]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/x86/mm/fault.c
mm: invoke oom-killer from page fault
[net-next-2.6.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
1da177e4
LT
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
0fd0e3da 13#include <linux/mmiotrace.h>
1da177e4
LT
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
1da177e4
LT
17#include <linux/interrupt.h>
18#include <linux/init.h>
19#include <linux/tty.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/compiler.h>
c61e211d
HH
22#include <linux/highmem.h>
23#include <linux/bootmem.h> /* for max_low_pfn */
1eeb66a1 24#include <linux/vmalloc.h>
1da177e4 25#include <linux/module.h>
0f2fbdcb 26#include <linux/kprobes.h>
ab2bf0c1 27#include <linux/uaccess.h>
1eeb66a1 28#include <linux/kdebug.h>
1da177e4
LT
29
30#include <asm/system.h>
c61e211d
HH
31#include <asm/desc.h>
32#include <asm/segment.h>
1da177e4
LT
33#include <asm/pgalloc.h>
34#include <asm/smp.h>
35#include <asm/tlbflush.h>
36#include <asm/proto.h>
1da177e4 37#include <asm-generic/sections.h>
70ef5641 38#include <asm/traps.h>
1da177e4 39
33cb5243
HH
40/*
41 * Page fault error code bits
42 * bit 0 == 0 means no page found, 1 means protection fault
43 * bit 1 == 0 means read, 1 means write
44 * bit 2 == 0 means kernel, 1 means user-mode
45 * bit 3 == 1 means use of reserved bit detected
46 * bit 4 == 1 means fault was an instruction fetch
47 */
8a19da7b 48#define PF_PROT (1<<0)
66c58156 49#define PF_WRITE (1<<1)
8a19da7b
IM
50#define PF_USER (1<<2)
51#define PF_RSVD (1<<3)
66c58156
AK
52#define PF_INSTR (1<<4)
53
0fd0e3da 54static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 55{
fd3fdf11 56#ifdef CONFIG_MMIOTRACE
0fd0e3da
PP
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
86069782 60#endif
0fd0e3da 61 return 0;
86069782
PP
62}
63
74a0b576 64static inline int notify_page_fault(struct pt_regs *regs)
1bd858a5 65{
33cb5243 66#ifdef CONFIG_KPROBES
74a0b576
CH
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
f8c2ee22 70 if (!user_mode_vm(regs)) {
74a0b576
CH
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
1bd858a5 76
74a0b576 77 return ret;
74a0b576 78#else
74a0b576 79 return 0;
74a0b576 80#endif
33cb5243 81}
1bd858a5 82
1dc85be0
HH
83/*
84 * X86_32
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
87 *
88 * X86_64
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner
93 */
94static int is_prefetch(struct pt_regs *regs, unsigned long addr,
95 unsigned long error_code)
33cb5243 96{
ab2bf0c1 97 unsigned char *instr;
1da177e4 98 int scan_more = 1;
33cb5243 99 int prefetch = 0;
f1290ec9 100 unsigned char *max_instr;
1da177e4 101
3085354d
IM
102 /*
103 * If it was a exec (instruction fetch) fault on NX page, then
104 * do not ignore the fault:
105 */
66c58156 106 if (error_code & PF_INSTR)
1da177e4 107 return 0;
1dc85be0 108
f2857ce9 109 instr = (unsigned char *)convert_ip_to_linear(current, regs);
f1290ec9 110 max_instr = instr + 15;
1da177e4 111
76381fee 112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
113 return 0;
114
33cb5243 115 while (scan_more && instr < max_instr) {
1da177e4
LT
116 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
119
ab2bf0c1 120 if (probe_kernel_address(instr, opcode))
33cb5243 121 break;
1da177e4 122
33cb5243
HH
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
1da177e4
LT
125 instr++;
126
33cb5243 127 switch (instr_hi) {
1da177e4
LT
128 case 0x20:
129 case 0x30:
33cb5243
HH
130 /*
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
135 */
1da177e4
LT
136 scan_more = ((instr_lo & 7) == 0x6);
137 break;
33cb5243 138#ifdef CONFIG_X86_64
1da177e4 139 case 0x40:
33cb5243
HH
140 /*
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
146 */
76381fee 147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
1da177e4 148 break;
33cb5243 149#endif
1da177e4
LT
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
33cb5243 153 break;
1da177e4 154 case 0xF0:
1dc85be0 155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
1da177e4 156 scan_more = !instr_lo || (instr_lo>>1) == 1;
33cb5243 157 break;
1da177e4
LT
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
f2857ce9 161
ab2bf0c1 162 if (probe_kernel_address(instr, opcode))
1da177e4
LT
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
33cb5243 166 break;
1da177e4
LT
167 default:
168 scan_more = 0;
169 break;
33cb5243 170 }
1da177e4
LT
171 }
172 return prefetch;
173}
174
c4aba4a8
HH
175static void force_sig_info_fault(int si_signo, int si_code,
176 unsigned long address, struct task_struct *tsk)
177{
178 siginfo_t info;
179
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
184 force_sig_info(si_signo, &info, tsk);
185}
186
1156e098 187#ifdef CONFIG_X86_64
33cb5243
HH
188static int bad_address(void *p)
189{
1da177e4 190 unsigned long dummy;
ab2bf0c1 191 return probe_kernel_address((unsigned long *)p, dummy);
33cb5243 192}
1156e098 193#endif
1da177e4 194
cae30f82 195static void dump_pagetable(unsigned long address)
1da177e4 196{
1156e098
HH
197#ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page;
199
200 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202#ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX;
211 }
212#else
213 printk("*pde = %08lx ", page);
214#endif
215
216 /*
217 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already.
221 */
222 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) {
225 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 }
230
231 printk("\n");
232#else /* CONFIG_X86_64 */
1da177e4
LT
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
236 pte_t *pte;
237
f51c9452 238 pgd = (pgd_t *)read_cr3();
1da177e4 239
33cb5243 240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
1da177e4 241 pgd += pgd_index(address);
1da177e4 242 if (bad_address(pgd)) goto bad;
d646bce4 243 printk("PGD %lx ", pgd_val(*pgd));
33cb5243 244 if (!pgd_present(*pgd)) goto ret;
1da177e4 245
d2ae5b5f 246 pud = pud_offset(pgd, address);
1da177e4
LT
247 if (bad_address(pud)) goto bad;
248 printk("PUD %lx ", pud_val(*pud));
b5360222
AK
249 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret;
1da177e4
LT
251
252 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad;
254 printk("PMD %lx ", pmd_val(*pmd));
b1992df3 255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
1da177e4
LT
256
257 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad;
33cb5243 259 printk("PTE %lx", pte_val(*pte));
1da177e4
LT
260ret:
261 printk("\n");
262 return;
263bad:
264 printk("BAD\n");
1156e098
HH
265#endif
266}
267
268#ifdef CONFIG_X86_32
269static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270{
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
275
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
278
279 if (!pgd_present(*pgd_k))
280 return NULL;
281
282 /*
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
286 */
287
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
292
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
1da177e4 303}
1156e098 304#endif
1da177e4 305
1dc85be0 306#ifdef CONFIG_X86_64
33cb5243 307static const char errata93_warning[] =
1da177e4
LT
308KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310KERN_ERR "******* Please consider a BIOS update.\n"
311KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
fdfe8aa8 312#endif
1da177e4
LT
313
314/* Workaround for K8 erratum #93 & buggy BIOS.
315 BIOS SMM functions are required to use a specific workaround
33cb5243
HH
316 to avoid corruption of the 64bit RIP register on C stepping K8.
317 A lot of BIOS that didn't get tested properly miss this.
1da177e4
LT
318 The OS sees this as a page fault with the upper 32bits of RIP cleared.
319 Try to work around it here.
fdfe8aa8
HH
320 Note we only handle faults in kernel here.
321 Does nothing for X86_32
322 */
33cb5243 323static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 324{
fdfe8aa8 325#ifdef CONFIG_X86_64
1da177e4 326 static int warned;
65ea5b03 327 if (address != regs->ip)
1da177e4 328 return 0;
33cb5243 329 if ((address >> 32) != 0)
1da177e4
LT
330 return 0;
331 address |= 0xffffffffUL << 32;
33cb5243
HH
332 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) {
1da177e4 334 if (!warned) {
33cb5243 335 printk(errata93_warning);
1da177e4
LT
336 warned = 1;
337 }
65ea5b03 338 regs->ip = address;
1da177e4
LT
339 return 1;
340 }
fdfe8aa8 341#endif
1da177e4 342 return 0;
33cb5243 343}
1da177e4 344
35f3266f
HH
345/*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB. We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode.
350 */
351static int is_errata100(struct pt_regs *regs, unsigned long address)
352{
353#ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 (address >> 32))
356 return 1;
357#endif
358 return 0;
359}
360
29caf2f9
HH
361static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{
363#ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
365 /*
366 * Pentium F0 0F C7 C8 bug workaround.
367 */
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
370
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
374 }
375 }
376#endif
377 return 0;
378}
379
b3279c7f
HH
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
382{
1156e098
HH
383#ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
fd40d6e3 386#endif
1156e098
HH
387
388#ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) {
93809be8 390 unsigned int level;
1156e098
HH
391 pte_t *pte = lookup_address(address, &level);
392
393 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute "
395 "NX-protected page - exploit attempt? "
350b4da7 396 "(uid: %d)\n", current_uid());
1156e098
HH
397 }
398#endif
1156e098 399
19f0dda9 400 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 401 if (address < PAGE_SIZE)
19f0dda9 402 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 403 else
19f0dda9 404 printk(KERN_CONT "paging request");
f294a8ce 405 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 406 printk(KERN_ALERT "IP:");
b3279c7f
HH
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
409}
410
1156e098 411#ifdef CONFIG_X86_64
1da177e4
LT
412static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 unsigned long error_code)
414{
1209140c 415 unsigned long flags = oops_begin();
874d93d1 416 int sig = SIGKILL;
6e3f3617 417 struct task_struct *tsk;
1209140c 418
1da177e4
LT
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 current->comm, address);
421 dump_pagetable(address);
6e3f3617
JB
422 tsk = current;
423 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code;
22f5991c 426 if (__die("Bad pagetable", regs, error_code))
874d93d1
AH
427 sig = 0;
428 oops_end(flags, regs, sig);
1da177e4 429}
1156e098 430#endif
1da177e4 431
d8b57bb7
TG
432static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433{
434 if ((error_code & PF_WRITE) && !pte_write(*pte))
435 return 0;
436 if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 return 0;
438
439 return 1;
440}
441
5b727a3b
JF
442/*
443 * Handle a spurious fault caused by a stale TLB entry. This allows
444 * us to lazily refresh the TLB when increasing the permissions of a
445 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
446 * expensive since that implies doing a full cross-processor TLB
447 * flush, even if no stale TLB entries exist on other processors.
448 * There are no security implications to leaving a stale TLB when
449 * increasing the permissions on a page.
450 */
451static int spurious_fault(unsigned long address,
452 unsigned long error_code)
453{
454 pgd_t *pgd;
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
459 /* Reserved-bit violation or user access to kernel space? */
460 if (error_code & (PF_USER | PF_RSVD))
461 return 0;
462
463 pgd = init_mm.pgd + pgd_index(address);
464 if (!pgd_present(*pgd))
465 return 0;
466
467 pud = pud_offset(pgd, address);
468 if (!pud_present(*pud))
469 return 0;
470
d8b57bb7
TG
471 if (pud_large(*pud))
472 return spurious_fault_check(error_code, (pte_t *) pud);
473
5b727a3b
JF
474 pmd = pmd_offset(pud, address);
475 if (!pmd_present(*pmd))
476 return 0;
477
d8b57bb7
TG
478 if (pmd_large(*pmd))
479 return spurious_fault_check(error_code, (pte_t *) pmd);
480
5b727a3b
JF
481 pte = pte_offset_kernel(pmd, address);
482 if (!pte_present(*pte))
483 return 0;
484
d8b57bb7 485 return spurious_fault_check(error_code, pte);
5b727a3b
JF
486}
487
1da177e4 488/*
f8c2ee22
HH
489 * X86_32
490 * Handle a fault on the vmalloc or module mapping area
491 *
492 * X86_64
f95190b2 493 * Handle a fault on the vmalloc area
3b9ba4d5
AK
494 *
495 * This assumes no large pages in there.
1da177e4
LT
496 */
497static int vmalloc_fault(unsigned long address)
498{
fdfe8aa8
HH
499#ifdef CONFIG_X86_32
500 unsigned long pgd_paddr;
501 pmd_t *pmd_k;
502 pte_t *pte_k;
b29c701d
HN
503
504 /* Make sure we are in vmalloc area */
505 if (!(address >= VMALLOC_START && address < VMALLOC_END))
506 return -1;
507
fdfe8aa8
HH
508 /*
509 * Synchronize this task's top level page-table
510 * with the 'reference' page table.
511 *
512 * Do _not_ use "current" here. We might be inside
513 * an interrupt in the middle of a task switch..
514 */
515 pgd_paddr = read_cr3();
516 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
517 if (!pmd_k)
518 return -1;
519 pte_k = pte_offset_kernel(pmd_k, address);
520 if (!pte_present(*pte_k))
521 return -1;
522 return 0;
523#else
1da177e4
LT
524 pgd_t *pgd, *pgd_ref;
525 pud_t *pud, *pud_ref;
526 pmd_t *pmd, *pmd_ref;
527 pte_t *pte, *pte_ref;
528
cf89ec92
HH
529 /* Make sure we are in vmalloc area */
530 if (!(address >= VMALLOC_START && address < VMALLOC_END))
531 return -1;
532
1da177e4
LT
533 /* Copy kernel mappings over when needed. This can also
534 happen within a race in page table update. In the later
535 case just flush. */
536
537 pgd = pgd_offset(current->mm ?: &init_mm, address);
538 pgd_ref = pgd_offset_k(address);
539 if (pgd_none(*pgd_ref))
540 return -1;
541 if (pgd_none(*pgd))
542 set_pgd(pgd, *pgd_ref);
8c914cb7 543 else
46a82b2d 544 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1da177e4
LT
545
546 /* Below here mismatches are bugs because these lower tables
547 are shared */
548
549 pud = pud_offset(pgd, address);
550 pud_ref = pud_offset(pgd_ref, address);
551 if (pud_none(*pud_ref))
552 return -1;
46a82b2d 553 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
1da177e4
LT
554 BUG();
555 pmd = pmd_offset(pud, address);
556 pmd_ref = pmd_offset(pud_ref, address);
557 if (pmd_none(*pmd_ref))
558 return -1;
559 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
560 BUG();
561 pte_ref = pte_offset_kernel(pmd_ref, address);
562 if (!pte_present(*pte_ref))
563 return -1;
564 pte = pte_offset_kernel(pmd, address);
3b9ba4d5
AK
565 /* Don't use pte_page here, because the mappings can point
566 outside mem_map, and the NUMA hash lookup cannot handle
567 that. */
568 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
1da177e4 569 BUG();
1da177e4 570 return 0;
fdfe8aa8 571#endif
1da177e4
LT
572}
573
abd4f750 574int show_unhandled_signals = 1;
1da177e4
LT
575
576/*
577 * This routine handles page faults. It determines the address,
578 * and the problem, and then passes it off to one of the appropriate
579 * routines.
1da177e4 580 */
f8c2ee22
HH
581#ifdef CONFIG_X86_64
582asmlinkage
583#endif
584void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4
LT
585{
586 struct task_struct *tsk;
587 struct mm_struct *mm;
33cb5243 588 struct vm_area_struct *vma;
1da177e4 589 unsigned long address;
f8c2ee22
HH
590 int write, si_code;
591 int fault;
592#ifdef CONFIG_X86_64
1209140c 593 unsigned long flags;
874d93d1 594 int sig;
f8c2ee22 595#endif
1da177e4 596
a9ba9a3b
AV
597 tsk = current;
598 mm = tsk->mm;
599 prefetchw(&mm->mmap_sem);
600
1da177e4 601 /* get the address */
f51c9452 602 address = read_cr2();
1da177e4 603
c4aba4a8 604 si_code = SEGV_MAPERR;
1da177e4 605
608566b4
HH
606 if (notify_page_fault(regs))
607 return;
0fd0e3da 608 if (unlikely(kmmio_fault(regs, address)))
86069782 609 return;
1da177e4
LT
610
611 /*
612 * We fault-in kernel-space virtual memory on-demand. The
613 * 'reference' page table is init_mm.pgd.
614 *
615 * NOTE! We MUST NOT take any locks for this case. We may
616 * be in an interrupt or a critical region, and should
617 * only copy the information from the master page table,
618 * nothing more.
619 *
620 * This verifies that the fault happens in kernel space
621 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 622 * protection error (error_code & 9) == 0.
1da177e4 623 */
f8c2ee22
HH
624#ifdef CONFIG_X86_32
625 if (unlikely(address >= TASK_SIZE)) {
cf89ec92
HH
626#else
627 if (unlikely(address >= TASK_SIZE64)) {
628#endif
f8c2ee22
HH
629 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
630 vmalloc_fault(address) >= 0)
631 return;
5b727a3b
JF
632
633 /* Can handle a stale RO->RW TLB */
634 if (spurious_fault(address, error_code))
635 return;
636
f8c2ee22
HH
637 /*
638 * Don't take the mm semaphore here. If we fixup a prefetch
639 * fault we could otherwise deadlock.
640 */
641 goto bad_area_nosemaphore;
642 }
643
cf89ec92 644
f8c2ee22 645 /*
891cffbd
LT
646 * It's safe to allow irq's after cr2 has been saved and the
647 * vmalloc fault has been handled.
648 *
649 * User-mode registers count as a user access even for any
650 * potential system fault or CPU buglet.
f8c2ee22 651 */
891cffbd
LT
652 if (user_mode_vm(regs)) {
653 local_irq_enable();
654 error_code |= PF_USER;
655 } else if (regs->flags & X86_EFLAGS_IF)
8c914cb7
JB
656 local_irq_enable();
657
891cffbd 658#ifdef CONFIG_X86_64
66c58156 659 if (unlikely(error_code & PF_RSVD))
1da177e4 660 pgtable_bad(address, regs, error_code);
891cffbd 661#endif
1da177e4
LT
662
663 /*
33cb5243
HH
664 * If we're in an interrupt, have no user context or are running in an
665 * atomic region then we must not take the fault.
1da177e4
LT
666 */
667 if (unlikely(in_atomic() || !mm))
668 goto bad_area_nosemaphore;
669
3a1dfe6e
IM
670 /*
671 * When running in the kernel we expect faults to occur only to
1da177e4 672 * addresses in user space. All other faults represent errors in the
676b1855 673 * kernel and should generate an OOPS. Unfortunately, in the case of an
80f7228b 674 * erroneous fault occurring in a code path which already holds mmap_sem
1da177e4
LT
675 * we will deadlock attempting to validate the fault against the
676 * address space. Luckily the kernel only validly references user
677 * space from well defined areas of code, which are listed in the
678 * exceptions table.
679 *
680 * As the vast majority of faults will be valid we will only perform
676b1855 681 * the source reference check when there is a possibility of a deadlock.
1da177e4
LT
682 * Attempt to lock the address space, if we cannot we then validate the
683 * source. If this is invalid we can skip the address space check,
684 * thus avoiding the deadlock.
685 */
686 if (!down_read_trylock(&mm->mmap_sem)) {
66c58156 687 if ((error_code & PF_USER) == 0 &&
65ea5b03 688 !search_exception_tables(regs->ip))
1da177e4
LT
689 goto bad_area_nosemaphore;
690 down_read(&mm->mmap_sem);
691 }
692
693 vma = find_vma(mm, address);
694 if (!vma)
695 goto bad_area;
f8c2ee22 696 if (vma->vm_start <= address)
1da177e4
LT
697 goto good_area;
698 if (!(vma->vm_flags & VM_GROWSDOWN))
699 goto bad_area;
33cb5243 700 if (error_code & PF_USER) {
6f4d368e
HH
701 /*
702 * Accessing the stack below %sp is always a bug.
703 * The large cushion allows instructions like enter
704 * and pusha to work. ("enter $65535,$31" pushes
705 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 706 */
65ea5b03 707 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
1da177e4
LT
708 goto bad_area;
709 }
710 if (expand_stack(vma, address))
711 goto bad_area;
712/*
713 * Ok, we have a good vm_area for this memory access, so
714 * we can handle it..
715 */
716good_area:
c4aba4a8 717 si_code = SEGV_ACCERR;
1da177e4 718 write = 0;
66c58156 719 switch (error_code & (PF_PROT|PF_WRITE)) {
33cb5243
HH
720 default: /* 3: write, present */
721 /* fall through */
722 case PF_WRITE: /* write, not present */
723 if (!(vma->vm_flags & VM_WRITE))
724 goto bad_area;
725 write++;
726 break;
727 case PF_PROT: /* read, present */
728 goto bad_area;
729 case 0: /* read, not present */
730 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1da177e4 731 goto bad_area;
1da177e4
LT
732 }
733
734 /*
735 * If for any reason at all we couldn't handle the fault,
736 * make sure we exit gracefully rather than endlessly redo
737 * the fault.
738 */
83c54070
NP
739 fault = handle_mm_fault(mm, vma, address, write);
740 if (unlikely(fault & VM_FAULT_ERROR)) {
741 if (fault & VM_FAULT_OOM)
742 goto out_of_memory;
743 else if (fault & VM_FAULT_SIGBUS)
744 goto do_sigbus;
745 BUG();
1da177e4 746 }
83c54070
NP
747 if (fault & VM_FAULT_MAJOR)
748 tsk->maj_flt++;
749 else
750 tsk->min_flt++;
d729ab35
HH
751
752#ifdef CONFIG_X86_32
753 /*
754 * Did it hit the DOS screen memory VA from vm86 mode?
755 */
756 if (v8086_mode(regs)) {
757 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
758 if (bit < 32)
759 tsk->thread.screen_bitmap |= 1 << bit;
760 }
761#endif
1da177e4
LT
762 up_read(&mm->mmap_sem);
763 return;
764
765/*
766 * Something tried to access memory that isn't in our memory map..
767 * Fix it, but check if it's kernel or user first..
768 */
769bad_area:
770 up_read(&mm->mmap_sem);
771
772bad_area_nosemaphore:
1da177e4 773 /* User mode accesses just cause a SIGSEGV */
66c58156 774 if (error_code & PF_USER) {
e5e3c84b
SR
775 /*
776 * It's possible to have interrupts off here.
777 */
778 local_irq_enable();
779
1156e098
HH
780 /*
781 * Valid to do another page fault here because this one came
782 * from user space.
783 */
1da177e4
LT
784 if (is_prefetch(regs, address, error_code))
785 return;
786
35f3266f 787 if (is_errata100(regs, address))
1da177e4
LT
788 return;
789
abd4f750
MAS
790 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
791 printk_ratelimit()) {
1da177e4 792 printk(
f294a8ce 793 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
6f4d368e 794 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
f294a8ce
VN
795 tsk->comm, task_pid_nr(tsk), address,
796 (void *) regs->ip, (void *) regs->sp, error_code);
03252919
AK
797 print_vma_addr(" in ", regs->ip);
798 printk("\n");
1da177e4 799 }
33cb5243 800
1da177e4
LT
801 tsk->thread.cr2 = address;
802 /* Kernel addresses are always protection faults */
803 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
804 tsk->thread.trap_no = 14;
c4aba4a8 805 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
1da177e4
LT
806 return;
807 }
808
29caf2f9
HH
809 if (is_f00f_bug(regs, address))
810 return;
811
1da177e4 812no_context:
1da177e4 813 /* Are we prepared to handle this kernel fault? */
33cb5243 814 if (fixup_exception(regs))
1da177e4 815 return;
1da177e4 816
33cb5243 817 /*
f8c2ee22
HH
818 * X86_32
819 * Valid to do another page fault here, because if this fault
820 * had been triggered by is_prefetch fixup_exception would have
821 * handled it.
822 *
823 * X86_64
1da177e4
LT
824 * Hall of shame of CPU/BIOS bugs.
825 */
33cb5243
HH
826 if (is_prefetch(regs, address, error_code))
827 return;
1da177e4
LT
828
829 if (is_errata93(regs, address))
33cb5243 830 return;
1da177e4
LT
831
832/*
833 * Oops. The kernel tried to access some bad page. We'll have to
834 * terminate things with extreme prejudice.
835 */
f8c2ee22
HH
836#ifdef CONFIG_X86_32
837 bust_spinlocks(1);
fd40d6e3
HH
838#else
839 flags = oops_begin();
840#endif
f8c2ee22
HH
841
842 show_fault_oops(regs, error_code, address);
1da177e4 843
f8c2ee22
HH
844 tsk->thread.cr2 = address;
845 tsk->thread.trap_no = 14;
846 tsk->thread.error_code = error_code;
fd40d6e3
HH
847
848#ifdef CONFIG_X86_32
f8c2ee22
HH
849 die("Oops", regs, error_code);
850 bust_spinlocks(0);
851 do_exit(SIGKILL);
fd40d6e3 852#else
874d93d1 853 sig = SIGKILL;
22f5991c 854 if (__die("Oops", regs, error_code))
874d93d1 855 sig = 0;
1da177e4
LT
856 /* Executive summary in case the body of the oops scrolled away */
857 printk(KERN_EMERG "CR2: %016lx\n", address);
874d93d1 858 oops_end(flags, regs, sig);
f8c2ee22 859#endif
1da177e4 860
1da177e4 861out_of_memory:
1c0fe6e3
NP
862 /*
863 * We ran out of memory, call the OOM killer, and return the userspace
864 * (which will retry the fault, or kill us if we got oom-killed).
865 */
1da177e4 866 up_read(&mm->mmap_sem);
1c0fe6e3
NP
867 pagefault_out_of_memory();
868 return;
1da177e4
LT
869
870do_sigbus:
871 up_read(&mm->mmap_sem);
872
873 /* Kernel mode? Handle exceptions or die */
66c58156 874 if (!(error_code & PF_USER))
1da177e4 875 goto no_context;
f8c2ee22
HH
876#ifdef CONFIG_X86_32
877 /* User space => ok to do another page fault */
878 if (is_prefetch(regs, address, error_code))
879 return;
880#endif
1da177e4
LT
881 tsk->thread.cr2 = address;
882 tsk->thread.error_code = error_code;
883 tsk->thread.trap_no = 14;
c4aba4a8 884 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
1da177e4 885}
9e43e1b7 886
8c914cb7 887DEFINE_SPINLOCK(pgd_lock);
2bff7383 888LIST_HEAD(pgd_list);
8c914cb7
JB
889
890void vmalloc_sync_all(void)
891{
1156e098
HH
892 unsigned long address;
893
cc643d46 894#ifdef CONFIG_X86_32
1156e098
HH
895 if (SHARED_KERNEL_PMD)
896 return;
897
cc643d46
JB
898 for (address = VMALLOC_START & PMD_MASK;
899 address >= TASK_SIZE && address < FIXADDR_TOP;
900 address += PMD_SIZE) {
67350a5c
JF
901 unsigned long flags;
902 struct page *page;
903
904 spin_lock_irqsave(&pgd_lock, flags);
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!vmalloc_sync_one(page_address(page),
907 address))
908 break;
1156e098 909 }
67350a5c 910 spin_unlock_irqrestore(&pgd_lock, flags);
1156e098
HH
911 }
912#else /* CONFIG_X86_64 */
cc643d46
JB
913 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
914 address += PGDIR_SIZE) {
67350a5c
JF
915 const pgd_t *pgd_ref = pgd_offset_k(address);
916 unsigned long flags;
917 struct page *page;
918
919 if (pgd_none(*pgd_ref))
920 continue;
921 spin_lock_irqsave(&pgd_lock, flags);
922 list_for_each_entry(page, &pgd_list, lru) {
923 pgd_t *pgd;
924 pgd = (pgd_t *)page_address(page) + pgd_index(address);
925 if (pgd_none(*pgd))
926 set_pgd(pgd, *pgd_ref);
927 else
928 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
8c914cb7 929 }
67350a5c 930 spin_unlock_irqrestore(&pgd_lock, flags);
8c914cb7 931 }
1156e098 932#endif
8c914cb7 933}