9f7628
ML
56#define SR_BP0 4 /* Block protect 0 */
57#define SR_BP1 8 /* Block protect 1 */
58#define SR_BP2 0x10 /* Block protect 2 */
59#define SR_SRWD 0x80 /* SR write protect */
60
61/* Define max times to check status register before we give up. */
89bb871e 62#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
2230b76b 63#define CMD_SIZE 4
2f9f7628 64
2230b76b
BW
65#ifdef CONFIG_M25PXX_USE_FAST_READ
66#define OPCODE_READ OPCODE_FAST_READ
67#define FAST_READ_DUMMY_BYTE 1
68#else
69#define OPCODE_READ OPCODE_NORM_READ
70#define FAST_READ_DUMMY_BYTE 0
71#endif
2f9f7628 72
2f9f7628
ML
73/****************************************************************************/
74
75struct m25p {
76 struct spi_device *spi;
7d5230ea 77 struct mutex lock;
2f9f7628 78 struct mtd_info mtd;
fa0a8c71
DB
79 unsigned partitioned:1;
80 u8 erase_opcode;
2230b76b 81 u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
2f9f7628
ML
82};
83
84static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
85{
86 return container_of(mtd, struct m25p, mtd);
87}
88
89/****************************************************************************/
90
91/*
92 * Internal helper functions
93 */
94
95/*
96 * Read the status register, returning its value in the location
97 * Return the status register value.
98 * Returns negative if error occurred.
99 */
100static int read_sr(struct m25p *flash)
101{
102 ssize_t retval;
103 u8 code = OPCODE_RDSR;
104 u8 val;
105
106 retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
107
108 if (retval < 0) {
109 dev_err(&flash->spi->dev, "error %d reading SR\n",
110 (int) retval);
111 return retval;
112 }
113
114 return val;
115}
116
72289824
MH
117/*
118 * Write status register 1 byte
119 * Returns negative if error occurred.
120 */
121static int write_sr(struct m25p *flash, u8 val)
122{
123 flash->command[0] = OPCODE_WRSR;
124 flash->command[1] = val;
125
126 return spi_write(flash->spi, flash->command, 2);
127}
2f9f7628
ML
128
129/*
130 * Set write enable latch with Write Enable command.
131 * Returns negative if error occurred.
132 */
133static inline int write_enable(struct m25p *flash)
134{
135 u8 code = OPCODE_WREN;
136
8a1a6272 137 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
2f9f7628
ML
138}
139
49aac4ae
GY
140/*
141 * Send write disble instruction to the chip.
142 */
143static inline int write_disable(struct m25p *flash)
144{
145 u8 code = OPCODE_WRDI;
146
147 return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
148}
2f9f7628
ML
149
150/*
151 * Service routine to read status register until ready, or timeout occurs.
152 * Returns non-zero if error.
153 */
154static int wait_till_ready(struct m25p *flash)
155{
cd1a6de7 156 unsigned long deadline;
2f9f7628
ML
157 int sr;
158
cd1a6de7
PH
159 deadline = jiffies + MAX_READY_WAIT_JIFFIES;
160
161 do {
2f9f7628
ML
162 if ((sr = read_sr(flash)) < 0)
163 break;
164 else if (!(sr & SR_WIP))
165 return 0;
166
cd1a6de7
PH
167 cond_resched();
168
169 } while (!time_after_eq(jiffies, deadline));
2f9f7628
ML
170
171 return 1;
172}
173
faff3750
CG
174/*
175 * Erase the whole flash memory
176 *
177 * Returns 0 if successful, non-zero otherwise.
178 */
7854643a 179static int erase_chip(struct m25p *flash)
faff3750 180{
d85316ac 181 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
160bbab3
KS
182 dev_name(&flash->spi->dev), __func__,
183 (long long)(flash->mtd.size >> 10));
faff3750
CG
184
185 /* Wait until finished previous write command. */
186 if (wait_till_ready(flash))
187 return 1;
188
189 /* Send write enable, then erase commands. */
190 write_enable(flash);
191
192 /* Set up command buffer. */
7854643a 193 flash->command[0] = OPCODE_CHIP_ERASE;
faff3750
CG
194
195 spi_write(flash->spi, flash->command, 1);
196
197 return 0;
198}
2f9f7628
ML
199
200/*
201 * Erase one sector of flash memory at offset ``offset'' which is any
202 * address within the sector which should be erased.
203 *
204 * Returns 0 if successful, non-zero otherwise.
205 */
206static int erase_sector(struct m25p *flash, u32 offset)
207{
02d087db 208 DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
160bbab3 209 dev_name(&flash->spi->dev), __func__,
fa0a8c71 210 flash->mtd.erasesize / 1024, offset);
2f9f7628
ML
211
212 /* Wait until finished previous write command. */
213 if (wait_till_ready(flash))
214 return 1;
215
216 /* Send write enable, then erase commands. */
217 write_enable(flash);
218
219 /* Set up command buffer. */
fa0a8c71 220 flash->command[0] = flash->erase_opcode;
2f9f7628
ML
221 flash->command[1] = offset >> 16;
222 flash->command[2] = offset >> 8;
223 flash->command[3] = offset;
224
2230b76b 225 spi_write(flash->spi, flash->command, CMD_SIZE);
2f9f7628
ML
226
227 return 0;
228}
229
230/****************************************************************************/
231
232/*
233 * MTD implementation
234 */
235
236/*
237 * Erase an address range on the flash chip. The address range may extend
238 * one or more erase sectors. Return an error is there is a problem erasing.
239 */
240static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
241{
242 struct m25p *flash = mtd_to_m25p(mtd);
243 u32 addr,len;
d85316ac 244 uint32_t rem;
2f9f7628 245
d85316ac 246 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
160bbab3
KS
247 dev_name(&flash->spi->dev), __func__, "at",
248 (long long)instr->addr, (long long)instr->len);
2f9f7628
ML
249
250 /* sanity checks */
251 if (instr->addr + instr->len > flash->mtd.size)
252 return -EINVAL;
d85316ac
AB
253 div_u64_rem(instr->len, mtd->erasesize, &rem);
254 if (rem)
2f9f7628 255 return -EINVAL;
2f9f7628
ML
256
257 addr = instr->addr;
258 len = instr->len;
259
7d5230ea 260 mutex_lock(&flash->lock);
2f9f7628 261
7854643a 262 /* whole-chip erase? */
3f33b0aa
SF
263 if (len == flash->mtd.size) {
264 if (erase_chip(flash)) {
265 instr->state = MTD_ERASE_FAILED;
266 mutex_unlock(&flash->lock);
267 return -EIO;
268 }
7854643a
CG
269
270 /* REVISIT in some cases we could speed up erasing large regions
271 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
272 * to use "small sector erase", but that's not always optimal.
273 */
274
275 /* "sector"-at-a-time erase */
faff3750
CG
276 } else {
277 while (len) {
278 if (erase_sector(flash, addr)) {
279 instr->state = MTD_ERASE_FAILED;
280 mutex_unlock(&flash->lock);
281 return -EIO;
282 }
283
284 addr += mtd->erasesize;
285 len -= mtd->erasesize;
2f9f7628 286 }
2f9f7628
ML
287 }
288
7d5230ea 289 mutex_unlock(&flash->lock);
2f9f7628
ML
290
291 instr->state = MTD_ERASE_DONE;
292 mtd_erase_callback(instr);
293
294 return 0;
295}
296
297/*
298 * Read an address range from the flash chip. The address range
299 * may be any size provided it is within the physical boundaries.
300 */
301static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
302 size_t *retlen, u_char *buf)
303{
304 struct m25p *flash = mtd_to_m25p(mtd);
305 struct spi_transfer t[2];
306 struct spi_message m;
307
308 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
160bbab3 309 dev_name(&flash->spi->dev), __func__, "from",
2f9f7628
ML
310 (u32)from, len);
311
312 /* sanity checks */
313 if (!len)
314 return 0;
315
316 if (from + len > flash->mtd.size)
317 return -EINVAL;
318
8275c642
VW
319 spi_message_init(&m);
320 memset(t, 0, (sizeof t));
321
2230b76b
BW
322 /* NOTE:
323 * OPCODE_FAST_READ (if available) is faster.
324 * Should add 1 byte DUMMY_BYTE.
325 */
8275c642 326 t[0].tx_buf = flash->command;
2230b76b 327 t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
8275c642
VW
328 spi_message_add_tail(&t[0], &m);
329
330 t[1].rx_buf = buf;
331 t[1].len = len;
332 spi_message_add_tail(&t[1], &m);
333
334 /* Byte count starts at zero. */
335 if (retlen)
336 *retlen = 0;
337
7d5230ea 338 mutex_lock(&flash->lock);
2f9f7628
ML
339
340 /* Wait till previous write/erase is done. */
341 if (wait_till_ready(flash)) {
342 /* REVISIT status return?? */
7d5230ea 343 mutex_unlock(&flash->lock);
2f9f7628
ML
344 return 1;
345 }
346
fa0a8c71
DB
347 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
348 * clocks; and at this writing, every chip this driver handles
349 * supports that opcode.
350 */
2f9f7628
ML
351
352 /* Set up the write data buffer. */
353 flash->command[0] = OPCODE_READ;
354 flash->command[1] = from >> 16;
355 flash->command[2] = from >> 8;
356 flash->command[3] = from;
357
2f9f7628
ML
358 spi_sync(flash->spi, &m);
359
2230b76b 360 *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
2f9f7628 361
7d5230ea 362 mutex_unlock(&flash->lock);
2f9f7628
ML
363
364 return 0;
365}
366
367/*
368 * Write an address range to the flash chip. Data must be written in
369 * FLASH_PAGESIZE chunks. The address range may be any size provided
370 * it is within the physical boundaries.
371 */
372static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
373 size_t *retlen, const u_char *buf)
374{
375 struct m25p *flash = mtd_to_m25p(mtd);
376 u32 page_offset, page_size;
377 struct spi_transfer t[2];
378 struct spi_message m;
379
380 DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
160bbab3 381 dev_name(&flash->spi->dev), __func__, "to",
2f9f7628
ML
382 (u32)to, len);
383
384 if (retlen)
385 *retlen = 0;
386
387 /* sanity checks */
388 if (!len)
389 return(0);
390
391 if (to + len > flash->mtd.size)
392 return -EINVAL;
393
8275c642
VW
394 spi_message_init(&m);
395 memset(t, 0, (sizeof t));
396
397 t[0].tx_buf = flash->command;
2230b76b 398 t[0].len = CMD_SIZE;
8275c642
VW
399 spi_message_add_tail(&t[0], &m);
400
401 t[1].tx_buf = buf;
402 spi_message_add_tail(&t[1], &m);
403
7d5230ea 404 mutex_lock(&flash->lock);
2f9f7628
ML
405
406 /* Wait until finished previous write command. */
bc018863
CG
407 if (wait_till_ready(flash)) {
408 mutex_unlock(&flash->lock);
2f9f7628 409 return 1;
bc018863 410 }
2f9f7628
ML
411
412 write_enable(flash);
413
2f9f7628
ML
414 /* Set up the opcode in the write buffer. */
415 flash->command[0] = OPCODE_PP;
416 flash->command[1] = to >> 16;
417 flash->command[2] = to >> 8;
418 flash->command[3] = to;
419
2f9f7628
ML
420 /* what page do we start with? */
421 page_offset = to % FLASH_PAGESIZE;
422
423 /* do all the bytes fit onto one page? */
424 if (page_offset + len <= FLASH_PAGESIZE) {
2f9f7628
ML
425 t[1].len = len;
426
427 spi_sync(flash->spi, &m);
428
2230b76b 429 *retlen = m.actual_length - CMD_SIZE;
2f9f7628
ML
430 } else {
431 u32 i;
432
433 /* the size of data remaining on the first page */
434 page_size = FLASH_PAGESIZE - page_offset;
435
2f9f7628
ML
436 t[1].len = page_size;
437 spi_sync(flash->spi, &m);
438
2230b76b 439 *retlen = m.actual_length - CMD_SIZE;
2f9f7628
ML
440
441 /* write everything in PAGESIZE chunks */
442 for (i = page_size; i < len; i += page_size) {
443 page_size = len - i;
444 if (page_size > FLASH_PAGESIZE)
445 page_size = FLASH_PAGESIZE;
446
447 /* write the next page to flash */
448 flash->command[1] = (to + i) >> 16;
449 flash->command[2] = (to + i) >> 8;
450 flash->command[3] = (to + i);
451
452 t[1].tx_buf = buf + i;
453 t[1].len = page_size;
454
455 wait_till_ready(flash);
456
457 write_enable(flash);
458
459 spi_sync(flash->spi, &m);
460
7111763d 461 if (retlen)
2230b76b 462 *retlen += m.actual_length - CMD_SIZE;
7d5230ea
DB
463 }
464 }
2f9f7628 465
7d5230ea 466 mutex_unlock(&flash->lock);
2f9f7628
ML
467
468 return 0;
469}
470
49aac4ae
GY
471static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
472 size_t *retlen, const u_char *buf)
473{
474 struct m25p *flash = mtd_to_m25p(mtd);
475 struct spi_transfer t[2];
476 struct spi_message m;
477 size_t actual;
478 int cmd_sz, ret;
479
480 if (retlen)
481 *retlen = 0;
482
483 /* sanity checks */
484 if (!len)
485 return 0;
486
487 if (to + len > flash->mtd.size)
488 return -EINVAL;
489
490 spi_message_init(&m);
491 memset(t, 0, (sizeof t));
492
493 t[0].tx_buf = flash->command;
494 t[0].len = CMD_SIZE;
495 spi_message_add_tail(&t[0], &m);
496
497 t[1].tx_buf = buf;
498 spi_message_add_tail(&t[1], &m);
499
500 mutex_lock(&flash->lock);
501
502 /* Wait until finished previous write command. */
503 ret = wait_till_ready(flash);
504 if (ret)
505 goto time_out;
506
507 write_enable(flash);
508
509 actual = to % 2;
510 /* Start write from odd address. */
511 if (actual) {
512 flash->command[0] = OPCODE_BP;
513 flash->command[1] = to >> 16;
514 flash->command[2] = to >> 8;
515 flash->command[3] = to;
516
517 /* write one byte. */
518 t[1].len = 1;
519 spi_sync(flash->spi, &m);
520 ret = wait_till_ready(flash);
521 if (ret)
522 goto time_out;
523 *retlen += m.actual_length - CMD_SIZE;
524 }
525 to += actual;
526
527 flash->command[0] = OPCODE_AAI_WP;
528 flash->command[1] = to >> 16;
529 flash->command[2] = to >> 8;
530 flash->command[3] = to;
531
532 /* Write out most of the data here. */
533 cmd_sz = CMD_SIZE;
534 for (; actual < len - 1; actual += 2) {
535 t[0].len = cmd_sz;
536 /* write two bytes. */
537 t[1].len = 2;
538 t[1].tx_buf = buf + actual;
539
540 spi_sync(flash->spi, &m);
541 ret = wait_till_ready(flash);
542 if (ret)
543 goto time_out;
544 *retlen += m.actual_length - cmd_sz;
545 cmd_sz = 1;
546 to += 2;
547 }
548 write_disable(flash);
549 ret = wait_till_ready(flash);
550 if (ret)
551 goto time_out;
552
553 /* Write out trailing byte if it exists. */
554 if (actual != len) {
555 write_enable(flash);
556 flash->command[0] = OPCODE_BP;
557 flash->command[1] = to >> 16;
558 flash->command[2] = to >> 8;
559 flash->command[3] = to;
560 t[0].len = CMD_SIZE;
561 t[1].len = 1;
562 t[1].tx_buf = buf + actual;
563
564 spi_sync(flash->spi, &m);
565 ret = wait_till_ready(flash);
566 if (ret)
567 goto time_out;
568 *retlen += m.actual_length - CMD_SIZE;
569 write_disable(flash);
570 }
571
572time_out:
573 mutex_unlock(&flash->lock);
574 return ret;
575}
2f9f7628
ML
576
577/****************************************************************************/
578
579/*
580 * SPI device driver setup and teardown
581 */
582
583struct flash_info {
584 char *name;
fa0a8c71
DB
585
586 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
587 * a high byte of zero plus three data bytes: the manufacturer id,
588 * then a two byte device id.
589 */
590 u32 jedec_id;
d0e8c47c 591 u16 ext_id;
fa0a8c71
DB
592
593 /* The size listed here is what works with OPCODE_SE, which isn't
594 * necessarily called a "sector" by the vendor.
595 */
2f9f7628 596 unsigned sector_size;
fa0a8c71
DB
597 u16 n_sectors;
598
599 u16 flags;
600#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
2f9f7628
ML
601};
602
fa0a8c71
DB
603
604/* NOTE: double check command sets and memory organization when you add
605 * more flash chips. This current list focusses on newer chips, which
606 * have been converging on command sets which including JEDEC ID.
607 */
2f9f7628 608static struct flash_info __devinitdata m25p_data [] = {
fa0a8c71
DB
609
610 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
d0e8c47c
CG
611 { "at25fs010", 0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
612 { "at25fs040", 0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
fa0a8c71 613
d0e8c47c
CG
614 { "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
615 { "at25df641", 0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
fa0a8c71 616
d0e8c47c
CG
617 { "at26f004", 0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
618 { "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
619 { "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
620 { "at26df321", 0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
fa0a8c71 621
ab1ff210 622 /* Macronix */
b0469ea7
SG
623 { "mx25l3205d", 0xc22016, 0, 64 * 1024, 64, },
624 { "mx25l6405d", 0xc22017, 0, 64 * 1024, 128, },
ab1ff210 625 { "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
b0469ea7 626 { "mx25l12855e", 0xc22618, 0, 64 * 1024, 256, },
ab1ff210 627
fa0a8c71
DB
628 /* Spansion -- single (large) sector size only, at least
629 * for the chips listed here (without boot sectors).
630 */
d0e8c47c
CG
631 { "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
632 { "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
633 { "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
634 { "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
635 { "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
304e6d5f 636 { "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
d0e8c47c 637 { "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
304e6d5f
KC
638 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, },
639 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, },
fa0a8c71
DB
640
641 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
d0e8c47c
CG
642 { "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
643 { "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
644 { "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
645 { "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
aa3651e4
GY
646 { "sst25wf512", 0xbf2501, 0, 64 * 1024, 1, SECT_4K, },
647 { "sst25wf010", 0xbf2502, 0, 64 * 1024, 2, SECT_4K, },
648 { "sst25wf020", 0xbf2503, 0, 64 * 1024, 4, SECT_4K, },
649 { "sst25wf040", 0xbf2504, 0, 64 * 1024, 8, SECT_4K, },
fa0a8c71
DB
650
651 /* ST Microelectronics -- newer production may have feature updates */
d0e8c47c
CG
652 { "m25p05", 0x202010, 0, 32 * 1024, 2, },
653 { "m25p10", 0x202011, 0, 32 * 1024, 4, },
654 { "m25p20", 0x202012, 0, 64 * 1024, 4, },
655 { "m25p40", 0x202013, 0, 64 * 1024, 8, },
656 { "m25p80", 0, 0, 64 * 1024, 16, },
657 { "m25p16", 0x202015, 0, 64 * 1024, 32, },
658 { "m25p32", 0x202016, 0, 64 * 1024, 64, },
659 { "m25p64", 0x202017, 0, 64 * 1024, 128, },
660 { "m25p128", 0x202018, 0, 256 * 1024, 64, },
661
1e42d142 662 { "m45pe10", 0x204011, 0, 64 * 1024, 2, },
d0e8c47c
CG
663 { "m45pe80", 0x204014, 0, 64 * 1024, 16, },
664 { "m45pe16", 0x204015, 0, 64 * 1024, 32, },
665
666 { "m25pe80", 0x208014, 0, 64 * 1024, 16, },
667 { "m25pe16", 0x208015, 0, 64 * 1024, 32, SECT_4K, },
fa0a8c71 668
02d087db 669 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
d0e8c47c
CG
670 { "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
671 { "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
672 { "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
673 { "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
674 { "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
675 { "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
676 { "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
2f9f7628
ML
677};
678
fa0a8c71
DB
679static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
680{
681 int tmp;
682 u8 code = OPCODE_RDID;
daa84735 683 u8 id[5];
fa0a8c71 684 u32 jedec;
d0e8c47c 685 u16 ext_jedec;
fa0a8c71
DB
686 struct flash_info *info;
687
688 /* JEDEC also defines an optional "extended device information"
689 * string for after vendor-specific data, after the three bytes
690 * we use here. Supporting some chips might require using it.
691 */
daa84735 692 tmp = spi_write_then_read(spi, &code, 1, id, 5);
fa0a8c71
DB
693 if (tmp < 0) {
694 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
160bbab3 695 dev_name(&spi->dev), tmp);
fa0a8c71
DB
696 return NULL;
697 }
698 jedec = id[0];
699 jedec = jedec << 8;
700 jedec |= id[1];
701 jedec = jedec << 8;
702 jedec |= id[2];
703
d0e8c47c
CG
704 ext_jedec = id[3] << 8 | id[4];
705
fa0a8c71
DB
706 for (tmp = 0, info = m25p_data;
707 tmp < ARRAY_SIZE(m25p_data);
708 tmp++, info++) {
a3d3f73c 709 if (info->jedec_id == jedec) {
9168ab86 710 if (info->ext_id != 0 && info->ext_id != ext_jedec)
d0e8c47c 711 continue;
fa0a8c71 712 return info;
a3d3f73c 713 }
fa0a8c71
DB
714 }
715 dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
716 return NULL;
717}
718
719
2f9f7628
ML
720/*
721 * board specific setup should have ensured the SPI clock used here
722 * matches what the READ command supports, at least until this driver
723 * understands FAST_READ (for clocks over 25 MHz).
724 */
725static int __devinit m25p_probe(struct spi_device *spi)
726{
727 struct flash_platform_data *data;
728 struct m25p *flash;
729 struct flash_info *info;
730 unsigned i;
731
732 /* Platform data helps sort out which chip type we have, as
fa0a8c71
DB
733 * well as how this board partitions it. If we don't have
734 * a chip ID, try the JEDEC id commands; they'll work for most
735 * newer chips, even if we don't recognize the particular chip.
2f9f7628
ML
736 */
737 data = spi->dev.platform_data;
fa0a8c71
DB
738 if (data && data->type) {
739 for (i = 0, info = m25p_data;
740 i < ARRAY_SIZE(m25p_data);
741 i++, info++) {
742 if (strcmp(data->type, info->name) == 0)
743 break;
744 }
2f9f7628 745
fa0a8c71
DB
746 /* unrecognized chip? */
747 if (i == ARRAY_SIZE(m25p_data)) {
748 DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
160bbab3 749 dev_name(&spi->dev), data->type);
fa0a8c71
DB
750 info = NULL;
751
752 /* recognized; is that chip really what's there? */
753 } else if (info->jedec_id) {
754 struct flash_info *chip = jedec_probe(spi);
755
756 if (!chip || chip != info) {
757 dev_warn(&spi->dev, "found %s, expected %s\n",
758 chip ? chip->name : "UNKNOWN",
759 info->name);
760 info = NULL;
761 }
762 }
763 } else
764 info = jedec_probe(spi);
765
766 if (!info)
2f9f7628 767 return -ENODEV;
2f9f7628 768
e94b1766 769 flash = kzalloc(sizeof *flash, GFP_KERNEL);
2f9f7628
ML
770 if (!flash)
771 return -ENOMEM;
772
773 flash->spi = spi;
7d5230ea 774 mutex_init(&flash->lock);
2f9f7628
ML
775 dev_set_drvdata(&spi->dev, flash);
776
72289824
MH
777 /*
778 * Atmel serial flash tend to power up
779 * with the software protection bits set
780 */
781
782 if (info->jedec_id >> 16 == 0x1f) {
783 write_enable(flash);
784 write_sr(flash, 0);
785 }
786
fa0a8c71 787 if (data && data->name)
2f9f7628
ML
788 flash->mtd.name = data->name;
789 else
160bbab3 790 flash->mtd.name = dev_name(&spi->dev);
2f9f7628
ML
791
792 flash->mtd.type = MTD_NORFLASH;
783ed81f 793 flash->mtd.writesize = 1;
2f9f7628
ML
794 flash->mtd.flags = MTD_CAP_NORFLASH;
795 flash->mtd.size = info->sector_size * info->n_sectors;
2f9f7628
ML
796 flash->mtd.erase = m25p80_erase;
797 flash->mtd.read = m25p80_read;
49aac4ae
GY
798
799 /* sst flash chips use AAI word program */
800 if (info->jedec_id >> 16 == 0xbf)
801 flash->mtd.write = sst_write;
802 else
803 flash->mtd.write = m25p80_write;
2f9f7628 804
fa0a8c71
DB
805 /* prefer "small sector" erase if possible */
806 if (info->flags & SECT_4K) {
807 flash->erase_opcode = OPCODE_BE_4K;
808 flash->mtd.erasesize = 4096;
809 } else {
810 flash->erase_opcode = OPCODE_SE;
811 flash->mtd.erasesize = info->sector_size;
812 }
813
87f39f04
DB
814 flash->mtd.dev.parent = &spi->dev;
815
d85316ac
AB
816 dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
817 (long long)flash->mtd.size >> 10);
2f9f7628
ML
818
819 DEBUG(MTD_DEBUG_LEVEL2,
d85316ac 820 "mtd .name = %s, .size = 0x%llx (%lldMiB) "
02d087db 821 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
2f9f7628 822 flash->mtd.name,
d85316ac 823 (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
2f9f7628
ML
824 flash->mtd.erasesize, flash->mtd.erasesize / 1024,
825 flash->mtd.numeraseregions);
826
827 if (flash->mtd.numeraseregions)
828 for (i = 0; i < flash->mtd.numeraseregions; i++)
829 DEBUG(MTD_DEBUG_LEVEL2,
d85316ac 830 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
02d087db 831 ".erasesize = 0x%.8x (%uKiB), "
2f9f7628 832 ".numblocks = %d }\n",
d85316ac 833 i, (long long)flash->mtd.eraseregions[i].offset,
2f9f7628
ML
834 flash->mtd.eraseregions[i].erasesize,
835 flash->mtd.eraseregions[i].erasesize / 1024,
836 flash->mtd.eraseregions[i].numblocks);
837
838
839 /* partitions should match sector boundaries; and it may be good to
840 * use readonly partitions for writeprotected sectors (BP2..BP0).
841 */
842 if (mtd_has_partitions()) {
843 struct mtd_partition *parts = NULL;
844 int nr_parts = 0;
845
a4b6d516
DB
846 if (mtd_has_cmdlinepart()) {
847 static const char *part_probes[]
848 = { "cmdlinepart", NULL, };
2f9f7628 849
a4b6d516
DB
850 nr_parts = parse_mtd_partitions(&flash->mtd,
851 part_probes, &parts, 0);
852 }
2f9f7628
ML
853
854 if (nr_parts <= 0 && data && data->parts) {
855 parts = data->parts;
856 nr_parts = data->nr_parts;
857 }
858
859 if (nr_parts > 0) {
fa0a8c71 860 for (i = 0; i < nr_parts; i++) {
2f9f7628 861 DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
d85316ac
AB
862 "{.name = %s, .offset = 0x%llx, "
863 ".size = 0x%llx (%lldKiB) }\n",
fa0a8c71 864 i, parts[i].name,
d85316ac
AB
865 (long long)parts[i].offset,
866 (long long)parts[i].size,
867 (long long)(parts[i].size >> 10));
2f9f7628
ML
868 }
869 flash->partitioned = 1;
870 return add_mtd_partitions(&flash->mtd, parts, nr_parts);
871 }
edcb3b14 872 } else if (data && data->nr_parts)
2f9f7628
ML
873 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
874 data->nr_parts, data->name);
875
876 return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
877}
878
879
880static int __devexit m25p_remove(struct spi_device *spi)
881{
882 struct m25p *flash = dev_get_drvdata(&spi->dev);
883 int status;
884
885 /* Clean up MTD stuff. */
886 if (mtd_has_partitions() && flash->partitioned)
887 status = del_mtd_partitions(&flash->mtd);
888 else
889 status = del_mtd_device(&flash->mtd);
890 if (status == 0)
891 kfree(flash);
892 return 0;
893}
894
895
896static struct spi_driver m25p80_driver = {
897 .driver = {
898 .name = "m25p80",
899 .bus = &spi_bus_type,
900 .owner = THIS_MODULE,
901 },
902 .probe = m25p_probe,
903 .remove = __devexit_p(m25p_remove),
fa0a8c71
DB
904
905 /* REVISIT: many of these chips have deep power-down modes, which
906 * should clearly be entered on suspend() to minimize power use.
907 * And also when they're otherwise idle...
908 */
2f9f7628
ML
909};
910
911
627df23c 912static int __init m25p80_init(void)
2f9f7628
ML
913{
914 return spi_register_driver(&m25p80_driver);
915}
916
917
627df23c 918static void __exit m25p80_exit(void)
2f9f7628
ML
919{
920 spi_unregister_driver(&m25p80_driver);
921}
922
923
924module_init(m25p80_init);
925module_exit(m25p80_exit);
926
927MODULE_LICENSE("GPL");
928MODULE_AUTHOR("Mike Lavender");
929MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");