]> bbs.cooldavid.org Git - net-next-2.6.git/blame - arch/tile/kernel/process.c
Make do_execve() take a const filename pointer
[net-next-2.6.git] / arch / tile / kernel / process.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/preempt.h>
17#include <linux/module.h>
18#include <linux/fs.h>
19#include <linux/kprobes.h>
20#include <linux/elfcore.h>
21#include <linux/tick.h>
22#include <linux/init.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/hardirq.h>
26#include <linux/syscalls.h>
0707ad30 27#include <linux/kernel.h>
867e359b
CM
28#include <asm/system.h>
29#include <asm/stack.h>
30#include <asm/homecache.h>
0707ad30
CM
31#include <asm/syscalls.h>
32#ifdef CONFIG_HARDWALL
33#include <asm/hardwall.h>
34#endif
867e359b
CM
35#include <arch/chip.h>
36#include <arch/abi.h>
37
38
39/*
40 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
41 * idle loop over low power while in the idle loop, e.g. if we have
42 * one thread per core and we want to get threads out of futex waits fast.
43 */
44static int no_idle_nap;
45static int __init idle_setup(char *str)
46{
47 if (!str)
48 return -EINVAL;
49
50 if (!strcmp(str, "poll")) {
0707ad30 51 pr_info("using polling idle threads.\n");
867e359b
CM
52 no_idle_nap = 1;
53 } else if (!strcmp(str, "halt"))
54 no_idle_nap = 0;
55 else
56 return -1;
57
58 return 0;
59}
60early_param("idle", idle_setup);
61
62/*
63 * The idle thread. There's no useful work to be
64 * done, so just try to conserve power and have a
65 * low exit latency (ie sit in a loop waiting for
66 * somebody to say that they'd like to reschedule)
67 */
68void cpu_idle(void)
69{
867e359b
CM
70 int cpu = smp_processor_id();
71
72
73 current_thread_info()->status |= TS_POLLING;
74
75 if (no_idle_nap) {
76 while (1) {
77 while (!need_resched())
78 cpu_relax();
79 schedule();
80 }
81 }
82
83 /* endless idle loop with no priority at all */
84 while (1) {
85 tick_nohz_stop_sched_tick(1);
86 while (!need_resched()) {
87 if (cpu_is_offline(cpu))
88 BUG(); /* no HOTPLUG_CPU */
89
90 local_irq_disable();
91 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
92 current_thread_info()->status &= ~TS_POLLING;
93 /*
94 * TS_POLLING-cleared state must be visible before we
95 * test NEED_RESCHED:
96 */
97 smp_mb();
98
99 if (!need_resched())
100 _cpu_idle();
101 else
102 local_irq_enable();
103 current_thread_info()->status |= TS_POLLING;
104 }
105 tick_nohz_restart_sched_tick();
106 preempt_enable_no_resched();
107 schedule();
108 preempt_disable();
109 }
110}
111
112struct thread_info *alloc_thread_info(struct task_struct *task)
113{
114 struct page *page;
0707ad30 115 gfp_t flags = GFP_KERNEL;
867e359b
CM
116
117#ifdef CONFIG_DEBUG_STACK_USAGE
118 flags |= __GFP_ZERO;
119#endif
120
121 page = alloc_pages(flags, THREAD_SIZE_ORDER);
122 if (!page)
0707ad30 123 return NULL;
867e359b
CM
124
125 return (struct thread_info *)page_address(page);
126}
127
128/*
129 * Free a thread_info node, and all of its derivative
130 * data structures.
131 */
132void free_thread_info(struct thread_info *info)
133{
134 struct single_step_state *step_state = info->step_state;
135
0707ad30
CM
136#ifdef CONFIG_HARDWALL
137 /*
138 * We free a thread_info from the context of the task that has
139 * been scheduled next, so the original task is already dead.
140 * Calling deactivate here just frees up the data structures.
141 * If the task we're freeing held the last reference to a
142 * hardwall fd, it would have been released prior to this point
143 * anyway via exit_files(), and "hardwall" would be NULL by now.
144 */
145 if (info->task->thread.hardwall)
146 hardwall_deactivate(info->task);
147#endif
867e359b
CM
148
149 if (step_state) {
150
151 /*
152 * FIXME: we don't munmap step_state->buffer
153 * because the mm_struct for this process (info->task->mm)
154 * has already been zeroed in exit_mm(). Keeping a
155 * reference to it here seems like a bad move, so this
156 * means we can't munmap() the buffer, and therefore if we
157 * ptrace multiple threads in a process, we will slowly
158 * leak user memory. (Note that as soon as the last
159 * thread in a process dies, we will reclaim all user
160 * memory including single-step buffers in the usual way.)
161 * We should either assign a kernel VA to this buffer
162 * somehow, or we should associate the buffer(s) with the
163 * mm itself so we can clean them up that way.
164 */
165 kfree(step_state);
166 }
167
168 free_page((unsigned long)info);
169}
170
171static void save_arch_state(struct thread_struct *t);
172
867e359b
CM
173int copy_thread(unsigned long clone_flags, unsigned long sp,
174 unsigned long stack_size,
175 struct task_struct *p, struct pt_regs *regs)
176{
177 struct pt_regs *childregs;
178 unsigned long ksp;
179
180 /*
181 * When creating a new kernel thread we pass sp as zero.
182 * Assign it to a reasonable value now that we have the stack.
183 */
184 if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
185 sp = KSTK_TOP(p);
186
187 /*
188 * Do not clone step state from the parent; each thread
189 * must make its own lazily.
190 */
191 task_thread_info(p)->step_state = NULL;
192
193 /*
194 * Start new thread in ret_from_fork so it schedules properly
195 * and then return from interrupt like the parent.
196 */
197 p->thread.pc = (unsigned long) ret_from_fork;
198
199 /* Save user stack top pointer so we can ID the stack vm area later. */
200 p->thread.usp0 = sp;
201
202 /* Record the pid of the process that created this one. */
203 p->thread.creator_pid = current->pid;
204
205 /*
206 * Copy the registers onto the kernel stack so the
207 * return-from-interrupt code will reload it into registers.
208 */
209 childregs = task_pt_regs(p);
210 *childregs = *regs;
211 childregs->regs[0] = 0; /* return value is zero */
212 childregs->sp = sp; /* override with new user stack pointer */
213
214 /*
215 * Copy the callee-saved registers from the passed pt_regs struct
216 * into the context-switch callee-saved registers area.
217 * We have to restore the callee-saved registers since we may
218 * be cloning a userspace task with userspace register state,
219 * and we won't be unwinding the same kernel frames to restore them.
220 * Zero out the C ABI save area to mark the top of the stack.
221 */
222 ksp = (unsigned long) childregs;
223 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
224 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
225 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
226 memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
227 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
228 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
229 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
230 p->thread.ksp = ksp;
231
232#if CHIP_HAS_TILE_DMA()
233 /*
234 * No DMA in the new thread. We model this on the fact that
235 * fork() clears the pending signals, alarms, and aio for the child.
236 */
237 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
238 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
239#endif
240
241#if CHIP_HAS_SN_PROC()
242 /* Likewise, the new thread is not running static processor code. */
243 p->thread.sn_proc_running = 0;
244 memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
245#endif
246
247#if CHIP_HAS_PROC_STATUS_SPR()
248 /* New thread has its miscellaneous processor state bits clear. */
249 p->thread.proc_status = 0;
250#endif
251
0707ad30
CM
252#ifdef CONFIG_HARDWALL
253 /* New thread does not own any networks. */
254 p->thread.hardwall = NULL;
255#endif
867e359b
CM
256
257
258 /*
259 * Start the new thread with the current architecture state
260 * (user interrupt masks, etc.).
261 */
262 save_arch_state(&p->thread);
263
264 return 0;
265}
266
267/*
268 * Return "current" if it looks plausible, or else a pointer to a dummy.
269 * This can be helpful if we are just trying to emit a clean panic.
270 */
271struct task_struct *validate_current(void)
272{
273 static struct task_struct corrupt = { .comm = "<corrupt>" };
274 struct task_struct *tsk = current;
275 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
276 (void *)tsk > high_memory ||
277 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
0707ad30 278 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
867e359b
CM
279 tsk = &corrupt;
280 }
281 return tsk;
282}
283
284/* Take and return the pointer to the previous task, for schedule_tail(). */
285struct task_struct *sim_notify_fork(struct task_struct *prev)
286{
287 struct task_struct *tsk = current;
288 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
289 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
290 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
291 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
292 return prev;
293}
294
295int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
296{
297 struct pt_regs *ptregs = task_pt_regs(tsk);
298 elf_core_copy_regs(regs, ptregs);
299 return 1;
300}
301
302#if CHIP_HAS_TILE_DMA()
303
304/* Allow user processes to access the DMA SPRs */
305void grant_dma_mpls(void)
306{
307 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
308 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
309}
310
311/* Forbid user processes from accessing the DMA SPRs */
312void restrict_dma_mpls(void)
313{
314 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
315 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
316}
317
318/* Pause the DMA engine, then save off its state registers. */
319static void save_tile_dma_state(struct tile_dma_state *dma)
320{
321 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
322 unsigned long post_suspend_state;
323
324 /* If we're running, suspend the engine. */
325 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
326 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
327
328 /*
329 * Wait for the engine to idle, then save regs. Note that we
330 * want to record the "running" bit from before suspension,
331 * and the "done" bit from after, so that we can properly
332 * distinguish a case where the user suspended the engine from
333 * the case where the kernel suspended as part of the context
334 * swap.
335 */
336 do {
337 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
338 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
339
340 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
341 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
342 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
343 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
344 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
345 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
346 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
347 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
348 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
349}
350
351/* Restart a DMA that was running before we were context-switched out. */
352static void restore_tile_dma_state(struct thread_struct *t)
353{
354 const struct tile_dma_state *dma = &t->tile_dma_state;
355
356 /*
357 * The only way to restore the done bit is to run a zero
358 * length transaction.
359 */
360 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
361 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
362 __insn_mtspr(SPR_DMA_BYTE, 0);
363 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
364 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
365 SPR_DMA_STATUS__BUSY_MASK)
366 ;
367 }
368
369 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
370 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
371 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
372 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
373 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
374 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
375 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
376
377 /*
378 * Restart the engine if we were running and not done.
379 * Clear a pending async DMA fault that we were waiting on return
380 * to user space to execute, since we expect the DMA engine
381 * to regenerate those faults for us now. Note that we don't
382 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
383 * harmless if set, and it covers both DMA and the SN processor.
384 */
385 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
386 t->dma_async_tlb.fault_num = 0;
387 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
388 }
389}
390
391#endif
392
393static void save_arch_state(struct thread_struct *t)
394{
395#if CHIP_HAS_SPLIT_INTR_MASK()
396 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
397 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
398#else
399 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
400#endif
401 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
402 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
403 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
404 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
405 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
406 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
407 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
408#if CHIP_HAS_PROC_STATUS_SPR()
409 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
410#endif
411}
412
413static void restore_arch_state(const struct thread_struct *t)
414{
415#if CHIP_HAS_SPLIT_INTR_MASK()
416 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
417 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
418#else
419 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
420#endif
421 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
422 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
423 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
424 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
425 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
426 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
427 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
428#if CHIP_HAS_PROC_STATUS_SPR()
429 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
430#endif
431#if CHIP_HAS_TILE_RTF_HWM()
432 /*
433 * Clear this whenever we switch back to a process in case
434 * the previous process was monkeying with it. Even if enabled
435 * in CBOX_MSR1 via TILE_RTF_HWM_MIN, it's still just a
436 * performance hint, so isn't worth a full save/restore.
437 */
438 __insn_mtspr(SPR_TILE_RTF_HWM, 0);
439#endif
440}
441
442
443void _prepare_arch_switch(struct task_struct *next)
444{
445#if CHIP_HAS_SN_PROC()
446 int snctl;
447#endif
448#if CHIP_HAS_TILE_DMA()
449 struct tile_dma_state *dma = &current->thread.tile_dma_state;
450 if (dma->enabled)
451 save_tile_dma_state(dma);
452#endif
453#if CHIP_HAS_SN_PROC()
454 /*
455 * Suspend the static network processor if it was running.
456 * We do not suspend the fabric itself, just like we don't
457 * try to suspend the UDN.
458 */
459 snctl = __insn_mfspr(SPR_SNCTL);
460 current->thread.sn_proc_running =
461 (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
462 if (current->thread.sn_proc_running)
463 __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
464#endif
465}
466
467
867e359b
CM
468struct task_struct *__sched _switch_to(struct task_struct *prev,
469 struct task_struct *next)
470{
471 /* DMA state is already saved; save off other arch state. */
472 save_arch_state(&prev->thread);
473
474#if CHIP_HAS_TILE_DMA()
475 /*
476 * Restore DMA in new task if desired.
477 * Note that it is only safe to restart here since interrupts
478 * are disabled, so we can't take any DMATLB miss or access
479 * interrupts before we have finished switching stacks.
480 */
481 if (next->thread.tile_dma_state.enabled) {
482 restore_tile_dma_state(&next->thread);
483 grant_dma_mpls();
484 } else {
485 restrict_dma_mpls();
486 }
487#endif
488
489 /* Restore other arch state. */
490 restore_arch_state(&next->thread);
491
492#if CHIP_HAS_SN_PROC()
493 /*
494 * Restart static network processor in the new process
495 * if it was running before.
496 */
497 if (next->thread.sn_proc_running) {
498 int snctl = __insn_mfspr(SPR_SNCTL);
499 __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
500 }
501#endif
502
0707ad30
CM
503#ifdef CONFIG_HARDWALL
504 /* Enable or disable access to the network registers appropriately. */
505 if (prev->thread.hardwall != NULL) {
506 if (next->thread.hardwall == NULL)
507 restrict_network_mpls();
508 } else if (next->thread.hardwall != NULL) {
509 grant_network_mpls();
510 }
511#endif
867e359b
CM
512
513 /*
514 * Switch kernel SP, PC, and callee-saved registers.
515 * In the context of the new task, return the old task pointer
516 * (i.e. the task that actually called __switch_to).
517 * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp.
518 */
519 return __switch_to(prev, next, next_current_ksp0(next));
520}
521
0707ad30 522long _sys_fork(struct pt_regs *regs)
867e359b
CM
523{
524 return do_fork(SIGCHLD, regs->sp, regs, 0, NULL, NULL);
525}
526
0707ad30
CM
527long _sys_clone(unsigned long clone_flags, unsigned long newsp,
528 void __user *parent_tidptr, void __user *child_tidptr,
529 struct pt_regs *regs)
867e359b
CM
530{
531 if (!newsp)
532 newsp = regs->sp;
533 return do_fork(clone_flags, newsp, regs, 0,
534 parent_tidptr, child_tidptr);
535}
536
0707ad30 537long _sys_vfork(struct pt_regs *regs)
867e359b
CM
538{
539 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->sp,
540 regs, 0, NULL, NULL);
541}
542
543/*
544 * sys_execve() executes a new program.
545 */
d7627467
DH
546long _sys_execve(const char __user *path,
547 const char __user *const __user *argv,
548 const char __user *const __user *envp, struct pt_regs *regs)
867e359b 549{
0707ad30 550 long error;
867e359b
CM
551 char *filename;
552
553 filename = getname(path);
554 error = PTR_ERR(filename);
555 if (IS_ERR(filename))
556 goto out;
557 error = do_execve(filename, argv, envp, regs);
558 putname(filename);
559out:
560 return error;
561}
562
563#ifdef CONFIG_COMPAT
0707ad30
CM
564long _compat_sys_execve(char __user *path, compat_uptr_t __user *argv,
565 compat_uptr_t __user *envp, struct pt_regs *regs)
867e359b 566{
0707ad30 567 long error;
867e359b
CM
568 char *filename;
569
570 filename = getname(path);
571 error = PTR_ERR(filename);
572 if (IS_ERR(filename))
573 goto out;
574 error = compat_do_execve(filename, argv, envp, regs);
575 putname(filename);
576out:
577 return error;
578}
579#endif
580
581unsigned long get_wchan(struct task_struct *p)
582{
583 struct KBacktraceIterator kbt;
584
585 if (!p || p == current || p->state == TASK_RUNNING)
586 return 0;
587
588 for (KBacktraceIterator_init(&kbt, p, NULL);
589 !KBacktraceIterator_end(&kbt);
590 KBacktraceIterator_next(&kbt)) {
591 if (!in_sched_functions(kbt.it.pc))
592 return kbt.it.pc;
593 }
594
595 return 0;
596}
597
598/*
599 * We pass in lr as zero (cleared in kernel_thread) and the caller
600 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
601 * so that backtraces will stop with this function.
602 * Note that we don't use r0, since copy_thread() clears it.
603 */
604static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
605{
606 do_exit(fn(arg));
607}
608
609/*
610 * Create a kernel thread
611 */
612int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
613{
614 struct pt_regs regs;
615
616 memset(&regs, 0, sizeof(regs));
617 regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
618 regs.pc = (long) start_kernel_thread;
619 regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
620 regs.regs[1] = (long) fn; /* function pointer */
621 regs.regs[2] = (long) arg; /* parameter register */
622
623 /* Ok, create the new process.. */
624 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
625 0, NULL, NULL);
626}
627EXPORT_SYMBOL(kernel_thread);
628
629/* Flush thread state. */
630void flush_thread(void)
631{
632 /* Nothing */
633}
634
635/*
636 * Free current thread data structures etc..
637 */
638void exit_thread(void)
639{
640 /* Nothing */
641}
642
867e359b
CM
643void show_regs(struct pt_regs *regs)
644{
645 struct task_struct *tsk = validate_current();
0707ad30
CM
646 int i;
647
648 pr_err("\n");
649 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
867e359b 650 tsk->pid, tsk->comm, smp_processor_id());
0707ad30
CM
651#ifdef __tilegx__
652 for (i = 0; i < 51; i += 3)
653 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
654 i, regs->regs[i], i+1, regs->regs[i+1],
655 i+2, regs->regs[i+2]);
656 pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
657 regs->regs[51], regs->regs[52], regs->tp);
658 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
659#else
660 for (i = 0; i < 52; i += 3)
661 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
662 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
663 i, regs->regs[i], i+1, regs->regs[i+1],
664 i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
665 pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
666 regs->regs[52], regs->tp, regs->sp, regs->lr);
667#endif
668 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
867e359b
CM
669 regs->pc, regs->ex1, regs->faultnum);
670
671 dump_stack_regs(regs);
672}