]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/ata/libata-core.c
libata: be less of a drama queen on empty data commands
[net-next-2.6.git] / drivers / ata / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
92c52c52
AC
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
1da177e4
LT
41 */
42
1da177e4
LT
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
1da177e4
LT
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
378f058c 57#include <linux/scatterlist.h>
2dcb407e 58#include <linux/io.h>
79318057 59#include <linux/async.h>
e18086d6 60#include <linux/log2.h>
5a0e3ad6 61#include <linux/slab.h>
1da177e4 62#include <scsi/scsi.h>
193515d5 63#include <scsi/scsi_cmnd.h>
1da177e4
LT
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
1da177e4 66#include <asm/byteorder.h>
140b5e59 67#include <linux/cdrom.h>
9990b6f3 68#include <linux/ratelimit.h>
1da177e4
LT
69
70#include "libata.h"
71
fda0efc5 72
d7bb4cc7 73/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 77
029cfd6b 78const struct ata_port_operations ata_base_port_ops = {
0aa1113d 79 .prereset = ata_std_prereset,
203c75b8 80 .postreset = ata_std_postreset,
a1efdaba 81 .error_handler = ata_std_error_handler,
029cfd6b
TH
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
57c9efdf 88 .hardreset = sata_std_hardreset,
029cfd6b
TH
89};
90
3373efd8
TH
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
218f3d30
JG
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
3373efd8 96static void ata_dev_xfermask(struct ata_device *dev);
75683fe7 97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
1da177e4 98
f3187195 99unsigned int ata_print_id = 1;
1da177e4 100
33267325
TH
101struct ata_force_param {
102 const char *name;
103 unsigned int cbl;
104 int spd_limit;
105 unsigned long xfer_mask;
106 unsigned int horkage_on;
107 unsigned int horkage_off;
05944bdf 108 unsigned int lflags;
33267325
TH
109};
110
111struct ata_force_ent {
112 int port;
113 int device;
114 struct ata_force_param param;
115};
116
117static struct ata_force_ent *ata_force_tbl;
118static int ata_force_tbl_size;
119
120static char ata_force_param_buf[PAGE_SIZE] __initdata;
7afb4222
TH
121/* param_buf is thrown away after initialization, disallow read */
122module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
33267325
TH
123MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
124
2486fa56 125static int atapi_enabled = 1;
1623c81e 126module_param(atapi_enabled, int, 0444);
ad5d8eac 127MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
1623c81e 128
c5c61bda 129static int atapi_dmadir = 0;
95de719a 130module_param(atapi_dmadir, int, 0444);
ad5d8eac 131MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
95de719a 132
baf4fdfa
ML
133int atapi_passthru16 = 1;
134module_param(atapi_passthru16, int, 0444);
ad5d8eac 135MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
baf4fdfa 136
c3c013a2
JG
137int libata_fua = 0;
138module_param_named(fua, libata_fua, int, 0444);
ad5d8eac 139MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
c3c013a2 140
2dcb407e 141static int ata_ignore_hpa;
1e999736
AC
142module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
143MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
144
b3a70601
AC
145static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
146module_param_named(dma, libata_dma_mask, int, 0444);
147MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
148
87fbc5a0 149static int ata_probe_timeout;
a8601e5f
AM
150module_param(ata_probe_timeout, int, 0444);
151MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
152
6ebe9d86 153int libata_noacpi = 0;
d7d0dad6 154module_param_named(noacpi, libata_noacpi, int, 0444);
ad5d8eac 155MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
11ef697b 156
ae8d4ee7
AC
157int libata_allow_tpm = 0;
158module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
ad5d8eac 159MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
ae8d4ee7 160
e7ecd435
TH
161static int atapi_an;
162module_param(atapi_an, int, 0444);
163MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
164
1da177e4
LT
165MODULE_AUTHOR("Jeff Garzik");
166MODULE_DESCRIPTION("Library module for ATA devices");
167MODULE_LICENSE("GPL");
168MODULE_VERSION(DRV_VERSION);
169
0baab86b 170
9913ff8a
TH
171static bool ata_sstatus_online(u32 sstatus)
172{
173 return (sstatus & 0xf) == 0x3;
174}
175
1eca4365
TH
176/**
177 * ata_link_next - link iteration helper
178 * @link: the previous link, NULL to start
179 * @ap: ATA port containing links to iterate
180 * @mode: iteration mode, one of ATA_LITER_*
181 *
182 * LOCKING:
183 * Host lock or EH context.
aadffb68 184 *
1eca4365
TH
185 * RETURNS:
186 * Pointer to the next link.
aadffb68 187 */
1eca4365
TH
188struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
189 enum ata_link_iter_mode mode)
aadffb68 190{
1eca4365
TH
191 BUG_ON(mode != ATA_LITER_EDGE &&
192 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
193
aadffb68 194 /* NULL link indicates start of iteration */
1eca4365
TH
195 if (!link)
196 switch (mode) {
197 case ATA_LITER_EDGE:
198 case ATA_LITER_PMP_FIRST:
199 if (sata_pmp_attached(ap))
200 return ap->pmp_link;
201 /* fall through */
202 case ATA_LITER_HOST_FIRST:
203 return &ap->link;
204 }
aadffb68 205
1eca4365
TH
206 /* we just iterated over the host link, what's next? */
207 if (link == &ap->link)
208 switch (mode) {
209 case ATA_LITER_HOST_FIRST:
210 if (sata_pmp_attached(ap))
211 return ap->pmp_link;
212 /* fall through */
213 case ATA_LITER_PMP_FIRST:
214 if (unlikely(ap->slave_link))
b1c72916 215 return ap->slave_link;
1eca4365
TH
216 /* fall through */
217 case ATA_LITER_EDGE:
aadffb68 218 return NULL;
b1c72916 219 }
aadffb68 220
b1c72916
TH
221 /* slave_link excludes PMP */
222 if (unlikely(link == ap->slave_link))
223 return NULL;
224
1eca4365 225 /* we were over a PMP link */
aadffb68
TH
226 if (++link < ap->pmp_link + ap->nr_pmp_links)
227 return link;
1eca4365
TH
228
229 if (mode == ATA_LITER_PMP_FIRST)
230 return &ap->link;
231
aadffb68
TH
232 return NULL;
233}
234
1eca4365
TH
235/**
236 * ata_dev_next - device iteration helper
237 * @dev: the previous device, NULL to start
238 * @link: ATA link containing devices to iterate
239 * @mode: iteration mode, one of ATA_DITER_*
240 *
241 * LOCKING:
242 * Host lock or EH context.
243 *
244 * RETURNS:
245 * Pointer to the next device.
246 */
247struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
248 enum ata_dev_iter_mode mode)
249{
250 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
251 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
252
253 /* NULL dev indicates start of iteration */
254 if (!dev)
255 switch (mode) {
256 case ATA_DITER_ENABLED:
257 case ATA_DITER_ALL:
258 dev = link->device;
259 goto check;
260 case ATA_DITER_ENABLED_REVERSE:
261 case ATA_DITER_ALL_REVERSE:
262 dev = link->device + ata_link_max_devices(link) - 1;
263 goto check;
264 }
265
266 next:
267 /* move to the next one */
268 switch (mode) {
269 case ATA_DITER_ENABLED:
270 case ATA_DITER_ALL:
271 if (++dev < link->device + ata_link_max_devices(link))
272 goto check;
273 return NULL;
274 case ATA_DITER_ENABLED_REVERSE:
275 case ATA_DITER_ALL_REVERSE:
276 if (--dev >= link->device)
277 goto check;
278 return NULL;
279 }
280
281 check:
282 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
283 !ata_dev_enabled(dev))
284 goto next;
285 return dev;
286}
287
b1c72916
TH
288/**
289 * ata_dev_phys_link - find physical link for a device
290 * @dev: ATA device to look up physical link for
291 *
292 * Look up physical link which @dev is attached to. Note that
293 * this is different from @dev->link only when @dev is on slave
294 * link. For all other cases, it's the same as @dev->link.
295 *
296 * LOCKING:
297 * Don't care.
298 *
299 * RETURNS:
300 * Pointer to the found physical link.
301 */
302struct ata_link *ata_dev_phys_link(struct ata_device *dev)
303{
304 struct ata_port *ap = dev->link->ap;
305
306 if (!ap->slave_link)
307 return dev->link;
308 if (!dev->devno)
309 return &ap->link;
310 return ap->slave_link;
311}
312
33267325
TH
313/**
314 * ata_force_cbl - force cable type according to libata.force
4cdfa1b3 315 * @ap: ATA port of interest
33267325
TH
316 *
317 * Force cable type according to libata.force and whine about it.
318 * The last entry which has matching port number is used, so it
319 * can be specified as part of device force parameters. For
320 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
321 * same effect.
322 *
323 * LOCKING:
324 * EH context.
325 */
326void ata_force_cbl(struct ata_port *ap)
327{
328 int i;
329
330 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
331 const struct ata_force_ent *fe = &ata_force_tbl[i];
332
333 if (fe->port != -1 && fe->port != ap->print_id)
334 continue;
335
336 if (fe->param.cbl == ATA_CBL_NONE)
337 continue;
338
339 ap->cbl = fe->param.cbl;
340 ata_port_printk(ap, KERN_NOTICE,
341 "FORCE: cable set to %s\n", fe->param.name);
342 return;
343 }
344}
345
346/**
05944bdf 347 * ata_force_link_limits - force link limits according to libata.force
33267325
TH
348 * @link: ATA link of interest
349 *
05944bdf
TH
350 * Force link flags and SATA spd limit according to libata.force
351 * and whine about it. When only the port part is specified
352 * (e.g. 1:), the limit applies to all links connected to both
353 * the host link and all fan-out ports connected via PMP. If the
354 * device part is specified as 0 (e.g. 1.00:), it specifies the
355 * first fan-out link not the host link. Device number 15 always
b1c72916
TH
356 * points to the host link whether PMP is attached or not. If the
357 * controller has slave link, device number 16 points to it.
33267325
TH
358 *
359 * LOCKING:
360 * EH context.
361 */
05944bdf 362static void ata_force_link_limits(struct ata_link *link)
33267325 363{
05944bdf 364 bool did_spd = false;
b1c72916
TH
365 int linkno = link->pmp;
366 int i;
33267325
TH
367
368 if (ata_is_host_link(link))
b1c72916 369 linkno += 15;
33267325
TH
370
371 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
372 const struct ata_force_ent *fe = &ata_force_tbl[i];
373
374 if (fe->port != -1 && fe->port != link->ap->print_id)
375 continue;
376
377 if (fe->device != -1 && fe->device != linkno)
378 continue;
379
05944bdf
TH
380 /* only honor the first spd limit */
381 if (!did_spd && fe->param.spd_limit) {
382 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
383 ata_link_printk(link, KERN_NOTICE,
384 "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
387 }
33267325 388
05944bdf
TH
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_printk(link, KERN_NOTICE,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
395 }
33267325
TH
396 }
397}
398
399/**
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
402 *
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
406 *
407 * LOCKING:
408 * EH context.
409 */
410static void ata_force_xfermask(struct ata_device *dev)
411{
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
415
b1c72916
TH
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
33267325
TH
419
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
423
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
426
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
430
431 if (!fe->param.xfer_mask)
432 continue;
433
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
445 }
446
447 ata_dev_printk(dev, KERN_NOTICE,
448 "FORCE: xfer_mask set to %s\n", fe->param.name);
449 return;
450 }
451}
452
453/**
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
456 *
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
460 *
461 * LOCKING:
462 * EH context.
463 */
464static void ata_force_horkage(struct ata_device *dev)
465{
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
469
b1c72916
TH
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
33267325
TH
473
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
476
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
479
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
483
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
487
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
490
491 ata_dev_printk(dev, KERN_NOTICE,
492 "FORCE: horkage modified (%s)\n", fe->param.name);
493 }
494}
495
436d34b3
TH
496/**
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
499 *
500 * Determine ATAPI command type from @opcode.
501 *
502 * LOCKING:
503 * None.
504 *
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
507 */
508int atapi_cmd_type(u8 opcode)
509{
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
514
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
519
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
523
e52dcc48
TH
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
436d34b3
TH
529 default:
530 return ATAPI_MISC;
531 }
532}
533
1da177e4
LT
534/**
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
1da177e4 537 * @pmp: Port multiplier port
9977126c
TH
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
1da177e4
LT
540 *
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
543 *
544 * LOCKING:
545 * Inherited from caller.
546 */
9977126c 547void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
1da177e4 548{
9977126c
TH
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
553
1da177e4
LT
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
556
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
561
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
566
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
571
572 fis[16] = 0;
573 fis[17] = 0;
574 fis[18] = 0;
575 fis[19] = 0;
576}
577
578/**
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
582 *
e12a1be6 583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
584 *
585 * LOCKING:
586 * Inherited from caller.
587 */
588
057ace5e 589void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
590{
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
593
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
598
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
602
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
605}
606
8cbd6df1
AL
607static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
613 0,
614 0,
615 0,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
622 0,
623 0,
624 0,
625 0,
8cbd6df1
AL
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
9a3dccc4
TH
630 ATA_CMD_WRITE_EXT,
631 0,
632 0,
633 0,
634 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 635};
1da177e4
LT
636
637/**
8cbd6df1 638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
bd056d7e
TH
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
1da177e4 641 *
2e9edbf8 642 * Examine the device configuration and tf->flags to calculate
8cbd6df1 643 * the proper read/write commands and protocol to use.
1da177e4
LT
644 *
645 * LOCKING:
646 * caller.
647 */
bd056d7e 648static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
1da177e4 649{
9a3dccc4 650 u8 cmd;
1da177e4 651
9a3dccc4 652 int index, fua, lba48, write;
2e9edbf8 653
9a3dccc4 654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 657
8cbd6df1
AL
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
9a3dccc4 660 index = dev->multi_count ? 0 : 8;
9af5c9c9 661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
8d238e01
AC
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
0565c26d 664 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
665 } else {
666 tf->protocol = ATA_PROT_DMA;
9a3dccc4 667 index = 16;
8cbd6df1 668 }
1da177e4 669
9a3dccc4
TH
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
674 }
675 return -1;
1da177e4
LT
676}
677
35b649fe
TH
678/**
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
682 *
683 * LOCKING:
684 * None.
685 *
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
689 *
690 * RETURNS:
691 * Block address read from @tf.
692 */
693u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
694{
695 u64 block = 0;
696
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
44901a96 701 block |= (u64)tf->hob_lbal << 24;
35b649fe
TH
702 } else
703 block |= (tf->device & 0xf) << 24;
704
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
710
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
714
ac8672ea
TH
715 if (!sect) {
716 ata_dev_printk(dev, KERN_WARNING, "device reported "
717 "invalid CHS sector 0\n");
718 sect = 1; /* oh well */
719 }
720
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
35b649fe
TH
722 }
723
724 return block;
725}
726
bd056d7e
TH
727/**
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
735 *
736 * LOCKING:
737 * None.
738 *
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
741 *
742 * RETURNS:
743 *
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
746 */
747int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
750{
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
753
6d1245bf 754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
bd056d7e
TH
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
758
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
761
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
766
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
770
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
777
778 tf->device = 1 << 6;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
783
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
790
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
793
794 tf->hob_nsect = (n_block >> 8) & 0xff;
795
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
802
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
805
806 tf->nsect = n_block & 0xff;
807
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
811
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
816
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
820
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
823
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
829
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
832
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
839
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
845 }
846
847 return 0;
848}
849
cb95d562
TH
850/**
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
855 *
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
858 *
859 * LOCKING:
860 * None.
861 *
862 * RETURNS:
863 * Packed xfer_mask.
864 */
7dc951ae
TH
865unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
cb95d562
TH
868{
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
872}
873
c0489e4e
TH
874/**
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
880 *
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
883 */
7dc951ae
TH
884void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
c0489e4e
TH
886{
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
893}
894
cb95d562 895static const struct ata_xfer_ent {
be9a50c8 896 int shift, bits;
cb95d562
TH
897 u8 base;
898} ata_xfer_tbl[] = {
70cd071e
TH
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
cb95d562
TH
902 { -1, },
903};
904
905/**
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
908 *
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
911 *
912 * LOCKING:
913 * None.
914 *
915 * RETURNS:
70cd071e 916 * Matching XFER_* value, 0xff if no match found.
cb95d562 917 */
7dc951ae 918u8 ata_xfer_mask2mode(unsigned long xfer_mask)
cb95d562
TH
919{
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
922
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
70cd071e 926 return 0xff;
cb95d562
TH
927}
928
929/**
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
932 *
933 * Return matching xfer_mask for @xfer_mode.
934 *
935 * LOCKING:
936 * None.
937 *
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
940 */
7dc951ae 941unsigned long ata_xfer_mode2mask(u8 xfer_mode)
cb95d562
TH
942{
943 const struct ata_xfer_ent *ent;
944
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
70cd071e
TH
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
cb95d562
TH
949 return 0;
950}
951
952/**
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
955 *
956 * Return matching xfer_shift for @xfer_mode.
957 *
958 * LOCKING:
959 * None.
960 *
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
963 */
7dc951ae 964int ata_xfer_mode2shift(unsigned long xfer_mode)
cb95d562
TH
965{
966 const struct ata_xfer_ent *ent;
967
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
972}
973
1da177e4 974/**
1da7b0d0
TH
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
977 *
978 * Determine string which represents the highest speed
1da7b0d0 979 * (highest bit in @modemask).
1da177e4
LT
980 *
981 * LOCKING:
982 * None.
983 *
984 * RETURNS:
985 * Constant C string representing highest speed listed in
1da7b0d0 986 * @mode_mask, or the constant C string "<n/a>".
1da177e4 987 */
7dc951ae 988const char *ata_mode_string(unsigned long xfer_mask)
1da177e4 989{
75f554bc
TH
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
b352e57d
AC
996 "PIO5",
997 "PIO6",
75f554bc
TH
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
b352e57d
AC
1001 "MWDMA3",
1002 "MWDMA4",
75f554bc
TH
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1011 };
1da7b0d0 1012 int highbit;
1da177e4 1013
1da7b0d0
TH
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1da177e4 1017 return "<n/a>";
1da177e4
LT
1018}
1019
4c360c81
TH
1020static const char *sata_spd_string(unsigned int spd)
1021{
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
8522ee25 1025 "6.0 Gbps",
4c360c81
TH
1026 };
1027
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1031}
1032
ca77329f
KCA
1033static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1034{
1035 struct ata_link *link = dev->link;
1036 struct ata_port *ap = link->ap;
1037 u32 scontrol;
1038 unsigned int err_mask;
1039 int rc;
1040
1041 /*
1042 * disallow DIPM for drivers which haven't set
1043 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1044 * phy ready will be set in the interrupt status on
1045 * state changes, which will cause some drivers to
1046 * think there are errors - additionally drivers will
1047 * need to disable hot plug.
1048 */
1049 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1050 ap->pm_policy = NOT_AVAILABLE;
1051 return -EINVAL;
1052 }
1053
1054 /*
1055 * For DIPM, we will only enable it for the
1056 * min_power setting.
1057 *
1058 * Why? Because Disks are too stupid to know that
1059 * If the host rejects a request to go to SLUMBER
1060 * they should retry at PARTIAL, and instead it
1061 * just would give up. So, for medium_power to
1062 * work at all, we need to only allow HIPM.
1063 */
1064 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1065 if (rc)
1066 return rc;
1067
1068 switch (policy) {
1069 case MIN_POWER:
1070 /* no restrictions on IPM transitions */
1071 scontrol &= ~(0x3 << 8);
1072 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1073 if (rc)
1074 return rc;
1075
1076 /* enable DIPM */
1077 if (dev->flags & ATA_DFLAG_DIPM)
1078 err_mask = ata_dev_set_feature(dev,
1079 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1080 break;
1081 case MEDIUM_POWER:
1082 /* allow IPM to PARTIAL */
1083 scontrol &= ~(0x1 << 8);
1084 scontrol |= (0x2 << 8);
1085 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1086 if (rc)
1087 return rc;
1088
f5456b63
KCA
1089 /*
1090 * we don't have to disable DIPM since IPM flags
1091 * disallow transitions to SLUMBER, which effectively
1092 * disable DIPM if it does not support PARTIAL
1093 */
ca77329f
KCA
1094 break;
1095 case NOT_AVAILABLE:
1096 case MAX_PERFORMANCE:
1097 /* disable all IPM transitions */
1098 scontrol |= (0x3 << 8);
1099 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1100 if (rc)
1101 return rc;
1102
f5456b63
KCA
1103 /*
1104 * we don't have to disable DIPM since IPM flags
1105 * disallow all transitions which effectively
1106 * disable DIPM anyway.
1107 */
ca77329f
KCA
1108 break;
1109 }
1110
1111 /* FIXME: handle SET FEATURES failure */
1112 (void) err_mask;
1113
1114 return 0;
1115}
1116
1117/**
1118 * ata_dev_enable_pm - enable SATA interface power management
48166fd9
SH
1119 * @dev: device to enable power management
1120 * @policy: the link power management policy
ca77329f
KCA
1121 *
1122 * Enable SATA Interface power management. This will enable
1123 * Device Interface Power Management (DIPM) for min_power
1124 * policy, and then call driver specific callbacks for
1125 * enabling Host Initiated Power management.
1126 *
1127 * Locking: Caller.
1128 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1129 */
1130void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1131{
1132 int rc = 0;
1133 struct ata_port *ap = dev->link->ap;
1134
1135 /* set HIPM first, then DIPM */
1136 if (ap->ops->enable_pm)
1137 rc = ap->ops->enable_pm(ap, policy);
1138 if (rc)
1139 goto enable_pm_out;
1140 rc = ata_dev_set_dipm(dev, policy);
1141
1142enable_pm_out:
1143 if (rc)
1144 ap->pm_policy = MAX_PERFORMANCE;
1145 else
1146 ap->pm_policy = policy;
1147 return /* rc */; /* hopefully we can use 'rc' eventually */
1148}
1149
1992a5ed 1150#ifdef CONFIG_PM
ca77329f
KCA
1151/**
1152 * ata_dev_disable_pm - disable SATA interface power management
48166fd9 1153 * @dev: device to disable power management
ca77329f
KCA
1154 *
1155 * Disable SATA Interface power management. This will disable
1156 * Device Interface Power Management (DIPM) without changing
1157 * policy, call driver specific callbacks for disabling Host
1158 * Initiated Power management.
1159 *
1160 * Locking: Caller.
1161 * Returns: void
1162 */
1163static void ata_dev_disable_pm(struct ata_device *dev)
1164{
1165 struct ata_port *ap = dev->link->ap;
1166
1167 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1168 if (ap->ops->disable_pm)
1169 ap->ops->disable_pm(ap);
1170}
1992a5ed 1171#endif /* CONFIG_PM */
ca77329f
KCA
1172
1173void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1174{
1175 ap->pm_policy = policy;
3ec25ebd 1176 ap->link.eh_info.action |= ATA_EH_LPM;
ca77329f
KCA
1177 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1178 ata_port_schedule_eh(ap);
1179}
1180
1992a5ed 1181#ifdef CONFIG_PM
ca77329f
KCA
1182static void ata_lpm_enable(struct ata_host *host)
1183{
1184 struct ata_link *link;
1185 struct ata_port *ap;
1186 struct ata_device *dev;
1187 int i;
1188
1189 for (i = 0; i < host->n_ports; i++) {
1190 ap = host->ports[i];
1eca4365
TH
1191 ata_for_each_link(link, ap, EDGE) {
1192 ata_for_each_dev(dev, link, ALL)
ca77329f
KCA
1193 ata_dev_disable_pm(dev);
1194 }
1195 }
1196}
1197
1198static void ata_lpm_disable(struct ata_host *host)
1199{
1200 int i;
1201
1202 for (i = 0; i < host->n_ports; i++) {
1203 struct ata_port *ap = host->ports[i];
1204 ata_lpm_schedule(ap, ap->pm_policy);
1205 }
1206}
1992a5ed 1207#endif /* CONFIG_PM */
ca77329f 1208
1da177e4
LT
1209/**
1210 * ata_dev_classify - determine device type based on ATA-spec signature
1211 * @tf: ATA taskfile register set for device to be identified
1212 *
1213 * Determine from taskfile register contents whether a device is
1214 * ATA or ATAPI, as per "Signature and persistence" section
1215 * of ATA/PI spec (volume 1, sect 5.14).
1216 *
1217 * LOCKING:
1218 * None.
1219 *
1220 * RETURNS:
633273a3
TH
1221 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1222 * %ATA_DEV_UNKNOWN the event of failure.
1da177e4 1223 */
057ace5e 1224unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
1225{
1226 /* Apple's open source Darwin code hints that some devices only
1227 * put a proper signature into the LBA mid/high registers,
1228 * So, we only check those. It's sufficient for uniqueness.
633273a3
TH
1229 *
1230 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1231 * signatures for ATA and ATAPI devices attached on SerialATA,
1232 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1233 * spec has never mentioned about using different signatures
1234 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1235 * Multiplier specification began to use 0x69/0x96 to identify
1236 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1237 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1238 * 0x69/0x96 shortly and described them as reserved for
1239 * SerialATA.
1240 *
1241 * We follow the current spec and consider that 0x69/0x96
1242 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
79b42bab
TH
1243 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1244 * SEMB signature. This is worked around in
1245 * ata_dev_read_id().
1da177e4 1246 */
633273a3 1247 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1da177e4
LT
1248 DPRINTK("found ATA device by sig\n");
1249 return ATA_DEV_ATA;
1250 }
1251
633273a3 1252 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1da177e4
LT
1253 DPRINTK("found ATAPI device by sig\n");
1254 return ATA_DEV_ATAPI;
1255 }
1256
633273a3
TH
1257 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1258 DPRINTK("found PMP device by sig\n");
1259 return ATA_DEV_PMP;
1260 }
1261
1262 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
79b42bab
TH
1263 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1264 return ATA_DEV_SEMB;
633273a3
TH
1265 }
1266
1da177e4
LT
1267 DPRINTK("unknown device\n");
1268 return ATA_DEV_UNKNOWN;
1269}
1270
1da177e4 1271/**
6a62a04d 1272 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
1273 * @id: IDENTIFY DEVICE results we will examine
1274 * @s: string into which data is output
1275 * @ofs: offset into identify device page
1276 * @len: length of string to return. must be an even number.
1277 *
1278 * The strings in the IDENTIFY DEVICE page are broken up into
1279 * 16-bit chunks. Run through the string, and output each
1280 * 8-bit chunk linearly, regardless of platform.
1281 *
1282 * LOCKING:
1283 * caller.
1284 */
1285
6a62a04d
TH
1286void ata_id_string(const u16 *id, unsigned char *s,
1287 unsigned int ofs, unsigned int len)
1da177e4
LT
1288{
1289 unsigned int c;
1290
963e4975
AC
1291 BUG_ON(len & 1);
1292
1da177e4
LT
1293 while (len > 0) {
1294 c = id[ofs] >> 8;
1295 *s = c;
1296 s++;
1297
1298 c = id[ofs] & 0xff;
1299 *s = c;
1300 s++;
1301
1302 ofs++;
1303 len -= 2;
1304 }
1305}
1306
0e949ff3 1307/**
6a62a04d 1308 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
1309 * @id: IDENTIFY DEVICE results we will examine
1310 * @s: string into which data is output
1311 * @ofs: offset into identify device page
1312 * @len: length of string to return. must be an odd number.
1313 *
6a62a04d 1314 * This function is identical to ata_id_string except that it
0e949ff3
TH
1315 * trims trailing spaces and terminates the resulting string with
1316 * null. @len must be actual maximum length (even number) + 1.
1317 *
1318 * LOCKING:
1319 * caller.
1320 */
6a62a04d
TH
1321void ata_id_c_string(const u16 *id, unsigned char *s,
1322 unsigned int ofs, unsigned int len)
0e949ff3
TH
1323{
1324 unsigned char *p;
1325
6a62a04d 1326 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
1327
1328 p = s + strnlen(s, len - 1);
1329 while (p > s && p[-1] == ' ')
1330 p--;
1331 *p = '\0';
1332}
0baab86b 1333
db6f8759
TH
1334static u64 ata_id_n_sectors(const u16 *id)
1335{
1336 if (ata_id_has_lba(id)) {
1337 if (ata_id_has_lba48(id))
968e594a 1338 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
db6f8759 1339 else
968e594a 1340 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
db6f8759
TH
1341 } else {
1342 if (ata_id_current_chs_valid(id))
968e594a
RH
1343 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1344 id[ATA_ID_CUR_SECTORS];
db6f8759 1345 else
968e594a
RH
1346 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1347 id[ATA_ID_SECTORS];
db6f8759
TH
1348 }
1349}
1350
a5987e0a 1351u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1e999736
AC
1352{
1353 u64 sectors = 0;
1354
1355 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1356 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
ba14a9c2 1357 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1e999736
AC
1358 sectors |= (tf->lbah & 0xff) << 16;
1359 sectors |= (tf->lbam & 0xff) << 8;
1360 sectors |= (tf->lbal & 0xff);
1361
a5987e0a 1362 return sectors;
1e999736
AC
1363}
1364
a5987e0a 1365u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1e999736
AC
1366{
1367 u64 sectors = 0;
1368
1369 sectors |= (tf->device & 0x0f) << 24;
1370 sectors |= (tf->lbah & 0xff) << 16;
1371 sectors |= (tf->lbam & 0xff) << 8;
1372 sectors |= (tf->lbal & 0xff);
1373
a5987e0a 1374 return sectors;
1e999736
AC
1375}
1376
1377/**
c728a914
TH
1378 * ata_read_native_max_address - Read native max address
1379 * @dev: target device
1380 * @max_sectors: out parameter for the result native max address
1e999736 1381 *
c728a914
TH
1382 * Perform an LBA48 or LBA28 native size query upon the device in
1383 * question.
1e999736 1384 *
c728a914
TH
1385 * RETURNS:
1386 * 0 on success, -EACCES if command is aborted by the drive.
1387 * -EIO on other errors.
1e999736 1388 */
c728a914 1389static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1e999736 1390{
c728a914 1391 unsigned int err_mask;
1e999736 1392 struct ata_taskfile tf;
c728a914 1393 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1394
1395 ata_tf_init(dev, &tf);
1396
c728a914 1397 /* always clear all address registers */
1e999736 1398 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1e999736 1399
c728a914
TH
1400 if (lba48) {
1401 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1402 tf.flags |= ATA_TFLAG_LBA48;
1403 } else
1404 tf.command = ATA_CMD_READ_NATIVE_MAX;
1e999736 1405
1e999736 1406 tf.protocol |= ATA_PROT_NODATA;
c728a914
TH
1407 tf.device |= ATA_LBA;
1408
2b789108 1409 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1410 if (err_mask) {
1411 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1412 "max address (err_mask=0x%x)\n", err_mask);
1413 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1414 return -EACCES;
1415 return -EIO;
1416 }
1e999736 1417
c728a914 1418 if (lba48)
a5987e0a 1419 *max_sectors = ata_tf_to_lba48(&tf) + 1;
c728a914 1420 else
a5987e0a 1421 *max_sectors = ata_tf_to_lba(&tf) + 1;
2dcb407e 1422 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
93328e11 1423 (*max_sectors)--;
c728a914 1424 return 0;
1e999736
AC
1425}
1426
1427/**
c728a914
TH
1428 * ata_set_max_sectors - Set max sectors
1429 * @dev: target device
6b38d1d1 1430 * @new_sectors: new max sectors value to set for the device
1e999736 1431 *
c728a914
TH
1432 * Set max sectors of @dev to @new_sectors.
1433 *
1434 * RETURNS:
1435 * 0 on success, -EACCES if command is aborted or denied (due to
1436 * previous non-volatile SET_MAX) by the drive. -EIO on other
1437 * errors.
1e999736 1438 */
05027adc 1439static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1e999736 1440{
c728a914 1441 unsigned int err_mask;
1e999736 1442 struct ata_taskfile tf;
c728a914 1443 int lba48 = ata_id_has_lba48(dev->id);
1e999736
AC
1444
1445 new_sectors--;
1446
1447 ata_tf_init(dev, &tf);
1448
1e999736 1449 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
c728a914
TH
1450
1451 if (lba48) {
1452 tf.command = ATA_CMD_SET_MAX_EXT;
1453 tf.flags |= ATA_TFLAG_LBA48;
1454
1455 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1456 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1457 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1e582ba4 1458 } else {
c728a914
TH
1459 tf.command = ATA_CMD_SET_MAX;
1460
1e582ba4
TH
1461 tf.device |= (new_sectors >> 24) & 0xf;
1462 }
1463
1e999736 1464 tf.protocol |= ATA_PROT_NODATA;
c728a914 1465 tf.device |= ATA_LBA;
1e999736
AC
1466
1467 tf.lbal = (new_sectors >> 0) & 0xff;
1468 tf.lbam = (new_sectors >> 8) & 0xff;
1469 tf.lbah = (new_sectors >> 16) & 0xff;
1e999736 1470
2b789108 1471 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
c728a914
TH
1472 if (err_mask) {
1473 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1474 "max address (err_mask=0x%x)\n", err_mask);
1475 if (err_mask == AC_ERR_DEV &&
1476 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1477 return -EACCES;
1478 return -EIO;
1479 }
1480
c728a914 1481 return 0;
1e999736
AC
1482}
1483
1484/**
1485 * ata_hpa_resize - Resize a device with an HPA set
1486 * @dev: Device to resize
1487 *
1488 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1489 * it if required to the full size of the media. The caller must check
1490 * the drive has the HPA feature set enabled.
05027adc
TH
1491 *
1492 * RETURNS:
1493 * 0 on success, -errno on failure.
1e999736 1494 */
05027adc 1495static int ata_hpa_resize(struct ata_device *dev)
1e999736 1496{
05027adc
TH
1497 struct ata_eh_context *ehc = &dev->link->eh_context;
1498 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
445d211b 1499 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
05027adc
TH
1500 u64 sectors = ata_id_n_sectors(dev->id);
1501 u64 native_sectors;
c728a914 1502 int rc;
a617c09f 1503
05027adc
TH
1504 /* do we need to do it? */
1505 if (dev->class != ATA_DEV_ATA ||
1506 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1507 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
c728a914 1508 return 0;
1e999736 1509
05027adc
TH
1510 /* read native max address */
1511 rc = ata_read_native_max_address(dev, &native_sectors);
1512 if (rc) {
dda7aba1
TH
1513 /* If device aborted the command or HPA isn't going to
1514 * be unlocked, skip HPA resizing.
05027adc 1515 */
445d211b 1516 if (rc == -EACCES || !unlock_hpa) {
05027adc 1517 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
dda7aba1 1518 "broken, skipping HPA handling\n");
05027adc
TH
1519 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1520
1521 /* we can continue if device aborted the command */
1522 if (rc == -EACCES)
1523 rc = 0;
1e999736 1524 }
37301a55 1525
05027adc
TH
1526 return rc;
1527 }
5920dadf 1528 dev->n_native_sectors = native_sectors;
05027adc
TH
1529
1530 /* nothing to do? */
445d211b 1531 if (native_sectors <= sectors || !unlock_hpa) {
05027adc
TH
1532 if (!print_info || native_sectors == sectors)
1533 return 0;
1534
1535 if (native_sectors > sectors)
1536 ata_dev_printk(dev, KERN_INFO,
1537 "HPA detected: current %llu, native %llu\n",
1538 (unsigned long long)sectors,
1539 (unsigned long long)native_sectors);
1540 else if (native_sectors < sectors)
1541 ata_dev_printk(dev, KERN_WARNING,
1542 "native sectors (%llu) is smaller than "
1543 "sectors (%llu)\n",
1544 (unsigned long long)native_sectors,
1545 (unsigned long long)sectors);
1546 return 0;
1547 }
1548
1549 /* let's unlock HPA */
1550 rc = ata_set_max_sectors(dev, native_sectors);
1551 if (rc == -EACCES) {
1552 /* if device aborted the command, skip HPA resizing */
1553 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1554 "(%llu -> %llu), skipping HPA handling\n",
1555 (unsigned long long)sectors,
1556 (unsigned long long)native_sectors);
1557 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1558 return 0;
1559 } else if (rc)
1560 return rc;
1561
1562 /* re-read IDENTIFY data */
1563 rc = ata_dev_reread_id(dev, 0);
1564 if (rc) {
1565 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1566 "data after HPA resizing\n");
1567 return rc;
1568 }
1569
1570 if (print_info) {
1571 u64 new_sectors = ata_id_n_sectors(dev->id);
1572 ata_dev_printk(dev, KERN_INFO,
1573 "HPA unlocked: %llu -> %llu, native %llu\n",
1574 (unsigned long long)sectors,
1575 (unsigned long long)new_sectors,
1576 (unsigned long long)native_sectors);
1577 }
1578
1579 return 0;
1e999736
AC
1580}
1581
1da177e4
LT
1582/**
1583 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 1584 * @id: IDENTIFY DEVICE page to dump
1da177e4 1585 *
0bd3300a
TH
1586 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1587 * page.
1da177e4
LT
1588 *
1589 * LOCKING:
1590 * caller.
1591 */
1592
0bd3300a 1593static inline void ata_dump_id(const u16 *id)
1da177e4
LT
1594{
1595 DPRINTK("49==0x%04x "
1596 "53==0x%04x "
1597 "63==0x%04x "
1598 "64==0x%04x "
1599 "75==0x%04x \n",
0bd3300a
TH
1600 id[49],
1601 id[53],
1602 id[63],
1603 id[64],
1604 id[75]);
1da177e4
LT
1605 DPRINTK("80==0x%04x "
1606 "81==0x%04x "
1607 "82==0x%04x "
1608 "83==0x%04x "
1609 "84==0x%04x \n",
0bd3300a
TH
1610 id[80],
1611 id[81],
1612 id[82],
1613 id[83],
1614 id[84]);
1da177e4
LT
1615 DPRINTK("88==0x%04x "
1616 "93==0x%04x\n",
0bd3300a
TH
1617 id[88],
1618 id[93]);
1da177e4
LT
1619}
1620
cb95d562
TH
1621/**
1622 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1623 * @id: IDENTIFY data to compute xfer mask from
1624 *
1625 * Compute the xfermask for this device. This is not as trivial
1626 * as it seems if we must consider early devices correctly.
1627 *
1628 * FIXME: pre IDE drive timing (do we care ?).
1629 *
1630 * LOCKING:
1631 * None.
1632 *
1633 * RETURNS:
1634 * Computed xfermask
1635 */
7dc951ae 1636unsigned long ata_id_xfermask(const u16 *id)
cb95d562 1637{
7dc951ae 1638 unsigned long pio_mask, mwdma_mask, udma_mask;
cb95d562
TH
1639
1640 /* Usual case. Word 53 indicates word 64 is valid */
1641 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1642 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1643 pio_mask <<= 3;
1644 pio_mask |= 0x7;
1645 } else {
1646 /* If word 64 isn't valid then Word 51 high byte holds
1647 * the PIO timing number for the maximum. Turn it into
1648 * a mask.
1649 */
7a0f1c8a 1650 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
46767aeb 1651 if (mode < 5) /* Valid PIO range */
2dcb407e 1652 pio_mask = (2 << mode) - 1;
46767aeb
AC
1653 else
1654 pio_mask = 1;
cb95d562
TH
1655
1656 /* But wait.. there's more. Design your standards by
1657 * committee and you too can get a free iordy field to
1658 * process. However its the speeds not the modes that
1659 * are supported... Note drivers using the timing API
1660 * will get this right anyway
1661 */
1662 }
1663
1664 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0 1665
b352e57d
AC
1666 if (ata_id_is_cfa(id)) {
1667 /*
1668 * Process compact flash extended modes
1669 */
62afe5d7
SS
1670 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1671 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
b352e57d
AC
1672
1673 if (pio)
1674 pio_mask |= (1 << 5);
1675 if (pio > 1)
1676 pio_mask |= (1 << 6);
1677 if (dma)
1678 mwdma_mask |= (1 << 3);
1679 if (dma > 1)
1680 mwdma_mask |= (1 << 4);
1681 }
1682
fb21f0d0
TH
1683 udma_mask = 0;
1684 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1685 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
1686
1687 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1688}
1689
7102d230 1690static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 1691{
77853bf2 1692 struct completion *waiting = qc->private_data;
a2a7a662 1693
a2a7a662 1694 complete(waiting);
a2a7a662
TH
1695}
1696
1697/**
2432697b 1698 * ata_exec_internal_sg - execute libata internal command
a2a7a662
TH
1699 * @dev: Device to which the command is sent
1700 * @tf: Taskfile registers for the command and the result
d69cf37d 1701 * @cdb: CDB for packet command
a2a7a662 1702 * @dma_dir: Data tranfer direction of the command
5c1ad8b3 1703 * @sgl: sg list for the data buffer of the command
2432697b 1704 * @n_elem: Number of sg entries
2b789108 1705 * @timeout: Timeout in msecs (0 for default)
a2a7a662
TH
1706 *
1707 * Executes libata internal command with timeout. @tf contains
1708 * command on entry and result on return. Timeout and error
1709 * conditions are reported via return value. No recovery action
1710 * is taken after a command times out. It's caller's duty to
1711 * clean up after timeout.
1712 *
1713 * LOCKING:
1714 * None. Should be called with kernel context, might sleep.
551e8889
TH
1715 *
1716 * RETURNS:
1717 * Zero on success, AC_ERR_* mask on failure
a2a7a662 1718 */
2432697b
TH
1719unsigned ata_exec_internal_sg(struct ata_device *dev,
1720 struct ata_taskfile *tf, const u8 *cdb,
87260216 1721 int dma_dir, struct scatterlist *sgl,
2b789108 1722 unsigned int n_elem, unsigned long timeout)
a2a7a662 1723{
9af5c9c9
TH
1724 struct ata_link *link = dev->link;
1725 struct ata_port *ap = link->ap;
a2a7a662 1726 u8 command = tf->command;
87fbc5a0 1727 int auto_timeout = 0;
a2a7a662 1728 struct ata_queued_cmd *qc;
2ab7db1f 1729 unsigned int tag, preempted_tag;
dedaf2b0 1730 u32 preempted_sactive, preempted_qc_active;
da917d69 1731 int preempted_nr_active_links;
60be6b9a 1732 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1733 unsigned long flags;
77853bf2 1734 unsigned int err_mask;
d95a717f 1735 int rc;
a2a7a662 1736
ba6a1308 1737 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1738
e3180499 1739 /* no internal command while frozen */
b51e9e5d 1740 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1741 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1742 return AC_ERR_SYSTEM;
1743 }
1744
2ab7db1f 1745 /* initialize internal qc */
a2a7a662 1746
2ab7db1f
TH
1747 /* XXX: Tag 0 is used for drivers with legacy EH as some
1748 * drivers choke if any other tag is given. This breaks
1749 * ata_tag_internal() test for those drivers. Don't use new
1750 * EH stuff without converting to it.
1751 */
1752 if (ap->ops->error_handler)
1753 tag = ATA_TAG_INTERNAL;
1754 else
1755 tag = 0;
1756
8a8bc223
TH
1757 if (test_and_set_bit(tag, &ap->qc_allocated))
1758 BUG();
f69499f4 1759 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1760
1761 qc->tag = tag;
1762 qc->scsicmd = NULL;
1763 qc->ap = ap;
1764 qc->dev = dev;
1765 ata_qc_reinit(qc);
1766
9af5c9c9
TH
1767 preempted_tag = link->active_tag;
1768 preempted_sactive = link->sactive;
dedaf2b0 1769 preempted_qc_active = ap->qc_active;
da917d69 1770 preempted_nr_active_links = ap->nr_active_links;
9af5c9c9
TH
1771 link->active_tag = ATA_TAG_POISON;
1772 link->sactive = 0;
dedaf2b0 1773 ap->qc_active = 0;
da917d69 1774 ap->nr_active_links = 0;
2ab7db1f
TH
1775
1776 /* prepare & issue qc */
a2a7a662 1777 qc->tf = *tf;
d69cf37d
TH
1778 if (cdb)
1779 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1780 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1781 qc->dma_dir = dma_dir;
1782 if (dma_dir != DMA_NONE) {
2432697b 1783 unsigned int i, buflen = 0;
87260216 1784 struct scatterlist *sg;
2432697b 1785
87260216
JA
1786 for_each_sg(sgl, sg, n_elem, i)
1787 buflen += sg->length;
2432697b 1788
87260216 1789 ata_sg_init(qc, sgl, n_elem);
49c80429 1790 qc->nbytes = buflen;
a2a7a662
TH
1791 }
1792
77853bf2 1793 qc->private_data = &wait;
a2a7a662
TH
1794 qc->complete_fn = ata_qc_complete_internal;
1795
8e0e694a 1796 ata_qc_issue(qc);
a2a7a662 1797
ba6a1308 1798 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1799
87fbc5a0
TH
1800 if (!timeout) {
1801 if (ata_probe_timeout)
1802 timeout = ata_probe_timeout * 1000;
1803 else {
1804 timeout = ata_internal_cmd_timeout(dev, command);
1805 auto_timeout = 1;
1806 }
1807 }
2b789108
TH
1808
1809 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
d95a717f 1810
c429137a 1811 ata_sff_flush_pio_task(ap);
41ade50c 1812
d95a717f 1813 if (!rc) {
ba6a1308 1814 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1815
1816 /* We're racing with irq here. If we lose, the
1817 * following test prevents us from completing the qc
d95a717f
TH
1818 * twice. If we win, the port is frozen and will be
1819 * cleaned up by ->post_internal_cmd().
a2a7a662 1820 */
77853bf2 1821 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1822 qc->err_mask |= AC_ERR_TIMEOUT;
1823
1824 if (ap->ops->error_handler)
1825 ata_port_freeze(ap);
1826 else
1827 ata_qc_complete(qc);
f15a1daf 1828
0dd4b21f
BP
1829 if (ata_msg_warn(ap))
1830 ata_dev_printk(dev, KERN_WARNING,
88574551 1831 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1832 }
1833
ba6a1308 1834 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1835 }
1836
d95a717f
TH
1837 /* do post_internal_cmd */
1838 if (ap->ops->post_internal_cmd)
1839 ap->ops->post_internal_cmd(qc);
1840
a51d644a
TH
1841 /* perform minimal error analysis */
1842 if (qc->flags & ATA_QCFLAG_FAILED) {
1843 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1844 qc->err_mask |= AC_ERR_DEV;
1845
1846 if (!qc->err_mask)
1847 qc->err_mask |= AC_ERR_OTHER;
1848
1849 if (qc->err_mask & ~AC_ERR_OTHER)
1850 qc->err_mask &= ~AC_ERR_OTHER;
d95a717f
TH
1851 }
1852
15869303 1853 /* finish up */
ba6a1308 1854 spin_lock_irqsave(ap->lock, flags);
15869303 1855
e61e0672 1856 *tf = qc->result_tf;
77853bf2
TH
1857 err_mask = qc->err_mask;
1858
1859 ata_qc_free(qc);
9af5c9c9
TH
1860 link->active_tag = preempted_tag;
1861 link->sactive = preempted_sactive;
dedaf2b0 1862 ap->qc_active = preempted_qc_active;
da917d69 1863 ap->nr_active_links = preempted_nr_active_links;
77853bf2 1864
ba6a1308 1865 spin_unlock_irqrestore(ap->lock, flags);
15869303 1866
87fbc5a0
TH
1867 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1868 ata_internal_cmd_timed_out(dev, command);
1869
77853bf2 1870 return err_mask;
a2a7a662
TH
1871}
1872
2432697b 1873/**
33480a0e 1874 * ata_exec_internal - execute libata internal command
2432697b
TH
1875 * @dev: Device to which the command is sent
1876 * @tf: Taskfile registers for the command and the result
1877 * @cdb: CDB for packet command
1878 * @dma_dir: Data tranfer direction of the command
1879 * @buf: Data buffer of the command
1880 * @buflen: Length of data buffer
2b789108 1881 * @timeout: Timeout in msecs (0 for default)
2432697b
TH
1882 *
1883 * Wrapper around ata_exec_internal_sg() which takes simple
1884 * buffer instead of sg list.
1885 *
1886 * LOCKING:
1887 * None. Should be called with kernel context, might sleep.
1888 *
1889 * RETURNS:
1890 * Zero on success, AC_ERR_* mask on failure
1891 */
1892unsigned ata_exec_internal(struct ata_device *dev,
1893 struct ata_taskfile *tf, const u8 *cdb,
2b789108
TH
1894 int dma_dir, void *buf, unsigned int buflen,
1895 unsigned long timeout)
2432697b 1896{
33480a0e
TH
1897 struct scatterlist *psg = NULL, sg;
1898 unsigned int n_elem = 0;
2432697b 1899
33480a0e
TH
1900 if (dma_dir != DMA_NONE) {
1901 WARN_ON(!buf);
1902 sg_init_one(&sg, buf, buflen);
1903 psg = &sg;
1904 n_elem++;
1905 }
2432697b 1906
2b789108
TH
1907 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1908 timeout);
2432697b
TH
1909}
1910
977e6b9f
TH
1911/**
1912 * ata_do_simple_cmd - execute simple internal command
1913 * @dev: Device to which the command is sent
1914 * @cmd: Opcode to execute
1915 *
1916 * Execute a 'simple' command, that only consists of the opcode
1917 * 'cmd' itself, without filling any other registers
1918 *
1919 * LOCKING:
1920 * Kernel thread context (may sleep).
1921 *
1922 * RETURNS:
1923 * Zero on success, AC_ERR_* mask on failure
e58eb583 1924 */
77b08fb5 1925unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1926{
1927 struct ata_taskfile tf;
e58eb583
TH
1928
1929 ata_tf_init(dev, &tf);
1930
1931 tf.command = cmd;
1932 tf.flags |= ATA_TFLAG_DEVICE;
1933 tf.protocol = ATA_PROT_NODATA;
1934
2b789108 1935 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
e58eb583
TH
1936}
1937
1bc4ccff
AC
1938/**
1939 * ata_pio_need_iordy - check if iordy needed
1940 * @adev: ATA device
1941 *
1942 * Check if the current speed of the device requires IORDY. Used
1943 * by various controllers for chip configuration.
1944 */
1bc4ccff
AC
1945unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1946{
0d9e6659
TH
1947 /* Don't set IORDY if we're preparing for reset. IORDY may
1948 * lead to controller lock up on certain controllers if the
1949 * port is not occupied. See bko#11703 for details.
1950 */
1951 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1952 return 0;
1953 /* Controller doesn't support IORDY. Probably a pointless
1954 * check as the caller should know this.
1955 */
9af5c9c9 1956 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1bc4ccff 1957 return 0;
5c18c4d2
DD
1958 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1959 if (ata_id_is_cfa(adev->id)
1960 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1961 return 0;
432729f0
AC
1962 /* PIO3 and higher it is mandatory */
1963 if (adev->pio_mode > XFER_PIO_2)
1964 return 1;
1965 /* We turn it on when possible */
1966 if (ata_id_has_iordy(adev->id))
1bc4ccff 1967 return 1;
432729f0
AC
1968 return 0;
1969}
2e9edbf8 1970
432729f0
AC
1971/**
1972 * ata_pio_mask_no_iordy - Return the non IORDY mask
1973 * @adev: ATA device
1974 *
1975 * Compute the highest mode possible if we are not using iordy. Return
1976 * -1 if no iordy mode is available.
1977 */
432729f0
AC
1978static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1979{
1bc4ccff 1980 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1bc4ccff 1981 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
432729f0 1982 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1bc4ccff
AC
1983 /* Is the speed faster than the drive allows non IORDY ? */
1984 if (pio) {
1985 /* This is cycle times not frequency - watch the logic! */
1986 if (pio > 240) /* PIO2 is 240nS per cycle */
432729f0
AC
1987 return 3 << ATA_SHIFT_PIO;
1988 return 7 << ATA_SHIFT_PIO;
1bc4ccff
AC
1989 }
1990 }
432729f0 1991 return 3 << ATA_SHIFT_PIO;
1bc4ccff
AC
1992}
1993
963e4975
AC
1994/**
1995 * ata_do_dev_read_id - default ID read method
1996 * @dev: device
1997 * @tf: proposed taskfile
1998 * @id: data buffer
1999 *
2000 * Issue the identify taskfile and hand back the buffer containing
2001 * identify data. For some RAID controllers and for pre ATA devices
2002 * this function is wrapped or replaced by the driver
2003 */
2004unsigned int ata_do_dev_read_id(struct ata_device *dev,
2005 struct ata_taskfile *tf, u16 *id)
2006{
2007 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2008 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2009}
2010
1da177e4 2011/**
49016aca 2012 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
2013 * @dev: target device
2014 * @p_class: pointer to class of the target device (may be changed)
bff04647 2015 * @flags: ATA_READID_* flags
fe635c7e 2016 * @id: buffer to read IDENTIFY data into
1da177e4 2017 *
49016aca
TH
2018 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2019 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
2020 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2021 * for pre-ATA4 drives.
1da177e4 2022 *
50a99018 2023 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2dcb407e 2024 * now we abort if we hit that case.
50a99018 2025 *
1da177e4 2026 * LOCKING:
49016aca
TH
2027 * Kernel thread context (may sleep)
2028 *
2029 * RETURNS:
2030 * 0 on success, -errno otherwise.
1da177e4 2031 */
a9beec95 2032int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
bff04647 2033 unsigned int flags, u16 *id)
1da177e4 2034{
9af5c9c9 2035 struct ata_port *ap = dev->link->ap;
49016aca 2036 unsigned int class = *p_class;
a0123703 2037 struct ata_taskfile tf;
49016aca
TH
2038 unsigned int err_mask = 0;
2039 const char *reason;
79b42bab 2040 bool is_semb = class == ATA_DEV_SEMB;
54936f8b 2041 int may_fallback = 1, tried_spinup = 0;
49016aca 2042 int rc;
1da177e4 2043
0dd4b21f 2044 if (ata_msg_ctl(ap))
7f5e4e8d 2045 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2046
963e4975 2047retry:
3373efd8 2048 ata_tf_init(dev, &tf);
a0123703 2049
49016aca 2050 switch (class) {
79b42bab
TH
2051 case ATA_DEV_SEMB:
2052 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
49016aca 2053 case ATA_DEV_ATA:
a0123703 2054 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
2055 break;
2056 case ATA_DEV_ATAPI:
a0123703 2057 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
2058 break;
2059 default:
2060 rc = -ENODEV;
2061 reason = "unsupported class";
2062 goto err_out;
1da177e4
LT
2063 }
2064
a0123703 2065 tf.protocol = ATA_PROT_PIO;
81afe893
TH
2066
2067 /* Some devices choke if TF registers contain garbage. Make
2068 * sure those are properly initialized.
2069 */
2070 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2071
2072 /* Device presence detection is unreliable on some
2073 * controllers. Always poll IDENTIFY if available.
2074 */
2075 tf.flags |= ATA_TFLAG_POLLING;
1da177e4 2076
963e4975
AC
2077 if (ap->ops->read_id)
2078 err_mask = ap->ops->read_id(dev, &tf, id);
2079 else
2080 err_mask = ata_do_dev_read_id(dev, &tf, id);
2081
a0123703 2082 if (err_mask) {
800b3996 2083 if (err_mask & AC_ERR_NODEV_HINT) {
1ffc151f
TH
2084 ata_dev_printk(dev, KERN_DEBUG,
2085 "NODEV after polling detection\n");
55a8e2c8
TH
2086 return -ENOENT;
2087 }
2088
79b42bab
TH
2089 if (is_semb) {
2090 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2091 "device w/ SEMB sig, disabled\n");
2092 /* SEMB is not supported yet */
2093 *p_class = ATA_DEV_SEMB_UNSUP;
2094 return 0;
2095 }
2096
1ffc151f
TH
2097 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2098 /* Device or controller might have reported
2099 * the wrong device class. Give a shot at the
2100 * other IDENTIFY if the current one is
2101 * aborted by the device.
2102 */
2103 if (may_fallback) {
2104 may_fallback = 0;
2105
2106 if (class == ATA_DEV_ATA)
2107 class = ATA_DEV_ATAPI;
2108 else
2109 class = ATA_DEV_ATA;
2110 goto retry;
2111 }
2112
2113 /* Control reaches here iff the device aborted
2114 * both flavors of IDENTIFYs which happens
2115 * sometimes with phantom devices.
2116 */
2117 ata_dev_printk(dev, KERN_DEBUG,
2118 "both IDENTIFYs aborted, assuming NODEV\n");
2119 return -ENOENT;
54936f8b
TH
2120 }
2121
49016aca
TH
2122 rc = -EIO;
2123 reason = "I/O error";
1da177e4
LT
2124 goto err_out;
2125 }
2126
43c9c591
TH
2127 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
2128 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
2129 "class=%d may_fallback=%d tried_spinup=%d\n",
2130 class, may_fallback, tried_spinup);
2131 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
2132 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
2133 }
2134
54936f8b
TH
2135 /* Falling back doesn't make sense if ID data was read
2136 * successfully at least once.
2137 */
2138 may_fallback = 0;
2139
49016aca 2140 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 2141
49016aca 2142 /* sanity check */
a4f5749b 2143 rc = -EINVAL;
6070068b 2144 reason = "device reports invalid type";
a4f5749b
TH
2145
2146 if (class == ATA_DEV_ATA) {
2147 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2148 goto err_out;
2149 } else {
2150 if (ata_id_is_ata(id))
2151 goto err_out;
49016aca
TH
2152 }
2153
169439c2
ML
2154 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2155 tried_spinup = 1;
2156 /*
2157 * Drive powered-up in standby mode, and requires a specific
2158 * SET_FEATURES spin-up subcommand before it will accept
2159 * anything other than the original IDENTIFY command.
2160 */
218f3d30 2161 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
fb0582f9 2162 if (err_mask && id[2] != 0x738c) {
169439c2
ML
2163 rc = -EIO;
2164 reason = "SPINUP failed";
2165 goto err_out;
2166 }
2167 /*
2168 * If the drive initially returned incomplete IDENTIFY info,
2169 * we now must reissue the IDENTIFY command.
2170 */
2171 if (id[2] == 0x37c8)
2172 goto retry;
2173 }
2174
bff04647 2175 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
49016aca
TH
2176 /*
2177 * The exact sequence expected by certain pre-ATA4 drives is:
2178 * SRST RESET
50a99018
AC
2179 * IDENTIFY (optional in early ATA)
2180 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
49016aca
TH
2181 * anything else..
2182 * Some drives were very specific about that exact sequence.
50a99018
AC
2183 *
2184 * Note that ATA4 says lba is mandatory so the second check
c9404c9c 2185 * should never trigger.
49016aca
TH
2186 */
2187 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 2188 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
2189 if (err_mask) {
2190 rc = -EIO;
2191 reason = "INIT_DEV_PARAMS failed";
2192 goto err_out;
2193 }
2194
2195 /* current CHS translation info (id[53-58]) might be
2196 * changed. reread the identify device info.
2197 */
bff04647 2198 flags &= ~ATA_READID_POSTRESET;
49016aca
TH
2199 goto retry;
2200 }
2201 }
2202
2203 *p_class = class;
fe635c7e 2204
49016aca
TH
2205 return 0;
2206
2207 err_out:
88574551 2208 if (ata_msg_warn(ap))
0dd4b21f 2209 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 2210 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
2211 return rc;
2212}
2213
9062712f
TH
2214static int ata_do_link_spd_horkage(struct ata_device *dev)
2215{
2216 struct ata_link *plink = ata_dev_phys_link(dev);
2217 u32 target, target_limit;
2218
2219 if (!sata_scr_valid(plink))
2220 return 0;
2221
2222 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2223 target = 1;
2224 else
2225 return 0;
2226
2227 target_limit = (1 << target) - 1;
2228
2229 /* if already on stricter limit, no need to push further */
2230 if (plink->sata_spd_limit <= target_limit)
2231 return 0;
2232
2233 plink->sata_spd_limit = target_limit;
2234
2235 /* Request another EH round by returning -EAGAIN if link is
2236 * going faster than the target speed. Forward progress is
2237 * guaranteed by setting sata_spd_limit to target_limit above.
2238 */
2239 if (plink->sata_spd > target) {
2240 ata_dev_printk(dev, KERN_INFO,
2241 "applying link speed limit horkage to %s\n",
2242 sata_spd_string(target));
2243 return -EAGAIN;
2244 }
2245 return 0;
2246}
2247
3373efd8 2248static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 2249{
9af5c9c9 2250 struct ata_port *ap = dev->link->ap;
9ce8e307
JA
2251
2252 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2253 return 0;
2254
9af5c9c9 2255 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
2256}
2257
388539f3 2258static int ata_dev_config_ncq(struct ata_device *dev,
a6e6ce8e
TH
2259 char *desc, size_t desc_sz)
2260{
9af5c9c9 2261 struct ata_port *ap = dev->link->ap;
a6e6ce8e 2262 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
388539f3
SL
2263 unsigned int err_mask;
2264 char *aa_desc = "";
a6e6ce8e
TH
2265
2266 if (!ata_id_has_ncq(dev->id)) {
2267 desc[0] = '\0';
388539f3 2268 return 0;
a6e6ce8e 2269 }
75683fe7 2270 if (dev->horkage & ATA_HORKAGE_NONCQ) {
6919a0a6 2271 snprintf(desc, desc_sz, "NCQ (not used)");
388539f3 2272 return 0;
6919a0a6 2273 }
a6e6ce8e 2274 if (ap->flags & ATA_FLAG_NCQ) {
cca3974e 2275 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
a6e6ce8e
TH
2276 dev->flags |= ATA_DFLAG_NCQ;
2277 }
2278
388539f3
SL
2279 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2280 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2281 ata_id_has_fpdma_aa(dev->id)) {
2282 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2283 SATA_FPDMA_AA);
2284 if (err_mask) {
2285 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2286 "(error_mask=0x%x)\n", err_mask);
2287 if (err_mask != AC_ERR_DEV) {
2288 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2289 return -EIO;
2290 }
2291 } else
2292 aa_desc = ", AA";
2293 }
2294
a6e6ce8e 2295 if (hdepth >= ddepth)
388539f3 2296 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
a6e6ce8e 2297 else
388539f3
SL
2298 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2299 ddepth, aa_desc);
2300 return 0;
a6e6ce8e
TH
2301}
2302
49016aca 2303/**
ffeae418 2304 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418
TH
2305 * @dev: Target device to configure
2306 *
2307 * Configure @dev according to @dev->id. Generic and low-level
2308 * driver specific fixups are also applied.
49016aca
TH
2309 *
2310 * LOCKING:
ffeae418
TH
2311 * Kernel thread context (may sleep)
2312 *
2313 * RETURNS:
2314 * 0 on success, -errno otherwise
49016aca 2315 */
efdaedc4 2316int ata_dev_configure(struct ata_device *dev)
49016aca 2317{
9af5c9c9
TH
2318 struct ata_port *ap = dev->link->ap;
2319 struct ata_eh_context *ehc = &dev->link->eh_context;
6746544c 2320 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1148c3a7 2321 const u16 *id = dev->id;
7dc951ae 2322 unsigned long xfer_mask;
b352e57d 2323 char revbuf[7]; /* XYZ-99\0 */
3f64f565
EM
2324 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2325 char modelbuf[ATA_ID_PROD_LEN+1];
e6d902a3 2326 int rc;
49016aca 2327
0dd4b21f 2328 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
44877b4e 2329 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
7f5e4e8d 2330 __func__);
ffeae418 2331 return 0;
49016aca
TH
2332 }
2333
0dd4b21f 2334 if (ata_msg_probe(ap))
7f5e4e8d 2335 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
1da177e4 2336
75683fe7
TH
2337 /* set horkage */
2338 dev->horkage |= ata_dev_blacklisted(dev);
33267325 2339 ata_force_horkage(dev);
75683fe7 2340
50af2fa1
TH
2341 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2342 ata_dev_printk(dev, KERN_INFO,
2343 "unsupported device, disabling\n");
2344 ata_dev_disable(dev);
2345 return 0;
2346 }
2347
2486fa56
TH
2348 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2349 dev->class == ATA_DEV_ATAPI) {
2350 ata_dev_printk(dev, KERN_WARNING,
2351 "WARNING: ATAPI is %s, device ignored.\n",
2352 atapi_enabled ? "not supported with this driver"
2353 : "disabled");
2354 ata_dev_disable(dev);
2355 return 0;
2356 }
2357
9062712f
TH
2358 rc = ata_do_link_spd_horkage(dev);
2359 if (rc)
2360 return rc;
2361
6746544c
TH
2362 /* let ACPI work its magic */
2363 rc = ata_acpi_on_devcfg(dev);
2364 if (rc)
2365 return rc;
08573a86 2366
05027adc
TH
2367 /* massage HPA, do it early as it might change IDENTIFY data */
2368 rc = ata_hpa_resize(dev);
2369 if (rc)
2370 return rc;
2371
c39f5ebe 2372 /* print device capabilities */
0dd4b21f 2373 if (ata_msg_probe(ap))
88574551
TH
2374 ata_dev_printk(dev, KERN_DEBUG,
2375 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2376 "85:%04x 86:%04x 87:%04x 88:%04x\n",
7f5e4e8d 2377 __func__,
f15a1daf
TH
2378 id[49], id[82], id[83], id[84],
2379 id[85], id[86], id[87], id[88]);
c39f5ebe 2380
208a9933 2381 /* initialize to-be-configured parameters */
ea1dd4e1 2382 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
2383 dev->max_sectors = 0;
2384 dev->cdb_len = 0;
2385 dev->n_sectors = 0;
2386 dev->cylinders = 0;
2387 dev->heads = 0;
2388 dev->sectors = 0;
e18086d6 2389 dev->multi_count = 0;
208a9933 2390
1da177e4
LT
2391 /*
2392 * common ATA, ATAPI feature tests
2393 */
2394
ff8854b2 2395 /* find max transfer mode; for printk only */
1148c3a7 2396 xfer_mask = ata_id_xfermask(id);
1da177e4 2397
0dd4b21f
BP
2398 if (ata_msg_probe(ap))
2399 ata_dump_id(id);
1da177e4 2400
ef143d57
AL
2401 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2402 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2403 sizeof(fwrevbuf));
2404
2405 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2406 sizeof(modelbuf));
2407
1da177e4
LT
2408 /* ATA-specific feature tests */
2409 if (dev->class == ATA_DEV_ATA) {
b352e57d 2410 if (ata_id_is_cfa(id)) {
62afe5d7
SS
2411 /* CPRM may make this media unusable */
2412 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
44877b4e
TH
2413 ata_dev_printk(dev, KERN_WARNING,
2414 "supports DRM functions and may "
2415 "not be fully accessable.\n");
b352e57d 2416 snprintf(revbuf, 7, "CFA");
ae8d4ee7 2417 } else {
2dcb407e 2418 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
ae8d4ee7
AC
2419 /* Warn the user if the device has TPM extensions */
2420 if (ata_id_has_tpm(id))
2421 ata_dev_printk(dev, KERN_WARNING,
2422 "supports DRM functions and may "
2423 "not be fully accessable.\n");
2424 }
b352e57d 2425
1148c3a7 2426 dev->n_sectors = ata_id_n_sectors(id);
2940740b 2427
e18086d6
ML
2428 /* get current R/W Multiple count setting */
2429 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2430 unsigned int max = dev->id[47] & 0xff;
2431 unsigned int cnt = dev->id[59] & 0xff;
2432 /* only recognize/allow powers of two here */
2433 if (is_power_of_2(max) && is_power_of_2(cnt))
2434 if (cnt <= max)
2435 dev->multi_count = cnt;
2436 }
3f64f565 2437
1148c3a7 2438 if (ata_id_has_lba(id)) {
4c2d721a 2439 const char *lba_desc;
388539f3 2440 char ncq_desc[24];
8bf62ece 2441
4c2d721a
TH
2442 lba_desc = "LBA";
2443 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 2444 if (ata_id_has_lba48(id)) {
8bf62ece 2445 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a 2446 lba_desc = "LBA48";
6fc49adb
TH
2447
2448 if (dev->n_sectors >= (1UL << 28) &&
2449 ata_id_has_flush_ext(id))
2450 dev->flags |= ATA_DFLAG_FLUSH_EXT;
4c2d721a 2451 }
8bf62ece 2452
a6e6ce8e 2453 /* config NCQ */
388539f3
SL
2454 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2455 if (rc)
2456 return rc;
a6e6ce8e 2457
8bf62ece 2458 /* print device info to dmesg */
3f64f565
EM
2459 if (ata_msg_drv(ap) && print_info) {
2460 ata_dev_printk(dev, KERN_INFO,
2461 "%s: %s, %s, max %s\n",
2462 revbuf, modelbuf, fwrevbuf,
2463 ata_mode_string(xfer_mask));
2464 ata_dev_printk(dev, KERN_INFO,
2465 "%Lu sectors, multi %u: %s %s\n",
f15a1daf 2466 (unsigned long long)dev->n_sectors,
3f64f565
EM
2467 dev->multi_count, lba_desc, ncq_desc);
2468 }
ffeae418 2469 } else {
8bf62ece
AL
2470 /* CHS */
2471
2472 /* Default translation */
1148c3a7
TH
2473 dev->cylinders = id[1];
2474 dev->heads = id[3];
2475 dev->sectors = id[6];
8bf62ece 2476
1148c3a7 2477 if (ata_id_current_chs_valid(id)) {
8bf62ece 2478 /* Current CHS translation is valid. */
1148c3a7
TH
2479 dev->cylinders = id[54];
2480 dev->heads = id[55];
2481 dev->sectors = id[56];
8bf62ece
AL
2482 }
2483
2484 /* print device info to dmesg */
3f64f565 2485 if (ata_msg_drv(ap) && print_info) {
88574551 2486 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2487 "%s: %s, %s, max %s\n",
2488 revbuf, modelbuf, fwrevbuf,
2489 ata_mode_string(xfer_mask));
a84471fe 2490 ata_dev_printk(dev, KERN_INFO,
3f64f565
EM
2491 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2492 (unsigned long long)dev->n_sectors,
2493 dev->multi_count, dev->cylinders,
2494 dev->heads, dev->sectors);
2495 }
07f6f7d0
AL
2496 }
2497
6e7846e9 2498 dev->cdb_len = 16;
1da177e4
LT
2499 }
2500
2501 /* ATAPI-specific feature tests */
2c13b7ce 2502 else if (dev->class == ATA_DEV_ATAPI) {
854c73a2
TH
2503 const char *cdb_intr_string = "";
2504 const char *atapi_an_string = "";
91163006 2505 const char *dma_dir_string = "";
7d77b247 2506 u32 sntf;
08a556db 2507
1148c3a7 2508 rc = atapi_cdb_len(id);
1da177e4 2509 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 2510 if (ata_msg_warn(ap))
88574551
TH
2511 ata_dev_printk(dev, KERN_WARNING,
2512 "unsupported CDB len\n");
ffeae418 2513 rc = -EINVAL;
1da177e4
LT
2514 goto err_out_nosup;
2515 }
6e7846e9 2516 dev->cdb_len = (unsigned int) rc;
1da177e4 2517
7d77b247
TH
2518 /* Enable ATAPI AN if both the host and device have
2519 * the support. If PMP is attached, SNTF is required
2520 * to enable ATAPI AN to discern between PHY status
2521 * changed notifications and ATAPI ANs.
9f45cbd3 2522 */
e7ecd435
TH
2523 if (atapi_an &&
2524 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
071f44b1 2525 (!sata_pmp_attached(ap) ||
7d77b247 2526 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
854c73a2
TH
2527 unsigned int err_mask;
2528
9f45cbd3 2529 /* issue SET feature command to turn this on */
218f3d30
JG
2530 err_mask = ata_dev_set_feature(dev,
2531 SETFEATURES_SATA_ENABLE, SATA_AN);
854c73a2 2532 if (err_mask)
9f45cbd3 2533 ata_dev_printk(dev, KERN_ERR,
854c73a2
TH
2534 "failed to enable ATAPI AN "
2535 "(err_mask=0x%x)\n", err_mask);
2536 else {
9f45cbd3 2537 dev->flags |= ATA_DFLAG_AN;
854c73a2
TH
2538 atapi_an_string = ", ATAPI AN";
2539 }
9f45cbd3
KCA
2540 }
2541
08a556db 2542 if (ata_id_cdb_intr(dev->id)) {
312f7da2 2543 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
2544 cdb_intr_string = ", CDB intr";
2545 }
312f7da2 2546
91163006
TH
2547 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2548 dev->flags |= ATA_DFLAG_DMADIR;
2549 dma_dir_string = ", DMADIR";
2550 }
2551
1da177e4 2552 /* print device info to dmesg */
5afc8142 2553 if (ata_msg_drv(ap) && print_info)
ef143d57 2554 ata_dev_printk(dev, KERN_INFO,
91163006 2555 "ATAPI: %s, %s, max %s%s%s%s\n",
ef143d57 2556 modelbuf, fwrevbuf,
12436c30 2557 ata_mode_string(xfer_mask),
91163006
TH
2558 cdb_intr_string, atapi_an_string,
2559 dma_dir_string);
1da177e4
LT
2560 }
2561
914ed354
TH
2562 /* determine max_sectors */
2563 dev->max_sectors = ATA_MAX_SECTORS;
2564 if (dev->flags & ATA_DFLAG_LBA48)
2565 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2566
ca77329f
KCA
2567 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2568 if (ata_id_has_hipm(dev->id))
2569 dev->flags |= ATA_DFLAG_HIPM;
2570 if (ata_id_has_dipm(dev->id))
2571 dev->flags |= ATA_DFLAG_DIPM;
2572 }
2573
c5038fc0
AC
2574 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2575 200 sectors */
3373efd8 2576 if (ata_dev_knobble(dev)) {
5afc8142 2577 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
2578 ata_dev_printk(dev, KERN_INFO,
2579 "applying bridge limits\n");
5a529139 2580 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
2581 dev->max_sectors = ATA_MAX_SECTORS;
2582 }
2583
f8d8e579 2584 if ((dev->class == ATA_DEV_ATAPI) &&
f442cd86 2585 (atapi_command_packet_set(id) == TYPE_TAPE)) {
f8d8e579 2586 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
f442cd86
AL
2587 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2588 }
f8d8e579 2589
75683fe7 2590 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
03ec52de
TH
2591 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2592 dev->max_sectors);
18d6e9d5 2593
ca77329f
KCA
2594 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2595 dev->horkage |= ATA_HORKAGE_IPM;
2596
2597 /* reset link pm_policy for this port to no pm */
2598 ap->pm_policy = MAX_PERFORMANCE;
2599 }
2600
4b2f3ede 2601 if (ap->ops->dev_config)
cd0d3bbc 2602 ap->ops->dev_config(dev);
4b2f3ede 2603
c5038fc0
AC
2604 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2605 /* Let the user know. We don't want to disallow opens for
2606 rescue purposes, or in case the vendor is just a blithering
2607 idiot. Do this after the dev_config call as some controllers
2608 with buggy firmware may want to avoid reporting false device
2609 bugs */
2610
2611 if (print_info) {
2612 ata_dev_printk(dev, KERN_WARNING,
2613"Drive reports diagnostics failure. This may indicate a drive\n");
2614 ata_dev_printk(dev, KERN_WARNING,
2615"fault or invalid emulation. Contact drive vendor for information.\n");
2616 }
2617 }
2618
ac70a964
TH
2619 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2620 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2621 "firmware update to be fully functional.\n");
2622 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2623 "or visit http://ata.wiki.kernel.org.\n");
2624 }
2625
ffeae418 2626 return 0;
1da177e4
LT
2627
2628err_out_nosup:
0dd4b21f 2629 if (ata_msg_probe(ap))
88574551 2630 ata_dev_printk(dev, KERN_DEBUG,
7f5e4e8d 2631 "%s: EXIT, err\n", __func__);
ffeae418 2632 return rc;
1da177e4
LT
2633}
2634
be0d18df 2635/**
2e41e8e6 2636 * ata_cable_40wire - return 40 wire cable type
be0d18df
AC
2637 * @ap: port
2638 *
2e41e8e6 2639 * Helper method for drivers which want to hardwire 40 wire cable
be0d18df
AC
2640 * detection.
2641 */
2642
2643int ata_cable_40wire(struct ata_port *ap)
2644{
2645 return ATA_CBL_PATA40;
2646}
2647
2648/**
2e41e8e6 2649 * ata_cable_80wire - return 80 wire cable type
be0d18df
AC
2650 * @ap: port
2651 *
2e41e8e6 2652 * Helper method for drivers which want to hardwire 80 wire cable
be0d18df
AC
2653 * detection.
2654 */
2655
2656int ata_cable_80wire(struct ata_port *ap)
2657{
2658 return ATA_CBL_PATA80;
2659}
2660
2661/**
2662 * ata_cable_unknown - return unknown PATA cable.
2663 * @ap: port
2664 *
2665 * Helper method for drivers which have no PATA cable detection.
2666 */
2667
2668int ata_cable_unknown(struct ata_port *ap)
2669{
2670 return ATA_CBL_PATA_UNK;
2671}
2672
c88f90c3
TH
2673/**
2674 * ata_cable_ignore - return ignored PATA cable.
2675 * @ap: port
2676 *
2677 * Helper method for drivers which don't use cable type to limit
2678 * transfer mode.
2679 */
2680int ata_cable_ignore(struct ata_port *ap)
2681{
2682 return ATA_CBL_PATA_IGN;
2683}
2684
be0d18df
AC
2685/**
2686 * ata_cable_sata - return SATA cable type
2687 * @ap: port
2688 *
2689 * Helper method for drivers which have SATA cables
2690 */
2691
2692int ata_cable_sata(struct ata_port *ap)
2693{
2694 return ATA_CBL_SATA;
2695}
2696
1da177e4
LT
2697/**
2698 * ata_bus_probe - Reset and probe ATA bus
2699 * @ap: Bus to probe
2700 *
0cba632b
JG
2701 * Master ATA bus probing function. Initiates a hardware-dependent
2702 * bus reset, then attempts to identify any devices found on
2703 * the bus.
2704 *
1da177e4 2705 * LOCKING:
0cba632b 2706 * PCI/etc. bus probe sem.
1da177e4
LT
2707 *
2708 * RETURNS:
96072e69 2709 * Zero on success, negative errno otherwise.
1da177e4
LT
2710 */
2711
80289167 2712int ata_bus_probe(struct ata_port *ap)
1da177e4 2713{
28ca5c57 2714 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1 2715 int tries[ATA_MAX_DEVICES];
f58229f8 2716 int rc;
e82cbdb9 2717 struct ata_device *dev;
1da177e4 2718
1eca4365 2719 ata_for_each_dev(dev, &ap->link, ALL)
f58229f8 2720 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
14d2bac1
TH
2721
2722 retry:
1eca4365 2723 ata_for_each_dev(dev, &ap->link, ALL) {
cdeab114
TH
2724 /* If we issue an SRST then an ATA drive (not ATAPI)
2725 * may change configuration and be in PIO0 timing. If
2726 * we do a hard reset (or are coming from power on)
2727 * this is true for ATA or ATAPI. Until we've set a
2728 * suitable controller mode we should not touch the
2729 * bus as we may be talking too fast.
2730 */
2731 dev->pio_mode = XFER_PIO_0;
2732
2733 /* If the controller has a pio mode setup function
2734 * then use it to set the chipset to rights. Don't
2735 * touch the DMA setup as that will be dealt with when
2736 * configuring devices.
2737 */
2738 if (ap->ops->set_piomode)
2739 ap->ops->set_piomode(ap, dev);
2740 }
2741
2044470c 2742 /* reset and determine device classes */
52783c5d 2743 ap->ops->phy_reset(ap);
2061a47a 2744
1eca4365 2745 ata_for_each_dev(dev, &ap->link, ALL) {
3e4ec344 2746 if (dev->class != ATA_DEV_UNKNOWN)
52783c5d
TH
2747 classes[dev->devno] = dev->class;
2748 else
2749 classes[dev->devno] = ATA_DEV_NONE;
2044470c 2750
52783c5d 2751 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 2752 }
1da177e4 2753
f31f0cc2
JG
2754 /* read IDENTIFY page and configure devices. We have to do the identify
2755 specific sequence bass-ackwards so that PDIAG- is released by
2756 the slave device */
2757
1eca4365 2758 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
f58229f8
TH
2759 if (tries[dev->devno])
2760 dev->class = classes[dev->devno];
ffeae418 2761
14d2bac1 2762 if (!ata_dev_enabled(dev))
ffeae418 2763 continue;
ffeae418 2764
bff04647
TH
2765 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2766 dev->id);
14d2bac1
TH
2767 if (rc)
2768 goto fail;
f31f0cc2
JG
2769 }
2770
be0d18df
AC
2771 /* Now ask for the cable type as PDIAG- should have been released */
2772 if (ap->ops->cable_detect)
2773 ap->cbl = ap->ops->cable_detect(ap);
2774
1eca4365
TH
2775 /* We may have SATA bridge glue hiding here irrespective of
2776 * the reported cable types and sensed types. When SATA
2777 * drives indicate we have a bridge, we don't know which end
2778 * of the link the bridge is which is a problem.
2779 */
2780 ata_for_each_dev(dev, &ap->link, ENABLED)
614fe29b
AC
2781 if (ata_id_is_sata(dev->id))
2782 ap->cbl = ATA_CBL_SATA;
614fe29b 2783
f31f0cc2
JG
2784 /* After the identify sequence we can now set up the devices. We do
2785 this in the normal order so that the user doesn't get confused */
2786
1eca4365 2787 ata_for_each_dev(dev, &ap->link, ENABLED) {
9af5c9c9 2788 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
efdaedc4 2789 rc = ata_dev_configure(dev);
9af5c9c9 2790 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
14d2bac1
TH
2791 if (rc)
2792 goto fail;
1da177e4
LT
2793 }
2794
e82cbdb9 2795 /* configure transfer mode */
0260731f 2796 rc = ata_set_mode(&ap->link, &dev);
4ae72a1e 2797 if (rc)
51713d35 2798 goto fail;
1da177e4 2799
1eca4365
TH
2800 ata_for_each_dev(dev, &ap->link, ENABLED)
2801 return 0;
1da177e4 2802
96072e69 2803 return -ENODEV;
14d2bac1
TH
2804
2805 fail:
4ae72a1e
TH
2806 tries[dev->devno]--;
2807
14d2bac1
TH
2808 switch (rc) {
2809 case -EINVAL:
4ae72a1e 2810 /* eeek, something went very wrong, give up */
14d2bac1
TH
2811 tries[dev->devno] = 0;
2812 break;
4ae72a1e
TH
2813
2814 case -ENODEV:
2815 /* give it just one more chance */
2816 tries[dev->devno] = min(tries[dev->devno], 1);
14d2bac1 2817 case -EIO:
4ae72a1e
TH
2818 if (tries[dev->devno] == 1) {
2819 /* This is the last chance, better to slow
2820 * down than lose it.
2821 */
a07d499b 2822 sata_down_spd_limit(&ap->link, 0);
4ae72a1e
TH
2823 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2824 }
14d2bac1
TH
2825 }
2826
4ae72a1e 2827 if (!tries[dev->devno])
3373efd8 2828 ata_dev_disable(dev);
ec573755 2829
14d2bac1 2830 goto retry;
1da177e4
LT
2831}
2832
3be680b7
TH
2833/**
2834 * sata_print_link_status - Print SATA link status
936fd732 2835 * @link: SATA link to printk link status about
3be680b7
TH
2836 *
2837 * This function prints link speed and status of a SATA link.
2838 *
2839 * LOCKING:
2840 * None.
2841 */
6bdb4fc9 2842static void sata_print_link_status(struct ata_link *link)
3be680b7 2843{
6d5f9732 2844 u32 sstatus, scontrol, tmp;
3be680b7 2845
936fd732 2846 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3be680b7 2847 return;
936fd732 2848 sata_scr_read(link, SCR_CONTROL, &scontrol);
3be680b7 2849
b1c72916 2850 if (ata_phys_link_online(link)) {
3be680b7 2851 tmp = (sstatus >> 4) & 0xf;
936fd732 2852 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2853 "SATA link up %s (SStatus %X SControl %X)\n",
2854 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 2855 } else {
936fd732 2856 ata_link_printk(link, KERN_INFO,
f15a1daf
TH
2857 "SATA link down (SStatus %X SControl %X)\n",
2858 sstatus, scontrol);
3be680b7
TH
2859 }
2860}
2861
ebdfca6e
AC
2862/**
2863 * ata_dev_pair - return other device on cable
ebdfca6e
AC
2864 * @adev: device
2865 *
2866 * Obtain the other device on the same cable, or if none is
2867 * present NULL is returned
2868 */
2e9edbf8 2869
3373efd8 2870struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 2871{
9af5c9c9
TH
2872 struct ata_link *link = adev->link;
2873 struct ata_device *pair = &link->device[1 - adev->devno];
e1211e3f 2874 if (!ata_dev_enabled(pair))
ebdfca6e
AC
2875 return NULL;
2876 return pair;
2877}
2878
1c3fae4d 2879/**
3c567b7d 2880 * sata_down_spd_limit - adjust SATA spd limit downward
936fd732 2881 * @link: Link to adjust SATA spd limit for
a07d499b 2882 * @spd_limit: Additional limit
1c3fae4d 2883 *
936fd732 2884 * Adjust SATA spd limit of @link downward. Note that this
1c3fae4d 2885 * function only adjusts the limit. The change must be applied
3c567b7d 2886 * using sata_set_spd().
1c3fae4d 2887 *
a07d499b
TH
2888 * If @spd_limit is non-zero, the speed is limited to equal to or
2889 * lower than @spd_limit if such speed is supported. If
2890 * @spd_limit is slower than any supported speed, only the lowest
2891 * supported speed is allowed.
2892 *
1c3fae4d
TH
2893 * LOCKING:
2894 * Inherited from caller.
2895 *
2896 * RETURNS:
2897 * 0 on success, negative errno on failure
2898 */
a07d499b 2899int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
1c3fae4d 2900{
81952c54 2901 u32 sstatus, spd, mask;
a07d499b 2902 int rc, bit;
1c3fae4d 2903
936fd732 2904 if (!sata_scr_valid(link))
008a7896
TH
2905 return -EOPNOTSUPP;
2906
2907 /* If SCR can be read, use it to determine the current SPD.
936fd732 2908 * If not, use cached value in link->sata_spd.
008a7896 2909 */
936fd732 2910 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
9913ff8a 2911 if (rc == 0 && ata_sstatus_online(sstatus))
008a7896
TH
2912 spd = (sstatus >> 4) & 0xf;
2913 else
936fd732 2914 spd = link->sata_spd;
1c3fae4d 2915
936fd732 2916 mask = link->sata_spd_limit;
1c3fae4d
TH
2917 if (mask <= 1)
2918 return -EINVAL;
008a7896
TH
2919
2920 /* unconditionally mask off the highest bit */
a07d499b
TH
2921 bit = fls(mask) - 1;
2922 mask &= ~(1 << bit);
1c3fae4d 2923
008a7896
TH
2924 /* Mask off all speeds higher than or equal to the current
2925 * one. Force 1.5Gbps if current SPD is not available.
2926 */
2927 if (spd > 1)
2928 mask &= (1 << (spd - 1)) - 1;
2929 else
2930 mask &= 1;
2931
2932 /* were we already at the bottom? */
1c3fae4d
TH
2933 if (!mask)
2934 return -EINVAL;
2935
a07d499b
TH
2936 if (spd_limit) {
2937 if (mask & ((1 << spd_limit) - 1))
2938 mask &= (1 << spd_limit) - 1;
2939 else {
2940 bit = ffs(mask) - 1;
2941 mask = 1 << bit;
2942 }
2943 }
2944
936fd732 2945 link->sata_spd_limit = mask;
1c3fae4d 2946
936fd732 2947 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
f15a1daf 2948 sata_spd_string(fls(mask)));
1c3fae4d
TH
2949
2950 return 0;
2951}
2952
936fd732 2953static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
1c3fae4d 2954{
5270222f
TH
2955 struct ata_link *host_link = &link->ap->link;
2956 u32 limit, target, spd;
1c3fae4d 2957
5270222f
TH
2958 limit = link->sata_spd_limit;
2959
2960 /* Don't configure downstream link faster than upstream link.
2961 * It doesn't speed up anything and some PMPs choke on such
2962 * configuration.
2963 */
2964 if (!ata_is_host_link(link) && host_link->sata_spd)
2965 limit &= (1 << host_link->sata_spd) - 1;
2966
2967 if (limit == UINT_MAX)
2968 target = 0;
1c3fae4d 2969 else
5270222f 2970 target = fls(limit);
1c3fae4d
TH
2971
2972 spd = (*scontrol >> 4) & 0xf;
5270222f 2973 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
1c3fae4d 2974
5270222f 2975 return spd != target;
1c3fae4d
TH
2976}
2977
2978/**
3c567b7d 2979 * sata_set_spd_needed - is SATA spd configuration needed
936fd732 2980 * @link: Link in question
1c3fae4d
TH
2981 *
2982 * Test whether the spd limit in SControl matches
936fd732 2983 * @link->sata_spd_limit. This function is used to determine
1c3fae4d
TH
2984 * whether hardreset is necessary to apply SATA spd
2985 * configuration.
2986 *
2987 * LOCKING:
2988 * Inherited from caller.
2989 *
2990 * RETURNS:
2991 * 1 if SATA spd configuration is needed, 0 otherwise.
2992 */
1dc55e87 2993static int sata_set_spd_needed(struct ata_link *link)
1c3fae4d
TH
2994{
2995 u32 scontrol;
2996
936fd732 2997 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
db64bcf3 2998 return 1;
1c3fae4d 2999
936fd732 3000 return __sata_set_spd_needed(link, &scontrol);
1c3fae4d
TH
3001}
3002
3003/**
3c567b7d 3004 * sata_set_spd - set SATA spd according to spd limit
936fd732 3005 * @link: Link to set SATA spd for
1c3fae4d 3006 *
936fd732 3007 * Set SATA spd of @link according to sata_spd_limit.
1c3fae4d
TH
3008 *
3009 * LOCKING:
3010 * Inherited from caller.
3011 *
3012 * RETURNS:
3013 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 3014 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 3015 */
936fd732 3016int sata_set_spd(struct ata_link *link)
1c3fae4d
TH
3017{
3018 u32 scontrol;
81952c54 3019 int rc;
1c3fae4d 3020
936fd732 3021 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3022 return rc;
1c3fae4d 3023
936fd732 3024 if (!__sata_set_spd_needed(link, &scontrol))
1c3fae4d
TH
3025 return 0;
3026
936fd732 3027 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
81952c54
TH
3028 return rc;
3029
1c3fae4d
TH
3030 return 1;
3031}
3032
452503f9
AC
3033/*
3034 * This mode timing computation functionality is ported over from
3035 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3036 */
3037/*
b352e57d 3038 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
452503f9 3039 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
b352e57d
AC
3040 * for UDMA6, which is currently supported only by Maxtor drives.
3041 *
3042 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
452503f9
AC
3043 */
3044
3045static const struct ata_timing ata_timing[] = {
3ada9c12
DD
3046/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3047 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3048 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3049 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3050 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3051 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3052 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3053 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3054
3055 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3056 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3057 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3058
3059 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3060 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3061 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3062 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3063 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3064
3065/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3066 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3067 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3068 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3069 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3070 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3071 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3072 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
452503f9
AC
3073
3074 { 0xFF }
3075};
3076
2dcb407e
JG
3077#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3078#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
452503f9
AC
3079
3080static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3081{
3ada9c12
DD
3082 q->setup = EZ(t->setup * 1000, T);
3083 q->act8b = EZ(t->act8b * 1000, T);
3084 q->rec8b = EZ(t->rec8b * 1000, T);
3085 q->cyc8b = EZ(t->cyc8b * 1000, T);
3086 q->active = EZ(t->active * 1000, T);
3087 q->recover = EZ(t->recover * 1000, T);
3088 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3089 q->cycle = EZ(t->cycle * 1000, T);
3090 q->udma = EZ(t->udma * 1000, UT);
452503f9
AC
3091}
3092
3093void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3094 struct ata_timing *m, unsigned int what)
3095{
3096 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3097 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3098 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3099 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3100 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3101 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3ada9c12 3102 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
452503f9
AC
3103 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3104 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3105}
3106
6357357c 3107const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
452503f9 3108{
70cd071e
TH
3109 const struct ata_timing *t = ata_timing;
3110
3111 while (xfer_mode > t->mode)
3112 t++;
452503f9 3113
70cd071e
TH
3114 if (xfer_mode == t->mode)
3115 return t;
3116 return NULL;
452503f9
AC
3117}
3118
3119int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3120 struct ata_timing *t, int T, int UT)
3121{
9e8808a9 3122 const u16 *id = adev->id;
452503f9
AC
3123 const struct ata_timing *s;
3124 struct ata_timing p;
3125
3126 /*
2e9edbf8 3127 * Find the mode.
75b1f2f8 3128 */
452503f9
AC
3129
3130 if (!(s = ata_timing_find_mode(speed)))
3131 return -EINVAL;
3132
75b1f2f8
AL
3133 memcpy(t, s, sizeof(*s));
3134
452503f9
AC
3135 /*
3136 * If the drive is an EIDE drive, it can tell us it needs extended
3137 * PIO/MW_DMA cycle timing.
3138 */
3139
9e8808a9 3140 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
452503f9 3141 memset(&p, 0, sizeof(p));
9e8808a9 3142
2dcb407e 3143 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
9e8808a9
BZ
3144 if (speed <= XFER_PIO_2)
3145 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3146 else if ((speed <= XFER_PIO_4) ||
3147 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3148 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3149 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3150 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3151
452503f9
AC
3152 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3153 }
3154
3155 /*
3156 * Convert the timing to bus clock counts.
3157 */
3158
75b1f2f8 3159 ata_timing_quantize(t, t, T, UT);
452503f9
AC
3160
3161 /*
c893a3ae
RD
3162 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3163 * S.M.A.R.T * and some other commands. We have to ensure that the
3164 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
3165 */
3166
fd3367af 3167 if (speed > XFER_PIO_6) {
452503f9
AC
3168 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3169 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3170 }
3171
3172 /*
c893a3ae 3173 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
3174 */
3175
3176 if (t->act8b + t->rec8b < t->cyc8b) {
3177 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3178 t->rec8b = t->cyc8b - t->act8b;
3179 }
3180
3181 if (t->active + t->recover < t->cycle) {
3182 t->active += (t->cycle - (t->active + t->recover)) / 2;
3183 t->recover = t->cycle - t->active;
3184 }
a617c09f 3185
4f701d1e
AC
3186 /* In a few cases quantisation may produce enough errors to
3187 leave t->cycle too low for the sum of active and recovery
3188 if so we must correct this */
3189 if (t->active + t->recover > t->cycle)
3190 t->cycle = t->active + t->recover;
452503f9
AC
3191
3192 return 0;
3193}
3194
a0f79b92
TH
3195/**
3196 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3197 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3198 * @cycle: cycle duration in ns
3199 *
3200 * Return matching xfer mode for @cycle. The returned mode is of
3201 * the transfer type specified by @xfer_shift. If @cycle is too
3202 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3203 * than the fastest known mode, the fasted mode is returned.
3204 *
3205 * LOCKING:
3206 * None.
3207 *
3208 * RETURNS:
3209 * Matching xfer_mode, 0xff if no match found.
3210 */
3211u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3212{
3213 u8 base_mode = 0xff, last_mode = 0xff;
3214 const struct ata_xfer_ent *ent;
3215 const struct ata_timing *t;
3216
3217 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3218 if (ent->shift == xfer_shift)
3219 base_mode = ent->base;
3220
3221 for (t = ata_timing_find_mode(base_mode);
3222 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3223 unsigned short this_cycle;
3224
3225 switch (xfer_shift) {
3226 case ATA_SHIFT_PIO:
3227 case ATA_SHIFT_MWDMA:
3228 this_cycle = t->cycle;
3229 break;
3230 case ATA_SHIFT_UDMA:
3231 this_cycle = t->udma;
3232 break;
3233 default:
3234 return 0xff;
3235 }
3236
3237 if (cycle > this_cycle)
3238 break;
3239
3240 last_mode = t->mode;
3241 }
3242
3243 return last_mode;
3244}
3245
cf176e1a
TH
3246/**
3247 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a 3248 * @dev: Device to adjust xfer masks
458337db 3249 * @sel: ATA_DNXFER_* selector
cf176e1a
TH
3250 *
3251 * Adjust xfer masks of @dev downward. Note that this function
3252 * does not apply the change. Invoking ata_set_mode() afterwards
3253 * will apply the limit.
3254 *
3255 * LOCKING:
3256 * Inherited from caller.
3257 *
3258 * RETURNS:
3259 * 0 on success, negative errno on failure
3260 */
458337db 3261int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
cf176e1a 3262{
458337db 3263 char buf[32];
7dc951ae
TH
3264 unsigned long orig_mask, xfer_mask;
3265 unsigned long pio_mask, mwdma_mask, udma_mask;
458337db 3266 int quiet, highbit;
cf176e1a 3267
458337db
TH
3268 quiet = !!(sel & ATA_DNXFER_QUIET);
3269 sel &= ~ATA_DNXFER_QUIET;
cf176e1a 3270
458337db
TH
3271 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3272 dev->mwdma_mask,
3273 dev->udma_mask);
3274 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
cf176e1a 3275
458337db
TH
3276 switch (sel) {
3277 case ATA_DNXFER_PIO:
3278 highbit = fls(pio_mask) - 1;
3279 pio_mask &= ~(1 << highbit);
3280 break;
3281
3282 case ATA_DNXFER_DMA:
3283 if (udma_mask) {
3284 highbit = fls(udma_mask) - 1;
3285 udma_mask &= ~(1 << highbit);
3286 if (!udma_mask)
3287 return -ENOENT;
3288 } else if (mwdma_mask) {
3289 highbit = fls(mwdma_mask) - 1;
3290 mwdma_mask &= ~(1 << highbit);
3291 if (!mwdma_mask)
3292 return -ENOENT;
3293 }
3294 break;
3295
3296 case ATA_DNXFER_40C:
3297 udma_mask &= ATA_UDMA_MASK_40C;
3298 break;
3299
3300 case ATA_DNXFER_FORCE_PIO0:
3301 pio_mask &= 1;
3302 case ATA_DNXFER_FORCE_PIO:
3303 mwdma_mask = 0;
3304 udma_mask = 0;
3305 break;
3306
458337db
TH
3307 default:
3308 BUG();
3309 }
3310
3311 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3312
3313 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3314 return -ENOENT;
3315
3316 if (!quiet) {
3317 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3318 snprintf(buf, sizeof(buf), "%s:%s",
3319 ata_mode_string(xfer_mask),
3320 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3321 else
3322 snprintf(buf, sizeof(buf), "%s",
3323 ata_mode_string(xfer_mask));
3324
3325 ata_dev_printk(dev, KERN_WARNING,
3326 "limiting speed to %s\n", buf);
3327 }
cf176e1a
TH
3328
3329 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3330 &dev->udma_mask);
3331
cf176e1a 3332 return 0;
cf176e1a
TH
3333}
3334
3373efd8 3335static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 3336{
d0cb43b3 3337 struct ata_port *ap = dev->link->ap;
9af5c9c9 3338 struct ata_eh_context *ehc = &dev->link->eh_context;
d0cb43b3 3339 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
4055dee7
TH
3340 const char *dev_err_whine = "";
3341 int ign_dev_err = 0;
d0cb43b3 3342 unsigned int err_mask = 0;
83206a29 3343 int rc;
1da177e4 3344
e8384607 3345 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
3346 if (dev->xfer_shift == ATA_SHIFT_PIO)
3347 dev->flags |= ATA_DFLAG_PIO;
3348
d0cb43b3
TH
3349 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3350 dev_err_whine = " (SET_XFERMODE skipped)";
3351 else {
3352 if (nosetxfer)
3353 ata_dev_printk(dev, KERN_WARNING,
3354 "NOSETXFER but PATA detected - can't "
3355 "skip SETXFER, might malfunction\n");
3356 err_mask = ata_dev_set_xfermode(dev);
3357 }
2dcb407e 3358
4055dee7
TH
3359 if (err_mask & ~AC_ERR_DEV)
3360 goto fail;
3361
3362 /* revalidate */
3363 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3364 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3365 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3366 if (rc)
3367 return rc;
3368
b93fda12
AC
3369 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3370 /* Old CFA may refuse this command, which is just fine */
3371 if (ata_id_is_cfa(dev->id))
3372 ign_dev_err = 1;
3373 /* Catch several broken garbage emulations plus some pre
3374 ATA devices */
3375 if (ata_id_major_version(dev->id) == 0 &&
3376 dev->pio_mode <= XFER_PIO_2)
3377 ign_dev_err = 1;
3378 /* Some very old devices and some bad newer ones fail
3379 any kind of SET_XFERMODE request but support PIO0-2
3380 timings and no IORDY */
3381 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3382 ign_dev_err = 1;
3383 }
3acaf94b
AC
3384 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3385 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
c5038fc0 3386 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3acaf94b
AC
3387 dev->dma_mode == XFER_MW_DMA_0 &&
3388 (dev->id[63] >> 8) & 1)
4055dee7 3389 ign_dev_err = 1;
3acaf94b 3390
4055dee7
TH
3391 /* if the device is actually configured correctly, ignore dev err */
3392 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3393 ign_dev_err = 1;
1da177e4 3394
4055dee7
TH
3395 if (err_mask & AC_ERR_DEV) {
3396 if (!ign_dev_err)
3397 goto fail;
3398 else
3399 dev_err_whine = " (device error ignored)";
3400 }
48a8a14f 3401
23e71c3d
TH
3402 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3403 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 3404
4055dee7
TH
3405 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3406 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3407 dev_err_whine);
3408
83206a29 3409 return 0;
4055dee7
TH
3410
3411 fail:
3412 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3413 "(err_mask=0x%x)\n", err_mask);
3414 return -EIO;
1da177e4
LT
3415}
3416
1da177e4 3417/**
04351821 3418 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
0260731f 3419 * @link: link on which timings will be programmed
1967b7ff 3420 * @r_failed_dev: out parameter for failed device
1da177e4 3421 *
04351821
AC
3422 * Standard implementation of the function used to tune and set
3423 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3424 * ata_dev_set_mode() fails, pointer to the failing device is
e82cbdb9 3425 * returned in @r_failed_dev.
780a87f7 3426 *
1da177e4 3427 * LOCKING:
0cba632b 3428 * PCI/etc. bus probe sem.
e82cbdb9
TH
3429 *
3430 * RETURNS:
3431 * 0 on success, negative errno otherwise
1da177e4 3432 */
04351821 3433
0260731f 3434int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
1da177e4 3435{
0260731f 3436 struct ata_port *ap = link->ap;
e8e0619f 3437 struct ata_device *dev;
f58229f8 3438 int rc = 0, used_dma = 0, found = 0;
3adcebb2 3439
a6d5a51c 3440 /* step 1: calculate xfer_mask */
1eca4365 3441 ata_for_each_dev(dev, link, ENABLED) {
7dc951ae 3442 unsigned long pio_mask, dma_mask;
b3a70601 3443 unsigned int mode_mask;
a6d5a51c 3444
b3a70601
AC
3445 mode_mask = ATA_DMA_MASK_ATA;
3446 if (dev->class == ATA_DEV_ATAPI)
3447 mode_mask = ATA_DMA_MASK_ATAPI;
3448 else if (ata_id_is_cfa(dev->id))
3449 mode_mask = ATA_DMA_MASK_CFA;
3450
3373efd8 3451 ata_dev_xfermask(dev);
33267325 3452 ata_force_xfermask(dev);
1da177e4 3453
acf356b1
TH
3454 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3455 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
b3a70601
AC
3456
3457 if (libata_dma_mask & mode_mask)
3458 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3459 else
3460 dma_mask = 0;
3461
acf356b1
TH
3462 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3463 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 3464
4f65977d 3465 found = 1;
b15b3eba 3466 if (ata_dma_enabled(dev))
5444a6f4 3467 used_dma = 1;
a6d5a51c 3468 }
4f65977d 3469 if (!found)
e82cbdb9 3470 goto out;
a6d5a51c
TH
3471
3472 /* step 2: always set host PIO timings */
1eca4365 3473 ata_for_each_dev(dev, link, ENABLED) {
70cd071e 3474 if (dev->pio_mode == 0xff) {
f15a1daf 3475 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 3476 rc = -EINVAL;
e82cbdb9 3477 goto out;
e8e0619f
TH
3478 }
3479
3480 dev->xfer_mode = dev->pio_mode;
3481 dev->xfer_shift = ATA_SHIFT_PIO;
3482 if (ap->ops->set_piomode)
3483 ap->ops->set_piomode(ap, dev);
3484 }
1da177e4 3485
a6d5a51c 3486 /* step 3: set host DMA timings */
1eca4365
TH
3487 ata_for_each_dev(dev, link, ENABLED) {
3488 if (!ata_dma_enabled(dev))
e8e0619f
TH
3489 continue;
3490
3491 dev->xfer_mode = dev->dma_mode;
3492 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3493 if (ap->ops->set_dmamode)
3494 ap->ops->set_dmamode(ap, dev);
3495 }
1da177e4
LT
3496
3497 /* step 4: update devices' xfer mode */
1eca4365 3498 ata_for_each_dev(dev, link, ENABLED) {
3373efd8 3499 rc = ata_dev_set_mode(dev);
5bbc53f4 3500 if (rc)
e82cbdb9 3501 goto out;
83206a29 3502 }
1da177e4 3503
e8e0619f
TH
3504 /* Record simplex status. If we selected DMA then the other
3505 * host channels are not permitted to do so.
5444a6f4 3506 */
cca3974e 3507 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
032af1ce 3508 ap->host->simplex_claimed = ap;
5444a6f4 3509
e82cbdb9
TH
3510 out:
3511 if (rc)
3512 *r_failed_dev = dev;
3513 return rc;
1da177e4
LT
3514}
3515
aa2731ad
TH
3516/**
3517 * ata_wait_ready - wait for link to become ready
3518 * @link: link to be waited on
3519 * @deadline: deadline jiffies for the operation
3520 * @check_ready: callback to check link readiness
3521 *
3522 * Wait for @link to become ready. @check_ready should return
3523 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3524 * link doesn't seem to be occupied, other errno for other error
3525 * conditions.
3526 *
3527 * Transient -ENODEV conditions are allowed for
3528 * ATA_TMOUT_FF_WAIT.
3529 *
3530 * LOCKING:
3531 * EH context.
3532 *
3533 * RETURNS:
3534 * 0 if @linke is ready before @deadline; otherwise, -errno.
3535 */
3536int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3537 int (*check_ready)(struct ata_link *link))
3538{
3539 unsigned long start = jiffies;
b48d58f5 3540 unsigned long nodev_deadline;
aa2731ad
TH
3541 int warned = 0;
3542
b48d58f5
TH
3543 /* choose which 0xff timeout to use, read comment in libata.h */
3544 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3545 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3546 else
3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3548
b1c72916
TH
3549 /* Slave readiness can't be tested separately from master. On
3550 * M/S emulation configuration, this function should be called
3551 * only on the master and it will handle both master and slave.
3552 */
3553 WARN_ON(link == link->ap->slave_link);
3554
aa2731ad
TH
3555 if (time_after(nodev_deadline, deadline))
3556 nodev_deadline = deadline;
3557
3558 while (1) {
3559 unsigned long now = jiffies;
3560 int ready, tmp;
3561
3562 ready = tmp = check_ready(link);
3563 if (ready > 0)
3564 return 0;
3565
b48d58f5
TH
3566 /*
3567 * -ENODEV could be transient. Ignore -ENODEV if link
aa2731ad 3568 * is online. Also, some SATA devices take a long
b48d58f5
TH
3569 * time to clear 0xff after reset. Wait for
3570 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3571 * offline.
aa2731ad
TH
3572 *
3573 * Note that some PATA controllers (pata_ali) explode
3574 * if status register is read more than once when
3575 * there's no device attached.
3576 */
3577 if (ready == -ENODEV) {
3578 if (ata_link_online(link))
3579 ready = 0;
3580 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3581 !ata_link_offline(link) &&
3582 time_before(now, nodev_deadline))
3583 ready = 0;
3584 }
3585
3586 if (ready)
3587 return ready;
3588 if (time_after(now, deadline))
3589 return -EBUSY;
3590
3591 if (!warned && time_after(now, start + 5 * HZ) &&
3592 (deadline - now > 3 * HZ)) {
3593 ata_link_printk(link, KERN_WARNING,
3594 "link is slow to respond, please be patient "
3595 "(ready=%d)\n", tmp);
3596 warned = 1;
3597 }
3598
3599 msleep(50);
3600 }
3601}
3602
3603/**
3604 * ata_wait_after_reset - wait for link to become ready after reset
3605 * @link: link to be waited on
3606 * @deadline: deadline jiffies for the operation
3607 * @check_ready: callback to check link readiness
3608 *
3609 * Wait for @link to become ready after reset.
3610 *
3611 * LOCKING:
3612 * EH context.
3613 *
3614 * RETURNS:
3615 * 0 if @linke is ready before @deadline; otherwise, -errno.
3616 */
2b4221bb 3617int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
aa2731ad
TH
3618 int (*check_ready)(struct ata_link *link))
3619{
341c2c95 3620 msleep(ATA_WAIT_AFTER_RESET);
aa2731ad
TH
3621
3622 return ata_wait_ready(link, deadline, check_ready);
3623}
3624
d7bb4cc7 3625/**
936fd732
TH
3626 * sata_link_debounce - debounce SATA phy status
3627 * @link: ATA link to debounce SATA phy status for
d7bb4cc7 3628 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3629 * @deadline: deadline jiffies for the operation
d7bb4cc7 3630 *
936fd732 3631* Make sure SStatus of @link reaches stable state, determined by
d7bb4cc7
TH
3632 * holding the same value where DET is not 1 for @duration polled
3633 * every @interval, before @timeout. Timeout constraints the
d4b2bab4
TH
3634 * beginning of the stable state. Because DET gets stuck at 1 on
3635 * some controllers after hot unplugging, this functions waits
d7bb4cc7
TH
3636 * until timeout then returns 0 if DET is stable at 1.
3637 *
d4b2bab4
TH
3638 * @timeout is further limited by @deadline. The sooner of the
3639 * two is used.
3640 *
d7bb4cc7
TH
3641 * LOCKING:
3642 * Kernel thread context (may sleep)
3643 *
3644 * RETURNS:
3645 * 0 on success, -errno on failure.
3646 */
936fd732
TH
3647int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3648 unsigned long deadline)
7a7921e8 3649{
341c2c95
TH
3650 unsigned long interval = params[0];
3651 unsigned long duration = params[1];
d4b2bab4 3652 unsigned long last_jiffies, t;
d7bb4cc7
TH
3653 u32 last, cur;
3654 int rc;
3655
341c2c95 3656 t = ata_deadline(jiffies, params[2]);
d4b2bab4
TH
3657 if (time_before(t, deadline))
3658 deadline = t;
3659
936fd732 3660 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3661 return rc;
3662 cur &= 0xf;
3663
3664 last = cur;
3665 last_jiffies = jiffies;
3666
3667 while (1) {
341c2c95 3668 msleep(interval);
936fd732 3669 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
d7bb4cc7
TH
3670 return rc;
3671 cur &= 0xf;
3672
3673 /* DET stable? */
3674 if (cur == last) {
d4b2bab4 3675 if (cur == 1 && time_before(jiffies, deadline))
d7bb4cc7 3676 continue;
341c2c95
TH
3677 if (time_after(jiffies,
3678 ata_deadline(last_jiffies, duration)))
d7bb4cc7
TH
3679 return 0;
3680 continue;
3681 }
3682
3683 /* unstable, start over */
3684 last = cur;
3685 last_jiffies = jiffies;
3686
f1545154
TH
3687 /* Check deadline. If debouncing failed, return
3688 * -EPIPE to tell upper layer to lower link speed.
3689 */
d4b2bab4 3690 if (time_after(jiffies, deadline))
f1545154 3691 return -EPIPE;
d7bb4cc7
TH
3692 }
3693}
3694
3695/**
936fd732
TH
3696 * sata_link_resume - resume SATA link
3697 * @link: ATA link to resume SATA
d7bb4cc7 3698 * @params: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3699 * @deadline: deadline jiffies for the operation
d7bb4cc7 3700 *
936fd732 3701 * Resume SATA phy @link and debounce it.
d7bb4cc7
TH
3702 *
3703 * LOCKING:
3704 * Kernel thread context (may sleep)
3705 *
3706 * RETURNS:
3707 * 0 on success, -errno on failure.
3708 */
936fd732
TH
3709int sata_link_resume(struct ata_link *link, const unsigned long *params,
3710 unsigned long deadline)
d7bb4cc7 3711{
5040ab67 3712 int tries = ATA_LINK_RESUME_TRIES;
ac371987 3713 u32 scontrol, serror;
81952c54
TH
3714 int rc;
3715
936fd732 3716 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
81952c54 3717 return rc;
7a7921e8 3718
5040ab67
TH
3719 /*
3720 * Writes to SControl sometimes get ignored under certain
3721 * controllers (ata_piix SIDPR). Make sure DET actually is
3722 * cleared.
3723 */
3724 do {
3725 scontrol = (scontrol & 0x0f0) | 0x300;
3726 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3727 return rc;
3728 /*
3729 * Some PHYs react badly if SStatus is pounded
3730 * immediately after resuming. Delay 200ms before
3731 * debouncing.
3732 */
3733 msleep(200);
81952c54 3734
5040ab67
TH
3735 /* is SControl restored correctly? */
3736 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3737 return rc;
3738 } while ((scontrol & 0xf0f) != 0x300 && --tries);
7a7921e8 3739
5040ab67
TH
3740 if ((scontrol & 0xf0f) != 0x300) {
3741 ata_link_printk(link, KERN_ERR,
3742 "failed to resume link (SControl %X)\n",
3743 scontrol);
3744 return 0;
3745 }
3746
3747 if (tries < ATA_LINK_RESUME_TRIES)
3748 ata_link_printk(link, KERN_WARNING,
3749 "link resume succeeded after %d retries\n",
3750 ATA_LINK_RESUME_TRIES - tries);
7a7921e8 3751
ac371987
TH
3752 if ((rc = sata_link_debounce(link, params, deadline)))
3753 return rc;
3754
f046519f 3755 /* clear SError, some PHYs require this even for SRST to work */
ac371987
TH
3756 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3757 rc = sata_scr_write(link, SCR_ERROR, serror);
ac371987 3758
f046519f 3759 return rc != -EINVAL ? rc : 0;
7a7921e8
TH
3760}
3761
f5914a46 3762/**
0aa1113d 3763 * ata_std_prereset - prepare for reset
cc0680a5 3764 * @link: ATA link to be reset
d4b2bab4 3765 * @deadline: deadline jiffies for the operation
f5914a46 3766 *
cc0680a5 3767 * @link is about to be reset. Initialize it. Failure from
b8cffc6a
TH
3768 * prereset makes libata abort whole reset sequence and give up
3769 * that port, so prereset should be best-effort. It does its
3770 * best to prepare for reset sequence but if things go wrong, it
3771 * should just whine, not fail.
f5914a46
TH
3772 *
3773 * LOCKING:
3774 * Kernel thread context (may sleep)
3775 *
3776 * RETURNS:
3777 * 0 on success, -errno otherwise.
3778 */
0aa1113d 3779int ata_std_prereset(struct ata_link *link, unsigned long deadline)
f5914a46 3780{
cc0680a5 3781 struct ata_port *ap = link->ap;
936fd732 3782 struct ata_eh_context *ehc = &link->eh_context;
e9c83914 3783 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
3784 int rc;
3785
f5914a46
TH
3786 /* if we're about to do hardreset, nothing more to do */
3787 if (ehc->i.action & ATA_EH_HARDRESET)
3788 return 0;
3789
936fd732 3790 /* if SATA, resume link */
a16abc0b 3791 if (ap->flags & ATA_FLAG_SATA) {
936fd732 3792 rc = sata_link_resume(link, timing, deadline);
b8cffc6a
TH
3793 /* whine about phy resume failure but proceed */
3794 if (rc && rc != -EOPNOTSUPP)
cc0680a5 3795 ata_link_printk(link, KERN_WARNING, "failed to resume "
f5914a46 3796 "link for reset (errno=%d)\n", rc);
f5914a46
TH
3797 }
3798
45db2f6c 3799 /* no point in trying softreset on offline link */
b1c72916 3800 if (ata_phys_link_offline(link))
45db2f6c
TH
3801 ehc->i.action &= ~ATA_EH_SOFTRESET;
3802
f5914a46
TH
3803 return 0;
3804}
3805
c2bd5804 3806/**
624d5c51
TH
3807 * sata_link_hardreset - reset link via SATA phy reset
3808 * @link: link to reset
3809 * @timing: timing parameters { interval, duratinon, timeout } in msec
d4b2bab4 3810 * @deadline: deadline jiffies for the operation
9dadd45b
TH
3811 * @online: optional out parameter indicating link onlineness
3812 * @check_ready: optional callback to check link readiness
c2bd5804 3813 *
624d5c51 3814 * SATA phy-reset @link using DET bits of SControl register.
9dadd45b
TH
3815 * After hardreset, link readiness is waited upon using
3816 * ata_wait_ready() if @check_ready is specified. LLDs are
3817 * allowed to not specify @check_ready and wait itself after this
3818 * function returns. Device classification is LLD's
3819 * responsibility.
3820 *
3821 * *@online is set to one iff reset succeeded and @link is online
3822 * after reset.
c2bd5804
TH
3823 *
3824 * LOCKING:
3825 * Kernel thread context (may sleep)
3826 *
3827 * RETURNS:
3828 * 0 on success, -errno otherwise.
3829 */
624d5c51 3830int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
9dadd45b
TH
3831 unsigned long deadline,
3832 bool *online, int (*check_ready)(struct ata_link *))
c2bd5804 3833{
624d5c51 3834 u32 scontrol;
81952c54 3835 int rc;
852ee16a 3836
c2bd5804
TH
3837 DPRINTK("ENTER\n");
3838
9dadd45b
TH
3839 if (online)
3840 *online = false;
3841
936fd732 3842 if (sata_set_spd_needed(link)) {
1c3fae4d
TH
3843 /* SATA spec says nothing about how to reconfigure
3844 * spd. To be on the safe side, turn off phy during
3845 * reconfiguration. This works for at least ICH7 AHCI
3846 * and Sil3124.
3847 */
936fd732 3848 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3849 goto out;
81952c54 3850
a34b6fc0 3851 scontrol = (scontrol & 0x0f0) | 0x304;
81952c54 3852
936fd732 3853 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
b6103f6d 3854 goto out;
1c3fae4d 3855
936fd732 3856 sata_set_spd(link);
1c3fae4d
TH
3857 }
3858
3859 /* issue phy wake/reset */
936fd732 3860 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
b6103f6d 3861 goto out;
81952c54 3862
852ee16a 3863 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54 3864
936fd732 3865 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
b6103f6d 3866 goto out;
c2bd5804 3867
1c3fae4d 3868 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
3869 * 10.4.2 says at least 1 ms.
3870 */
3871 msleep(1);
3872
936fd732
TH
3873 /* bring link back */
3874 rc = sata_link_resume(link, timing, deadline);
9dadd45b
TH
3875 if (rc)
3876 goto out;
3877 /* if link is offline nothing more to do */
b1c72916 3878 if (ata_phys_link_offline(link))
9dadd45b
TH
3879 goto out;
3880
3881 /* Link is online. From this point, -ENODEV too is an error. */
3882 if (online)
3883 *online = true;
3884
071f44b1 3885 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
9dadd45b
TH
3886 /* If PMP is supported, we have to do follow-up SRST.
3887 * Some PMPs don't send D2H Reg FIS after hardreset if
3888 * the first port is empty. Wait only for
3889 * ATA_TMOUT_PMP_SRST_WAIT.
3890 */
3891 if (check_ready) {
3892 unsigned long pmp_deadline;
3893
341c2c95
TH
3894 pmp_deadline = ata_deadline(jiffies,
3895 ATA_TMOUT_PMP_SRST_WAIT);
9dadd45b
TH
3896 if (time_after(pmp_deadline, deadline))
3897 pmp_deadline = deadline;
3898 ata_wait_ready(link, pmp_deadline, check_ready);
3899 }
3900 rc = -EAGAIN;
3901 goto out;
3902 }
3903
3904 rc = 0;
3905 if (check_ready)
3906 rc = ata_wait_ready(link, deadline, check_ready);
b6103f6d 3907 out:
0cbf0711
TH
3908 if (rc && rc != -EAGAIN) {
3909 /* online is set iff link is online && reset succeeded */
3910 if (online)
3911 *online = false;
9dadd45b
TH
3912 ata_link_printk(link, KERN_ERR,
3913 "COMRESET failed (errno=%d)\n", rc);
0cbf0711 3914 }
b6103f6d
TH
3915 DPRINTK("EXIT, rc=%d\n", rc);
3916 return rc;
3917}
3918
57c9efdf
TH
3919/**
3920 * sata_std_hardreset - COMRESET w/o waiting or classification
3921 * @link: link to reset
3922 * @class: resulting class of attached device
3923 * @deadline: deadline jiffies for the operation
3924 *
3925 * Standard SATA COMRESET w/o waiting or classification.
3926 *
3927 * LOCKING:
3928 * Kernel thread context (may sleep)
3929 *
3930 * RETURNS:
3931 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3932 */
3933int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3934 unsigned long deadline)
3935{
3936 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3937 bool online;
3938 int rc;
3939
3940 /* do hardreset */
3941 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
57c9efdf
TH
3942 return online ? -EAGAIN : rc;
3943}
3944
c2bd5804 3945/**
203c75b8 3946 * ata_std_postreset - standard postreset callback
cc0680a5 3947 * @link: the target ata_link
c2bd5804
TH
3948 * @classes: classes of attached devices
3949 *
3950 * This function is invoked after a successful reset. Note that
3951 * the device might have been reset more than once using
3952 * different reset methods before postreset is invoked.
c2bd5804 3953 *
c2bd5804
TH
3954 * LOCKING:
3955 * Kernel thread context (may sleep)
3956 */
203c75b8 3957void ata_std_postreset(struct ata_link *link, unsigned int *classes)
c2bd5804 3958{
f046519f
TH
3959 u32 serror;
3960
c2bd5804
TH
3961 DPRINTK("ENTER\n");
3962
f046519f
TH
3963 /* reset complete, clear SError */
3964 if (!sata_scr_read(link, SCR_ERROR, &serror))
3965 sata_scr_write(link, SCR_ERROR, serror);
3966
c2bd5804 3967 /* print link status */
936fd732 3968 sata_print_link_status(link);
c2bd5804 3969
c2bd5804
TH
3970 DPRINTK("EXIT\n");
3971}
3972
623a3128
TH
3973/**
3974 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
3975 * @dev: device to compare against
3976 * @new_class: class of the new device
3977 * @new_id: IDENTIFY page of the new device
3978 *
3979 * Compare @new_class and @new_id against @dev and determine
3980 * whether @dev is the device indicated by @new_class and
3981 * @new_id.
3982 *
3983 * LOCKING:
3984 * None.
3985 *
3986 * RETURNS:
3987 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3988 */
3373efd8
TH
3989static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3990 const u16 *new_id)
623a3128
TH
3991{
3992 const u16 *old_id = dev->id;
a0cf733b
TH
3993 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3994 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
623a3128
TH
3995
3996 if (dev->class != new_class) {
f15a1daf
TH
3997 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3998 dev->class, new_class);
623a3128
TH
3999 return 0;
4000 }
4001
a0cf733b
TH
4002 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4003 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4004 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4005 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
623a3128
TH
4006
4007 if (strcmp(model[0], model[1])) {
f15a1daf
TH
4008 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4009 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
4010 return 0;
4011 }
4012
4013 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
4014 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4015 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
4016 return 0;
4017 }
4018
623a3128
TH
4019 return 1;
4020}
4021
4022/**
fe30911b 4023 * ata_dev_reread_id - Re-read IDENTIFY data
3fae450c 4024 * @dev: target ATA device
bff04647 4025 * @readid_flags: read ID flags
623a3128
TH
4026 *
4027 * Re-read IDENTIFY page and make sure @dev is still attached to
4028 * the port.
4029 *
4030 * LOCKING:
4031 * Kernel thread context (may sleep)
4032 *
4033 * RETURNS:
4034 * 0 on success, negative errno otherwise
4035 */
fe30911b 4036int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
623a3128 4037{
5eb45c02 4038 unsigned int class = dev->class;
9af5c9c9 4039 u16 *id = (void *)dev->link->ap->sector_buf;
623a3128
TH
4040 int rc;
4041
fe635c7e 4042 /* read ID data */
bff04647 4043 rc = ata_dev_read_id(dev, &class, readid_flags, id);
623a3128 4044 if (rc)
fe30911b 4045 return rc;
623a3128
TH
4046
4047 /* is the device still there? */
fe30911b
TH
4048 if (!ata_dev_same_device(dev, class, id))
4049 return -ENODEV;
623a3128 4050
fe635c7e 4051 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
fe30911b
TH
4052 return 0;
4053}
4054
4055/**
4056 * ata_dev_revalidate - Revalidate ATA device
4057 * @dev: device to revalidate
422c9daa 4058 * @new_class: new class code
fe30911b
TH
4059 * @readid_flags: read ID flags
4060 *
4061 * Re-read IDENTIFY page, make sure @dev is still attached to the
4062 * port and reconfigure it according to the new IDENTIFY page.
4063 *
4064 * LOCKING:
4065 * Kernel thread context (may sleep)
4066 *
4067 * RETURNS:
4068 * 0 on success, negative errno otherwise
4069 */
422c9daa
TH
4070int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4071 unsigned int readid_flags)
fe30911b 4072{
6ddcd3b0 4073 u64 n_sectors = dev->n_sectors;
5920dadf 4074 u64 n_native_sectors = dev->n_native_sectors;
fe30911b
TH
4075 int rc;
4076
4077 if (!ata_dev_enabled(dev))
4078 return -ENODEV;
4079
422c9daa
TH
4080 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4081 if (ata_class_enabled(new_class) &&
f0d0613d
BP
4082 new_class != ATA_DEV_ATA &&
4083 new_class != ATA_DEV_ATAPI &&
4084 new_class != ATA_DEV_SEMB) {
422c9daa
TH
4085 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4086 dev->class, new_class);
4087 rc = -ENODEV;
4088 goto fail;
4089 }
4090
fe30911b
TH
4091 /* re-read ID */
4092 rc = ata_dev_reread_id(dev, readid_flags);
4093 if (rc)
4094 goto fail;
623a3128
TH
4095
4096 /* configure device according to the new ID */
efdaedc4 4097 rc = ata_dev_configure(dev);
6ddcd3b0
TH
4098 if (rc)
4099 goto fail;
4100
4101 /* verify n_sectors hasn't changed */
445d211b
TH
4102 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4103 dev->n_sectors == n_sectors)
4104 return 0;
4105
4106 /* n_sectors has changed */
4107 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4108 (unsigned long long)n_sectors,
4109 (unsigned long long)dev->n_sectors);
4110
4111 /*
4112 * Something could have caused HPA to be unlocked
4113 * involuntarily. If n_native_sectors hasn't changed and the
4114 * new size matches it, keep the device.
4115 */
4116 if (dev->n_native_sectors == n_native_sectors &&
4117 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4118 ata_dev_printk(dev, KERN_WARNING,
4119 "new n_sectors matches native, probably "
68939ce5
TH
4120 "late HPA unlock, n_sectors updated\n");
4121 /* use the larger n_sectors */
445d211b 4122 return 0;
6ddcd3b0
TH
4123 }
4124
445d211b
TH
4125 /*
4126 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4127 * unlocking HPA in those cases.
4128 *
4129 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4130 */
4131 if (dev->n_native_sectors == n_native_sectors &&
4132 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4133 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4134 ata_dev_printk(dev, KERN_WARNING,
4135 "old n_sectors matches native, probably "
4136 "late HPA lock, will try to unlock HPA\n");
4137 /* try unlocking HPA */
4138 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4139 rc = -EIO;
4140 } else
4141 rc = -ENODEV;
623a3128 4142
445d211b
TH
4143 /* restore original n_[native_]sectors and fail */
4144 dev->n_native_sectors = n_native_sectors;
4145 dev->n_sectors = n_sectors;
623a3128 4146 fail:
f15a1daf 4147 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
4148 return rc;
4149}
4150
6919a0a6
AC
4151struct ata_blacklist_entry {
4152 const char *model_num;
4153 const char *model_rev;
4154 unsigned long horkage;
4155};
4156
4157static const struct ata_blacklist_entry ata_device_blacklist [] = {
4158 /* Devices with DMA related problems under Linux */
4159 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4160 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4161 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4165 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4166 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4167 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
7da4c935 4168 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4169 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4170 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4171 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4172 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4173 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
7da4c935 4174 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4175 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4176 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4177 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4178 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4179 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4180 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4181 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4182 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
6919a0a6
AC
4183 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4184 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
2dcb407e 4185 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
39f19886 4186 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3af9a77a 4187 /* Odd clown on sil3726/4726 PMPs */
50af2fa1 4188 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
6919a0a6 4189
18d6e9d5 4190 /* Weird ATAPI devices */
40a1d531 4191 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
6a87e42e 4192 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
18d6e9d5 4193
6919a0a6
AC
4194 /* Devices we expect to fail diagnostics */
4195
4196 /* Devices where NCQ should be avoided */
4197 /* NCQ is slow */
2dcb407e 4198 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
459ad688 4199 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
09125ea6
TH
4200 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4201 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
7acfaf30 4202 /* NCQ is broken */
539cc7c7 4203 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
0e3dbc01 4204 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
da6f0ec2 4205 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
e41bd3e8 4206 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
5ccfca97 4207 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
539cc7c7 4208
ac70a964 4209 /* Seagate NCQ + FLUSH CACHE firmware bug */
4d1f9082 4210 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964 4211 ATA_HORKAGE_FIRMWARE_WARN },
d10d491f 4212
4d1f9082 4213 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4214 ATA_HORKAGE_FIRMWARE_WARN },
4215
4d1f9082 4216 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
d10d491f
TH
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218
4d1f9082 4219 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
ac70a964
TH
4220 ATA_HORKAGE_FIRMWARE_WARN },
4221
36e337d0
RH
4222 /* Blacklist entries taken from Silicon Image 3124/3132
4223 Windows driver .inf file - also several Linux problem reports */
4224 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4225 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4226 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
6919a0a6 4227
68b0ddb2
TH
4228 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4229 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4230
16c55b03
TH
4231 /* devices which puke on READ_NATIVE_MAX */
4232 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4233 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4234 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4235 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
6919a0a6 4236
7831387b
TH
4237 /* this one allows HPA unlocking but fails IOs on the area */
4238 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4239
93328e11
AC
4240 /* Devices which report 1 sector over size HPA */
4241 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4242 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
b152fcd3 4243 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
93328e11 4244
6bbfd53d
AC
4245 /* Devices which get the IVB wrong */
4246 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
a79067e5 4247 /* Maybe we should just blacklist TSSTcorp... */
7da4c935 4248 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
6bbfd53d 4249
9ce8e307
JA
4250 /* Devices that do not need bridging limits applied */
4251 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4252
9062712f
TH
4253 /* Devices which aren't very happy with higher link speeds */
4254 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4255
d0cb43b3
TH
4256 /*
4257 * Devices which choke on SETXFER. Applies only if both the
4258 * device and controller are SATA.
4259 */
4260 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4261
6919a0a6
AC
4262 /* End Marker */
4263 { }
1da177e4 4264};
2e9edbf8 4265
bce036ce
ML
4266/**
4267 * glob_match - match a text string against a glob-style pattern
4268 * @text: the string to be examined
4269 * @pattern: the glob-style pattern to be matched against
4270 *
4271 * Either/both of text and pattern can be empty strings.
4272 *
4273 * Match text against a glob-style pattern, with wildcards and simple sets:
4274 *
4275 * ? matches any single character.
4276 * * matches any run of characters.
4277 * [xyz] matches a single character from the set: x, y, or z.
2f9e4d16
ML
4278 * [a-d] matches a single character from the range: a, b, c, or d.
4279 * [a-d0-9] matches a single character from either range.
bce036ce 4280 *
2f9e4d16
ML
4281 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4282 * Behaviour with malformed patterns is undefined, though generally reasonable.
bce036ce 4283 *
3d2be54b 4284 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
bce036ce
ML
4285 *
4286 * This function uses one level of recursion per '*' in pattern.
4287 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4288 * this will not cause stack problems for any reasonable use here.
4289 *
4290 * RETURNS:
4291 * 0 on match, 1 otherwise.
4292 */
4293static int glob_match (const char *text, const char *pattern)
539cc7c7 4294{
bce036ce
ML
4295 do {
4296 /* Match single character or a '?' wildcard */
4297 if (*text == *pattern || *pattern == '?') {
4298 if (!*pattern++)
4299 return 0; /* End of both strings: match */
4300 } else {
4301 /* Match single char against a '[' bracketed ']' pattern set */
4302 if (!*text || *pattern != '[')
4303 break; /* Not a pattern set */
2f9e4d16
ML
4304 while (*++pattern && *pattern != ']' && *text != *pattern) {
4305 if (*pattern == '-' && *(pattern - 1) != '[')
4306 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4307 ++pattern;
4308 break;
4309 }
4310 }
bce036ce
ML
4311 if (!*pattern || *pattern == ']')
4312 return 1; /* No match */
4313 while (*pattern && *pattern++ != ']');
4314 }
4315 } while (*++text && *pattern);
4316
4317 /* Match any run of chars against a '*' wildcard */
4318 if (*pattern == '*') {
4319 if (!*++pattern)
4320 return 0; /* Match: avoid recursion at end of pattern */
4321 /* Loop to handle additional pattern chars after the wildcard */
4322 while (*text) {
4323 if (glob_match(text, pattern) == 0)
4324 return 0; /* Remainder matched */
4325 ++text; /* Absorb (match) this char and try again */
317b50b8
AP
4326 }
4327 }
bce036ce
ML
4328 if (!*text && !*pattern)
4329 return 0; /* End of both strings: match */
4330 return 1; /* No match */
539cc7c7 4331}
bce036ce 4332
75683fe7 4333static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
1da177e4 4334{
8bfa79fc
TH
4335 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4336 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
6919a0a6 4337 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3a778275 4338
8bfa79fc
TH
4339 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4340 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
1da177e4 4341
6919a0a6 4342 while (ad->model_num) {
bce036ce 4343 if (!glob_match(model_num, ad->model_num)) {
6919a0a6
AC
4344 if (ad->model_rev == NULL)
4345 return ad->horkage;
bce036ce 4346 if (!glob_match(model_rev, ad->model_rev))
6919a0a6 4347 return ad->horkage;
f4b15fef 4348 }
6919a0a6 4349 ad++;
f4b15fef 4350 }
1da177e4
LT
4351 return 0;
4352}
4353
6919a0a6
AC
4354static int ata_dma_blacklisted(const struct ata_device *dev)
4355{
4356 /* We don't support polling DMA.
4357 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4358 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4359 */
9af5c9c9 4360 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
6919a0a6
AC
4361 (dev->flags & ATA_DFLAG_CDB_INTR))
4362 return 1;
75683fe7 4363 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
6919a0a6
AC
4364}
4365
6bbfd53d
AC
4366/**
4367 * ata_is_40wire - check drive side detection
4368 * @dev: device
4369 *
4370 * Perform drive side detection decoding, allowing for device vendors
4371 * who can't follow the documentation.
4372 */
4373
4374static int ata_is_40wire(struct ata_device *dev)
4375{
4376 if (dev->horkage & ATA_HORKAGE_IVB)
4377 return ata_drive_40wire_relaxed(dev->id);
4378 return ata_drive_40wire(dev->id);
4379}
4380
15a5551c
AC
4381/**
4382 * cable_is_40wire - 40/80/SATA decider
4383 * @ap: port to consider
4384 *
4385 * This function encapsulates the policy for speed management
4386 * in one place. At the moment we don't cache the result but
4387 * there is a good case for setting ap->cbl to the result when
4388 * we are called with unknown cables (and figuring out if it
4389 * impacts hotplug at all).
4390 *
4391 * Return 1 if the cable appears to be 40 wire.
4392 */
4393
4394static int cable_is_40wire(struct ata_port *ap)
4395{
4396 struct ata_link *link;
4397 struct ata_device *dev;
4398
4a9c7b33 4399 /* If the controller thinks we are 40 wire, we are. */
15a5551c
AC
4400 if (ap->cbl == ATA_CBL_PATA40)
4401 return 1;
4a9c7b33
TH
4402
4403 /* If the controller thinks we are 80 wire, we are. */
15a5551c
AC
4404 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4405 return 0;
4a9c7b33
TH
4406
4407 /* If the system is known to be 40 wire short cable (eg
4408 * laptop), then we allow 80 wire modes even if the drive
4409 * isn't sure.
4410 */
f792068e
AC
4411 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4412 return 0;
4a9c7b33
TH
4413
4414 /* If the controller doesn't know, we scan.
4415 *
4416 * Note: We look for all 40 wire detects at this point. Any
4417 * 80 wire detect is taken to be 80 wire cable because
4418 * - in many setups only the one drive (slave if present) will
4419 * give a valid detect
4420 * - if you have a non detect capable drive you don't want it
4421 * to colour the choice
4422 */
1eca4365
TH
4423 ata_for_each_link(link, ap, EDGE) {
4424 ata_for_each_dev(dev, link, ENABLED) {
4425 if (!ata_is_40wire(dev))
15a5551c
AC
4426 return 0;
4427 }
4428 }
4429 return 1;
4430}
4431
a6d5a51c
TH
4432/**
4433 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
4434 * @dev: Device to compute xfermask for
4435 *
acf356b1
TH
4436 * Compute supported xfermask of @dev and store it in
4437 * dev->*_mask. This function is responsible for applying all
4438 * known limits including host controller limits, device
4439 * blacklist, etc...
a6d5a51c
TH
4440 *
4441 * LOCKING:
4442 * None.
a6d5a51c 4443 */
3373efd8 4444static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 4445{
9af5c9c9
TH
4446 struct ata_link *link = dev->link;
4447 struct ata_port *ap = link->ap;
cca3974e 4448 struct ata_host *host = ap->host;
a6d5a51c 4449 unsigned long xfer_mask;
1da177e4 4450
37deecb5 4451 /* controller modes available */
565083e1
TH
4452 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4453 ap->mwdma_mask, ap->udma_mask);
4454
8343f889 4455 /* drive modes available */
37deecb5
TH
4456 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4457 dev->mwdma_mask, dev->udma_mask);
4458 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 4459
b352e57d
AC
4460 /*
4461 * CFA Advanced TrueIDE timings are not allowed on a shared
4462 * cable
4463 */
4464 if (ata_dev_pair(dev)) {
4465 /* No PIO5 or PIO6 */
4466 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4467 /* No MWDMA3 or MWDMA 4 */
4468 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4469 }
4470
37deecb5
TH
4471 if (ata_dma_blacklisted(dev)) {
4472 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
4473 ata_dev_printk(dev, KERN_WARNING,
4474 "device is on DMA blacklist, disabling DMA\n");
37deecb5 4475 }
a6d5a51c 4476
14d66ab7 4477 if ((host->flags & ATA_HOST_SIMPLEX) &&
2dcb407e 4478 host->simplex_claimed && host->simplex_claimed != ap) {
37deecb5
TH
4479 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4480 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4481 "other device, disabling DMA\n");
5444a6f4 4482 }
565083e1 4483
e424675f
JG
4484 if (ap->flags & ATA_FLAG_NO_IORDY)
4485 xfer_mask &= ata_pio_mask_no_iordy(dev);
4486
5444a6f4 4487 if (ap->ops->mode_filter)
a76b62ca 4488 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
5444a6f4 4489
8343f889
RH
4490 /* Apply cable rule here. Don't apply it early because when
4491 * we handle hot plug the cable type can itself change.
4492 * Check this last so that we know if the transfer rate was
4493 * solely limited by the cable.
4494 * Unknown or 80 wire cables reported host side are checked
4495 * drive side as well. Cases where we know a 40wire cable
4496 * is used safely for 80 are not checked here.
4497 */
4498 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4499 /* UDMA/44 or higher would be available */
15a5551c 4500 if (cable_is_40wire(ap)) {
2dcb407e 4501 ata_dev_printk(dev, KERN_WARNING,
8343f889
RH
4502 "limited to UDMA/33 due to 40-wire cable\n");
4503 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4504 }
4505
565083e1
TH
4506 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4507 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
4508}
4509
1da177e4
LT
4510/**
4511 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
4512 * @dev: Device to which command will be sent
4513 *
780a87f7
JG
4514 * Issue SET FEATURES - XFER MODE command to device @dev
4515 * on port @ap.
4516 *
1da177e4 4517 * LOCKING:
0cba632b 4518 * PCI/etc. bus probe sem.
83206a29
TH
4519 *
4520 * RETURNS:
4521 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
4522 */
4523
3373efd8 4524static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 4525{
a0123703 4526 struct ata_taskfile tf;
83206a29 4527 unsigned int err_mask;
1da177e4
LT
4528
4529 /* set up set-features taskfile */
4530 DPRINTK("set features - xfer mode\n");
4531
464cf177
TH
4532 /* Some controllers and ATAPI devices show flaky interrupt
4533 * behavior after setting xfer mode. Use polling instead.
4534 */
3373efd8 4535 ata_tf_init(dev, &tf);
a0123703
TH
4536 tf.command = ATA_CMD_SET_FEATURES;
4537 tf.feature = SETFEATURES_XFER;
464cf177 4538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
a0123703 4539 tf.protocol = ATA_PROT_NODATA;
b9f8ab2d 4540 /* If we are using IORDY we must send the mode setting command */
11b7becc
JG
4541 if (ata_pio_need_iordy(dev))
4542 tf.nsect = dev->xfer_mode;
b9f8ab2d
AC
4543 /* If the device has IORDY and the controller does not - turn it off */
4544 else if (ata_id_has_iordy(dev->id))
11b7becc 4545 tf.nsect = 0x01;
b9f8ab2d
AC
4546 else /* In the ancient relic department - skip all of this */
4547 return 0;
1da177e4 4548
2b789108 4549 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
9f45cbd3
KCA
4550
4551 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4552 return err_mask;
4553}
9f45cbd3 4554/**
218f3d30 4555 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
9f45cbd3
KCA
4556 * @dev: Device to which command will be sent
4557 * @enable: Whether to enable or disable the feature
218f3d30 4558 * @feature: The sector count represents the feature to set
9f45cbd3
KCA
4559 *
4560 * Issue SET FEATURES - SATA FEATURES command to device @dev
218f3d30 4561 * on port @ap with sector count
9f45cbd3
KCA
4562 *
4563 * LOCKING:
4564 * PCI/etc. bus probe sem.
4565 *
4566 * RETURNS:
4567 * 0 on success, AC_ERR_* mask otherwise.
4568 */
218f3d30
JG
4569static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4570 u8 feature)
9f45cbd3
KCA
4571{
4572 struct ata_taskfile tf;
4573 unsigned int err_mask;
4574
4575 /* set up set-features taskfile */
4576 DPRINTK("set features - SATA features\n");
4577
4578 ata_tf_init(dev, &tf);
4579 tf.command = ATA_CMD_SET_FEATURES;
4580 tf.feature = enable;
4581 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4582 tf.protocol = ATA_PROT_NODATA;
218f3d30 4583 tf.nsect = feature;
9f45cbd3 4584
2b789108 4585 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1da177e4 4586
83206a29
TH
4587 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4588 return err_mask;
1da177e4
LT
4589}
4590
8bf62ece
AL
4591/**
4592 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 4593 * @dev: Device to which command will be sent
e2a7f77a
RD
4594 * @heads: Number of heads (taskfile parameter)
4595 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
4596 *
4597 * LOCKING:
6aff8f1f
TH
4598 * Kernel thread context (may sleep)
4599 *
4600 * RETURNS:
4601 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 4602 */
3373efd8
TH
4603static unsigned int ata_dev_init_params(struct ata_device *dev,
4604 u16 heads, u16 sectors)
8bf62ece 4605{
a0123703 4606 struct ata_taskfile tf;
6aff8f1f 4607 unsigned int err_mask;
8bf62ece
AL
4608
4609 /* Number of sectors per track 1-255. Number of heads 1-16 */
4610 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 4611 return AC_ERR_INVALID;
8bf62ece
AL
4612
4613 /* set up init dev params taskfile */
4614 DPRINTK("init dev params \n");
4615
3373efd8 4616 ata_tf_init(dev, &tf);
a0123703
TH
4617 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4618 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4619 tf.protocol = ATA_PROT_NODATA;
4620 tf.nsect = sectors;
4621 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 4622
2b789108 4623 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
18b2466c
AC
4624 /* A clean abort indicates an original or just out of spec drive
4625 and we should continue as we issue the setup based on the
4626 drive reported working geometry */
4627 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4628 err_mask = 0;
8bf62ece 4629
6aff8f1f
TH
4630 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4631 return err_mask;
8bf62ece
AL
4632}
4633
1da177e4 4634/**
0cba632b
JG
4635 * ata_sg_clean - Unmap DMA memory associated with command
4636 * @qc: Command containing DMA memory to be released
4637 *
4638 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
4639 *
4640 * LOCKING:
cca3974e 4641 * spin_lock_irqsave(host lock)
1da177e4 4642 */
70e6ad0c 4643void ata_sg_clean(struct ata_queued_cmd *qc)
1da177e4
LT
4644{
4645 struct ata_port *ap = qc->ap;
ff2aeb1e 4646 struct scatterlist *sg = qc->sg;
1da177e4
LT
4647 int dir = qc->dma_dir;
4648
efcb3cf7 4649 WARN_ON_ONCE(sg == NULL);
1da177e4 4650
dde20207 4651 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 4652
dde20207 4653 if (qc->n_elem)
5825627c 4654 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
1da177e4
LT
4655
4656 qc->flags &= ~ATA_QCFLAG_DMAMAP;
ff2aeb1e 4657 qc->sg = NULL;
1da177e4
LT
4658}
4659
1da177e4 4660/**
5895ef9a 4661 * atapi_check_dma - Check whether ATAPI DMA can be supported
1da177e4
LT
4662 * @qc: Metadata associated with taskfile to check
4663 *
780a87f7
JG
4664 * Allow low-level driver to filter ATA PACKET commands, returning
4665 * a status indicating whether or not it is OK to use DMA for the
4666 * supplied PACKET command.
4667 *
1da177e4 4668 * LOCKING:
624d5c51
TH
4669 * spin_lock_irqsave(host lock)
4670 *
4671 * RETURNS: 0 when ATAPI DMA can be used
4672 * nonzero otherwise
4673 */
5895ef9a 4674int atapi_check_dma(struct ata_queued_cmd *qc)
624d5c51
TH
4675{
4676 struct ata_port *ap = qc->ap;
71601958 4677
624d5c51
TH
4678 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4679 * few ATAPI devices choke on such DMA requests.
4680 */
6a87e42e
TH
4681 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4682 unlikely(qc->nbytes & 15))
624d5c51 4683 return 1;
e2cec771 4684
624d5c51
TH
4685 if (ap->ops->check_atapi_dma)
4686 return ap->ops->check_atapi_dma(qc);
e2cec771 4687
624d5c51
TH
4688 return 0;
4689}
1da177e4 4690
624d5c51
TH
4691/**
4692 * ata_std_qc_defer - Check whether a qc needs to be deferred
4693 * @qc: ATA command in question
4694 *
4695 * Non-NCQ commands cannot run with any other command, NCQ or
4696 * not. As upper layer only knows the queue depth, we are
4697 * responsible for maintaining exclusion. This function checks
4698 * whether a new command @qc can be issued.
4699 *
4700 * LOCKING:
4701 * spin_lock_irqsave(host lock)
4702 *
4703 * RETURNS:
4704 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4705 */
4706int ata_std_qc_defer(struct ata_queued_cmd *qc)
4707{
4708 struct ata_link *link = qc->dev->link;
e2cec771 4709
624d5c51
TH
4710 if (qc->tf.protocol == ATA_PROT_NCQ) {
4711 if (!ata_tag_valid(link->active_tag))
4712 return 0;
4713 } else {
4714 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4715 return 0;
4716 }
e2cec771 4717
624d5c51
TH
4718 return ATA_DEFER_LINK;
4719}
6912ccd5 4720
624d5c51 4721void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
1da177e4 4722
624d5c51
TH
4723/**
4724 * ata_sg_init - Associate command with scatter-gather table.
4725 * @qc: Command to be associated
4726 * @sg: Scatter-gather table.
4727 * @n_elem: Number of elements in s/g table.
4728 *
4729 * Initialize the data-related elements of queued_cmd @qc
4730 * to point to a scatter-gather table @sg, containing @n_elem
4731 * elements.
4732 *
4733 * LOCKING:
4734 * spin_lock_irqsave(host lock)
4735 */
4736void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4737 unsigned int n_elem)
4738{
4739 qc->sg = sg;
4740 qc->n_elem = n_elem;
4741 qc->cursg = qc->sg;
4742}
bb5cb290 4743
624d5c51
TH
4744/**
4745 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4746 * @qc: Command with scatter-gather table to be mapped.
4747 *
4748 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4749 *
4750 * LOCKING:
4751 * spin_lock_irqsave(host lock)
4752 *
4753 * RETURNS:
4754 * Zero on success, negative on error.
4755 *
4756 */
4757static int ata_sg_setup(struct ata_queued_cmd *qc)
4758{
4759 struct ata_port *ap = qc->ap;
4760 unsigned int n_elem;
1da177e4 4761
624d5c51 4762 VPRINTK("ENTER, ata%u\n", ap->print_id);
e2cec771 4763
624d5c51
TH
4764 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4765 if (n_elem < 1)
4766 return -1;
bb5cb290 4767
624d5c51 4768 DPRINTK("%d sg elements mapped\n", n_elem);
5825627c 4769 qc->orig_n_elem = qc->n_elem;
624d5c51
TH
4770 qc->n_elem = n_elem;
4771 qc->flags |= ATA_QCFLAG_DMAMAP;
1da177e4 4772
624d5c51 4773 return 0;
1da177e4
LT
4774}
4775
624d5c51
TH
4776/**
4777 * swap_buf_le16 - swap halves of 16-bit words in place
4778 * @buf: Buffer to swap
4779 * @buf_words: Number of 16-bit words in buffer.
4780 *
4781 * Swap halves of 16-bit words if needed to convert from
4782 * little-endian byte order to native cpu byte order, or
4783 * vice-versa.
4784 *
4785 * LOCKING:
4786 * Inherited from caller.
4787 */
4788void swap_buf_le16(u16 *buf, unsigned int buf_words)
8061f5f0 4789{
624d5c51
TH
4790#ifdef __BIG_ENDIAN
4791 unsigned int i;
8061f5f0 4792
624d5c51
TH
4793 for (i = 0; i < buf_words; i++)
4794 buf[i] = le16_to_cpu(buf[i]);
4795#endif /* __BIG_ENDIAN */
8061f5f0
TH
4796}
4797
8a8bc223
TH
4798/**
4799 * ata_qc_new - Request an available ATA command, for queueing
5eb66fe0 4800 * @ap: target port
8a8bc223
TH
4801 *
4802 * LOCKING:
4803 * None.
4804 */
4805
4806static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4807{
4808 struct ata_queued_cmd *qc = NULL;
4809 unsigned int i;
4810
4811 /* no command while frozen */
4812 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4813 return NULL;
4814
4815 /* the last tag is reserved for internal command. */
4816 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4817 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4818 qc = __ata_qc_from_tag(ap, i);
4819 break;
4820 }
4821
4822 if (qc)
4823 qc->tag = i;
4824
4825 return qc;
4826}
4827
1da177e4
LT
4828/**
4829 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4830 * @dev: Device from whom we request an available command structure
4831 *
4832 * LOCKING:
0cba632b 4833 * None.
1da177e4
LT
4834 */
4835
8a8bc223 4836struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4837{
9af5c9c9 4838 struct ata_port *ap = dev->link->ap;
1da177e4
LT
4839 struct ata_queued_cmd *qc;
4840
8a8bc223 4841 qc = ata_qc_new(ap);
1da177e4 4842 if (qc) {
1da177e4
LT
4843 qc->scsicmd = NULL;
4844 qc->ap = ap;
4845 qc->dev = dev;
1da177e4 4846
2c13b7ce 4847 ata_qc_reinit(qc);
1da177e4
LT
4848 }
4849
4850 return qc;
4851}
4852
8a8bc223
TH
4853/**
4854 * ata_qc_free - free unused ata_queued_cmd
4855 * @qc: Command to complete
4856 *
4857 * Designed to free unused ata_queued_cmd object
4858 * in case something prevents using it.
4859 *
4860 * LOCKING:
4861 * spin_lock_irqsave(host lock)
4862 */
4863void ata_qc_free(struct ata_queued_cmd *qc)
4864{
a1104016 4865 struct ata_port *ap;
8a8bc223
TH
4866 unsigned int tag;
4867
efcb3cf7 4868 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
a1104016 4869 ap = qc->ap;
8a8bc223
TH
4870
4871 qc->flags = 0;
4872 tag = qc->tag;
4873 if (likely(ata_tag_valid(tag))) {
4874 qc->tag = ATA_TAG_POISON;
4875 clear_bit(tag, &ap->qc_allocated);
4876 }
4877}
4878
76014427 4879void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4880{
a1104016
JL
4881 struct ata_port *ap;
4882 struct ata_link *link;
dedaf2b0 4883
efcb3cf7
TH
4884 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4885 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
a1104016
JL
4886 ap = qc->ap;
4887 link = qc->dev->link;
1da177e4
LT
4888
4889 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4890 ata_sg_clean(qc);
4891
7401abf2 4892 /* command should be marked inactive atomically with qc completion */
da917d69 4893 if (qc->tf.protocol == ATA_PROT_NCQ) {
9af5c9c9 4894 link->sactive &= ~(1 << qc->tag);
da917d69
TH
4895 if (!link->sactive)
4896 ap->nr_active_links--;
4897 } else {
9af5c9c9 4898 link->active_tag = ATA_TAG_POISON;
da917d69
TH
4899 ap->nr_active_links--;
4900 }
4901
4902 /* clear exclusive status */
4903 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4904 ap->excl_link == link))
4905 ap->excl_link = NULL;
7401abf2 4906
3f3791d3
AL
4907 /* atapi: mark qc as inactive to prevent the interrupt handler
4908 * from completing the command twice later, before the error handler
4909 * is called. (when rc != 0 and atapi request sense is needed)
4910 */
4911 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4912 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4913
1da177e4 4914 /* call completion callback */
77853bf2 4915 qc->complete_fn(qc);
1da177e4
LT
4916}
4917
39599a53
TH
4918static void fill_result_tf(struct ata_queued_cmd *qc)
4919{
4920 struct ata_port *ap = qc->ap;
4921
39599a53 4922 qc->result_tf.flags = qc->tf.flags;
22183bf5 4923 ap->ops->qc_fill_rtf(qc);
39599a53
TH
4924}
4925
00115e0f
TH
4926static void ata_verify_xfer(struct ata_queued_cmd *qc)
4927{
4928 struct ata_device *dev = qc->dev;
4929
4930 if (ata_tag_internal(qc->tag))
4931 return;
4932
4933 if (ata_is_nodata(qc->tf.protocol))
4934 return;
4935
4936 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4937 return;
4938
4939 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4940}
4941
f686bcb8
TH
4942/**
4943 * ata_qc_complete - Complete an active ATA command
4944 * @qc: Command to complete
f686bcb8
TH
4945 *
4946 * Indicate to the mid and upper layers that an ATA
4947 * command has completed, with either an ok or not-ok status.
4948 *
4949 * LOCKING:
cca3974e 4950 * spin_lock_irqsave(host lock)
f686bcb8
TH
4951 */
4952void ata_qc_complete(struct ata_queued_cmd *qc)
4953{
4954 struct ata_port *ap = qc->ap;
4955
4956 /* XXX: New EH and old EH use different mechanisms to
4957 * synchronize EH with regular execution path.
4958 *
4959 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4960 * Normal execution path is responsible for not accessing a
4961 * failed qc. libata core enforces the rule by returning NULL
4962 * from ata_qc_from_tag() for failed qcs.
4963 *
4964 * Old EH depends on ata_qc_complete() nullifying completion
4965 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4966 * not synchronize with interrupt handler. Only PIO task is
4967 * taken care of.
4968 */
4969 if (ap->ops->error_handler) {
4dbfa39b
TH
4970 struct ata_device *dev = qc->dev;
4971 struct ata_eh_info *ehi = &dev->link->eh_info;
4972
f686bcb8
TH
4973 if (unlikely(qc->err_mask))
4974 qc->flags |= ATA_QCFLAG_FAILED;
4975
4976 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
f4b31db9
TH
4977 /* always fill result TF for failed qc */
4978 fill_result_tf(qc);
4979
4980 if (!ata_tag_internal(qc->tag))
f686bcb8 4981 ata_qc_schedule_eh(qc);
f4b31db9
TH
4982 else
4983 __ata_qc_complete(qc);
4984 return;
f686bcb8
TH
4985 }
4986
4dc738ed
TH
4987 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4988
f686bcb8
TH
4989 /* read result TF if requested */
4990 if (qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 4991 fill_result_tf(qc);
f686bcb8 4992
4dbfa39b
TH
4993 /* Some commands need post-processing after successful
4994 * completion.
4995 */
4996 switch (qc->tf.command) {
4997 case ATA_CMD_SET_FEATURES:
4998 if (qc->tf.feature != SETFEATURES_WC_ON &&
4999 qc->tf.feature != SETFEATURES_WC_OFF)
5000 break;
5001 /* fall through */
5002 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5003 case ATA_CMD_SET_MULTI: /* multi_count changed */
5004 /* revalidate device */
5005 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5006 ata_port_schedule_eh(ap);
5007 break;
054a5fba
TH
5008
5009 case ATA_CMD_SLEEP:
5010 dev->flags |= ATA_DFLAG_SLEEPING;
5011 break;
4dbfa39b
TH
5012 }
5013
00115e0f
TH
5014 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5015 ata_verify_xfer(qc);
5016
f686bcb8
TH
5017 __ata_qc_complete(qc);
5018 } else {
5019 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5020 return;
5021
5022 /* read result TF if failed or requested */
5023 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
39599a53 5024 fill_result_tf(qc);
f686bcb8
TH
5025
5026 __ata_qc_complete(qc);
5027 }
5028}
5029
dedaf2b0
TH
5030/**
5031 * ata_qc_complete_multiple - Complete multiple qcs successfully
5032 * @ap: port in question
5033 * @qc_active: new qc_active mask
dedaf2b0
TH
5034 *
5035 * Complete in-flight commands. This functions is meant to be
5036 * called from low-level driver's interrupt routine to complete
5037 * requests normally. ap->qc_active and @qc_active is compared
5038 * and commands are completed accordingly.
5039 *
5040 * LOCKING:
cca3974e 5041 * spin_lock_irqsave(host lock)
dedaf2b0
TH
5042 *
5043 * RETURNS:
5044 * Number of completed commands on success, -errno otherwise.
5045 */
79f97dad 5046int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
dedaf2b0
TH
5047{
5048 int nr_done = 0;
5049 u32 done_mask;
dedaf2b0
TH
5050
5051 done_mask = ap->qc_active ^ qc_active;
5052
5053 if (unlikely(done_mask & qc_active)) {
5054 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5055 "(%08x->%08x)\n", ap->qc_active, qc_active);
5056 return -EINVAL;
5057 }
5058
43768180 5059 while (done_mask) {
dedaf2b0 5060 struct ata_queued_cmd *qc;
43768180 5061 unsigned int tag = __ffs(done_mask);
dedaf2b0 5062
43768180
JA
5063 qc = ata_qc_from_tag(ap, tag);
5064 if (qc) {
dedaf2b0
TH
5065 ata_qc_complete(qc);
5066 nr_done++;
5067 }
43768180 5068 done_mask &= ~(1 << tag);
dedaf2b0
TH
5069 }
5070
5071 return nr_done;
5072}
5073
1da177e4
LT
5074/**
5075 * ata_qc_issue - issue taskfile to device
5076 * @qc: command to issue to device
5077 *
5078 * Prepare an ATA command to submission to device.
5079 * This includes mapping the data into a DMA-able
5080 * area, filling in the S/G table, and finally
5081 * writing the taskfile to hardware, starting the command.
5082 *
5083 * LOCKING:
cca3974e 5084 * spin_lock_irqsave(host lock)
1da177e4 5085 */
8e0e694a 5086void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
5087{
5088 struct ata_port *ap = qc->ap;
9af5c9c9 5089 struct ata_link *link = qc->dev->link;
405e66b3 5090 u8 prot = qc->tf.protocol;
1da177e4 5091
dedaf2b0
TH
5092 /* Make sure only one non-NCQ command is outstanding. The
5093 * check is skipped for old EH because it reuses active qc to
5094 * request ATAPI sense.
5095 */
efcb3cf7 5096 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
dedaf2b0 5097
1973a023 5098 if (ata_is_ncq(prot)) {
efcb3cf7 5099 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
da917d69
TH
5100
5101 if (!link->sactive)
5102 ap->nr_active_links++;
9af5c9c9 5103 link->sactive |= 1 << qc->tag;
dedaf2b0 5104 } else {
efcb3cf7 5105 WARN_ON_ONCE(link->sactive);
da917d69
TH
5106
5107 ap->nr_active_links++;
9af5c9c9 5108 link->active_tag = qc->tag;
dedaf2b0
TH
5109 }
5110
e4a70e76 5111 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 5112 ap->qc_active |= 1 << qc->tag;
e4a70e76 5113
60f5d6ef
TH
5114 /*
5115 * We guarantee to LLDs that they will have at least one
f92a2636
TH
5116 * non-zero sg if the command is a data command.
5117 */
60f5d6ef
TH
5118 if (WARN_ON_ONCE(ata_is_data(prot) &&
5119 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5120 goto sys_err;
f92a2636 5121
405e66b3 5122 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
f92a2636 5123 (ap->flags & ATA_FLAG_PIO_DMA)))
001102d7 5124 if (ata_sg_setup(qc))
60f5d6ef 5125 goto sys_err;
1da177e4 5126
cf480626 5127 /* if device is sleeping, schedule reset and abort the link */
054a5fba 5128 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
cf480626 5129 link->eh_info.action |= ATA_EH_RESET;
054a5fba
TH
5130 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5131 ata_link_abort(link);
5132 return;
5133 }
5134
1da177e4
LT
5135 ap->ops->qc_prep(qc);
5136
8e0e694a
TH
5137 qc->err_mask |= ap->ops->qc_issue(qc);
5138 if (unlikely(qc->err_mask))
5139 goto err;
5140 return;
1da177e4 5141
60f5d6ef 5142sys_err:
8e0e694a
TH
5143 qc->err_mask |= AC_ERR_SYSTEM;
5144err:
5145 ata_qc_complete(qc);
1da177e4
LT
5146}
5147
34bf2170
TH
5148/**
5149 * sata_scr_valid - test whether SCRs are accessible
936fd732 5150 * @link: ATA link to test SCR accessibility for
34bf2170 5151 *
936fd732 5152 * Test whether SCRs are accessible for @link.
34bf2170
TH
5153 *
5154 * LOCKING:
5155 * None.
5156 *
5157 * RETURNS:
5158 * 1 if SCRs are accessible, 0 otherwise.
5159 */
936fd732 5160int sata_scr_valid(struct ata_link *link)
34bf2170 5161{
936fd732
TH
5162 struct ata_port *ap = link->ap;
5163
a16abc0b 5164 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
34bf2170
TH
5165}
5166
5167/**
5168 * sata_scr_read - read SCR register of the specified port
936fd732 5169 * @link: ATA link to read SCR for
34bf2170
TH
5170 * @reg: SCR to read
5171 * @val: Place to store read value
5172 *
936fd732 5173 * Read SCR register @reg of @link into *@val. This function is
633273a3
TH
5174 * guaranteed to succeed if @link is ap->link, the cable type of
5175 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5176 *
5177 * LOCKING:
633273a3 5178 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5179 *
5180 * RETURNS:
5181 * 0 on success, negative errno on failure.
5182 */
936fd732 5183int sata_scr_read(struct ata_link *link, int reg, u32 *val)
34bf2170 5184{
633273a3 5185 if (ata_is_host_link(link)) {
633273a3 5186 if (sata_scr_valid(link))
82ef04fb 5187 return link->ap->ops->scr_read(link, reg, val);
633273a3
TH
5188 return -EOPNOTSUPP;
5189 }
5190
5191 return sata_pmp_scr_read(link, reg, val);
34bf2170
TH
5192}
5193
5194/**
5195 * sata_scr_write - write SCR register of the specified port
936fd732 5196 * @link: ATA link to write SCR for
34bf2170
TH
5197 * @reg: SCR to write
5198 * @val: value to write
5199 *
936fd732 5200 * Write @val to SCR register @reg of @link. This function is
633273a3
TH
5201 * guaranteed to succeed if @link is ap->link, the cable type of
5202 * the port is SATA and the port implements ->scr_read.
34bf2170
TH
5203 *
5204 * LOCKING:
633273a3 5205 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5206 *
5207 * RETURNS:
5208 * 0 on success, negative errno on failure.
5209 */
936fd732 5210int sata_scr_write(struct ata_link *link, int reg, u32 val)
34bf2170 5211{
633273a3 5212 if (ata_is_host_link(link)) {
633273a3 5213 if (sata_scr_valid(link))
82ef04fb 5214 return link->ap->ops->scr_write(link, reg, val);
633273a3
TH
5215 return -EOPNOTSUPP;
5216 }
936fd732 5217
633273a3 5218 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5219}
5220
5221/**
5222 * sata_scr_write_flush - write SCR register of the specified port and flush
936fd732 5223 * @link: ATA link to write SCR for
34bf2170
TH
5224 * @reg: SCR to write
5225 * @val: value to write
5226 *
5227 * This function is identical to sata_scr_write() except that this
5228 * function performs flush after writing to the register.
5229 *
5230 * LOCKING:
633273a3 5231 * None if @link is ap->link. Kernel thread context otherwise.
34bf2170
TH
5232 *
5233 * RETURNS:
5234 * 0 on success, negative errno on failure.
5235 */
936fd732 5236int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
34bf2170 5237{
633273a3 5238 if (ata_is_host_link(link)) {
633273a3 5239 int rc;
da3dbb17 5240
633273a3 5241 if (sata_scr_valid(link)) {
82ef04fb 5242 rc = link->ap->ops->scr_write(link, reg, val);
633273a3 5243 if (rc == 0)
82ef04fb 5244 rc = link->ap->ops->scr_read(link, reg, &val);
633273a3
TH
5245 return rc;
5246 }
5247 return -EOPNOTSUPP;
34bf2170 5248 }
633273a3
TH
5249
5250 return sata_pmp_scr_write(link, reg, val);
34bf2170
TH
5251}
5252
5253/**
b1c72916 5254 * ata_phys_link_online - test whether the given link is online
936fd732 5255 * @link: ATA link to test
34bf2170 5256 *
936fd732
TH
5257 * Test whether @link is online. Note that this function returns
5258 * 0 if online status of @link cannot be obtained, so
5259 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5260 *
5261 * LOCKING:
5262 * None.
5263 *
5264 * RETURNS:
b5b3fa38 5265 * True if the port online status is available and online.
34bf2170 5266 */
b1c72916 5267bool ata_phys_link_online(struct ata_link *link)
34bf2170
TH
5268{
5269 u32 sstatus;
5270
936fd732 5271 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5272 ata_sstatus_online(sstatus))
b5b3fa38
TH
5273 return true;
5274 return false;
34bf2170
TH
5275}
5276
5277/**
b1c72916 5278 * ata_phys_link_offline - test whether the given link is offline
936fd732 5279 * @link: ATA link to test
34bf2170 5280 *
936fd732
TH
5281 * Test whether @link is offline. Note that this function
5282 * returns 0 if offline status of @link cannot be obtained, so
5283 * ata_link_online(link) != !ata_link_offline(link).
34bf2170
TH
5284 *
5285 * LOCKING:
5286 * None.
5287 *
5288 * RETURNS:
b5b3fa38 5289 * True if the port offline status is available and offline.
34bf2170 5290 */
b1c72916 5291bool ata_phys_link_offline(struct ata_link *link)
34bf2170
TH
5292{
5293 u32 sstatus;
5294
936fd732 5295 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
9913ff8a 5296 !ata_sstatus_online(sstatus))
b5b3fa38
TH
5297 return true;
5298 return false;
34bf2170 5299}
0baab86b 5300
b1c72916
TH
5301/**
5302 * ata_link_online - test whether the given link is online
5303 * @link: ATA link to test
5304 *
5305 * Test whether @link is online. This is identical to
5306 * ata_phys_link_online() when there's no slave link. When
5307 * there's a slave link, this function should only be called on
5308 * the master link and will return true if any of M/S links is
5309 * online.
5310 *
5311 * LOCKING:
5312 * None.
5313 *
5314 * RETURNS:
5315 * True if the port online status is available and online.
5316 */
5317bool ata_link_online(struct ata_link *link)
5318{
5319 struct ata_link *slave = link->ap->slave_link;
5320
5321 WARN_ON(link == slave); /* shouldn't be called on slave link */
5322
5323 return ata_phys_link_online(link) ||
5324 (slave && ata_phys_link_online(slave));
5325}
5326
5327/**
5328 * ata_link_offline - test whether the given link is offline
5329 * @link: ATA link to test
5330 *
5331 * Test whether @link is offline. This is identical to
5332 * ata_phys_link_offline() when there's no slave link. When
5333 * there's a slave link, this function should only be called on
5334 * the master link and will return true if both M/S links are
5335 * offline.
5336 *
5337 * LOCKING:
5338 * None.
5339 *
5340 * RETURNS:
5341 * True if the port offline status is available and offline.
5342 */
5343bool ata_link_offline(struct ata_link *link)
5344{
5345 struct ata_link *slave = link->ap->slave_link;
5346
5347 WARN_ON(link == slave); /* shouldn't be called on slave link */
5348
5349 return ata_phys_link_offline(link) &&
5350 (!slave || ata_phys_link_offline(slave));
5351}
5352
6ffa01d8 5353#ifdef CONFIG_PM
cca3974e
JG
5354static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5355 unsigned int action, unsigned int ehi_flags,
5356 int wait)
500530f6
TH
5357{
5358 unsigned long flags;
5359 int i, rc;
5360
cca3974e
JG
5361 for (i = 0; i < host->n_ports; i++) {
5362 struct ata_port *ap = host->ports[i];
e3667ebf 5363 struct ata_link *link;
500530f6
TH
5364
5365 /* Previous resume operation might still be in
5366 * progress. Wait for PM_PENDING to clear.
5367 */
5368 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5369 ata_port_wait_eh(ap);
5370 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5371 }
5372
5373 /* request PM ops to EH */
5374 spin_lock_irqsave(ap->lock, flags);
5375
5376 ap->pm_mesg = mesg;
5377 if (wait) {
5378 rc = 0;
5379 ap->pm_result = &rc;
5380 }
5381
5382 ap->pflags |= ATA_PFLAG_PM_PENDING;
1eca4365 5383 ata_for_each_link(link, ap, HOST_FIRST) {
e3667ebf
TH
5384 link->eh_info.action |= action;
5385 link->eh_info.flags |= ehi_flags;
5386 }
500530f6
TH
5387
5388 ata_port_schedule_eh(ap);
5389
5390 spin_unlock_irqrestore(ap->lock, flags);
5391
5392 /* wait and check result */
5393 if (wait) {
5394 ata_port_wait_eh(ap);
5395 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5396 if (rc)
5397 return rc;
5398 }
5399 }
5400
5401 return 0;
5402}
5403
5404/**
cca3974e
JG
5405 * ata_host_suspend - suspend host
5406 * @host: host to suspend
500530f6
TH
5407 * @mesg: PM message
5408 *
cca3974e 5409 * Suspend @host. Actual operation is performed by EH. This
500530f6
TH
5410 * function requests EH to perform PM operations and waits for EH
5411 * to finish.
5412 *
5413 * LOCKING:
5414 * Kernel thread context (may sleep).
5415 *
5416 * RETURNS:
5417 * 0 on success, -errno on failure.
5418 */
cca3974e 5419int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
500530f6 5420{
9666f400 5421 int rc;
500530f6 5422
ca77329f
KCA
5423 /*
5424 * disable link pm on all ports before requesting
5425 * any pm activity
5426 */
5427 ata_lpm_enable(host);
5428
cca3974e 5429 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
72ad6ec4
JG
5430 if (rc == 0)
5431 host->dev->power.power_state = mesg;
500530f6
TH
5432 return rc;
5433}
5434
5435/**
cca3974e
JG
5436 * ata_host_resume - resume host
5437 * @host: host to resume
500530f6 5438 *
cca3974e 5439 * Resume @host. Actual operation is performed by EH. This
500530f6
TH
5440 * function requests EH to perform PM operations and returns.
5441 * Note that all resume operations are performed parallely.
5442 *
5443 * LOCKING:
5444 * Kernel thread context (may sleep).
5445 */
cca3974e 5446void ata_host_resume(struct ata_host *host)
500530f6 5447{
cf480626 5448 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
cca3974e 5449 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
72ad6ec4 5450 host->dev->power.power_state = PMSG_ON;
ca77329f
KCA
5451
5452 /* reenable link pm */
5453 ata_lpm_disable(host);
500530f6 5454}
6ffa01d8 5455#endif
500530f6 5456
3ef3b43d
TH
5457/**
5458 * ata_dev_init - Initialize an ata_device structure
5459 * @dev: Device structure to initialize
5460 *
5461 * Initialize @dev in preparation for probing.
5462 *
5463 * LOCKING:
5464 * Inherited from caller.
5465 */
5466void ata_dev_init(struct ata_device *dev)
5467{
b1c72916 5468 struct ata_link *link = ata_dev_phys_link(dev);
9af5c9c9 5469 struct ata_port *ap = link->ap;
72fa4b74
TH
5470 unsigned long flags;
5471
b1c72916 5472 /* SATA spd limit is bound to the attached device, reset together */
9af5c9c9
TH
5473 link->sata_spd_limit = link->hw_sata_spd_limit;
5474 link->sata_spd = 0;
5a04bf4b 5475
72fa4b74
TH
5476 /* High bits of dev->flags are used to record warm plug
5477 * requests which occur asynchronously. Synchronize using
cca3974e 5478 * host lock.
72fa4b74 5479 */
ba6a1308 5480 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5481 dev->flags &= ~ATA_DFLAG_INIT_MASK;
3dcc323f 5482 dev->horkage = 0;
ba6a1308 5483 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5484
99cf610a
TH
5485 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5486 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
3ef3b43d
TH
5487 dev->pio_mask = UINT_MAX;
5488 dev->mwdma_mask = UINT_MAX;
5489 dev->udma_mask = UINT_MAX;
5490}
5491
4fb37a25
TH
5492/**
5493 * ata_link_init - Initialize an ata_link structure
5494 * @ap: ATA port link is attached to
5495 * @link: Link structure to initialize
8989805d 5496 * @pmp: Port multiplier port number
4fb37a25
TH
5497 *
5498 * Initialize @link.
5499 *
5500 * LOCKING:
5501 * Kernel thread context (may sleep)
5502 */
fb7fd614 5503void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
4fb37a25
TH
5504{
5505 int i;
5506
5507 /* clear everything except for devices */
5508 memset(link, 0, offsetof(struct ata_link, device[0]));
5509
5510 link->ap = ap;
8989805d 5511 link->pmp = pmp;
4fb37a25
TH
5512 link->active_tag = ATA_TAG_POISON;
5513 link->hw_sata_spd_limit = UINT_MAX;
5514
5515 /* can't use iterator, ap isn't initialized yet */
5516 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5517 struct ata_device *dev = &link->device[i];
5518
5519 dev->link = link;
5520 dev->devno = dev - link->device;
110f66d2
TH
5521#ifdef CONFIG_ATA_ACPI
5522 dev->gtf_filter = ata_acpi_gtf_filter;
5523#endif
4fb37a25
TH
5524 ata_dev_init(dev);
5525 }
5526}
5527
5528/**
5529 * sata_link_init_spd - Initialize link->sata_spd_limit
5530 * @link: Link to configure sata_spd_limit for
5531 *
5532 * Initialize @link->[hw_]sata_spd_limit to the currently
5533 * configured value.
5534 *
5535 * LOCKING:
5536 * Kernel thread context (may sleep).
5537 *
5538 * RETURNS:
5539 * 0 on success, -errno on failure.
5540 */
fb7fd614 5541int sata_link_init_spd(struct ata_link *link)
4fb37a25 5542{
33267325 5543 u8 spd;
4fb37a25
TH
5544 int rc;
5545
d127ea7b 5546 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
4fb37a25
TH
5547 if (rc)
5548 return rc;
5549
d127ea7b 5550 spd = (link->saved_scontrol >> 4) & 0xf;
4fb37a25
TH
5551 if (spd)
5552 link->hw_sata_spd_limit &= (1 << spd) - 1;
5553
05944bdf 5554 ata_force_link_limits(link);
33267325 5555
4fb37a25
TH
5556 link->sata_spd_limit = link->hw_sata_spd_limit;
5557
5558 return 0;
5559}
5560
1da177e4 5561/**
f3187195
TH
5562 * ata_port_alloc - allocate and initialize basic ATA port resources
5563 * @host: ATA host this allocated port belongs to
1da177e4 5564 *
f3187195
TH
5565 * Allocate and initialize basic ATA port resources.
5566 *
5567 * RETURNS:
5568 * Allocate ATA port on success, NULL on failure.
0cba632b 5569 *
1da177e4 5570 * LOCKING:
f3187195 5571 * Inherited from calling layer (may sleep).
1da177e4 5572 */
f3187195 5573struct ata_port *ata_port_alloc(struct ata_host *host)
1da177e4 5574{
f3187195 5575 struct ata_port *ap;
1da177e4 5576
f3187195
TH
5577 DPRINTK("ENTER\n");
5578
5579 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5580 if (!ap)
5581 return NULL;
5582
f4d6d004 5583 ap->pflags |= ATA_PFLAG_INITIALIZING;
cca3974e 5584 ap->lock = &host->lock;
f3187195 5585 ap->print_id = -1;
cca3974e 5586 ap->host = host;
f3187195 5587 ap->dev = host->dev;
bd5d825c
BP
5588
5589#if defined(ATA_VERBOSE_DEBUG)
5590 /* turn on all debugging levels */
5591 ap->msg_enable = 0x00FF;
5592#elif defined(ATA_DEBUG)
5593 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5594#else
0dd4b21f 5595 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5596#endif
1da177e4 5597
ad72cf98 5598 mutex_init(&ap->scsi_scan_mutex);
65f27f38
DH
5599 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5600 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
a72ec4ce 5601 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5602 init_waitqueue_head(&ap->eh_wait_q);
45fabbb7 5603 init_completion(&ap->park_req_pending);
5ddf24c5
TH
5604 init_timer_deferrable(&ap->fastdrain_timer);
5605 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5606 ap->fastdrain_timer.data = (unsigned long)ap;
1da177e4 5607
838df628 5608 ap->cbl = ATA_CBL_NONE;
838df628 5609
8989805d 5610 ata_link_init(ap, &ap->link, 0);
1da177e4
LT
5611
5612#ifdef ATA_IRQ_TRAP
5613 ap->stats.unhandled_irq = 1;
5614 ap->stats.idle_irq = 1;
5615#endif
270390e1
TH
5616 ata_sff_port_init(ap);
5617
1da177e4 5618 return ap;
1da177e4
LT
5619}
5620
f0d36efd
TH
5621static void ata_host_release(struct device *gendev, void *res)
5622{
5623 struct ata_host *host = dev_get_drvdata(gendev);
5624 int i;
5625
1aa506e4
TH
5626 for (i = 0; i < host->n_ports; i++) {
5627 struct ata_port *ap = host->ports[i];
5628
4911487a
TH
5629 if (!ap)
5630 continue;
5631
5632 if (ap->scsi_host)
1aa506e4
TH
5633 scsi_host_put(ap->scsi_host);
5634
633273a3 5635 kfree(ap->pmp_link);
b1c72916 5636 kfree(ap->slave_link);
4911487a 5637 kfree(ap);
1aa506e4
TH
5638 host->ports[i] = NULL;
5639 }
5640
1aa56cca 5641 dev_set_drvdata(gendev, NULL);
f0d36efd
TH
5642}
5643
f3187195
TH
5644/**
5645 * ata_host_alloc - allocate and init basic ATA host resources
5646 * @dev: generic device this host is associated with
5647 * @max_ports: maximum number of ATA ports associated with this host
5648 *
5649 * Allocate and initialize basic ATA host resources. LLD calls
5650 * this function to allocate a host, initializes it fully and
5651 * attaches it using ata_host_register().
5652 *
5653 * @max_ports ports are allocated and host->n_ports is
5654 * initialized to @max_ports. The caller is allowed to decrease
5655 * host->n_ports before calling ata_host_register(). The unused
5656 * ports will be automatically freed on registration.
5657 *
5658 * RETURNS:
5659 * Allocate ATA host on success, NULL on failure.
5660 *
5661 * LOCKING:
5662 * Inherited from calling layer (may sleep).
5663 */
5664struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5665{
5666 struct ata_host *host;
5667 size_t sz;
5668 int i;
5669
5670 DPRINTK("ENTER\n");
5671
5672 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5673 return NULL;
5674
5675 /* alloc a container for our list of ATA ports (buses) */
5676 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5677 /* alloc a container for our list of ATA ports (buses) */
5678 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5679 if (!host)
5680 goto err_out;
5681
5682 devres_add(dev, host);
5683 dev_set_drvdata(dev, host);
5684
5685 spin_lock_init(&host->lock);
5686 host->dev = dev;
5687 host->n_ports = max_ports;
5688
5689 /* allocate ports bound to this host */
5690 for (i = 0; i < max_ports; i++) {
5691 struct ata_port *ap;
5692
5693 ap = ata_port_alloc(host);
5694 if (!ap)
5695 goto err_out;
5696
5697 ap->port_no = i;
5698 host->ports[i] = ap;
5699 }
5700
5701 devres_remove_group(dev, NULL);
5702 return host;
5703
5704 err_out:
5705 devres_release_group(dev, NULL);
5706 return NULL;
5707}
5708
f5cda257
TH
5709/**
5710 * ata_host_alloc_pinfo - alloc host and init with port_info array
5711 * @dev: generic device this host is associated with
5712 * @ppi: array of ATA port_info to initialize host with
5713 * @n_ports: number of ATA ports attached to this host
5714 *
5715 * Allocate ATA host and initialize with info from @ppi. If NULL
5716 * terminated, @ppi may contain fewer entries than @n_ports. The
5717 * last entry will be used for the remaining ports.
5718 *
5719 * RETURNS:
5720 * Allocate ATA host on success, NULL on failure.
5721 *
5722 * LOCKING:
5723 * Inherited from calling layer (may sleep).
5724 */
5725struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5726 const struct ata_port_info * const * ppi,
5727 int n_ports)
5728{
5729 const struct ata_port_info *pi;
5730 struct ata_host *host;
5731 int i, j;
5732
5733 host = ata_host_alloc(dev, n_ports);
5734 if (!host)
5735 return NULL;
5736
5737 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5738 struct ata_port *ap = host->ports[i];
5739
5740 if (ppi[j])
5741 pi = ppi[j++];
5742
5743 ap->pio_mask = pi->pio_mask;
5744 ap->mwdma_mask = pi->mwdma_mask;
5745 ap->udma_mask = pi->udma_mask;
5746 ap->flags |= pi->flags;
0c88758b 5747 ap->link.flags |= pi->link_flags;
f5cda257
TH
5748 ap->ops = pi->port_ops;
5749
5750 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5751 host->ops = pi->port_ops;
f5cda257
TH
5752 }
5753
5754 return host;
5755}
5756
b1c72916
TH
5757/**
5758 * ata_slave_link_init - initialize slave link
5759 * @ap: port to initialize slave link for
5760 *
5761 * Create and initialize slave link for @ap. This enables slave
5762 * link handling on the port.
5763 *
5764 * In libata, a port contains links and a link contains devices.
5765 * There is single host link but if a PMP is attached to it,
5766 * there can be multiple fan-out links. On SATA, there's usually
5767 * a single device connected to a link but PATA and SATA
5768 * controllers emulating TF based interface can have two - master
5769 * and slave.
5770 *
5771 * However, there are a few controllers which don't fit into this
5772 * abstraction too well - SATA controllers which emulate TF
5773 * interface with both master and slave devices but also have
5774 * separate SCR register sets for each device. These controllers
5775 * need separate links for physical link handling
5776 * (e.g. onlineness, link speed) but should be treated like a
5777 * traditional M/S controller for everything else (e.g. command
5778 * issue, softreset).
5779 *
5780 * slave_link is libata's way of handling this class of
5781 * controllers without impacting core layer too much. For
5782 * anything other than physical link handling, the default host
5783 * link is used for both master and slave. For physical link
5784 * handling, separate @ap->slave_link is used. All dirty details
5785 * are implemented inside libata core layer. From LLD's POV, the
5786 * only difference is that prereset, hardreset and postreset are
5787 * called once more for the slave link, so the reset sequence
5788 * looks like the following.
5789 *
5790 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5791 * softreset(M) -> postreset(M) -> postreset(S)
5792 *
5793 * Note that softreset is called only for the master. Softreset
5794 * resets both M/S by definition, so SRST on master should handle
5795 * both (the standard method will work just fine).
5796 *
5797 * LOCKING:
5798 * Should be called before host is registered.
5799 *
5800 * RETURNS:
5801 * 0 on success, -errno on failure.
5802 */
5803int ata_slave_link_init(struct ata_port *ap)
5804{
5805 struct ata_link *link;
5806
5807 WARN_ON(ap->slave_link);
5808 WARN_ON(ap->flags & ATA_FLAG_PMP);
5809
5810 link = kzalloc(sizeof(*link), GFP_KERNEL);
5811 if (!link)
5812 return -ENOMEM;
5813
5814 ata_link_init(ap, link, 1);
5815 ap->slave_link = link;
5816 return 0;
5817}
5818
32ebbc0c
TH
5819static void ata_host_stop(struct device *gendev, void *res)
5820{
5821 struct ata_host *host = dev_get_drvdata(gendev);
5822 int i;
5823
5824 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5825
5826 for (i = 0; i < host->n_ports; i++) {
5827 struct ata_port *ap = host->ports[i];
5828
5829 if (ap->ops->port_stop)
5830 ap->ops->port_stop(ap);
5831 }
5832
5833 if (host->ops->host_stop)
5834 host->ops->host_stop(host);
5835}
5836
029cfd6b
TH
5837/**
5838 * ata_finalize_port_ops - finalize ata_port_operations
5839 * @ops: ata_port_operations to finalize
5840 *
5841 * An ata_port_operations can inherit from another ops and that
5842 * ops can again inherit from another. This can go on as many
5843 * times as necessary as long as there is no loop in the
5844 * inheritance chain.
5845 *
5846 * Ops tables are finalized when the host is started. NULL or
5847 * unspecified entries are inherited from the closet ancestor
5848 * which has the method and the entry is populated with it.
5849 * After finalization, the ops table directly points to all the
5850 * methods and ->inherits is no longer necessary and cleared.
5851 *
5852 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5853 *
5854 * LOCKING:
5855 * None.
5856 */
5857static void ata_finalize_port_ops(struct ata_port_operations *ops)
5858{
2da67659 5859 static DEFINE_SPINLOCK(lock);
029cfd6b
TH
5860 const struct ata_port_operations *cur;
5861 void **begin = (void **)ops;
5862 void **end = (void **)&ops->inherits;
5863 void **pp;
5864
5865 if (!ops || !ops->inherits)
5866 return;
5867
5868 spin_lock(&lock);
5869
5870 for (cur = ops->inherits; cur; cur = cur->inherits) {
5871 void **inherit = (void **)cur;
5872
5873 for (pp = begin; pp < end; pp++, inherit++)
5874 if (!*pp)
5875 *pp = *inherit;
5876 }
5877
5878 for (pp = begin; pp < end; pp++)
5879 if (IS_ERR(*pp))
5880 *pp = NULL;
5881
5882 ops->inherits = NULL;
5883
5884 spin_unlock(&lock);
5885}
5886
ecef7253
TH
5887/**
5888 * ata_host_start - start and freeze ports of an ATA host
5889 * @host: ATA host to start ports for
5890 *
5891 * Start and then freeze ports of @host. Started status is
5892 * recorded in host->flags, so this function can be called
5893 * multiple times. Ports are guaranteed to get started only
f3187195
TH
5894 * once. If host->ops isn't initialized yet, its set to the
5895 * first non-dummy port ops.
ecef7253
TH
5896 *
5897 * LOCKING:
5898 * Inherited from calling layer (may sleep).
5899 *
5900 * RETURNS:
5901 * 0 if all ports are started successfully, -errno otherwise.
5902 */
5903int ata_host_start(struct ata_host *host)
5904{
32ebbc0c
TH
5905 int have_stop = 0;
5906 void *start_dr = NULL;
ecef7253
TH
5907 int i, rc;
5908
5909 if (host->flags & ATA_HOST_STARTED)
5910 return 0;
5911
029cfd6b
TH
5912 ata_finalize_port_ops(host->ops);
5913
ecef7253
TH
5914 for (i = 0; i < host->n_ports; i++) {
5915 struct ata_port *ap = host->ports[i];
5916
029cfd6b
TH
5917 ata_finalize_port_ops(ap->ops);
5918
f3187195
TH
5919 if (!host->ops && !ata_port_is_dummy(ap))
5920 host->ops = ap->ops;
5921
32ebbc0c
TH
5922 if (ap->ops->port_stop)
5923 have_stop = 1;
5924 }
5925
5926 if (host->ops->host_stop)
5927 have_stop = 1;
5928
5929 if (have_stop) {
5930 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5931 if (!start_dr)
5932 return -ENOMEM;
5933 }
5934
5935 for (i = 0; i < host->n_ports; i++) {
5936 struct ata_port *ap = host->ports[i];
5937
ecef7253
TH
5938 if (ap->ops->port_start) {
5939 rc = ap->ops->port_start(ap);
5940 if (rc) {
0f9fe9b7 5941 if (rc != -ENODEV)
0f757743
AM
5942 dev_printk(KERN_ERR, host->dev,
5943 "failed to start port %d "
5944 "(errno=%d)\n", i, rc);
ecef7253
TH
5945 goto err_out;
5946 }
5947 }
ecef7253
TH
5948 ata_eh_freeze_port(ap);
5949 }
5950
32ebbc0c
TH
5951 if (start_dr)
5952 devres_add(host->dev, start_dr);
ecef7253
TH
5953 host->flags |= ATA_HOST_STARTED;
5954 return 0;
5955
5956 err_out:
5957 while (--i >= 0) {
5958 struct ata_port *ap = host->ports[i];
5959
5960 if (ap->ops->port_stop)
5961 ap->ops->port_stop(ap);
5962 }
32ebbc0c 5963 devres_free(start_dr);
ecef7253
TH
5964 return rc;
5965}
5966
b03732f0 5967/**
cca3974e
JG
5968 * ata_sas_host_init - Initialize a host struct
5969 * @host: host to initialize
5970 * @dev: device host is attached to
5971 * @flags: host flags
5972 * @ops: port_ops
b03732f0
BK
5973 *
5974 * LOCKING:
5975 * PCI/etc. bus probe sem.
5976 *
5977 */
f3187195 5978/* KILLME - the only user left is ipr */
cca3974e 5979void ata_host_init(struct ata_host *host, struct device *dev,
029cfd6b 5980 unsigned long flags, struct ata_port_operations *ops)
b03732f0 5981{
cca3974e
JG
5982 spin_lock_init(&host->lock);
5983 host->dev = dev;
5984 host->flags = flags;
5985 host->ops = ops;
b03732f0
BK
5986}
5987
79318057
AV
5988
5989static void async_port_probe(void *data, async_cookie_t cookie)
5990{
5991 int rc;
5992 struct ata_port *ap = data;
886ad09f
AV
5993
5994 /*
5995 * If we're not allowed to scan this host in parallel,
5996 * we need to wait until all previous scans have completed
5997 * before going further.
fa853a48
AV
5998 * Jeff Garzik says this is only within a controller, so we
5999 * don't need to wait for port 0, only for later ports.
886ad09f 6000 */
fa853a48 6001 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
886ad09f
AV
6002 async_synchronize_cookie(cookie);
6003
79318057
AV
6004 /* probe */
6005 if (ap->ops->error_handler) {
6006 struct ata_eh_info *ehi = &ap->link.eh_info;
6007 unsigned long flags;
6008
79318057
AV
6009 /* kick EH for boot probing */
6010 spin_lock_irqsave(ap->lock, flags);
6011
6012 ehi->probe_mask |= ATA_ALL_DEVICES;
6013 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6014 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6015
6016 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6017 ap->pflags |= ATA_PFLAG_LOADING;
6018 ata_port_schedule_eh(ap);
6019
6020 spin_unlock_irqrestore(ap->lock, flags);
6021
6022 /* wait for EH to finish */
6023 ata_port_wait_eh(ap);
6024 } else {
6025 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6026 rc = ata_bus_probe(ap);
6027 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6028
6029 if (rc) {
6030 /* FIXME: do something useful here?
6031 * Current libata behavior will
6032 * tear down everything when
6033 * the module is removed
6034 * or the h/w is unplugged.
6035 */
6036 }
6037 }
f29d3b23
AV
6038
6039 /* in order to keep device order, we need to synchronize at this point */
6040 async_synchronize_cookie(cookie);
6041
6042 ata_scsi_scan_host(ap, 1);
6043
79318057 6044}
f3187195
TH
6045/**
6046 * ata_host_register - register initialized ATA host
6047 * @host: ATA host to register
6048 * @sht: template for SCSI host
6049 *
6050 * Register initialized ATA host. @host is allocated using
6051 * ata_host_alloc() and fully initialized by LLD. This function
6052 * starts ports, registers @host with ATA and SCSI layers and
6053 * probe registered devices.
6054 *
6055 * LOCKING:
6056 * Inherited from calling layer (may sleep).
6057 *
6058 * RETURNS:
6059 * 0 on success, -errno otherwise.
6060 */
6061int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6062{
6063 int i, rc;
6064
6065 /* host must have been started */
6066 if (!(host->flags & ATA_HOST_STARTED)) {
6067 dev_printk(KERN_ERR, host->dev,
6068 "BUG: trying to register unstarted host\n");
6069 WARN_ON(1);
6070 return -EINVAL;
6071 }
6072
6073 /* Blow away unused ports. This happens when LLD can't
6074 * determine the exact number of ports to allocate at
6075 * allocation time.
6076 */
6077 for (i = host->n_ports; host->ports[i]; i++)
6078 kfree(host->ports[i]);
6079
6080 /* give ports names and add SCSI hosts */
6081 for (i = 0; i < host->n_ports; i++)
6082 host->ports[i]->print_id = ata_print_id++;
6083
6084 rc = ata_scsi_add_hosts(host, sht);
6085 if (rc)
6086 return rc;
6087
fafbae87
TH
6088 /* associate with ACPI nodes */
6089 ata_acpi_associate(host);
6090
f3187195
TH
6091 /* set cable, sata_spd_limit and report */
6092 for (i = 0; i < host->n_ports; i++) {
6093 struct ata_port *ap = host->ports[i];
f3187195
TH
6094 unsigned long xfer_mask;
6095
6096 /* set SATA cable type if still unset */
6097 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6098 ap->cbl = ATA_CBL_SATA;
6099
6100 /* init sata_spd_limit to the current value */
4fb37a25 6101 sata_link_init_spd(&ap->link);
b1c72916
TH
6102 if (ap->slave_link)
6103 sata_link_init_spd(ap->slave_link);
f3187195 6104
cbcdd875 6105 /* print per-port info to dmesg */
f3187195
TH
6106 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6107 ap->udma_mask);
6108
abf6e8ed 6109 if (!ata_port_is_dummy(ap)) {
cbcdd875
TH
6110 ata_port_printk(ap, KERN_INFO,
6111 "%cATA max %s %s\n",
a16abc0b 6112 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
f3187195 6113 ata_mode_string(xfer_mask),
cbcdd875 6114 ap->link.eh_info.desc);
abf6e8ed
TH
6115 ata_ehi_clear_desc(&ap->link.eh_info);
6116 } else
f3187195
TH
6117 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6118 }
6119
f6005354 6120 /* perform each probe asynchronously */
f3187195
TH
6121 for (i = 0; i < host->n_ports; i++) {
6122 struct ata_port *ap = host->ports[i];
79318057 6123 async_schedule(async_port_probe, ap);
f3187195 6124 }
f3187195
TH
6125
6126 return 0;
6127}
6128
f5cda257
TH
6129/**
6130 * ata_host_activate - start host, request IRQ and register it
6131 * @host: target ATA host
6132 * @irq: IRQ to request
6133 * @irq_handler: irq_handler used when requesting IRQ
6134 * @irq_flags: irq_flags used when requesting IRQ
6135 * @sht: scsi_host_template to use when registering the host
6136 *
6137 * After allocating an ATA host and initializing it, most libata
6138 * LLDs perform three steps to activate the host - start host,
6139 * request IRQ and register it. This helper takes necessasry
6140 * arguments and performs the three steps in one go.
6141 *
3d46b2e2
PM
6142 * An invalid IRQ skips the IRQ registration and expects the host to
6143 * have set polling mode on the port. In this case, @irq_handler
6144 * should be NULL.
6145 *
f5cda257
TH
6146 * LOCKING:
6147 * Inherited from calling layer (may sleep).
6148 *
6149 * RETURNS:
6150 * 0 on success, -errno otherwise.
6151 */
6152int ata_host_activate(struct ata_host *host, int irq,
6153 irq_handler_t irq_handler, unsigned long irq_flags,
6154 struct scsi_host_template *sht)
6155{
cbcdd875 6156 int i, rc;
f5cda257
TH
6157
6158 rc = ata_host_start(host);
6159 if (rc)
6160 return rc;
6161
3d46b2e2
PM
6162 /* Special case for polling mode */
6163 if (!irq) {
6164 WARN_ON(irq_handler);
6165 return ata_host_register(host, sht);
6166 }
6167
f5cda257
TH
6168 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6169 dev_driver_string(host->dev), host);
6170 if (rc)
6171 return rc;
6172
cbcdd875
TH
6173 for (i = 0; i < host->n_ports; i++)
6174 ata_port_desc(host->ports[i], "irq %d", irq);
4031826b 6175
f5cda257
TH
6176 rc = ata_host_register(host, sht);
6177 /* if failed, just free the IRQ and leave ports alone */
6178 if (rc)
6179 devm_free_irq(host->dev, irq, host);
6180
6181 return rc;
6182}
6183
720ba126
TH
6184/**
6185 * ata_port_detach - Detach ATA port in prepration of device removal
6186 * @ap: ATA port to be detached
6187 *
6188 * Detach all ATA devices and the associated SCSI devices of @ap;
6189 * then, remove the associated SCSI host. @ap is guaranteed to
6190 * be quiescent on return from this function.
6191 *
6192 * LOCKING:
6193 * Kernel thread context (may sleep).
6194 */
741b7763 6195static void ata_port_detach(struct ata_port *ap)
720ba126
TH
6196{
6197 unsigned long flags;
720ba126
TH
6198
6199 if (!ap->ops->error_handler)
c3cf30a9 6200 goto skip_eh;
720ba126
TH
6201
6202 /* tell EH we're leaving & flush EH */
ba6a1308 6203 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 6204 ap->pflags |= ATA_PFLAG_UNLOADING;
ece180d1 6205 ata_port_schedule_eh(ap);
ba6a1308 6206 spin_unlock_irqrestore(ap->lock, flags);
720ba126 6207
ece180d1 6208 /* wait till EH commits suicide */
720ba126
TH
6209 ata_port_wait_eh(ap);
6210
ece180d1
TH
6211 /* it better be dead now */
6212 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
720ba126 6213
45a66c1c 6214 cancel_rearming_delayed_work(&ap->hotplug_task);
720ba126 6215
c3cf30a9 6216 skip_eh:
720ba126 6217 /* remove the associated SCSI host */
cca3974e 6218 scsi_remove_host(ap->scsi_host);
720ba126
TH
6219}
6220
0529c159
TH
6221/**
6222 * ata_host_detach - Detach all ports of an ATA host
6223 * @host: Host to detach
6224 *
6225 * Detach all ports of @host.
6226 *
6227 * LOCKING:
6228 * Kernel thread context (may sleep).
6229 */
6230void ata_host_detach(struct ata_host *host)
6231{
6232 int i;
6233
6234 for (i = 0; i < host->n_ports; i++)
6235 ata_port_detach(host->ports[i]);
562f0c2d
TH
6236
6237 /* the host is dead now, dissociate ACPI */
6238 ata_acpi_dissociate(host);
0529c159
TH
6239}
6240
374b1873
JG
6241#ifdef CONFIG_PCI
6242
1da177e4
LT
6243/**
6244 * ata_pci_remove_one - PCI layer callback for device removal
6245 * @pdev: PCI device that was removed
6246 *
b878ca5d
TH
6247 * PCI layer indicates to libata via this hook that hot-unplug or
6248 * module unload event has occurred. Detach all ports. Resource
6249 * release is handled via devres.
1da177e4
LT
6250 *
6251 * LOCKING:
6252 * Inherited from PCI layer (may sleep).
6253 */
f0d36efd 6254void ata_pci_remove_one(struct pci_dev *pdev)
1da177e4 6255{
2855568b 6256 struct device *dev = &pdev->dev;
cca3974e 6257 struct ata_host *host = dev_get_drvdata(dev);
1da177e4 6258
b878ca5d 6259 ata_host_detach(host);
1da177e4
LT
6260}
6261
6262/* move to PCI subsystem */
057ace5e 6263int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
6264{
6265 unsigned long tmp = 0;
6266
6267 switch (bits->width) {
6268 case 1: {
6269 u8 tmp8 = 0;
6270 pci_read_config_byte(pdev, bits->reg, &tmp8);
6271 tmp = tmp8;
6272 break;
6273 }
6274 case 2: {
6275 u16 tmp16 = 0;
6276 pci_read_config_word(pdev, bits->reg, &tmp16);
6277 tmp = tmp16;
6278 break;
6279 }
6280 case 4: {
6281 u32 tmp32 = 0;
6282 pci_read_config_dword(pdev, bits->reg, &tmp32);
6283 tmp = tmp32;
6284 break;
6285 }
6286
6287 default:
6288 return -EINVAL;
6289 }
6290
6291 tmp &= bits->mask;
6292
6293 return (tmp == bits->val) ? 1 : 0;
6294}
9b847548 6295
6ffa01d8 6296#ifdef CONFIG_PM
3c5100c1 6297void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
6298{
6299 pci_save_state(pdev);
4c90d971 6300 pci_disable_device(pdev);
500530f6 6301
3a2d5b70 6302 if (mesg.event & PM_EVENT_SLEEP)
500530f6 6303 pci_set_power_state(pdev, PCI_D3hot);
9b847548
JA
6304}
6305
553c4aa6 6306int ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548 6307{
553c4aa6
TH
6308 int rc;
6309
9b847548
JA
6310 pci_set_power_state(pdev, PCI_D0);
6311 pci_restore_state(pdev);
553c4aa6 6312
b878ca5d 6313 rc = pcim_enable_device(pdev);
553c4aa6
TH
6314 if (rc) {
6315 dev_printk(KERN_ERR, &pdev->dev,
6316 "failed to enable device after resume (%d)\n", rc);
6317 return rc;
6318 }
6319
9b847548 6320 pci_set_master(pdev);
553c4aa6 6321 return 0;
500530f6
TH
6322}
6323
3c5100c1 6324int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6 6325{
cca3974e 6326 struct ata_host *host = dev_get_drvdata(&pdev->dev);
500530f6
TH
6327 int rc = 0;
6328
cca3974e 6329 rc = ata_host_suspend(host, mesg);
500530f6
TH
6330 if (rc)
6331 return rc;
6332
3c5100c1 6333 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
6334
6335 return 0;
6336}
6337
6338int ata_pci_device_resume(struct pci_dev *pdev)
6339{
cca3974e 6340 struct ata_host *host = dev_get_drvdata(&pdev->dev);
553c4aa6 6341 int rc;
500530f6 6342
553c4aa6
TH
6343 rc = ata_pci_device_do_resume(pdev);
6344 if (rc == 0)
6345 ata_host_resume(host);
6346 return rc;
9b847548 6347}
6ffa01d8
TH
6348#endif /* CONFIG_PM */
6349
1da177e4
LT
6350#endif /* CONFIG_PCI */
6351
33267325
TH
6352static int __init ata_parse_force_one(char **cur,
6353 struct ata_force_ent *force_ent,
6354 const char **reason)
6355{
6356 /* FIXME: Currently, there's no way to tag init const data and
6357 * using __initdata causes build failure on some versions of
6358 * gcc. Once __initdataconst is implemented, add const to the
6359 * following structure.
6360 */
6361 static struct ata_force_param force_tbl[] __initdata = {
6362 { "40c", .cbl = ATA_CBL_PATA40 },
6363 { "80c", .cbl = ATA_CBL_PATA80 },
6364 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6365 { "unk", .cbl = ATA_CBL_PATA_UNK },
6366 { "ign", .cbl = ATA_CBL_PATA_IGN },
6367 { "sata", .cbl = ATA_CBL_SATA },
6368 { "1.5Gbps", .spd_limit = 1 },
6369 { "3.0Gbps", .spd_limit = 2 },
6370 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6371 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
43c9c591 6372 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
33267325
TH
6373 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6374 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6375 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6376 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6377 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6378 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6379 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6380 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6381 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6382 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6383 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6384 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6385 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6386 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6387 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6388 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6389 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6390 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6391 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6392 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6393 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6394 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6395 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6396 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6397 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6398 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6399 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6400 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6401 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6402 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6403 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6404 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6405 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6406 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
05944bdf
TH
6407 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6408 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6409 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
33267325
TH
6410 };
6411 char *start = *cur, *p = *cur;
6412 char *id, *val, *endp;
6413 const struct ata_force_param *match_fp = NULL;
6414 int nr_matches = 0, i;
6415
6416 /* find where this param ends and update *cur */
6417 while (*p != '\0' && *p != ',')
6418 p++;
6419
6420 if (*p == '\0')
6421 *cur = p;
6422 else
6423 *cur = p + 1;
6424
6425 *p = '\0';
6426
6427 /* parse */
6428 p = strchr(start, ':');
6429 if (!p) {
6430 val = strstrip(start);
6431 goto parse_val;
6432 }
6433 *p = '\0';
6434
6435 id = strstrip(start);
6436 val = strstrip(p + 1);
6437
6438 /* parse id */
6439 p = strchr(id, '.');
6440 if (p) {
6441 *p++ = '\0';
6442 force_ent->device = simple_strtoul(p, &endp, 10);
6443 if (p == endp || *endp != '\0') {
6444 *reason = "invalid device";
6445 return -EINVAL;
6446 }
6447 }
6448
6449 force_ent->port = simple_strtoul(id, &endp, 10);
6450 if (p == endp || *endp != '\0') {
6451 *reason = "invalid port/link";
6452 return -EINVAL;
6453 }
6454
6455 parse_val:
6456 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6457 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6458 const struct ata_force_param *fp = &force_tbl[i];
6459
6460 if (strncasecmp(val, fp->name, strlen(val)))
6461 continue;
6462
6463 nr_matches++;
6464 match_fp = fp;
6465
6466 if (strcasecmp(val, fp->name) == 0) {
6467 nr_matches = 1;
6468 break;
6469 }
6470 }
6471
6472 if (!nr_matches) {
6473 *reason = "unknown value";
6474 return -EINVAL;
6475 }
6476 if (nr_matches > 1) {
6477 *reason = "ambigious value";
6478 return -EINVAL;
6479 }
6480
6481 force_ent->param = *match_fp;
6482
6483 return 0;
6484}
6485
6486static void __init ata_parse_force_param(void)
6487{
6488 int idx = 0, size = 1;
6489 int last_port = -1, last_device = -1;
6490 char *p, *cur, *next;
6491
6492 /* calculate maximum number of params and allocate force_tbl */
6493 for (p = ata_force_param_buf; *p; p++)
6494 if (*p == ',')
6495 size++;
6496
6497 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6498 if (!ata_force_tbl) {
6499 printk(KERN_WARNING "ata: failed to extend force table, "
6500 "libata.force ignored\n");
6501 return;
6502 }
6503
6504 /* parse and populate the table */
6505 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6506 const char *reason = "";
6507 struct ata_force_ent te = { .port = -1, .device = -1 };
6508
6509 next = cur;
6510 if (ata_parse_force_one(&next, &te, &reason)) {
6511 printk(KERN_WARNING "ata: failed to parse force "
6512 "parameter \"%s\" (%s)\n",
6513 cur, reason);
6514 continue;
6515 }
6516
6517 if (te.port == -1) {
6518 te.port = last_port;
6519 te.device = last_device;
6520 }
6521
6522 ata_force_tbl[idx++] = te;
6523
6524 last_port = te.port;
6525 last_device = te.device;
6526 }
6527
6528 ata_force_tbl_size = idx;
6529}
1da177e4 6530
1da177e4
LT
6531static int __init ata_init(void)
6532{
270390e1
TH
6533 int rc = -ENOMEM;
6534
33267325
TH
6535 ata_parse_force_param();
6536
270390e1 6537 rc = ata_sff_init();
ad72cf98
TH
6538 if (rc) {
6539 kfree(ata_force_tbl);
6540 return rc;
6541 }
453b07ac 6542
1da177e4
LT
6543 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6544 return 0;
6545}
6546
6547static void __exit ata_exit(void)
6548{
270390e1 6549 ata_sff_exit();
33267325 6550 kfree(ata_force_tbl);
1da177e4
LT
6551}
6552
a4625085 6553subsys_initcall(ata_init);
1da177e4
LT
6554module_exit(ata_exit);
6555
9990b6f3 6556static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
67846b30
JG
6557
6558int ata_ratelimit(void)
6559{
9990b6f3 6560 return __ratelimit(&ratelimit);
67846b30
JG
6561}
6562
c22daff4
TH
6563/**
6564 * ata_wait_register - wait until register value changes
6565 * @reg: IO-mapped register
6566 * @mask: Mask to apply to read register value
6567 * @val: Wait condition
341c2c95
TH
6568 * @interval: polling interval in milliseconds
6569 * @timeout: timeout in milliseconds
c22daff4
TH
6570 *
6571 * Waiting for some bits of register to change is a common
6572 * operation for ATA controllers. This function reads 32bit LE
6573 * IO-mapped register @reg and tests for the following condition.
6574 *
6575 * (*@reg & mask) != val
6576 *
6577 * If the condition is met, it returns; otherwise, the process is
6578 * repeated after @interval_msec until timeout.
6579 *
6580 * LOCKING:
6581 * Kernel thread context (may sleep)
6582 *
6583 * RETURNS:
6584 * The final register value.
6585 */
6586u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
341c2c95 6587 unsigned long interval, unsigned long timeout)
c22daff4 6588{
341c2c95 6589 unsigned long deadline;
c22daff4
TH
6590 u32 tmp;
6591
6592 tmp = ioread32(reg);
6593
6594 /* Calculate timeout _after_ the first read to make sure
6595 * preceding writes reach the controller before starting to
6596 * eat away the timeout.
6597 */
341c2c95 6598 deadline = ata_deadline(jiffies, timeout);
c22daff4 6599
341c2c95
TH
6600 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6601 msleep(interval);
c22daff4
TH
6602 tmp = ioread32(reg);
6603 }
6604
6605 return tmp;
6606}
6607
dd5b06c4
TH
6608/*
6609 * Dummy port_ops
6610 */
182d7bba 6611static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
dd5b06c4 6612{
182d7bba 6613 return AC_ERR_SYSTEM;
dd5b06c4
TH
6614}
6615
182d7bba 6616static void ata_dummy_error_handler(struct ata_port *ap)
dd5b06c4 6617{
182d7bba 6618 /* truly dummy */
dd5b06c4
TH
6619}
6620
029cfd6b 6621struct ata_port_operations ata_dummy_port_ops = {
dd5b06c4
TH
6622 .qc_prep = ata_noop_qc_prep,
6623 .qc_issue = ata_dummy_qc_issue,
182d7bba 6624 .error_handler = ata_dummy_error_handler,
dd5b06c4
TH
6625};
6626
21b0ad4f
TH
6627const struct ata_port_info ata_dummy_port_info = {
6628 .port_ops = &ata_dummy_port_ops,
6629};
6630
1da177e4
LT
6631/*
6632 * libata is essentially a library of internal helper functions for
6633 * low-level ATA host controller drivers. As such, the API/ABI is
6634 * likely to change as new drivers are added and updated.
6635 * Do not depend on ABI/API stability.
6636 */
e9c83914
TH
6637EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6638EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6639EXPORT_SYMBOL_GPL(sata_deb_timing_long);
029cfd6b
TH
6640EXPORT_SYMBOL_GPL(ata_base_port_ops);
6641EXPORT_SYMBOL_GPL(sata_port_ops);
dd5b06c4 6642EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
21b0ad4f 6643EXPORT_SYMBOL_GPL(ata_dummy_port_info);
1eca4365
TH
6644EXPORT_SYMBOL_GPL(ata_link_next);
6645EXPORT_SYMBOL_GPL(ata_dev_next);
1da177e4 6646EXPORT_SYMBOL_GPL(ata_std_bios_param);
d8d9129e 6647EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
cca3974e 6648EXPORT_SYMBOL_GPL(ata_host_init);
f3187195 6649EXPORT_SYMBOL_GPL(ata_host_alloc);
f5cda257 6650EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
b1c72916 6651EXPORT_SYMBOL_GPL(ata_slave_link_init);
ecef7253 6652EXPORT_SYMBOL_GPL(ata_host_start);
f3187195 6653EXPORT_SYMBOL_GPL(ata_host_register);
f5cda257 6654EXPORT_SYMBOL_GPL(ata_host_activate);
0529c159 6655EXPORT_SYMBOL_GPL(ata_host_detach);
1da177e4 6656EXPORT_SYMBOL_GPL(ata_sg_init);
f686bcb8 6657EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 6658EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
436d34b3 6659EXPORT_SYMBOL_GPL(atapi_cmd_type);
1da177e4
LT
6660EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6661EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6357357c
TH
6662EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6663EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6664EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6665EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6666EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6667EXPORT_SYMBOL_GPL(ata_mode_string);
6668EXPORT_SYMBOL_GPL(ata_id_xfermask);
04351821 6669EXPORT_SYMBOL_GPL(ata_do_set_mode);
31cc23b3 6670EXPORT_SYMBOL_GPL(ata_std_qc_defer);
e46834cd 6671EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
10305f0f 6672EXPORT_SYMBOL_GPL(ata_dev_disable);
3c567b7d 6673EXPORT_SYMBOL_GPL(sata_set_spd);
aa2731ad 6674EXPORT_SYMBOL_GPL(ata_wait_after_reset);
936fd732
TH
6675EXPORT_SYMBOL_GPL(sata_link_debounce);
6676EXPORT_SYMBOL_GPL(sata_link_resume);
0aa1113d 6677EXPORT_SYMBOL_GPL(ata_std_prereset);
cc0680a5 6678EXPORT_SYMBOL_GPL(sata_link_hardreset);
57c9efdf 6679EXPORT_SYMBOL_GPL(sata_std_hardreset);
203c75b8 6680EXPORT_SYMBOL_GPL(ata_std_postreset);
2e9edbf8
JG
6681EXPORT_SYMBOL_GPL(ata_dev_classify);
6682EXPORT_SYMBOL_GPL(ata_dev_pair);
67846b30 6683EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6684EXPORT_SYMBOL_GPL(ata_wait_register);
1da177e4 6685EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6686EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6687EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6688EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
34bf2170
TH
6689EXPORT_SYMBOL_GPL(sata_scr_valid);
6690EXPORT_SYMBOL_GPL(sata_scr_read);
6691EXPORT_SYMBOL_GPL(sata_scr_write);
6692EXPORT_SYMBOL_GPL(sata_scr_write_flush);
936fd732
TH
6693EXPORT_SYMBOL_GPL(ata_link_online);
6694EXPORT_SYMBOL_GPL(ata_link_offline);
6ffa01d8 6695#ifdef CONFIG_PM
cca3974e
JG
6696EXPORT_SYMBOL_GPL(ata_host_suspend);
6697EXPORT_SYMBOL_GPL(ata_host_resume);
6ffa01d8 6698#endif /* CONFIG_PM */
6a62a04d
TH
6699EXPORT_SYMBOL_GPL(ata_id_string);
6700EXPORT_SYMBOL_GPL(ata_id_c_string);
963e4975 6701EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1da177e4
LT
6702EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6703
1bc4ccff 6704EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6357357c 6705EXPORT_SYMBOL_GPL(ata_timing_find_mode);
452503f9
AC
6706EXPORT_SYMBOL_GPL(ata_timing_compute);
6707EXPORT_SYMBOL_GPL(ata_timing_merge);
a0f79b92 6708EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
452503f9 6709
1da177e4
LT
6710#ifdef CONFIG_PCI
6711EXPORT_SYMBOL_GPL(pci_test_config_bits);
1da177e4 6712EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6ffa01d8 6713#ifdef CONFIG_PM
500530f6
TH
6714EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6715EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6716EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6717EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6ffa01d8 6718#endif /* CONFIG_PM */
1da177e4 6719#endif /* CONFIG_PCI */
9b847548 6720
b64bbc39
TH
6721EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6722EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6723EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
cbcdd875
TH
6724EXPORT_SYMBOL_GPL(ata_port_desc);
6725#ifdef CONFIG_PCI
6726EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6727#endif /* CONFIG_PCI */
7b70fc03 6728EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
dbd82616 6729EXPORT_SYMBOL_GPL(ata_link_abort);
7b70fc03 6730EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499 6731EXPORT_SYMBOL_GPL(ata_port_freeze);
7d77b247 6732EXPORT_SYMBOL_GPL(sata_async_notification);
e3180499
TH
6733EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6734EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6735EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6736EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
10acf3b0 6737EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
022bdb07 6738EXPORT_SYMBOL_GPL(ata_do_eh);
a1efdaba 6739EXPORT_SYMBOL_GPL(ata_std_error_handler);
be0d18df
AC
6740
6741EXPORT_SYMBOL_GPL(ata_cable_40wire);
6742EXPORT_SYMBOL_GPL(ata_cable_80wire);
6743EXPORT_SYMBOL_GPL(ata_cable_unknown);
c88f90c3 6744EXPORT_SYMBOL_GPL(ata_cable_ignore);
be0d18df 6745EXPORT_SYMBOL_GPL(ata_cable_sata);