]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-settings.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / block / blk-settings.c
CommitLineData
86db1e29
JA
1/*
2 * Functions related to setting various queue properties from drivers
3 */
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/init.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
9#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
70dd5bf3 10#include <linux/gcd.h>
ad5ebd2f 11#include <linux/jiffies.h>
5a0e3ad6 12#include <linux/gfp.h>
86db1e29
JA
13
14#include "blk.h"
15
6728cb0e 16unsigned long blk_max_low_pfn;
86db1e29 17EXPORT_SYMBOL(blk_max_low_pfn);
6728cb0e
JA
18
19unsigned long blk_max_pfn;
86db1e29
JA
20
21/**
22 * blk_queue_prep_rq - set a prepare_request function for queue
23 * @q: queue
24 * @pfn: prepare_request function
25 *
26 * It's possible for a queue to register a prepare_request callback which
27 * is invoked before the request is handed to the request_fn. The goal of
28 * the function is to prepare a request for I/O, it can be used to build a
29 * cdb from the request data for instance.
30 *
31 */
32void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
33{
34 q->prep_rq_fn = pfn;
35}
86db1e29
JA
36EXPORT_SYMBOL(blk_queue_prep_rq);
37
38/**
39 * blk_queue_merge_bvec - set a merge_bvec function for queue
40 * @q: queue
41 * @mbfn: merge_bvec_fn
42 *
43 * Usually queues have static limitations on the max sectors or segments that
44 * we can put in a request. Stacking drivers may have some settings that
45 * are dynamic, and thus we have to query the queue whether it is ok to
46 * add a new bio_vec to a bio at a given offset or not. If the block device
47 * has such limitations, it needs to register a merge_bvec_fn to control
48 * the size of bio's sent to it. Note that a block device *must* allow a
49 * single page to be added to an empty bio. The block device driver may want
50 * to use the bio_split() function to deal with these bio's. By default
51 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
52 * honored.
53 */
54void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
55{
56 q->merge_bvec_fn = mbfn;
57}
86db1e29
JA
58EXPORT_SYMBOL(blk_queue_merge_bvec);
59
60void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
61{
62 q->softirq_done_fn = fn;
63}
86db1e29
JA
64EXPORT_SYMBOL(blk_queue_softirq_done);
65
242f9dcb
JA
66void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
67{
68 q->rq_timeout = timeout;
69}
70EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
71
72void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
73{
74 q->rq_timed_out_fn = fn;
75}
76EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
77
ef9e3fac
KU
78void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
79{
80 q->lld_busy_fn = fn;
81}
82EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
83
e475bba2
MP
84/**
85 * blk_set_default_limits - reset limits to default values
f740f5ca 86 * @lim: the queue_limits structure to reset
e475bba2
MP
87 *
88 * Description:
89 * Returns a queue_limit struct to its default state. Can be used by
90 * stacking drivers like DM that stage table swaps and reuse an
91 * existing device queue.
92 */
93void blk_set_default_limits(struct queue_limits *lim)
94{
8a78362c 95 lim->max_segments = BLK_MAX_SEGMENTS;
e475bba2 96 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
eb28d31b 97 lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
5dee2477
MP
98 lim->max_sectors = BLK_DEF_MAX_SECTORS;
99 lim->max_hw_sectors = INT_MAX;
86b37281
MP
100 lim->max_discard_sectors = 0;
101 lim->discard_granularity = 0;
102 lim->discard_alignment = 0;
103 lim->discard_misaligned = 0;
98262f27 104 lim->discard_zeroes_data = -1;
e475bba2 105 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
3a02c8e8 106 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
e475bba2
MP
107 lim->alignment_offset = 0;
108 lim->io_opt = 0;
109 lim->misaligned = 0;
110 lim->no_cluster = 0;
111}
112EXPORT_SYMBOL(blk_set_default_limits);
113
86db1e29
JA
114/**
115 * blk_queue_make_request - define an alternate make_request function for a device
116 * @q: the request queue for the device to be affected
117 * @mfn: the alternate make_request function
118 *
119 * Description:
120 * The normal way for &struct bios to be passed to a device
121 * driver is for them to be collected into requests on a request
122 * queue, and then to allow the device driver to select requests
123 * off that queue when it is ready. This works well for many block
124 * devices. However some block devices (typically virtual devices
125 * such as md or lvm) do not benefit from the processing on the
126 * request queue, and are served best by having the requests passed
127 * directly to them. This can be achieved by providing a function
128 * to blk_queue_make_request().
129 *
130 * Caveat:
131 * The driver that does this *must* be able to deal appropriately
132 * with buffers in "highmemory". This can be accomplished by either calling
133 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
134 * blk_queue_bounce() to create a buffer in normal memory.
135 **/
6728cb0e 136void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
86db1e29
JA
137{
138 /*
139 * set defaults
140 */
141 q->nr_requests = BLKDEV_MAX_RQ;
0e435ac2 142
86db1e29 143 q->make_request_fn = mfn;
86db1e29
JA
144 blk_queue_dma_alignment(q, 511);
145 blk_queue_congestion_threshold(q);
146 q->nr_batching = BLK_BATCH_REQ;
147
148 q->unplug_thresh = 4; /* hmm */
ad5ebd2f 149 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
86db1e29
JA
150 if (q->unplug_delay == 0)
151 q->unplug_delay = 1;
152
86db1e29
JA
153 q->unplug_timer.function = blk_unplug_timeout;
154 q->unplug_timer.data = (unsigned long)q;
155
e475bba2 156 blk_set_default_limits(&q->limits);
086fa5ff 157 blk_queue_max_hw_sectors(q, BLK_SAFE_MAX_SECTORS);
e475bba2 158
a4e7d464
JA
159 /*
160 * If the caller didn't supply a lock, fall back to our embedded
161 * per-queue locks
162 */
163 if (!q->queue_lock)
164 q->queue_lock = &q->__queue_lock;
165
86db1e29
JA
166 /*
167 * by default assume old behaviour and bounce for any highmem page
168 */
169 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
170}
86db1e29
JA
171EXPORT_SYMBOL(blk_queue_make_request);
172
173/**
174 * blk_queue_bounce_limit - set bounce buffer limit for queue
cd0aca2d
TH
175 * @q: the request queue for the device
176 * @dma_mask: the maximum address the device can handle
86db1e29
JA
177 *
178 * Description:
179 * Different hardware can have different requirements as to what pages
180 * it can do I/O directly to. A low level driver can call
181 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
cd0aca2d 182 * buffers for doing I/O to pages residing above @dma_mask.
86db1e29 183 **/
cd0aca2d 184void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
86db1e29 185{
cd0aca2d 186 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
86db1e29
JA
187 int dma = 0;
188
189 q->bounce_gfp = GFP_NOIO;
190#if BITS_PER_LONG == 64
cd0aca2d
TH
191 /*
192 * Assume anything <= 4GB can be handled by IOMMU. Actually
193 * some IOMMUs can handle everything, but I don't know of a
194 * way to test this here.
195 */
196 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
86db1e29 197 dma = 1;
025146e1 198 q->limits.bounce_pfn = max_low_pfn;
86db1e29 199#else
6728cb0e 200 if (b_pfn < blk_max_low_pfn)
86db1e29 201 dma = 1;
025146e1 202 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
203#endif
204 if (dma) {
205 init_emergency_isa_pool();
206 q->bounce_gfp = GFP_NOIO | GFP_DMA;
025146e1 207 q->limits.bounce_pfn = b_pfn;
86db1e29
JA
208 }
209}
86db1e29
JA
210EXPORT_SYMBOL(blk_queue_bounce_limit);
211
212/**
086fa5ff 213 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
86db1e29 214 * @q: the request queue for the device
2800aac1 215 * @max_hw_sectors: max hardware sectors in the usual 512b unit
86db1e29
JA
216 *
217 * Description:
2800aac1
MP
218 * Enables a low level driver to set a hard upper limit,
219 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
220 * the device driver based upon the combined capabilities of I/O
221 * controller and storage device.
222 *
223 * max_sectors is a soft limit imposed by the block layer for
224 * filesystem type requests. This value can be overridden on a
225 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
226 * The soft limit can not exceed max_hw_sectors.
86db1e29 227 **/
086fa5ff 228void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
86db1e29 229{
2800aac1
MP
230 if ((max_hw_sectors << 9) < PAGE_CACHE_SIZE) {
231 max_hw_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
24c03d47 232 printk(KERN_INFO "%s: set to minimum %d\n",
2800aac1 233 __func__, max_hw_sectors);
86db1e29
JA
234 }
235
2800aac1
MP
236 q->limits.max_hw_sectors = max_hw_sectors;
237 q->limits.max_sectors = min_t(unsigned int, max_hw_sectors,
238 BLK_DEF_MAX_SECTORS);
86db1e29 239}
086fa5ff 240EXPORT_SYMBOL(blk_queue_max_hw_sectors);
86db1e29 241
67efc925
CH
242/**
243 * blk_queue_max_discard_sectors - set max sectors for a single discard
244 * @q: the request queue for the device
c7ebf065 245 * @max_discard_sectors: maximum number of sectors to discard
67efc925
CH
246 **/
247void blk_queue_max_discard_sectors(struct request_queue *q,
248 unsigned int max_discard_sectors)
249{
250 q->limits.max_discard_sectors = max_discard_sectors;
251}
252EXPORT_SYMBOL(blk_queue_max_discard_sectors);
253
86db1e29 254/**
8a78362c 255 * blk_queue_max_segments - set max hw segments for a request for this queue
86db1e29
JA
256 * @q: the request queue for the device
257 * @max_segments: max number of segments
258 *
259 * Description:
260 * Enables a low level driver to set an upper limit on the number of
8a78362c 261 * hw data segments in a request.
86db1e29 262 **/
8a78362c 263void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
86db1e29
JA
264{
265 if (!max_segments) {
266 max_segments = 1;
24c03d47
HH
267 printk(KERN_INFO "%s: set to minimum %d\n",
268 __func__, max_segments);
86db1e29
JA
269 }
270
8a78362c 271 q->limits.max_segments = max_segments;
86db1e29 272}
8a78362c 273EXPORT_SYMBOL(blk_queue_max_segments);
86db1e29
JA
274
275/**
276 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
277 * @q: the request queue for the device
278 * @max_size: max size of segment in bytes
279 *
280 * Description:
281 * Enables a low level driver to set an upper limit on the size of a
282 * coalesced segment
283 **/
284void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
285{
286 if (max_size < PAGE_CACHE_SIZE) {
287 max_size = PAGE_CACHE_SIZE;
24c03d47
HH
288 printk(KERN_INFO "%s: set to minimum %d\n",
289 __func__, max_size);
86db1e29
JA
290 }
291
025146e1 292 q->limits.max_segment_size = max_size;
86db1e29 293}
86db1e29
JA
294EXPORT_SYMBOL(blk_queue_max_segment_size);
295
296/**
e1defc4f 297 * blk_queue_logical_block_size - set logical block size for the queue
86db1e29 298 * @q: the request queue for the device
e1defc4f 299 * @size: the logical block size, in bytes
86db1e29
JA
300 *
301 * Description:
e1defc4f
MP
302 * This should be set to the lowest possible block size that the
303 * storage device can address. The default of 512 covers most
304 * hardware.
86db1e29 305 **/
e1defc4f 306void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
86db1e29 307{
025146e1 308 q->limits.logical_block_size = size;
c72758f3
MP
309
310 if (q->limits.physical_block_size < size)
311 q->limits.physical_block_size = size;
312
313 if (q->limits.io_min < q->limits.physical_block_size)
314 q->limits.io_min = q->limits.physical_block_size;
86db1e29 315}
e1defc4f 316EXPORT_SYMBOL(blk_queue_logical_block_size);
86db1e29 317
c72758f3
MP
318/**
319 * blk_queue_physical_block_size - set physical block size for the queue
320 * @q: the request queue for the device
321 * @size: the physical block size, in bytes
322 *
323 * Description:
324 * This should be set to the lowest possible sector size that the
325 * hardware can operate on without reverting to read-modify-write
326 * operations.
327 */
328void blk_queue_physical_block_size(struct request_queue *q, unsigned short size)
329{
330 q->limits.physical_block_size = size;
331
332 if (q->limits.physical_block_size < q->limits.logical_block_size)
333 q->limits.physical_block_size = q->limits.logical_block_size;
334
335 if (q->limits.io_min < q->limits.physical_block_size)
336 q->limits.io_min = q->limits.physical_block_size;
337}
338EXPORT_SYMBOL(blk_queue_physical_block_size);
339
340/**
341 * blk_queue_alignment_offset - set physical block alignment offset
342 * @q: the request queue for the device
8ebf9756 343 * @offset: alignment offset in bytes
c72758f3
MP
344 *
345 * Description:
346 * Some devices are naturally misaligned to compensate for things like
347 * the legacy DOS partition table 63-sector offset. Low-level drivers
348 * should call this function for devices whose first sector is not
349 * naturally aligned.
350 */
351void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
352{
353 q->limits.alignment_offset =
354 offset & (q->limits.physical_block_size - 1);
355 q->limits.misaligned = 0;
356}
357EXPORT_SYMBOL(blk_queue_alignment_offset);
358
7c958e32
MP
359/**
360 * blk_limits_io_min - set minimum request size for a device
361 * @limits: the queue limits
362 * @min: smallest I/O size in bytes
363 *
364 * Description:
365 * Some devices have an internal block size bigger than the reported
366 * hardware sector size. This function can be used to signal the
367 * smallest I/O the device can perform without incurring a performance
368 * penalty.
369 */
370void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
371{
372 limits->io_min = min;
373
374 if (limits->io_min < limits->logical_block_size)
375 limits->io_min = limits->logical_block_size;
376
377 if (limits->io_min < limits->physical_block_size)
378 limits->io_min = limits->physical_block_size;
379}
380EXPORT_SYMBOL(blk_limits_io_min);
381
c72758f3
MP
382/**
383 * blk_queue_io_min - set minimum request size for the queue
384 * @q: the request queue for the device
8ebf9756 385 * @min: smallest I/O size in bytes
c72758f3
MP
386 *
387 * Description:
7e5f5fb0
MP
388 * Storage devices may report a granularity or preferred minimum I/O
389 * size which is the smallest request the device can perform without
390 * incurring a performance penalty. For disk drives this is often the
391 * physical block size. For RAID arrays it is often the stripe chunk
392 * size. A properly aligned multiple of minimum_io_size is the
393 * preferred request size for workloads where a high number of I/O
394 * operations is desired.
c72758f3
MP
395 */
396void blk_queue_io_min(struct request_queue *q, unsigned int min)
397{
7c958e32 398 blk_limits_io_min(&q->limits, min);
c72758f3
MP
399}
400EXPORT_SYMBOL(blk_queue_io_min);
401
3c5820c7
MP
402/**
403 * blk_limits_io_opt - set optimal request size for a device
404 * @limits: the queue limits
405 * @opt: smallest I/O size in bytes
406 *
407 * Description:
408 * Storage devices may report an optimal I/O size, which is the
409 * device's preferred unit for sustained I/O. This is rarely reported
410 * for disk drives. For RAID arrays it is usually the stripe width or
411 * the internal track size. A properly aligned multiple of
412 * optimal_io_size is the preferred request size for workloads where
413 * sustained throughput is desired.
414 */
415void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
416{
417 limits->io_opt = opt;
418}
419EXPORT_SYMBOL(blk_limits_io_opt);
420
c72758f3
MP
421/**
422 * blk_queue_io_opt - set optimal request size for the queue
423 * @q: the request queue for the device
8ebf9756 424 * @opt: optimal request size in bytes
c72758f3
MP
425 *
426 * Description:
7e5f5fb0
MP
427 * Storage devices may report an optimal I/O size, which is the
428 * device's preferred unit for sustained I/O. This is rarely reported
429 * for disk drives. For RAID arrays it is usually the stripe width or
430 * the internal track size. A properly aligned multiple of
431 * optimal_io_size is the preferred request size for workloads where
432 * sustained throughput is desired.
c72758f3
MP
433 */
434void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
435{
3c5820c7 436 blk_limits_io_opt(&q->limits, opt);
c72758f3
MP
437}
438EXPORT_SYMBOL(blk_queue_io_opt);
439
86db1e29
JA
440/*
441 * Returns the minimum that is _not_ zero, unless both are zero.
442 */
443#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
444
445/**
446 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
447 * @t: the stacking driver (top)
448 * @b: the underlying device (bottom)
449 **/
450void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
451{
fef24667 452 blk_stack_limits(&t->limits, &b->limits, 0);
025146e1 453
e7e72bf6
NB
454 if (!t->queue_lock)
455 WARN_ON_ONCE(1);
456 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
457 unsigned long flags;
458 spin_lock_irqsave(t->queue_lock, flags);
75ad23bc 459 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
e7e72bf6
NB
460 spin_unlock_irqrestore(t->queue_lock, flags);
461 }
86db1e29 462}
86db1e29
JA
463EXPORT_SYMBOL(blk_queue_stack_limits);
464
86b37281
MP
465static unsigned int lcm(unsigned int a, unsigned int b)
466{
467 if (a && b)
468 return (a * b) / gcd(a, b);
469 else if (b)
470 return b;
471
472 return a;
473}
474
c72758f3
MP
475/**
476 * blk_stack_limits - adjust queue_limits for stacked devices
81744ee4
MP
477 * @t: the stacking driver limits (top device)
478 * @b: the underlying queue limits (bottom, component device)
e03a72e1 479 * @start: first data sector within component device
c72758f3
MP
480 *
481 * Description:
81744ee4
MP
482 * This function is used by stacking drivers like MD and DM to ensure
483 * that all component devices have compatible block sizes and
484 * alignments. The stacking driver must provide a queue_limits
485 * struct (top) and then iteratively call the stacking function for
486 * all component (bottom) devices. The stacking function will
487 * attempt to combine the values and ensure proper alignment.
488 *
489 * Returns 0 if the top and bottom queue_limits are compatible. The
490 * top device's block sizes and alignment offsets may be adjusted to
491 * ensure alignment with the bottom device. If no compatible sizes
492 * and alignments exist, -1 is returned and the resulting top
493 * queue_limits will have the misaligned flag set to indicate that
494 * the alignment_offset is undefined.
c72758f3
MP
495 */
496int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
e03a72e1 497 sector_t start)
c72758f3 498{
e03a72e1 499 unsigned int top, bottom, alignment, ret = 0;
86b37281 500
c72758f3
MP
501 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
502 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
77634f33 503 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
c72758f3
MP
504
505 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
506 b->seg_boundary_mask);
507
8a78362c 508 t->max_segments = min_not_zero(t->max_segments, b->max_segments);
c72758f3
MP
509
510 t->max_segment_size = min_not_zero(t->max_segment_size,
511 b->max_segment_size);
512
fe0b393f
MP
513 t->misaligned |= b->misaligned;
514
e03a72e1 515 alignment = queue_limit_alignment_offset(b, start);
9504e086 516
81744ee4
MP
517 /* Bottom device has different alignment. Check that it is
518 * compatible with the current top alignment.
519 */
9504e086
MP
520 if (t->alignment_offset != alignment) {
521
522 top = max(t->physical_block_size, t->io_min)
523 + t->alignment_offset;
81744ee4 524 bottom = max(b->physical_block_size, b->io_min) + alignment;
9504e086 525
81744ee4 526 /* Verify that top and bottom intervals line up */
fe0b393f 527 if (max(top, bottom) & (min(top, bottom) - 1)) {
9504e086 528 t->misaligned = 1;
fe0b393f
MP
529 ret = -1;
530 }
9504e086
MP
531 }
532
c72758f3
MP
533 t->logical_block_size = max(t->logical_block_size,
534 b->logical_block_size);
535
536 t->physical_block_size = max(t->physical_block_size,
537 b->physical_block_size);
538
539 t->io_min = max(t->io_min, b->io_min);
9504e086
MP
540 t->io_opt = lcm(t->io_opt, b->io_opt);
541
c72758f3 542 t->no_cluster |= b->no_cluster;
98262f27 543 t->discard_zeroes_data &= b->discard_zeroes_data;
c72758f3 544
81744ee4 545 /* Physical block size a multiple of the logical block size? */
9504e086
MP
546 if (t->physical_block_size & (t->logical_block_size - 1)) {
547 t->physical_block_size = t->logical_block_size;
c72758f3 548 t->misaligned = 1;
fe0b393f 549 ret = -1;
86b37281
MP
550 }
551
81744ee4 552 /* Minimum I/O a multiple of the physical block size? */
9504e086
MP
553 if (t->io_min & (t->physical_block_size - 1)) {
554 t->io_min = t->physical_block_size;
555 t->misaligned = 1;
fe0b393f 556 ret = -1;
c72758f3
MP
557 }
558
81744ee4 559 /* Optimal I/O a multiple of the physical block size? */
9504e086
MP
560 if (t->io_opt & (t->physical_block_size - 1)) {
561 t->io_opt = 0;
562 t->misaligned = 1;
fe0b393f 563 ret = -1;
9504e086 564 }
c72758f3 565
81744ee4 566 /* Find lowest common alignment_offset */
9504e086
MP
567 t->alignment_offset = lcm(t->alignment_offset, alignment)
568 & (max(t->physical_block_size, t->io_min) - 1);
86b37281 569
81744ee4 570 /* Verify that new alignment_offset is on a logical block boundary */
fe0b393f 571 if (t->alignment_offset & (t->logical_block_size - 1)) {
c72758f3 572 t->misaligned = 1;
fe0b393f
MP
573 ret = -1;
574 }
c72758f3 575
9504e086
MP
576 /* Discard alignment and granularity */
577 if (b->discard_granularity) {
e03a72e1 578 alignment = queue_limit_discard_alignment(b, start);
9504e086
MP
579
580 if (t->discard_granularity != 0 &&
581 t->discard_alignment != alignment) {
582 top = t->discard_granularity + t->discard_alignment;
583 bottom = b->discard_granularity + alignment;
70dd5bf3 584
9504e086
MP
585 /* Verify that top and bottom intervals line up */
586 if (max(top, bottom) & (min(top, bottom) - 1))
587 t->discard_misaligned = 1;
588 }
589
81744ee4
MP
590 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
591 b->max_discard_sectors);
9504e086
MP
592 t->discard_granularity = max(t->discard_granularity,
593 b->discard_granularity);
594 t->discard_alignment = lcm(t->discard_alignment, alignment) &
595 (t->discard_granularity - 1);
596 }
70dd5bf3 597
fe0b393f 598 return ret;
c72758f3 599}
5d85d324 600EXPORT_SYMBOL(blk_stack_limits);
c72758f3 601
17be8c24
MP
602/**
603 * bdev_stack_limits - adjust queue limits for stacked drivers
604 * @t: the stacking driver limits (top device)
605 * @bdev: the component block_device (bottom)
606 * @start: first data sector within component device
607 *
608 * Description:
609 * Merges queue limits for a top device and a block_device. Returns
610 * 0 if alignment didn't change. Returns -1 if adding the bottom
611 * device caused misalignment.
612 */
613int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
614 sector_t start)
615{
616 struct request_queue *bq = bdev_get_queue(bdev);
617
618 start += get_start_sect(bdev);
619
e03a72e1 620 return blk_stack_limits(t, &bq->limits, start);
17be8c24
MP
621}
622EXPORT_SYMBOL(bdev_stack_limits);
623
c72758f3
MP
624/**
625 * disk_stack_limits - adjust queue limits for stacked drivers
77634f33 626 * @disk: MD/DM gendisk (top)
c72758f3
MP
627 * @bdev: the underlying block device (bottom)
628 * @offset: offset to beginning of data within component device
629 *
630 * Description:
e03a72e1
MP
631 * Merges the limits for a top level gendisk and a bottom level
632 * block_device.
c72758f3
MP
633 */
634void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
635 sector_t offset)
636{
637 struct request_queue *t = disk->queue;
638 struct request_queue *b = bdev_get_queue(bdev);
639
e03a72e1 640 if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
c72758f3
MP
641 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
642
643 disk_name(disk, 0, top);
644 bdevname(bdev, bottom);
645
646 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
647 top, bottom);
648 }
649
650 if (!t->queue_lock)
651 WARN_ON_ONCE(1);
652 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
653 unsigned long flags;
654
655 spin_lock_irqsave(t->queue_lock, flags);
656 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
657 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
658 spin_unlock_irqrestore(t->queue_lock, flags);
659 }
660}
661EXPORT_SYMBOL(disk_stack_limits);
662
e3790c7d
TH
663/**
664 * blk_queue_dma_pad - set pad mask
665 * @q: the request queue for the device
666 * @mask: pad mask
667 *
27f8221a 668 * Set dma pad mask.
e3790c7d 669 *
27f8221a
FT
670 * Appending pad buffer to a request modifies the last entry of a
671 * scatter list such that it includes the pad buffer.
e3790c7d
TH
672 **/
673void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
674{
675 q->dma_pad_mask = mask;
676}
677EXPORT_SYMBOL(blk_queue_dma_pad);
678
27f8221a
FT
679/**
680 * blk_queue_update_dma_pad - update pad mask
681 * @q: the request queue for the device
682 * @mask: pad mask
683 *
684 * Update dma pad mask.
685 *
686 * Appending pad buffer to a request modifies the last entry of a
687 * scatter list such that it includes the pad buffer.
688 **/
689void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
690{
691 if (mask > q->dma_pad_mask)
692 q->dma_pad_mask = mask;
693}
694EXPORT_SYMBOL(blk_queue_update_dma_pad);
695
86db1e29
JA
696/**
697 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
86db1e29 698 * @q: the request queue for the device
2fb98e84 699 * @dma_drain_needed: fn which returns non-zero if drain is necessary
86db1e29
JA
700 * @buf: physically contiguous buffer
701 * @size: size of the buffer in bytes
702 *
703 * Some devices have excess DMA problems and can't simply discard (or
704 * zero fill) the unwanted piece of the transfer. They have to have a
705 * real area of memory to transfer it into. The use case for this is
706 * ATAPI devices in DMA mode. If the packet command causes a transfer
707 * bigger than the transfer size some HBAs will lock up if there
708 * aren't DMA elements to contain the excess transfer. What this API
709 * does is adjust the queue so that the buf is always appended
710 * silently to the scatterlist.
711 *
8a78362c
MP
712 * Note: This routine adjusts max_hw_segments to make room for appending
713 * the drain buffer. If you call blk_queue_max_segments() after calling
714 * this routine, you must set the limit to one fewer than your device
715 * can support otherwise there won't be room for the drain buffer.
86db1e29 716 */
448da4d2 717int blk_queue_dma_drain(struct request_queue *q,
2fb98e84
TH
718 dma_drain_needed_fn *dma_drain_needed,
719 void *buf, unsigned int size)
86db1e29 720{
8a78362c 721 if (queue_max_segments(q) < 2)
86db1e29
JA
722 return -EINVAL;
723 /* make room for appending the drain */
8a78362c 724 blk_queue_max_segments(q, queue_max_segments(q) - 1);
2fb98e84 725 q->dma_drain_needed = dma_drain_needed;
86db1e29
JA
726 q->dma_drain_buffer = buf;
727 q->dma_drain_size = size;
728
729 return 0;
730}
86db1e29
JA
731EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
732
733/**
734 * blk_queue_segment_boundary - set boundary rules for segment merging
735 * @q: the request queue for the device
736 * @mask: the memory boundary mask
737 **/
738void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
739{
740 if (mask < PAGE_CACHE_SIZE - 1) {
741 mask = PAGE_CACHE_SIZE - 1;
24c03d47
HH
742 printk(KERN_INFO "%s: set to minimum %lx\n",
743 __func__, mask);
86db1e29
JA
744 }
745
025146e1 746 q->limits.seg_boundary_mask = mask;
86db1e29 747}
86db1e29
JA
748EXPORT_SYMBOL(blk_queue_segment_boundary);
749
750/**
751 * blk_queue_dma_alignment - set dma length and memory alignment
752 * @q: the request queue for the device
753 * @mask: alignment mask
754 *
755 * description:
710027a4 756 * set required memory and length alignment for direct dma transactions.
8feb4d20 757 * this is used when building direct io requests for the queue.
86db1e29
JA
758 *
759 **/
760void blk_queue_dma_alignment(struct request_queue *q, int mask)
761{
762 q->dma_alignment = mask;
763}
86db1e29
JA
764EXPORT_SYMBOL(blk_queue_dma_alignment);
765
766/**
767 * blk_queue_update_dma_alignment - update dma length and memory alignment
768 * @q: the request queue for the device
769 * @mask: alignment mask
770 *
771 * description:
710027a4 772 * update required memory and length alignment for direct dma transactions.
86db1e29
JA
773 * If the requested alignment is larger than the current alignment, then
774 * the current queue alignment is updated to the new value, otherwise it
775 * is left alone. The design of this is to allow multiple objects
776 * (driver, device, transport etc) to set their respective
777 * alignments without having them interfere.
778 *
779 **/
780void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
781{
782 BUG_ON(mask > PAGE_SIZE);
783
784 if (mask > q->dma_alignment)
785 q->dma_alignment = mask;
786}
86db1e29
JA
787EXPORT_SYMBOL(blk_queue_update_dma_alignment);
788
aeb3d3a8 789static int __init blk_settings_init(void)
86db1e29
JA
790{
791 blk_max_low_pfn = max_low_pfn - 1;
792 blk_max_pfn = max_pfn - 1;
793 return 0;
794}
795subsys_initcall(blk_settings_init);