]> bbs.cooldavid.org Git - net-next-2.6.git/blame - block/blk-core.c
block: unify flags for struct bio and struct request
[net-next-2.6.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
9195291e 130 set_start_time_ns(rq);
1da177e4 131}
2a4aa30c 132EXPORT_SYMBOL(blk_rq_init);
1da177e4 133
5bb23a68
N
134static void req_bio_endio(struct request *rq, struct bio *bio,
135 unsigned int nbytes, int error)
1da177e4 136{
165125e1 137 struct request_queue *q = rq->q;
797e7dbb 138
5bb23a68
N
139 if (&q->bar_rq != rq) {
140 if (error)
141 clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 error = -EIO;
797e7dbb 144
5bb23a68 145 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 147 __func__, nbytes, bio->bi_size);
5bb23a68
N
148 nbytes = bio->bi_size;
149 }
797e7dbb 150
08bafc03
KM
151 if (unlikely(rq->cmd_flags & REQ_QUIET))
152 set_bit(BIO_QUIET, &bio->bi_flags);
153
5bb23a68
N
154 bio->bi_size -= nbytes;
155 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
156
157 if (bio_integrity(bio))
158 bio_integrity_advance(bio, nbytes);
159
5bb23a68 160 if (bio->bi_size == 0)
6712ecf8 161 bio_endio(bio, error);
5bb23a68
N
162 } else {
163
164 /*
165 * Okay, this is the barrier request in progress, just
166 * record the error;
167 */
168 if (error && !q->orderr)
169 q->orderr = error;
170 }
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
1da177e4
LT
196/*
197 * "plug" the device if there are no outstanding requests: this will
198 * force the transfer to start only after we have put all the requests
199 * on the list.
200 *
201 * This is called with interrupts off and no requests on the queue and
202 * with the queue lock held.
203 */
165125e1 204void blk_plug_device(struct request_queue *q)
1da177e4
LT
205{
206 WARN_ON(!irqs_disabled());
207
208 /*
209 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 * which will restart the queueing
211 */
7daac490 212 if (blk_queue_stopped(q))
1da177e4
LT
213 return;
214
e48ec690 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 217 trace_block_plug(q);
2056a782 218 }
1da177e4 219}
1da177e4
LT
220EXPORT_SYMBOL(blk_plug_device);
221
6c5e0c4d
JA
222/**
223 * blk_plug_device_unlocked - plug a device without queue lock held
224 * @q: The &struct request_queue to plug
225 *
226 * Description:
227 * Like @blk_plug_device(), but grabs the queue lock and disables
228 * interrupts.
229 **/
230void blk_plug_device_unlocked(struct request_queue *q)
231{
232 unsigned long flags;
233
234 spin_lock_irqsave(q->queue_lock, flags);
235 blk_plug_device(q);
236 spin_unlock_irqrestore(q->queue_lock, flags);
237}
238EXPORT_SYMBOL(blk_plug_device_unlocked);
239
1da177e4
LT
240/*
241 * remove the queue from the plugged list, if present. called with
242 * queue lock held and interrupts disabled.
243 */
165125e1 244int blk_remove_plug(struct request_queue *q)
1da177e4
LT
245{
246 WARN_ON(!irqs_disabled());
247
e48ec690 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
249 return 0;
250
251 del_timer(&q->unplug_timer);
252 return 1;
253}
1da177e4
LT
254EXPORT_SYMBOL(blk_remove_plug);
255
256/*
257 * remove the plug and let it rip..
258 */
165125e1 259void __generic_unplug_device(struct request_queue *q)
1da177e4 260{
7daac490 261 if (unlikely(blk_queue_stopped(q)))
1da177e4 262 return;
a31a9738 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
264 return;
265
22e2c507 266 q->request_fn(q);
1da177e4 267}
1da177e4
LT
268
269/**
270 * generic_unplug_device - fire a request queue
165125e1 271 * @q: The &struct request_queue in question
1da177e4
LT
272 *
273 * Description:
274 * Linux uses plugging to build bigger requests queues before letting
275 * the device have at them. If a queue is plugged, the I/O scheduler
276 * is still adding and merging requests on the queue. Once the queue
277 * gets unplugged, the request_fn defined for the queue is invoked and
278 * transfers started.
279 **/
165125e1 280void generic_unplug_device(struct request_queue *q)
1da177e4 281{
dbaf2c00
JA
282 if (blk_queue_plugged(q)) {
283 spin_lock_irq(q->queue_lock);
284 __generic_unplug_device(q);
285 spin_unlock_irq(q->queue_lock);
286 }
1da177e4
LT
287}
288EXPORT_SYMBOL(generic_unplug_device);
289
290static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 struct page *page)
292{
165125e1 293 struct request_queue *q = bdi->unplug_io_data;
1da177e4 294
2ad8b1ef 295 blk_unplug(q);
1da177e4
LT
296}
297
86db1e29 298void blk_unplug_work(struct work_struct *work)
1da177e4 299{
165125e1
JA
300 struct request_queue *q =
301 container_of(work, struct request_queue, unplug_work);
1da177e4 302
5f3ea37c 303 trace_block_unplug_io(q);
1da177e4
LT
304 q->unplug_fn(q);
305}
306
86db1e29 307void blk_unplug_timeout(unsigned long data)
1da177e4 308{
165125e1 309 struct request_queue *q = (struct request_queue *)data;
1da177e4 310
5f3ea37c 311 trace_block_unplug_timer(q);
18887ad9 312 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
313}
314
2ad8b1ef
AB
315void blk_unplug(struct request_queue *q)
316{
317 /*
318 * devices don't necessarily have an ->unplug_fn defined
319 */
320 if (q->unplug_fn) {
5f3ea37c 321 trace_block_unplug_io(q);
2ad8b1ef
AB
322 q->unplug_fn(q);
323 }
324}
325EXPORT_SYMBOL(blk_unplug);
326
1da177e4
LT
327/**
328 * blk_start_queue - restart a previously stopped queue
165125e1 329 * @q: The &struct request_queue in question
1da177e4
LT
330 *
331 * Description:
332 * blk_start_queue() will clear the stop flag on the queue, and call
333 * the request_fn for the queue if it was in a stopped state when
334 * entered. Also see blk_stop_queue(). Queue lock must be held.
335 **/
165125e1 336void blk_start_queue(struct request_queue *q)
1da177e4 337{
a038e253
PBG
338 WARN_ON(!irqs_disabled());
339
75ad23bc 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 341 __blk_run_queue(q);
1da177e4 342}
1da177e4
LT
343EXPORT_SYMBOL(blk_start_queue);
344
345/**
346 * blk_stop_queue - stop a queue
165125e1 347 * @q: The &struct request_queue in question
1da177e4
LT
348 *
349 * Description:
350 * The Linux block layer assumes that a block driver will consume all
351 * entries on the request queue when the request_fn strategy is called.
352 * Often this will not happen, because of hardware limitations (queue
353 * depth settings). If a device driver gets a 'queue full' response,
354 * or if it simply chooses not to queue more I/O at one point, it can
355 * call this function to prevent the request_fn from being called until
356 * the driver has signalled it's ready to go again. This happens by calling
357 * blk_start_queue() to restart queue operations. Queue lock must be held.
358 **/
165125e1 359void blk_stop_queue(struct request_queue *q)
1da177e4
LT
360{
361 blk_remove_plug(q);
75ad23bc 362 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
363}
364EXPORT_SYMBOL(blk_stop_queue);
365
366/**
367 * blk_sync_queue - cancel any pending callbacks on a queue
368 * @q: the queue
369 *
370 * Description:
371 * The block layer may perform asynchronous callback activity
372 * on a queue, such as calling the unplug function after a timeout.
373 * A block device may call blk_sync_queue to ensure that any
374 * such activity is cancelled, thus allowing it to release resources
59c51591 375 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
376 * that its ->make_request_fn will not re-add plugging prior to calling
377 * this function.
378 *
379 */
380void blk_sync_queue(struct request_queue *q)
381{
382 del_timer_sync(&q->unplug_timer);
70ed28b9 383 del_timer_sync(&q->timeout);
64d01dc9 384 cancel_work_sync(&q->unplug_work);
1da177e4
LT
385}
386EXPORT_SYMBOL(blk_sync_queue);
387
388/**
80a4b58e 389 * __blk_run_queue - run a single device queue
1da177e4 390 * @q: The queue to run
80a4b58e
JA
391 *
392 * Description:
393 * See @blk_run_queue. This variant must be called with the queue lock
394 * held and interrupts disabled.
395 *
1da177e4 396 */
75ad23bc 397void __blk_run_queue(struct request_queue *q)
1da177e4 398{
1da177e4 399 blk_remove_plug(q);
dac07ec1 400
a538cd03
TH
401 if (unlikely(blk_queue_stopped(q)))
402 return;
403
404 if (elv_queue_empty(q))
405 return;
406
dac07ec1
JA
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
a538cd03
TH
411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 q->request_fn(q);
413 queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 } else {
415 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 kblockd_schedule_work(q, &q->unplug_work);
417 }
75ad23bc
NP
418}
419EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 420
75ad23bc
NP
421/**
422 * blk_run_queue - run a single device queue
423 * @q: The queue to run
80a4b58e
JA
424 *
425 * Description:
426 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 427 * May be used to restart queueing when a request has completed.
75ad23bc
NP
428 */
429void blk_run_queue(struct request_queue *q)
430{
431 unsigned long flags;
432
433 spin_lock_irqsave(q->queue_lock, flags);
434 __blk_run_queue(q);
1da177e4
LT
435 spin_unlock_irqrestore(q->queue_lock, flags);
436}
437EXPORT_SYMBOL(blk_run_queue);
438
165125e1 439void blk_put_queue(struct request_queue *q)
483f4afc
AV
440{
441 kobject_put(&q->kobj);
442}
483f4afc 443
6728cb0e 444void blk_cleanup_queue(struct request_queue *q)
483f4afc 445{
e3335de9
JA
446 /*
447 * We know we have process context here, so we can be a little
448 * cautious and ensure that pending block actions on this device
449 * are done before moving on. Going into this function, we should
450 * not have processes doing IO to this device.
451 */
452 blk_sync_queue(q);
453
31373d09 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
483f4afc 455 mutex_lock(&q->sysfs_lock);
75ad23bc 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
457 mutex_unlock(&q->sysfs_lock);
458
459 if (q->elevator)
460 elevator_exit(q->elevator);
461
462 blk_put_queue(q);
463}
1da177e4
LT
464EXPORT_SYMBOL(blk_cleanup_queue);
465
165125e1 466static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
467{
468 struct request_list *rl = &q->rq;
469
1abec4fd
MS
470 if (unlikely(rl->rq_pool))
471 return 0;
472
1faa16d2
JA
473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 475 rl->elvpriv = 0;
1faa16d2
JA
476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 478
1946089a
CL
479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
481
482 if (!rl->rq_pool)
483 return -ENOMEM;
484
485 return 0;
486}
487
165125e1 488struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 489{
1946089a
CL
490 return blk_alloc_queue_node(gfp_mask, -1);
491}
492EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 493
165125e1 494struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 495{
165125e1 496 struct request_queue *q;
e0bf68dd 497 int err;
1946089a 498
8324aa91 499 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 500 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
501 if (!q)
502 return NULL;
503
e0bf68dd
PZ
504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
506 q->backing_dev_info.ra_pages =
507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 q->backing_dev_info.state = 0;
509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 510 q->backing_dev_info.name = "block";
0989a025 511
e0bf68dd
PZ
512 err = bdi_init(&q->backing_dev_info);
513 if (err) {
8324aa91 514 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
515 return NULL;
516 }
517
31373d09
MG
518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 laptop_mode_timer_fn, (unsigned long) q);
1da177e4 520 init_timer(&q->unplug_timer);
242f9dcb
JA
521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 523 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 524
8324aa91 525 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 526
483f4afc 527 mutex_init(&q->sysfs_lock);
e7e72bf6 528 spin_lock_init(&q->__queue_lock);
483f4afc 529
1da177e4
LT
530 return q;
531}
1946089a 532EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
533
534/**
535 * blk_init_queue - prepare a request queue for use with a block device
536 * @rfn: The function to be called to process requests that have been
537 * placed on the queue.
538 * @lock: Request queue spin lock
539 *
540 * Description:
541 * If a block device wishes to use the standard request handling procedures,
542 * which sorts requests and coalesces adjacent requests, then it must
543 * call blk_init_queue(). The function @rfn will be called when there
544 * are requests on the queue that need to be processed. If the device
545 * supports plugging, then @rfn may not be called immediately when requests
546 * are available on the queue, but may be called at some time later instead.
547 * Plugged queues are generally unplugged when a buffer belonging to one
548 * of the requests on the queue is needed, or due to memory pressure.
549 *
550 * @rfn is not required, or even expected, to remove all requests off the
551 * queue, but only as many as it can handle at a time. If it does leave
552 * requests on the queue, it is responsible for arranging that the requests
553 * get dealt with eventually.
554 *
555 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
556 * request queue; this lock will be taken also from interrupt context, so irq
557 * disabling is needed for it.
1da177e4 558 *
710027a4 559 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
560 * it didn't succeed.
561 *
562 * Note:
563 * blk_init_queue() must be paired with a blk_cleanup_queue() call
564 * when the block device is deactivated (such as at module unload).
565 **/
1946089a 566
165125e1 567struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 568{
1946089a
CL
569 return blk_init_queue_node(rfn, lock, -1);
570}
571EXPORT_SYMBOL(blk_init_queue);
572
165125e1 573struct request_queue *
1946089a
CL
574blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575{
c86d1b8a 576 struct request_queue *uninit_q, *q;
1da177e4 577
c86d1b8a
MS
578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 if (!uninit_q)
580 return NULL;
581
582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 if (!q)
584 blk_cleanup_queue(uninit_q);
585
586 return q;
01effb0d
MS
587}
588EXPORT_SYMBOL(blk_init_queue_node);
589
590struct request_queue *
591blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 spinlock_t *lock)
593{
594 return blk_init_allocated_queue_node(q, rfn, lock, -1);
595}
596EXPORT_SYMBOL(blk_init_allocated_queue);
597
598struct request_queue *
599blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 spinlock_t *lock, int node_id)
601{
1da177e4
LT
602 if (!q)
603 return NULL;
604
1946089a 605 q->node = node_id;
c86d1b8a 606 if (blk_init_free_list(q))
8669aafd 607 return NULL;
1da177e4
LT
608
609 q->request_fn = rfn;
1da177e4
LT
610 q->prep_rq_fn = NULL;
611 q->unplug_fn = generic_unplug_device;
bc58ba94 612 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
613 q->queue_lock = lock;
614
f3b144aa
JA
615 /*
616 * This also sets hw/phys segments, boundary and size
617 */
1da177e4 618 blk_queue_make_request(q, __make_request);
1da177e4 619
44ec9542
AS
620 q->sg_reserved_size = INT_MAX;
621
1da177e4
LT
622 /*
623 * all done
624 */
625 if (!elevator_init(q, NULL)) {
626 blk_queue_congestion_threshold(q);
627 return q;
628 }
629
1da177e4
LT
630 return NULL;
631}
01effb0d 632EXPORT_SYMBOL(blk_init_allocated_queue_node);
1da177e4 633
165125e1 634int blk_get_queue(struct request_queue *q)
1da177e4 635{
fde6ad22 636 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 637 kobject_get(&q->kobj);
1da177e4
LT
638 return 0;
639 }
640
641 return 1;
642}
1da177e4 643
165125e1 644static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 645{
4aff5e23 646 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 647 elv_put_request(q, rq);
1da177e4
LT
648 mempool_free(rq, q->rq.rq_pool);
649}
650
1ea25ecb 651static struct request *
42dad764 652blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
653{
654 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
655
656 if (!rq)
657 return NULL;
658
2a4aa30c 659 blk_rq_init(q, rq);
1afb20f3 660
42dad764 661 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 662
cb98fc8b 663 if (priv) {
cb78b285 664 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
665 mempool_free(rq, q->rq.rq_pool);
666 return NULL;
667 }
4aff5e23 668 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 669 }
1da177e4 670
cb98fc8b 671 return rq;
1da177e4
LT
672}
673
674/*
675 * ioc_batching returns true if the ioc is a valid batching request and
676 * should be given priority access to a request.
677 */
165125e1 678static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
679{
680 if (!ioc)
681 return 0;
682
683 /*
684 * Make sure the process is able to allocate at least 1 request
685 * even if the batch times out, otherwise we could theoretically
686 * lose wakeups.
687 */
688 return ioc->nr_batch_requests == q->nr_batching ||
689 (ioc->nr_batch_requests > 0
690 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
691}
692
693/*
694 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
695 * will cause the process to be a "batcher" on all queues in the system. This
696 * is the behaviour we want though - once it gets a wakeup it should be given
697 * a nice run.
698 */
165125e1 699static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
700{
701 if (!ioc || ioc_batching(q, ioc))
702 return;
703
704 ioc->nr_batch_requests = q->nr_batching;
705 ioc->last_waited = jiffies;
706}
707
1faa16d2 708static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
709{
710 struct request_list *rl = &q->rq;
711
1faa16d2
JA
712 if (rl->count[sync] < queue_congestion_off_threshold(q))
713 blk_clear_queue_congested(q, sync);
1da177e4 714
1faa16d2
JA
715 if (rl->count[sync] + 1 <= q->nr_requests) {
716 if (waitqueue_active(&rl->wait[sync]))
717 wake_up(&rl->wait[sync]);
1da177e4 718
1faa16d2 719 blk_clear_queue_full(q, sync);
1da177e4
LT
720 }
721}
722
723/*
724 * A request has just been released. Account for it, update the full and
725 * congestion status, wake up any waiters. Called under q->queue_lock.
726 */
1faa16d2 727static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
728{
729 struct request_list *rl = &q->rq;
730
1faa16d2 731 rl->count[sync]--;
cb98fc8b
TH
732 if (priv)
733 rl->elvpriv--;
1da177e4 734
1faa16d2 735 __freed_request(q, sync);
1da177e4 736
1faa16d2
JA
737 if (unlikely(rl->starved[sync ^ 1]))
738 __freed_request(q, sync ^ 1);
1da177e4
LT
739}
740
1da177e4 741/*
d6344532
NP
742 * Get a free request, queue_lock must be held.
743 * Returns NULL on failure, with queue_lock held.
744 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 745 */
165125e1 746static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 747 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
748{
749 struct request *rq = NULL;
750 struct request_list *rl = &q->rq;
88ee5ef1 751 struct io_context *ioc = NULL;
1faa16d2 752 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
753 int may_queue, priv;
754
7749a8d4 755 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
756 if (may_queue == ELV_MQUEUE_NO)
757 goto rq_starved;
758
1faa16d2
JA
759 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
760 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 761 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
762 /*
763 * The queue will fill after this allocation, so set
764 * it as full, and mark this process as "batching".
765 * This process will be allowed to complete a batch of
766 * requests, others will be blocked.
767 */
1faa16d2 768 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 769 ioc_set_batching(q, ioc);
1faa16d2 770 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
771 } else {
772 if (may_queue != ELV_MQUEUE_MUST
773 && !ioc_batching(q, ioc)) {
774 /*
775 * The queue is full and the allocating
776 * process is not a "batcher", and not
777 * exempted by the IO scheduler
778 */
779 goto out;
780 }
781 }
1da177e4 782 }
1faa16d2 783 blk_set_queue_congested(q, is_sync);
1da177e4
LT
784 }
785
082cf69e
JA
786 /*
787 * Only allow batching queuers to allocate up to 50% over the defined
788 * limit of requests, otherwise we could have thousands of requests
789 * allocated with any setting of ->nr_requests
790 */
1faa16d2 791 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 792 goto out;
fd782a4a 793
1faa16d2
JA
794 rl->count[is_sync]++;
795 rl->starved[is_sync] = 0;
cb98fc8b 796
64521d1a 797 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
798 if (priv)
799 rl->elvpriv++;
800
42dad764
JM
801 if (blk_queue_io_stat(q))
802 rw_flags |= REQ_IO_STAT;
1da177e4
LT
803 spin_unlock_irq(q->queue_lock);
804
7749a8d4 805 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 806 if (unlikely(!rq)) {
1da177e4
LT
807 /*
808 * Allocation failed presumably due to memory. Undo anything
809 * we might have messed up.
810 *
811 * Allocating task should really be put onto the front of the
812 * wait queue, but this is pretty rare.
813 */
814 spin_lock_irq(q->queue_lock);
1faa16d2 815 freed_request(q, is_sync, priv);
1da177e4
LT
816
817 /*
818 * in the very unlikely event that allocation failed and no
819 * requests for this direction was pending, mark us starved
820 * so that freeing of a request in the other direction will
821 * notice us. another possible fix would be to split the
822 * rq mempool into READ and WRITE
823 */
824rq_starved:
1faa16d2
JA
825 if (unlikely(rl->count[is_sync] == 0))
826 rl->starved[is_sync] = 1;
1da177e4 827
1da177e4
LT
828 goto out;
829 }
830
88ee5ef1
JA
831 /*
832 * ioc may be NULL here, and ioc_batching will be false. That's
833 * OK, if the queue is under the request limit then requests need
834 * not count toward the nr_batch_requests limit. There will always
835 * be some limit enforced by BLK_BATCH_TIME.
836 */
1da177e4
LT
837 if (ioc_batching(q, ioc))
838 ioc->nr_batch_requests--;
6728cb0e 839
1faa16d2 840 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 841out:
1da177e4
LT
842 return rq;
843}
844
845/*
846 * No available requests for this queue, unplug the device and wait for some
847 * requests to become available.
d6344532
NP
848 *
849 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 850 */
165125e1 851static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 852 struct bio *bio)
1da177e4 853{
1faa16d2 854 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
855 struct request *rq;
856
7749a8d4 857 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
858 while (!rq) {
859 DEFINE_WAIT(wait);
05caf8db 860 struct io_context *ioc;
1da177e4
LT
861 struct request_list *rl = &q->rq;
862
1faa16d2 863 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
864 TASK_UNINTERRUPTIBLE);
865
1faa16d2 866 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 867
05caf8db
ZY
868 __generic_unplug_device(q);
869 spin_unlock_irq(q->queue_lock);
870 io_schedule();
1da177e4 871
05caf8db
ZY
872 /*
873 * After sleeping, we become a "batching" process and
874 * will be able to allocate at least one request, and
875 * up to a big batch of them for a small period time.
876 * See ioc_batching, ioc_set_batching
877 */
878 ioc = current_io_context(GFP_NOIO, q->node);
879 ioc_set_batching(q, ioc);
d6344532 880
05caf8db 881 spin_lock_irq(q->queue_lock);
1faa16d2 882 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
883
884 rq = get_request(q, rw_flags, bio, GFP_NOIO);
885 };
1da177e4
LT
886
887 return rq;
888}
889
165125e1 890struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
891{
892 struct request *rq;
893
894 BUG_ON(rw != READ && rw != WRITE);
895
d6344532
NP
896 spin_lock_irq(q->queue_lock);
897 if (gfp_mask & __GFP_WAIT) {
22e2c507 898 rq = get_request_wait(q, rw, NULL);
d6344532 899 } else {
22e2c507 900 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
901 if (!rq)
902 spin_unlock_irq(q->queue_lock);
903 }
904 /* q->queue_lock is unlocked at this point */
1da177e4
LT
905
906 return rq;
907}
1da177e4
LT
908EXPORT_SYMBOL(blk_get_request);
909
dc72ef4a 910/**
79eb63e9 911 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 912 * @q: target request queue
79eb63e9
BH
913 * @bio: The bio describing the memory mappings that will be submitted for IO.
914 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 915 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 916 *
79eb63e9
BH
917 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
918 * type commands. Where the struct request needs to be farther initialized by
919 * the caller. It is passed a &struct bio, which describes the memory info of
920 * the I/O transfer.
dc72ef4a 921 *
79eb63e9
BH
922 * The caller of blk_make_request must make sure that bi_io_vec
923 * are set to describe the memory buffers. That bio_data_dir() will return
924 * the needed direction of the request. (And all bio's in the passed bio-chain
925 * are properly set accordingly)
926 *
927 * If called under none-sleepable conditions, mapped bio buffers must not
928 * need bouncing, by calling the appropriate masked or flagged allocator,
929 * suitable for the target device. Otherwise the call to blk_queue_bounce will
930 * BUG.
53674ac5
JA
931 *
932 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
933 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
934 * anything but the first bio in the chain. Otherwise you risk waiting for IO
935 * completion of a bio that hasn't been submitted yet, thus resulting in a
936 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
937 * of bio_alloc(), as that avoids the mempool deadlock.
938 * If possible a big IO should be split into smaller parts when allocation
939 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 940 */
79eb63e9
BH
941struct request *blk_make_request(struct request_queue *q, struct bio *bio,
942 gfp_t gfp_mask)
dc72ef4a 943{
79eb63e9
BH
944 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
945
946 if (unlikely(!rq))
947 return ERR_PTR(-ENOMEM);
948
949 for_each_bio(bio) {
950 struct bio *bounce_bio = bio;
951 int ret;
952
953 blk_queue_bounce(q, &bounce_bio);
954 ret = blk_rq_append_bio(q, rq, bounce_bio);
955 if (unlikely(ret)) {
956 blk_put_request(rq);
957 return ERR_PTR(ret);
958 }
959 }
960
961 return rq;
dc72ef4a 962}
79eb63e9 963EXPORT_SYMBOL(blk_make_request);
dc72ef4a 964
1da177e4
LT
965/**
966 * blk_requeue_request - put a request back on queue
967 * @q: request queue where request should be inserted
968 * @rq: request to be inserted
969 *
970 * Description:
971 * Drivers often keep queueing requests until the hardware cannot accept
972 * more, when that condition happens we need to put the request back
973 * on the queue. Must be called with queue lock held.
974 */
165125e1 975void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 976{
242f9dcb
JA
977 blk_delete_timer(rq);
978 blk_clear_rq_complete(rq);
5f3ea37c 979 trace_block_rq_requeue(q, rq);
2056a782 980
1da177e4
LT
981 if (blk_rq_tagged(rq))
982 blk_queue_end_tag(q, rq);
983
ba396a6c
JB
984 BUG_ON(blk_queued_rq(rq));
985
1da177e4
LT
986 elv_requeue_request(q, rq);
987}
1da177e4
LT
988EXPORT_SYMBOL(blk_requeue_request);
989
990/**
710027a4 991 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
992 * @q: request queue where request should be inserted
993 * @rq: request to be inserted
994 * @at_head: insert request at head or tail of queue
995 * @data: private data
1da177e4
LT
996 *
997 * Description:
998 * Many block devices need to execute commands asynchronously, so they don't
999 * block the whole kernel from preemption during request execution. This is
1000 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1001 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1002 * be scheduled for actual execution by the request queue.
1da177e4
LT
1003 *
1004 * We have the option of inserting the head or the tail of the queue.
1005 * Typically we use the tail for new ioctls and so forth. We use the head
1006 * of the queue for things like a QUEUE_FULL message from a device, or a
1007 * host that is unable to accept a particular command.
1008 */
165125e1 1009void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1010 int at_head, void *data)
1da177e4 1011{
867d1191 1012 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1013 unsigned long flags;
1014
1015 /*
1016 * tell I/O scheduler that this isn't a regular read/write (ie it
1017 * must not attempt merges on this) and that it acts as a soft
1018 * barrier
1019 */
4aff5e23 1020 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1021
1022 rq->special = data;
1023
1024 spin_lock_irqsave(q->queue_lock, flags);
1025
1026 /*
1027 * If command is tagged, release the tag
1028 */
867d1191
TH
1029 if (blk_rq_tagged(rq))
1030 blk_queue_end_tag(q, rq);
1da177e4 1031
b238b3d4 1032 drive_stat_acct(rq, 1);
867d1191 1033 __elv_add_request(q, rq, where, 0);
a7f55792 1034 __blk_run_queue(q);
1da177e4
LT
1035 spin_unlock_irqrestore(q->queue_lock, flags);
1036}
1da177e4
LT
1037EXPORT_SYMBOL(blk_insert_request);
1038
1da177e4
LT
1039/*
1040 * add-request adds a request to the linked list.
1041 * queue lock is held and interrupts disabled, as we muck with the
1042 * request queue list.
1043 */
6728cb0e 1044static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1045{
b238b3d4 1046 drive_stat_acct(req, 1);
1da177e4 1047
1da177e4
LT
1048 /*
1049 * elevator indicated where it wants this request to be
1050 * inserted at elevator_merge time
1051 */
1052 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1053}
6728cb0e 1054
074a7aca
TH
1055static void part_round_stats_single(int cpu, struct hd_struct *part,
1056 unsigned long now)
1057{
1058 if (now == part->stamp)
1059 return;
1060
316d315b 1061 if (part_in_flight(part)) {
074a7aca 1062 __part_stat_add(cpu, part, time_in_queue,
316d315b 1063 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1064 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1065 }
1066 part->stamp = now;
1067}
1068
1069/**
496aa8a9
RD
1070 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1071 * @cpu: cpu number for stats access
1072 * @part: target partition
1da177e4
LT
1073 *
1074 * The average IO queue length and utilisation statistics are maintained
1075 * by observing the current state of the queue length and the amount of
1076 * time it has been in this state for.
1077 *
1078 * Normally, that accounting is done on IO completion, but that can result
1079 * in more than a second's worth of IO being accounted for within any one
1080 * second, leading to >100% utilisation. To deal with that, we call this
1081 * function to do a round-off before returning the results when reading
1082 * /proc/diskstats. This accounts immediately for all queue usage up to
1083 * the current jiffies and restarts the counters again.
1084 */
c9959059 1085void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1086{
1087 unsigned long now = jiffies;
1088
074a7aca
TH
1089 if (part->partno)
1090 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1091 part_round_stats_single(cpu, part, now);
6f2576af 1092}
074a7aca 1093EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1094
1da177e4
LT
1095/*
1096 * queue lock must be held
1097 */
165125e1 1098void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1099{
1da177e4
LT
1100 if (unlikely(!q))
1101 return;
1102 if (unlikely(--req->ref_count))
1103 return;
1104
8922e16c
TH
1105 elv_completed_request(q, req);
1106
1cd96c24
BH
1107 /* this is a bio leak */
1108 WARN_ON(req->bio != NULL);
1109
1da177e4
LT
1110 /*
1111 * Request may not have originated from ll_rw_blk. if not,
1112 * it didn't come out of our reserved rq pools
1113 */
49171e5c 1114 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1115 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1116 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1117
1da177e4 1118 BUG_ON(!list_empty(&req->queuelist));
9817064b 1119 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1120
1121 blk_free_request(q, req);
1faa16d2 1122 freed_request(q, is_sync, priv);
1da177e4
LT
1123 }
1124}
6e39b69e
MC
1125EXPORT_SYMBOL_GPL(__blk_put_request);
1126
1da177e4
LT
1127void blk_put_request(struct request *req)
1128{
8922e16c 1129 unsigned long flags;
165125e1 1130 struct request_queue *q = req->q;
8922e16c 1131
52a93ba8
FT
1132 spin_lock_irqsave(q->queue_lock, flags);
1133 __blk_put_request(q, req);
1134 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1135}
1da177e4
LT
1136EXPORT_SYMBOL(blk_put_request);
1137
86db1e29 1138void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1139{
c7c22e4d 1140 req->cpu = bio->bi_comp_cpu;
4aff5e23 1141 req->cmd_type = REQ_TYPE_FS;
52d9e675 1142
7b6d91da
CH
1143 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1144 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1145 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1146
52d9e675 1147 req->errors = 0;
a2dec7b3 1148 req->__sector = bio->bi_sector;
52d9e675 1149 req->ioprio = bio_prio(bio);
bc1c56fd 1150 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1151}
1152
644b2d99
JA
1153/*
1154 * Only disabling plugging for non-rotational devices if it does tagging
1155 * as well, otherwise we do need the proper merging
1156 */
1157static inline bool queue_should_plug(struct request_queue *q)
1158{
79da0644 1159 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1160}
1161
165125e1 1162static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1163{
450991bc 1164 struct request *req;
2e46e8b2
TH
1165 int el_ret;
1166 unsigned int bytes = bio->bi_size;
51da90fc 1167 const unsigned short prio = bio_prio(bio);
7b6d91da
CH
1168 const bool sync = (bio->bi_rw & REQ_SYNC);
1169 const bool unplug = (bio->bi_rw & REQ_UNPLUG);
80a761fd 1170 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1171 int rw_flags;
1da177e4 1172
7b6d91da 1173 if ((bio->bi_rw & REQ_HARDBARRIER) &&
db64f680
N
1174 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1175 bio_endio(bio, -EOPNOTSUPP);
1176 return 0;
1177 }
1da177e4
LT
1178 /*
1179 * low level driver can indicate that it wants pages above a
1180 * certain limit bounced to low memory (ie for highmem, or even
1181 * ISA dma in theory)
1182 */
1183 blk_queue_bounce(q, &bio);
1184
1da177e4
LT
1185 spin_lock_irq(q->queue_lock);
1186
7b6d91da 1187 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1da177e4
LT
1188 goto get_rq;
1189
1190 el_ret = elv_merge(q, &req, bio);
1191 switch (el_ret) {
6728cb0e
JA
1192 case ELEVATOR_BACK_MERGE:
1193 BUG_ON(!rq_mergeable(req));
1da177e4 1194
6728cb0e
JA
1195 if (!ll_back_merge_fn(q, req, bio))
1196 break;
1da177e4 1197
5f3ea37c 1198 trace_block_bio_backmerge(q, bio);
2056a782 1199
80a761fd
TH
1200 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1201 blk_rq_set_mixed_merge(req);
1202
6728cb0e
JA
1203 req->biotail->bi_next = bio;
1204 req->biotail = bio;
a2dec7b3 1205 req->__data_len += bytes;
6728cb0e 1206 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1207 if (!blk_rq_cpu_valid(req))
1208 req->cpu = bio->bi_comp_cpu;
6728cb0e 1209 drive_stat_acct(req, 0);
812d4026 1210 elv_bio_merged(q, req, bio);
6728cb0e
JA
1211 if (!attempt_back_merge(q, req))
1212 elv_merged_request(q, req, el_ret);
1213 goto out;
1da177e4 1214
6728cb0e
JA
1215 case ELEVATOR_FRONT_MERGE:
1216 BUG_ON(!rq_mergeable(req));
1da177e4 1217
6728cb0e
JA
1218 if (!ll_front_merge_fn(q, req, bio))
1219 break;
1da177e4 1220
5f3ea37c 1221 trace_block_bio_frontmerge(q, bio);
2056a782 1222
80a761fd
TH
1223 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1224 blk_rq_set_mixed_merge(req);
1225 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1226 req->cmd_flags |= ff;
1227 }
1228
6728cb0e
JA
1229 bio->bi_next = req->bio;
1230 req->bio = bio;
1da177e4 1231
6728cb0e
JA
1232 /*
1233 * may not be valid. if the low level driver said
1234 * it didn't need a bounce buffer then it better
1235 * not touch req->buffer either...
1236 */
1237 req->buffer = bio_data(bio);
a2dec7b3
TH
1238 req->__sector = bio->bi_sector;
1239 req->__data_len += bytes;
6728cb0e 1240 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1241 if (!blk_rq_cpu_valid(req))
1242 req->cpu = bio->bi_comp_cpu;
6728cb0e 1243 drive_stat_acct(req, 0);
812d4026 1244 elv_bio_merged(q, req, bio);
6728cb0e
JA
1245 if (!attempt_front_merge(q, req))
1246 elv_merged_request(q, req, el_ret);
1247 goto out;
1248
1249 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1250 default:
1251 ;
1da177e4
LT
1252 }
1253
450991bc 1254get_rq:
7749a8d4
JA
1255 /*
1256 * This sync check and mask will be re-done in init_request_from_bio(),
1257 * but we need to set it earlier to expose the sync flag to the
1258 * rq allocator and io schedulers.
1259 */
1260 rw_flags = bio_data_dir(bio);
1261 if (sync)
7b6d91da 1262 rw_flags |= REQ_SYNC;
7749a8d4 1263
1da177e4 1264 /*
450991bc 1265 * Grab a free request. This is might sleep but can not fail.
d6344532 1266 * Returns with the queue unlocked.
450991bc 1267 */
7749a8d4 1268 req = get_request_wait(q, rw_flags, bio);
d6344532 1269
450991bc
NP
1270 /*
1271 * After dropping the lock and possibly sleeping here, our request
1272 * may now be mergeable after it had proven unmergeable (above).
1273 * We don't worry about that case for efficiency. It won't happen
1274 * often, and the elevators are able to handle it.
1da177e4 1275 */
52d9e675 1276 init_request_from_bio(req, bio);
1da177e4 1277
450991bc 1278 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1279 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1280 bio_flagged(bio, BIO_CPU_AFFINE))
1281 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1282 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1283 blk_plug_device(q);
1da177e4
LT
1284 add_request(q, req);
1285out:
644b2d99 1286 if (unplug || !queue_should_plug(q))
1da177e4 1287 __generic_unplug_device(q);
1da177e4
LT
1288 spin_unlock_irq(q->queue_lock);
1289 return 0;
1da177e4
LT
1290}
1291
1292/*
1293 * If bio->bi_dev is a partition, remap the location
1294 */
1295static inline void blk_partition_remap(struct bio *bio)
1296{
1297 struct block_device *bdev = bio->bi_bdev;
1298
bf2de6f5 1299 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1300 struct hd_struct *p = bdev->bd_part;
1301
1da177e4
LT
1302 bio->bi_sector += p->start_sect;
1303 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1304
5f3ea37c 1305 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1306 bdev->bd_dev,
c7149d6b 1307 bio->bi_sector - p->start_sect);
1da177e4
LT
1308 }
1309}
1310
1da177e4
LT
1311static void handle_bad_sector(struct bio *bio)
1312{
1313 char b[BDEVNAME_SIZE];
1314
1315 printk(KERN_INFO "attempt to access beyond end of device\n");
1316 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1317 bdevname(bio->bi_bdev, b),
1318 bio->bi_rw,
1319 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1320 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1321
1322 set_bit(BIO_EOF, &bio->bi_flags);
1323}
1324
c17bb495
AM
1325#ifdef CONFIG_FAIL_MAKE_REQUEST
1326
1327static DECLARE_FAULT_ATTR(fail_make_request);
1328
1329static int __init setup_fail_make_request(char *str)
1330{
1331 return setup_fault_attr(&fail_make_request, str);
1332}
1333__setup("fail_make_request=", setup_fail_make_request);
1334
1335static int should_fail_request(struct bio *bio)
1336{
eddb2e26
TH
1337 struct hd_struct *part = bio->bi_bdev->bd_part;
1338
1339 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1340 return should_fail(&fail_make_request, bio->bi_size);
1341
1342 return 0;
1343}
1344
1345static int __init fail_make_request_debugfs(void)
1346{
1347 return init_fault_attr_dentries(&fail_make_request,
1348 "fail_make_request");
1349}
1350
1351late_initcall(fail_make_request_debugfs);
1352
1353#else /* CONFIG_FAIL_MAKE_REQUEST */
1354
1355static inline int should_fail_request(struct bio *bio)
1356{
1357 return 0;
1358}
1359
1360#endif /* CONFIG_FAIL_MAKE_REQUEST */
1361
c07e2b41
JA
1362/*
1363 * Check whether this bio extends beyond the end of the device.
1364 */
1365static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1366{
1367 sector_t maxsector;
1368
1369 if (!nr_sectors)
1370 return 0;
1371
1372 /* Test device or partition size, when known. */
1373 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1374 if (maxsector) {
1375 sector_t sector = bio->bi_sector;
1376
1377 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1378 /*
1379 * This may well happen - the kernel calls bread()
1380 * without checking the size of the device, e.g., when
1381 * mounting a device.
1382 */
1383 handle_bad_sector(bio);
1384 return 1;
1385 }
1386 }
1387
1388 return 0;
1389}
1390
1da177e4 1391/**
710027a4 1392 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1393 * @bio: The bio describing the location in memory and on the device.
1394 *
1395 * generic_make_request() is used to make I/O requests of block
1396 * devices. It is passed a &struct bio, which describes the I/O that needs
1397 * to be done.
1398 *
1399 * generic_make_request() does not return any status. The
1400 * success/failure status of the request, along with notification of
1401 * completion, is delivered asynchronously through the bio->bi_end_io
1402 * function described (one day) else where.
1403 *
1404 * The caller of generic_make_request must make sure that bi_io_vec
1405 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1406 * set to describe the device address, and the
1407 * bi_end_io and optionally bi_private are set to describe how
1408 * completion notification should be signaled.
1409 *
1410 * generic_make_request and the drivers it calls may use bi_next if this
1411 * bio happens to be merged with someone else, and may change bi_dev and
1412 * bi_sector for remaps as it sees fit. So the values of these fields
1413 * should NOT be depended on after the call to generic_make_request.
1414 */
d89d8796 1415static inline void __generic_make_request(struct bio *bio)
1da177e4 1416{
165125e1 1417 struct request_queue *q;
5ddfe969 1418 sector_t old_sector;
1da177e4 1419 int ret, nr_sectors = bio_sectors(bio);
2056a782 1420 dev_t old_dev;
51fd77bd 1421 int err = -EIO;
1da177e4
LT
1422
1423 might_sleep();
1da177e4 1424
c07e2b41
JA
1425 if (bio_check_eod(bio, nr_sectors))
1426 goto end_io;
1da177e4
LT
1427
1428 /*
1429 * Resolve the mapping until finished. (drivers are
1430 * still free to implement/resolve their own stacking
1431 * by explicitly returning 0)
1432 *
1433 * NOTE: we don't repeat the blk_size check for each new device.
1434 * Stacking drivers are expected to know what they are doing.
1435 */
5ddfe969 1436 old_sector = -1;
2056a782 1437 old_dev = 0;
1da177e4
LT
1438 do {
1439 char b[BDEVNAME_SIZE];
1440
1441 q = bdev_get_queue(bio->bi_bdev);
a7384677 1442 if (unlikely(!q)) {
1da177e4
LT
1443 printk(KERN_ERR
1444 "generic_make_request: Trying to access "
1445 "nonexistent block-device %s (%Lu)\n",
1446 bdevname(bio->bi_bdev, b),
1447 (long long) bio->bi_sector);
a7384677 1448 goto end_io;
1da177e4
LT
1449 }
1450
7b6d91da 1451 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
67efc925 1452 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1453 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1454 bdevname(bio->bi_bdev, b),
1455 bio_sectors(bio),
1456 queue_max_hw_sectors(q));
1da177e4
LT
1457 goto end_io;
1458 }
1459
fde6ad22 1460 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1461 goto end_io;
1462
c17bb495
AM
1463 if (should_fail_request(bio))
1464 goto end_io;
1465
1da177e4
LT
1466 /*
1467 * If this device has partitions, remap block n
1468 * of partition p to block n+start(p) of the disk.
1469 */
1470 blk_partition_remap(bio);
1471
7ba1ba12
MP
1472 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1473 goto end_io;
1474
5ddfe969 1475 if (old_sector != -1)
22a7c31a 1476 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1477
5ddfe969 1478 old_sector = bio->bi_sector;
2056a782
JA
1479 old_dev = bio->bi_bdev->bd_dev;
1480
c07e2b41
JA
1481 if (bio_check_eod(bio, nr_sectors))
1482 goto end_io;
a7384677 1483
7b6d91da 1484 if ((bio->bi_rw & REQ_DISCARD) && !blk_queue_discard(q)) {
51fd77bd
JA
1485 err = -EOPNOTSUPP;
1486 goto end_io;
1487 }
5ddfe969 1488
01edede4
MK
1489 trace_block_bio_queue(q, bio);
1490
1da177e4
LT
1491 ret = q->make_request_fn(q, bio);
1492 } while (ret);
a7384677
TH
1493
1494 return;
1495
1496end_io:
1497 bio_endio(bio, err);
1da177e4
LT
1498}
1499
d89d8796
NB
1500/*
1501 * We only want one ->make_request_fn to be active at a time,
1502 * else stack usage with stacked devices could be a problem.
bddd87c7 1503 * So use current->bio_list to keep a list of requests
d89d8796 1504 * submited by a make_request_fn function.
bddd87c7 1505 * current->bio_list is also used as a flag to say if
d89d8796
NB
1506 * generic_make_request is currently active in this task or not.
1507 * If it is NULL, then no make_request is active. If it is non-NULL,
1508 * then a make_request is active, and new requests should be added
1509 * at the tail
1510 */
1511void generic_make_request(struct bio *bio)
1512{
bddd87c7
AM
1513 struct bio_list bio_list_on_stack;
1514
1515 if (current->bio_list) {
d89d8796 1516 /* make_request is active */
bddd87c7 1517 bio_list_add(current->bio_list, bio);
d89d8796
NB
1518 return;
1519 }
1520 /* following loop may be a bit non-obvious, and so deserves some
1521 * explanation.
1522 * Before entering the loop, bio->bi_next is NULL (as all callers
1523 * ensure that) so we have a list with a single bio.
1524 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1525 * we assign bio_list to a pointer to the bio_list_on_stack,
1526 * thus initialising the bio_list of new bios to be
d89d8796
NB
1527 * added. __generic_make_request may indeed add some more bios
1528 * through a recursive call to generic_make_request. If it
1529 * did, we find a non-NULL value in bio_list and re-enter the loop
1530 * from the top. In this case we really did just take the bio
bddd87c7
AM
1531 * of the top of the list (no pretending) and so remove it from
1532 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1533 *
1534 * The loop was structured like this to make only one call to
1535 * __generic_make_request (which is important as it is large and
1536 * inlined) and to keep the structure simple.
1537 */
1538 BUG_ON(bio->bi_next);
bddd87c7
AM
1539 bio_list_init(&bio_list_on_stack);
1540 current->bio_list = &bio_list_on_stack;
d89d8796 1541 do {
d89d8796 1542 __generic_make_request(bio);
bddd87c7 1543 bio = bio_list_pop(current->bio_list);
d89d8796 1544 } while (bio);
bddd87c7 1545 current->bio_list = NULL; /* deactivate */
d89d8796 1546}
1da177e4
LT
1547EXPORT_SYMBOL(generic_make_request);
1548
1549/**
710027a4 1550 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1551 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1552 * @bio: The &struct bio which describes the I/O
1553 *
1554 * submit_bio() is very similar in purpose to generic_make_request(), and
1555 * uses that function to do most of the work. Both are fairly rough
710027a4 1556 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1557 *
1558 */
1559void submit_bio(int rw, struct bio *bio)
1560{
1561 int count = bio_sectors(bio);
1562
22e2c507 1563 bio->bi_rw |= rw;
1da177e4 1564
bf2de6f5
JA
1565 /*
1566 * If it's a regular read/write or a barrier with data attached,
1567 * go through the normal accounting stuff before submission.
1568 */
1b99973f 1569 if (bio_has_data(bio) && !(rw & (1 << BIO_RW_DISCARD))) {
bf2de6f5
JA
1570 if (rw & WRITE) {
1571 count_vm_events(PGPGOUT, count);
1572 } else {
1573 task_io_account_read(bio->bi_size);
1574 count_vm_events(PGPGIN, count);
1575 }
1576
1577 if (unlikely(block_dump)) {
1578 char b[BDEVNAME_SIZE];
1579 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1580 current->comm, task_pid_nr(current),
bf2de6f5
JA
1581 (rw & WRITE) ? "WRITE" : "READ",
1582 (unsigned long long)bio->bi_sector,
6728cb0e 1583 bdevname(bio->bi_bdev, b));
bf2de6f5 1584 }
1da177e4
LT
1585 }
1586
1587 generic_make_request(bio);
1588}
1da177e4
LT
1589EXPORT_SYMBOL(submit_bio);
1590
82124d60
KU
1591/**
1592 * blk_rq_check_limits - Helper function to check a request for the queue limit
1593 * @q: the queue
1594 * @rq: the request being checked
1595 *
1596 * Description:
1597 * @rq may have been made based on weaker limitations of upper-level queues
1598 * in request stacking drivers, and it may violate the limitation of @q.
1599 * Since the block layer and the underlying device driver trust @rq
1600 * after it is inserted to @q, it should be checked against @q before
1601 * the insertion using this generic function.
1602 *
1603 * This function should also be useful for request stacking drivers
1604 * in some cases below, so export this fuction.
1605 * Request stacking drivers like request-based dm may change the queue
1606 * limits while requests are in the queue (e.g. dm's table swapping).
1607 * Such request stacking drivers should check those requests agaist
1608 * the new queue limits again when they dispatch those requests,
1609 * although such checkings are also done against the old queue limits
1610 * when submitting requests.
1611 */
1612int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1613{
ae03bf63
MP
1614 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1615 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1616 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1617 return -EIO;
1618 }
1619
1620 /*
1621 * queue's settings related to segment counting like q->bounce_pfn
1622 * may differ from that of other stacking queues.
1623 * Recalculate it to check the request correctly on this queue's
1624 * limitation.
1625 */
1626 blk_recalc_rq_segments(rq);
8a78362c 1627 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1628 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1629 return -EIO;
1630 }
1631
1632 return 0;
1633}
1634EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1635
1636/**
1637 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1638 * @q: the queue to submit the request
1639 * @rq: the request being queued
1640 */
1641int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1642{
1643 unsigned long flags;
1644
1645 if (blk_rq_check_limits(q, rq))
1646 return -EIO;
1647
1648#ifdef CONFIG_FAIL_MAKE_REQUEST
1649 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1650 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1651 return -EIO;
1652#endif
1653
1654 spin_lock_irqsave(q->queue_lock, flags);
1655
1656 /*
1657 * Submitting request must be dequeued before calling this function
1658 * because it will be linked to another request_queue
1659 */
1660 BUG_ON(blk_queued_rq(rq));
1661
1662 drive_stat_acct(rq, 1);
1663 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1664
1665 spin_unlock_irqrestore(q->queue_lock, flags);
1666
1667 return 0;
1668}
1669EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1670
80a761fd
TH
1671/**
1672 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1673 * @rq: request to examine
1674 *
1675 * Description:
1676 * A request could be merge of IOs which require different failure
1677 * handling. This function determines the number of bytes which
1678 * can be failed from the beginning of the request without
1679 * crossing into area which need to be retried further.
1680 *
1681 * Return:
1682 * The number of bytes to fail.
1683 *
1684 * Context:
1685 * queue_lock must be held.
1686 */
1687unsigned int blk_rq_err_bytes(const struct request *rq)
1688{
1689 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1690 unsigned int bytes = 0;
1691 struct bio *bio;
1692
1693 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1694 return blk_rq_bytes(rq);
1695
1696 /*
1697 * Currently the only 'mixing' which can happen is between
1698 * different fastfail types. We can safely fail portions
1699 * which have all the failfast bits that the first one has -
1700 * the ones which are at least as eager to fail as the first
1701 * one.
1702 */
1703 for (bio = rq->bio; bio; bio = bio->bi_next) {
1704 if ((bio->bi_rw & ff) != ff)
1705 break;
1706 bytes += bio->bi_size;
1707 }
1708
1709 /* this could lead to infinite loop */
1710 BUG_ON(blk_rq_bytes(rq) && !bytes);
1711 return bytes;
1712}
1713EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1714
bc58ba94
JA
1715static void blk_account_io_completion(struct request *req, unsigned int bytes)
1716{
c2553b58 1717 if (blk_do_io_stat(req)) {
bc58ba94
JA
1718 const int rw = rq_data_dir(req);
1719 struct hd_struct *part;
1720 int cpu;
1721
1722 cpu = part_stat_lock();
83096ebf 1723 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1724 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1725 part_stat_unlock();
1726 }
1727}
1728
1729static void blk_account_io_done(struct request *req)
1730{
bc58ba94
JA
1731 /*
1732 * Account IO completion. bar_rq isn't accounted as a normal
1733 * IO on queueing nor completion. Accounting the containing
1734 * request is enough.
1735 */
c2553b58 1736 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1737 unsigned long duration = jiffies - req->start_time;
1738 const int rw = rq_data_dir(req);
1739 struct hd_struct *part;
1740 int cpu;
1741
1742 cpu = part_stat_lock();
83096ebf 1743 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1744
1745 part_stat_inc(cpu, part, ios[rw]);
1746 part_stat_add(cpu, part, ticks[rw], duration);
1747 part_round_stats(cpu, part);
316d315b 1748 part_dec_in_flight(part, rw);
bc58ba94
JA
1749
1750 part_stat_unlock();
1751 }
1752}
1753
3bcddeac 1754/**
9934c8c0
TH
1755 * blk_peek_request - peek at the top of a request queue
1756 * @q: request queue to peek at
1757 *
1758 * Description:
1759 * Return the request at the top of @q. The returned request
1760 * should be started using blk_start_request() before LLD starts
1761 * processing it.
1762 *
1763 * Return:
1764 * Pointer to the request at the top of @q if available. Null
1765 * otherwise.
1766 *
1767 * Context:
1768 * queue_lock must be held.
1769 */
1770struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1771{
1772 struct request *rq;
1773 int ret;
1774
1775 while ((rq = __elv_next_request(q)) != NULL) {
1776 if (!(rq->cmd_flags & REQ_STARTED)) {
1777 /*
1778 * This is the first time the device driver
1779 * sees this request (possibly after
1780 * requeueing). Notify IO scheduler.
1781 */
33659ebb 1782 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1783 elv_activate_rq(q, rq);
1784
1785 /*
1786 * just mark as started even if we don't start
1787 * it, a request that has been delayed should
1788 * not be passed by new incoming requests
1789 */
1790 rq->cmd_flags |= REQ_STARTED;
1791 trace_block_rq_issue(q, rq);
1792 }
1793
1794 if (!q->boundary_rq || q->boundary_rq == rq) {
1795 q->end_sector = rq_end_sector(rq);
1796 q->boundary_rq = NULL;
1797 }
1798
1799 if (rq->cmd_flags & REQ_DONTPREP)
1800 break;
1801
2e46e8b2 1802 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1803 /*
1804 * make sure space for the drain appears we
1805 * know we can do this because max_hw_segments
1806 * has been adjusted to be one fewer than the
1807 * device can handle
1808 */
1809 rq->nr_phys_segments++;
1810 }
1811
1812 if (!q->prep_rq_fn)
1813 break;
1814
1815 ret = q->prep_rq_fn(q, rq);
1816 if (ret == BLKPREP_OK) {
1817 break;
1818 } else if (ret == BLKPREP_DEFER) {
1819 /*
1820 * the request may have been (partially) prepped.
1821 * we need to keep this request in the front to
1822 * avoid resource deadlock. REQ_STARTED will
1823 * prevent other fs requests from passing this one.
1824 */
2e46e8b2 1825 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1826 !(rq->cmd_flags & REQ_DONTPREP)) {
1827 /*
1828 * remove the space for the drain we added
1829 * so that we don't add it again
1830 */
1831 --rq->nr_phys_segments;
1832 }
1833
1834 rq = NULL;
1835 break;
1836 } else if (ret == BLKPREP_KILL) {
1837 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1838 /*
1839 * Mark this request as started so we don't trigger
1840 * any debug logic in the end I/O path.
1841 */
1842 blk_start_request(rq);
40cbbb78 1843 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1844 } else {
1845 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1846 break;
1847 }
1848 }
1849
1850 return rq;
1851}
9934c8c0 1852EXPORT_SYMBOL(blk_peek_request);
158dbda0 1853
9934c8c0 1854void blk_dequeue_request(struct request *rq)
158dbda0 1855{
9934c8c0
TH
1856 struct request_queue *q = rq->q;
1857
158dbda0
TH
1858 BUG_ON(list_empty(&rq->queuelist));
1859 BUG_ON(ELV_ON_HASH(rq));
1860
1861 list_del_init(&rq->queuelist);
1862
1863 /*
1864 * the time frame between a request being removed from the lists
1865 * and to it is freed is accounted as io that is in progress at
1866 * the driver side.
1867 */
9195291e 1868 if (blk_account_rq(rq)) {
0a7ae2ff 1869 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1870 set_io_start_time_ns(rq);
1871 }
158dbda0
TH
1872}
1873
9934c8c0
TH
1874/**
1875 * blk_start_request - start request processing on the driver
1876 * @req: request to dequeue
1877 *
1878 * Description:
1879 * Dequeue @req and start timeout timer on it. This hands off the
1880 * request to the driver.
1881 *
1882 * Block internal functions which don't want to start timer should
1883 * call blk_dequeue_request().
1884 *
1885 * Context:
1886 * queue_lock must be held.
1887 */
1888void blk_start_request(struct request *req)
1889{
1890 blk_dequeue_request(req);
1891
1892 /*
5f49f631
TH
1893 * We are now handing the request to the hardware, initialize
1894 * resid_len to full count and add the timeout handler.
9934c8c0 1895 */
5f49f631 1896 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1897 if (unlikely(blk_bidi_rq(req)))
1898 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1899
9934c8c0
TH
1900 blk_add_timer(req);
1901}
1902EXPORT_SYMBOL(blk_start_request);
1903
1904/**
1905 * blk_fetch_request - fetch a request from a request queue
1906 * @q: request queue to fetch a request from
1907 *
1908 * Description:
1909 * Return the request at the top of @q. The request is started on
1910 * return and LLD can start processing it immediately.
1911 *
1912 * Return:
1913 * Pointer to the request at the top of @q if available. Null
1914 * otherwise.
1915 *
1916 * Context:
1917 * queue_lock must be held.
1918 */
1919struct request *blk_fetch_request(struct request_queue *q)
1920{
1921 struct request *rq;
1922
1923 rq = blk_peek_request(q);
1924 if (rq)
1925 blk_start_request(rq);
1926 return rq;
1927}
1928EXPORT_SYMBOL(blk_fetch_request);
1929
3bcddeac 1930/**
2e60e022 1931 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1932 * @req: the request being processed
710027a4 1933 * @error: %0 for success, < %0 for error
8ebf9756 1934 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1935 *
1936 * Description:
8ebf9756
RD
1937 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1938 * the request structure even if @req doesn't have leftover.
1939 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1940 *
1941 * This special helper function is only for request stacking drivers
1942 * (e.g. request-based dm) so that they can handle partial completion.
1943 * Actual device drivers should use blk_end_request instead.
1944 *
1945 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1946 * %false return from this function.
3bcddeac
KU
1947 *
1948 * Return:
2e60e022
TH
1949 * %false - this request doesn't have any more data
1950 * %true - this request has more data
3bcddeac 1951 **/
2e60e022 1952bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1953{
5450d3e1 1954 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1955 struct bio *bio;
1956
2e60e022
TH
1957 if (!req->bio)
1958 return false;
1959
5f3ea37c 1960 trace_block_rq_complete(req->q, req);
2056a782 1961
1da177e4 1962 /*
6f41469c
TH
1963 * For fs requests, rq is just carrier of independent bio's
1964 * and each partial completion should be handled separately.
1965 * Reset per-request error on each partial completion.
1966 *
1967 * TODO: tj: This is too subtle. It would be better to let
1968 * low level drivers do what they see fit.
1da177e4 1969 */
33659ebb 1970 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
1971 req->errors = 0;
1972
33659ebb
CH
1973 if (error && req->cmd_type == REQ_TYPE_FS &&
1974 !(req->cmd_flags & REQ_QUIET)) {
6728cb0e 1975 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1976 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1977 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1978 }
1979
bc58ba94 1980 blk_account_io_completion(req, nr_bytes);
d72d904a 1981
1da177e4
LT
1982 total_bytes = bio_nbytes = 0;
1983 while ((bio = req->bio) != NULL) {
1984 int nbytes;
1985
1986 if (nr_bytes >= bio->bi_size) {
1987 req->bio = bio->bi_next;
1988 nbytes = bio->bi_size;
5bb23a68 1989 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1990 next_idx = 0;
1991 bio_nbytes = 0;
1992 } else {
1993 int idx = bio->bi_idx + next_idx;
1994
af498d7f 1995 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1996 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1997 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1998 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1999 break;
2000 }
2001
2002 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2003 BIO_BUG_ON(nbytes > bio->bi_size);
2004
2005 /*
2006 * not a complete bvec done
2007 */
2008 if (unlikely(nbytes > nr_bytes)) {
2009 bio_nbytes += nr_bytes;
2010 total_bytes += nr_bytes;
2011 break;
2012 }
2013
2014 /*
2015 * advance to the next vector
2016 */
2017 next_idx++;
2018 bio_nbytes += nbytes;
2019 }
2020
2021 total_bytes += nbytes;
2022 nr_bytes -= nbytes;
2023
6728cb0e
JA
2024 bio = req->bio;
2025 if (bio) {
1da177e4
LT
2026 /*
2027 * end more in this run, or just return 'not-done'
2028 */
2029 if (unlikely(nr_bytes <= 0))
2030 break;
2031 }
2032 }
2033
2034 /*
2035 * completely done
2036 */
2e60e022
TH
2037 if (!req->bio) {
2038 /*
2039 * Reset counters so that the request stacking driver
2040 * can find how many bytes remain in the request
2041 * later.
2042 */
a2dec7b3 2043 req->__data_len = 0;
2e60e022
TH
2044 return false;
2045 }
1da177e4
LT
2046
2047 /*
2048 * if the request wasn't completed, update state
2049 */
2050 if (bio_nbytes) {
5bb23a68 2051 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2052 bio->bi_idx += next_idx;
2053 bio_iovec(bio)->bv_offset += nr_bytes;
2054 bio_iovec(bio)->bv_len -= nr_bytes;
2055 }
2056
a2dec7b3 2057 req->__data_len -= total_bytes;
2e46e8b2
TH
2058 req->buffer = bio_data(req->bio);
2059
2060 /* update sector only for requests with clear definition of sector */
33659ebb 2061 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2062 req->__sector += total_bytes >> 9;
2e46e8b2 2063
80a761fd
TH
2064 /* mixed attributes always follow the first bio */
2065 if (req->cmd_flags & REQ_MIXED_MERGE) {
2066 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2067 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2068 }
2069
2e46e8b2
TH
2070 /*
2071 * If total number of sectors is less than the first segment
2072 * size, something has gone terribly wrong.
2073 */
2074 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2075 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2076 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2077 }
2078
2079 /* recalculate the number of segments */
1da177e4 2080 blk_recalc_rq_segments(req);
2e46e8b2 2081
2e60e022 2082 return true;
1da177e4 2083}
2e60e022 2084EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2085
2e60e022
TH
2086static bool blk_update_bidi_request(struct request *rq, int error,
2087 unsigned int nr_bytes,
2088 unsigned int bidi_bytes)
5efccd17 2089{
2e60e022
TH
2090 if (blk_update_request(rq, error, nr_bytes))
2091 return true;
5efccd17 2092
2e60e022
TH
2093 /* Bidi request must be completed as a whole */
2094 if (unlikely(blk_bidi_rq(rq)) &&
2095 blk_update_request(rq->next_rq, error, bidi_bytes))
2096 return true;
5efccd17 2097
e2e1a148
JA
2098 if (blk_queue_add_random(rq->q))
2099 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2100
2101 return false;
1da177e4
LT
2102}
2103
1da177e4
LT
2104/*
2105 * queue lock must be held
2106 */
2e60e022 2107static void blk_finish_request(struct request *req, int error)
1da177e4 2108{
b8286239
KU
2109 if (blk_rq_tagged(req))
2110 blk_queue_end_tag(req->q, req);
2111
ba396a6c 2112 BUG_ON(blk_queued_rq(req));
1da177e4 2113
33659ebb 2114 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2115 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2116
e78042e5
MA
2117 blk_delete_timer(req);
2118
bc58ba94 2119 blk_account_io_done(req);
b8286239 2120
1da177e4 2121 if (req->end_io)
8ffdc655 2122 req->end_io(req, error);
b8286239
KU
2123 else {
2124 if (blk_bidi_rq(req))
2125 __blk_put_request(req->next_rq->q, req->next_rq);
2126
1da177e4 2127 __blk_put_request(req->q, req);
b8286239 2128 }
1da177e4
LT
2129}
2130
3b11313a 2131/**
2e60e022
TH
2132 * blk_end_bidi_request - Complete a bidi request
2133 * @rq: the request to complete
2134 * @error: %0 for success, < %0 for error
2135 * @nr_bytes: number of bytes to complete @rq
2136 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2137 *
2138 * Description:
e3a04fe3 2139 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2140 * Drivers that supports bidi can safely call this member for any
2141 * type of request, bidi or uni. In the later case @bidi_bytes is
2142 * just ignored.
336cdb40
KU
2143 *
2144 * Return:
2e60e022
TH
2145 * %false - we are done with this request
2146 * %true - still buffers pending for this request
a0cd1285 2147 **/
b1f74493 2148static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2149 unsigned int nr_bytes, unsigned int bidi_bytes)
2150{
336cdb40 2151 struct request_queue *q = rq->q;
2e60e022 2152 unsigned long flags;
32fab448 2153
2e60e022
TH
2154 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2155 return true;
32fab448 2156
336cdb40 2157 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2158 blk_finish_request(rq, error);
336cdb40
KU
2159 spin_unlock_irqrestore(q->queue_lock, flags);
2160
2e60e022 2161 return false;
32fab448
KU
2162}
2163
336cdb40 2164/**
2e60e022
TH
2165 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2166 * @rq: the request to complete
710027a4 2167 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2168 * @nr_bytes: number of bytes to complete @rq
2169 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2170 *
2171 * Description:
2e60e022
TH
2172 * Identical to blk_end_bidi_request() except that queue lock is
2173 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2174 *
2175 * Return:
2e60e022
TH
2176 * %false - we are done with this request
2177 * %true - still buffers pending for this request
336cdb40 2178 **/
b1f74493
FT
2179static bool __blk_end_bidi_request(struct request *rq, int error,
2180 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2181{
2e60e022
TH
2182 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2183 return true;
336cdb40 2184
2e60e022 2185 blk_finish_request(rq, error);
336cdb40 2186
2e60e022 2187 return false;
336cdb40 2188}
e19a3ab0
KU
2189
2190/**
2191 * blk_end_request - Helper function for drivers to complete the request.
2192 * @rq: the request being processed
710027a4 2193 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2194 * @nr_bytes: number of bytes to complete
2195 *
2196 * Description:
2197 * Ends I/O on a number of bytes attached to @rq.
2198 * If @rq has leftover, sets it up for the next range of segments.
2199 *
2200 * Return:
b1f74493
FT
2201 * %false - we are done with this request
2202 * %true - still buffers pending for this request
e19a3ab0 2203 **/
b1f74493 2204bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2205{
b1f74493 2206 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2207}
56ad1740 2208EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2209
2210/**
b1f74493
FT
2211 * blk_end_request_all - Helper function for drives to finish the request.
2212 * @rq: the request to finish
8ebf9756 2213 * @error: %0 for success, < %0 for error
336cdb40
KU
2214 *
2215 * Description:
b1f74493
FT
2216 * Completely finish @rq.
2217 */
2218void blk_end_request_all(struct request *rq, int error)
336cdb40 2219{
b1f74493
FT
2220 bool pending;
2221 unsigned int bidi_bytes = 0;
336cdb40 2222
b1f74493
FT
2223 if (unlikely(blk_bidi_rq(rq)))
2224 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2225
b1f74493
FT
2226 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2227 BUG_ON(pending);
2228}
56ad1740 2229EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2230
b1f74493
FT
2231/**
2232 * blk_end_request_cur - Helper function to finish the current request chunk.
2233 * @rq: the request to finish the current chunk for
8ebf9756 2234 * @error: %0 for success, < %0 for error
b1f74493
FT
2235 *
2236 * Description:
2237 * Complete the current consecutively mapped chunk from @rq.
2238 *
2239 * Return:
2240 * %false - we are done with this request
2241 * %true - still buffers pending for this request
2242 */
2243bool blk_end_request_cur(struct request *rq, int error)
2244{
2245 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2246}
56ad1740 2247EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2248
80a761fd
TH
2249/**
2250 * blk_end_request_err - Finish a request till the next failure boundary.
2251 * @rq: the request to finish till the next failure boundary for
2252 * @error: must be negative errno
2253 *
2254 * Description:
2255 * Complete @rq till the next failure boundary.
2256 *
2257 * Return:
2258 * %false - we are done with this request
2259 * %true - still buffers pending for this request
2260 */
2261bool blk_end_request_err(struct request *rq, int error)
2262{
2263 WARN_ON(error >= 0);
2264 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2265}
2266EXPORT_SYMBOL_GPL(blk_end_request_err);
2267
e3a04fe3 2268/**
b1f74493
FT
2269 * __blk_end_request - Helper function for drivers to complete the request.
2270 * @rq: the request being processed
2271 * @error: %0 for success, < %0 for error
2272 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2273 *
2274 * Description:
b1f74493 2275 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2276 *
2277 * Return:
b1f74493
FT
2278 * %false - we are done with this request
2279 * %true - still buffers pending for this request
e3a04fe3 2280 **/
b1f74493 2281bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2282{
b1f74493 2283 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2284}
56ad1740 2285EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2286
32fab448 2287/**
b1f74493
FT
2288 * __blk_end_request_all - Helper function for drives to finish the request.
2289 * @rq: the request to finish
8ebf9756 2290 * @error: %0 for success, < %0 for error
32fab448
KU
2291 *
2292 * Description:
b1f74493 2293 * Completely finish @rq. Must be called with queue lock held.
32fab448 2294 */
b1f74493 2295void __blk_end_request_all(struct request *rq, int error)
32fab448 2296{
b1f74493
FT
2297 bool pending;
2298 unsigned int bidi_bytes = 0;
2299
2300 if (unlikely(blk_bidi_rq(rq)))
2301 bidi_bytes = blk_rq_bytes(rq->next_rq);
2302
2303 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2304 BUG_ON(pending);
32fab448 2305}
56ad1740 2306EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2307
e19a3ab0 2308/**
b1f74493
FT
2309 * __blk_end_request_cur - Helper function to finish the current request chunk.
2310 * @rq: the request to finish the current chunk for
8ebf9756 2311 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2312 *
2313 * Description:
b1f74493
FT
2314 * Complete the current consecutively mapped chunk from @rq. Must
2315 * be called with queue lock held.
e19a3ab0
KU
2316 *
2317 * Return:
b1f74493
FT
2318 * %false - we are done with this request
2319 * %true - still buffers pending for this request
2320 */
2321bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2322{
b1f74493 2323 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2324}
56ad1740 2325EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2326
80a761fd
TH
2327/**
2328 * __blk_end_request_err - Finish a request till the next failure boundary.
2329 * @rq: the request to finish till the next failure boundary for
2330 * @error: must be negative errno
2331 *
2332 * Description:
2333 * Complete @rq till the next failure boundary. Must be called
2334 * with queue lock held.
2335 *
2336 * Return:
2337 * %false - we are done with this request
2338 * %true - still buffers pending for this request
2339 */
2340bool __blk_end_request_err(struct request *rq, int error)
2341{
2342 WARN_ON(error >= 0);
2343 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2344}
2345EXPORT_SYMBOL_GPL(__blk_end_request_err);
2346
86db1e29
JA
2347void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2348 struct bio *bio)
1da177e4 2349{
a82afdfc 2350 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2351 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2352
fb2dce86
DW
2353 if (bio_has_data(bio)) {
2354 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2355 rq->buffer = bio_data(bio);
2356 }
a2dec7b3 2357 rq->__data_len = bio->bi_size;
1da177e4 2358 rq->bio = rq->biotail = bio;
1da177e4 2359
66846572
N
2360 if (bio->bi_bdev)
2361 rq->rq_disk = bio->bi_bdev->bd_disk;
2362}
1da177e4 2363
2d4dc890
IL
2364#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2365/**
2366 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2367 * @rq: the request to be flushed
2368 *
2369 * Description:
2370 * Flush all pages in @rq.
2371 */
2372void rq_flush_dcache_pages(struct request *rq)
2373{
2374 struct req_iterator iter;
2375 struct bio_vec *bvec;
2376
2377 rq_for_each_segment(bvec, rq, iter)
2378 flush_dcache_page(bvec->bv_page);
2379}
2380EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2381#endif
2382
ef9e3fac
KU
2383/**
2384 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2385 * @q : the queue of the device being checked
2386 *
2387 * Description:
2388 * Check if underlying low-level drivers of a device are busy.
2389 * If the drivers want to export their busy state, they must set own
2390 * exporting function using blk_queue_lld_busy() first.
2391 *
2392 * Basically, this function is used only by request stacking drivers
2393 * to stop dispatching requests to underlying devices when underlying
2394 * devices are busy. This behavior helps more I/O merging on the queue
2395 * of the request stacking driver and prevents I/O throughput regression
2396 * on burst I/O load.
2397 *
2398 * Return:
2399 * 0 - Not busy (The request stacking driver should dispatch request)
2400 * 1 - Busy (The request stacking driver should stop dispatching request)
2401 */
2402int blk_lld_busy(struct request_queue *q)
2403{
2404 if (q->lld_busy_fn)
2405 return q->lld_busy_fn(q);
2406
2407 return 0;
2408}
2409EXPORT_SYMBOL_GPL(blk_lld_busy);
2410
b0fd271d
KU
2411/**
2412 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2413 * @rq: the clone request to be cleaned up
2414 *
2415 * Description:
2416 * Free all bios in @rq for a cloned request.
2417 */
2418void blk_rq_unprep_clone(struct request *rq)
2419{
2420 struct bio *bio;
2421
2422 while ((bio = rq->bio) != NULL) {
2423 rq->bio = bio->bi_next;
2424
2425 bio_put(bio);
2426 }
2427}
2428EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2429
2430/*
2431 * Copy attributes of the original request to the clone request.
2432 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2433 */
2434static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2435{
2436 dst->cpu = src->cpu;
2437 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2438 dst->cmd_type = src->cmd_type;
2439 dst->__sector = blk_rq_pos(src);
2440 dst->__data_len = blk_rq_bytes(src);
2441 dst->nr_phys_segments = src->nr_phys_segments;
2442 dst->ioprio = src->ioprio;
2443 dst->extra_len = src->extra_len;
2444}
2445
2446/**
2447 * blk_rq_prep_clone - Helper function to setup clone request
2448 * @rq: the request to be setup
2449 * @rq_src: original request to be cloned
2450 * @bs: bio_set that bios for clone are allocated from
2451 * @gfp_mask: memory allocation mask for bio
2452 * @bio_ctr: setup function to be called for each clone bio.
2453 * Returns %0 for success, non %0 for failure.
2454 * @data: private data to be passed to @bio_ctr
2455 *
2456 * Description:
2457 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2458 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2459 * are not copied, and copying such parts is the caller's responsibility.
2460 * Also, pages which the original bios are pointing to are not copied
2461 * and the cloned bios just point same pages.
2462 * So cloned bios must be completed before original bios, which means
2463 * the caller must complete @rq before @rq_src.
2464 */
2465int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2466 struct bio_set *bs, gfp_t gfp_mask,
2467 int (*bio_ctr)(struct bio *, struct bio *, void *),
2468 void *data)
2469{
2470 struct bio *bio, *bio_src;
2471
2472 if (!bs)
2473 bs = fs_bio_set;
2474
2475 blk_rq_init(NULL, rq);
2476
2477 __rq_for_each_bio(bio_src, rq_src) {
2478 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2479 if (!bio)
2480 goto free_and_out;
2481
2482 __bio_clone(bio, bio_src);
2483
2484 if (bio_integrity(bio_src) &&
7878cba9 2485 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2486 goto free_and_out;
2487
2488 if (bio_ctr && bio_ctr(bio, bio_src, data))
2489 goto free_and_out;
2490
2491 if (rq->bio) {
2492 rq->biotail->bi_next = bio;
2493 rq->biotail = bio;
2494 } else
2495 rq->bio = rq->biotail = bio;
2496 }
2497
2498 __blk_rq_prep_clone(rq, rq_src);
2499
2500 return 0;
2501
2502free_and_out:
2503 if (bio)
2504 bio_free(bio, bs);
2505 blk_rq_unprep_clone(rq);
2506
2507 return -ENOMEM;
2508}
2509EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2510
18887ad9 2511int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2512{
2513 return queue_work(kblockd_workqueue, work);
2514}
1da177e4
LT
2515EXPORT_SYMBOL(kblockd_schedule_work);
2516
1da177e4
LT
2517int __init blk_dev_init(void)
2518{
9eb55b03
NK
2519 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2520 sizeof(((struct request *)0)->cmd_flags));
2521
1da177e4
LT
2522 kblockd_workqueue = create_workqueue("kblockd");
2523 if (!kblockd_workqueue)
2524 panic("Failed to create kblockd\n");
2525
2526 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2527 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2528
8324aa91 2529 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2530 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2531
d38ecf93 2532 return 0;
1da177e4 2533}