]> bbs.cooldavid.org Git - net-next-2.6.git/blob - sound/soc/fsl/fsl_dma.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / sound / soc / fsl / fsl_dma.c
1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
7  * under the terms of the GNU General Public License version 2.  This
8  * program is licensed "as is" without any warranty of any kind, whether
9  * express or implied.
10  *
11  * This driver implements ASoC support for the Elo DMA controller, which is
12  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
13  * the PCM driver is what handles the DMA buffer.
14  */
15
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/gfp.h>
23
24 #include <sound/core.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28
29 #include <asm/io.h>
30
31 #include "fsl_dma.h"
32
33 /*
34  * The formats that the DMA controller supports, which is anything
35  * that is 8, 16, or 32 bits.
36  */
37 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
38                             SNDRV_PCM_FMTBIT_U8         | \
39                             SNDRV_PCM_FMTBIT_S16_LE     | \
40                             SNDRV_PCM_FMTBIT_S16_BE     | \
41                             SNDRV_PCM_FMTBIT_U16_LE     | \
42                             SNDRV_PCM_FMTBIT_U16_BE     | \
43                             SNDRV_PCM_FMTBIT_S24_LE     | \
44                             SNDRV_PCM_FMTBIT_S24_BE     | \
45                             SNDRV_PCM_FMTBIT_U24_LE     | \
46                             SNDRV_PCM_FMTBIT_U24_BE     | \
47                             SNDRV_PCM_FMTBIT_S32_LE     | \
48                             SNDRV_PCM_FMTBIT_S32_BE     | \
49                             SNDRV_PCM_FMTBIT_U32_LE     | \
50                             SNDRV_PCM_FMTBIT_U32_BE)
51
52 #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
53                           SNDRV_PCM_RATE_CONTINUOUS)
54
55 /* DMA global data.  This structure is used by fsl_dma_open() to determine
56  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
57  * not allow the machine driver to provide this information to the PCM
58  * driver in advance, and there's no way to differentiate between the two
59  * DMA controllers.  So for now, this driver only supports one SSI device
60  * using two DMA channels.  We cannot support multiple DMA devices.
61  *
62  * ssi_stx_phys: bus address of SSI STX register
63  * ssi_srx_phys: bus address of SSI SRX register
64  * dma_channel: pointer to the DMA channel's registers
65  * irq: IRQ for this DMA channel
66  * assigned: set to 1 if that DMA channel is assigned to a substream
67  */
68 static struct {
69         dma_addr_t ssi_stx_phys;
70         dma_addr_t ssi_srx_phys;
71         struct ccsr_dma_channel __iomem *dma_channel[2];
72         unsigned int irq[2];
73         unsigned int assigned[2];
74 } dma_global_data;
75
76 /*
77  * The number of DMA links to use.  Two is the bare minimum, but if you
78  * have really small links you might need more.
79  */
80 #define NUM_DMA_LINKS   2
81
82 /** fsl_dma_private: p-substream DMA data
83  *
84  * Each substream has a 1-to-1 association with a DMA channel.
85  *
86  * The link[] array is first because it needs to be aligned on a 32-byte
87  * boundary, so putting it first will ensure alignment without padding the
88  * structure.
89  *
90  * @link[]: array of link descriptors
91  * @controller_id: which DMA controller (0, 1, ...)
92  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
93  * @dma_channel: pointer to the DMA channel's registers
94  * @irq: IRQ for this DMA channel
95  * @substream: pointer to the substream object, needed by the ISR
96  * @ssi_sxx_phys: bus address of the STX or SRX register to use
97  * @ld_buf_phys: physical address of the LD buffer
98  * @current_link: index into link[] of the link currently being processed
99  * @dma_buf_phys: physical address of the DMA buffer
100  * @dma_buf_next: physical address of the next period to process
101  * @dma_buf_end: physical address of the byte after the end of the DMA
102  * @buffer period_size: the size of a single period
103  * @num_periods: the number of periods in the DMA buffer
104  */
105 struct fsl_dma_private {
106         struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
107         unsigned int controller_id;
108         unsigned int channel_id;
109         struct ccsr_dma_channel __iomem *dma_channel;
110         unsigned int irq;
111         struct snd_pcm_substream *substream;
112         dma_addr_t ssi_sxx_phys;
113         dma_addr_t ld_buf_phys;
114         unsigned int current_link;
115         dma_addr_t dma_buf_phys;
116         dma_addr_t dma_buf_next;
117         dma_addr_t dma_buf_end;
118         size_t period_size;
119         unsigned int num_periods;
120 };
121
122 /**
123  * fsl_dma_hardare: define characteristics of the PCM hardware.
124  *
125  * The PCM hardware is the Freescale DMA controller.  This structure defines
126  * the capabilities of that hardware.
127  *
128  * Since the sampling rate and data format are not controlled by the DMA
129  * controller, we specify no limits for those values.  The only exception is
130  * period_bytes_min, which is set to a reasonably low value to prevent the
131  * DMA controller from generating too many interrupts per second.
132  *
133  * Since each link descriptor has a 32-bit byte count field, we set
134  * period_bytes_max to the largest 32-bit number.  We also have no maximum
135  * number of periods.
136  *
137  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
138  * limitation in the SSI driver requires the sample rates for playback and
139  * capture to be the same.
140  */
141 static const struct snd_pcm_hardware fsl_dma_hardware = {
142
143         .info                   = SNDRV_PCM_INFO_INTERLEAVED |
144                                   SNDRV_PCM_INFO_MMAP |
145                                   SNDRV_PCM_INFO_MMAP_VALID |
146                                   SNDRV_PCM_INFO_JOINT_DUPLEX |
147                                   SNDRV_PCM_INFO_PAUSE,
148         .formats                = FSLDMA_PCM_FORMATS,
149         .rates                  = FSLDMA_PCM_RATES,
150         .rate_min               = 5512,
151         .rate_max               = 192000,
152         .period_bytes_min       = 512,          /* A reasonable limit */
153         .period_bytes_max       = (u32) -1,
154         .periods_min            = NUM_DMA_LINKS,
155         .periods_max            = (unsigned int) -1,
156         .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
157 };
158
159 /**
160  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
161  *
162  * This function should be called by the ISR whenever the DMA controller
163  * halts data transfer.
164  */
165 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
166 {
167         unsigned long flags;
168
169         snd_pcm_stream_lock_irqsave(substream, flags);
170
171         if (snd_pcm_running(substream))
172                 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173
174         snd_pcm_stream_unlock_irqrestore(substream, flags);
175 }
176
177 /**
178  * fsl_dma_update_pointers - update LD pointers to point to the next period
179  *
180  * As each period is completed, this function changes the the link
181  * descriptor pointers for that period to point to the next period.
182  */
183 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
184 {
185         struct fsl_dma_link_descriptor *link =
186                 &dma_private->link[dma_private->current_link];
187
188         /* Update our link descriptors to point to the next period */
189         if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
190                 link->source_addr =
191                         cpu_to_be32(dma_private->dma_buf_next);
192         else
193                 link->dest_addr =
194                         cpu_to_be32(dma_private->dma_buf_next);
195
196         /* Update our variables for next time */
197         dma_private->dma_buf_next += dma_private->period_size;
198
199         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
200                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
201
202         if (++dma_private->current_link >= NUM_DMA_LINKS)
203                 dma_private->current_link = 0;
204 }
205
206 /**
207  * fsl_dma_isr: interrupt handler for the DMA controller
208  *
209  * @irq: IRQ of the DMA channel
210  * @dev_id: pointer to the dma_private structure for this DMA channel
211  */
212 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
213 {
214         struct fsl_dma_private *dma_private = dev_id;
215         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
216         irqreturn_t ret = IRQ_NONE;
217         u32 sr, sr2 = 0;
218
219         /* We got an interrupt, so read the status register to see what we
220            were interrupted for.
221          */
222         sr = in_be32(&dma_channel->sr);
223
224         if (sr & CCSR_DMA_SR_TE) {
225                 dev_err(dma_private->substream->pcm->card->dev,
226                         "DMA transmit error (controller=%u channel=%u irq=%u\n",
227                         dma_private->controller_id,
228                         dma_private->channel_id, irq);
229                 fsl_dma_abort_stream(dma_private->substream);
230                 sr2 |= CCSR_DMA_SR_TE;
231                 ret = IRQ_HANDLED;
232         }
233
234         if (sr & CCSR_DMA_SR_CH)
235                 ret = IRQ_HANDLED;
236
237         if (sr & CCSR_DMA_SR_PE) {
238                 dev_err(dma_private->substream->pcm->card->dev,
239                         "DMA%u programming error (channel=%u irq=%u)\n",
240                         dma_private->controller_id,
241                         dma_private->channel_id, irq);
242                 fsl_dma_abort_stream(dma_private->substream);
243                 sr2 |= CCSR_DMA_SR_PE;
244                 ret = IRQ_HANDLED;
245         }
246
247         if (sr & CCSR_DMA_SR_EOLNI) {
248                 sr2 |= CCSR_DMA_SR_EOLNI;
249                 ret = IRQ_HANDLED;
250         }
251
252         if (sr & CCSR_DMA_SR_CB)
253                 ret = IRQ_HANDLED;
254
255         if (sr & CCSR_DMA_SR_EOSI) {
256                 struct snd_pcm_substream *substream = dma_private->substream;
257
258                 /* Tell ALSA we completed a period. */
259                 snd_pcm_period_elapsed(substream);
260
261                 /*
262                  * Update our link descriptors to point to the next period. We
263                  * only need to do this if the number of periods is not equal to
264                  * the number of links.
265                  */
266                 if (dma_private->num_periods != NUM_DMA_LINKS)
267                         fsl_dma_update_pointers(dma_private);
268
269                 sr2 |= CCSR_DMA_SR_EOSI;
270                 ret = IRQ_HANDLED;
271         }
272
273         if (sr & CCSR_DMA_SR_EOLSI) {
274                 sr2 |= CCSR_DMA_SR_EOLSI;
275                 ret = IRQ_HANDLED;
276         }
277
278         /* Clear the bits that we set */
279         if (sr2)
280                 out_be32(&dma_channel->sr, sr2);
281
282         return ret;
283 }
284
285 /**
286  * fsl_dma_new: initialize this PCM driver.
287  *
288  * This function is called when the codec driver calls snd_soc_new_pcms(),
289  * once for each .dai_link in the machine driver's snd_soc_card
290  * structure.
291  */
292 static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
293         struct snd_pcm *pcm)
294 {
295         static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
296         int ret;
297
298         if (!card->dev->dma_mask)
299                 card->dev->dma_mask = &fsl_dma_dmamask;
300
301         if (!card->dev->coherent_dma_mask)
302                 card->dev->coherent_dma_mask = fsl_dma_dmamask;
303
304         ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
305                 fsl_dma_hardware.buffer_bytes_max,
306                 &pcm->streams[0].substream->dma_buffer);
307         if (ret) {
308                 dev_err(card->dev,
309                         "Can't allocate playback DMA buffer (size=%u)\n",
310                         fsl_dma_hardware.buffer_bytes_max);
311                 return -ENOMEM;
312         }
313
314         ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
315                 fsl_dma_hardware.buffer_bytes_max,
316                 &pcm->streams[1].substream->dma_buffer);
317         if (ret) {
318                 snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
319                 dev_err(card->dev,
320                         "Can't allocate capture DMA buffer (size=%u)\n",
321                         fsl_dma_hardware.buffer_bytes_max);
322                 return -ENOMEM;
323         }
324
325         return 0;
326 }
327
328 /**
329  * fsl_dma_open: open a new substream.
330  *
331  * Each substream has its own DMA buffer.
332  *
333  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
334  * descriptors that ping-pong from one period to the next.  For example, if
335  * there are six periods and two link descriptors, this is how they look
336  * before playback starts:
337  *
338  *                 The last link descriptor
339  *   ____________  points back to the first
340  *  |            |
341  *  V            |
342  *  ___    ___   |
343  * |   |->|   |->|
344  * |___|  |___|
345  *   |      |
346  *   |      |
347  *   V      V
348  *  _________________________________________
349  * |      |      |      |      |      |      |  The DMA buffer is
350  * |      |      |      |      |      |      |    divided into 6 parts
351  * |______|______|______|______|______|______|
352  *
353  * and here's how they look after the first period is finished playing:
354  *
355  *   ____________
356  *  |            |
357  *  V            |
358  *  ___    ___   |
359  * |   |->|   |->|
360  * |___|  |___|
361  *   |      |
362  *   |______________
363  *          |       |
364  *          V       V
365  *  _________________________________________
366  * |      |      |      |      |      |      |
367  * |      |      |      |      |      |      |
368  * |______|______|______|______|______|______|
369  *
370  * The first link descriptor now points to the third period.  The DMA
371  * controller is currently playing the second period.  When it finishes, it
372  * will jump back to the first descriptor and play the third period.
373  *
374  * There are four reasons we do this:
375  *
376  * 1. The only way to get the DMA controller to automatically restart the
377  *    transfer when it gets to the end of the buffer is to use chaining
378  *    mode.  Basic direct mode doesn't offer that feature.
379  * 2. We need to receive an interrupt at the end of every period.  The DMA
380  *    controller can generate an interrupt at the end of every link transfer
381  *    (aka segment).  Making each period into a DMA segment will give us the
382  *    interrupts we need.
383  * 3. By creating only two link descriptors, regardless of the number of
384  *    periods, we do not need to reallocate the link descriptors if the
385  *    number of periods changes.
386  * 4. All of the audio data is still stored in a single, contiguous DMA
387  *    buffer, which is what ALSA expects.  We're just dividing it into
388  *    contiguous parts, and creating a link descriptor for each one.
389  */
390 static int fsl_dma_open(struct snd_pcm_substream *substream)
391 {
392         struct snd_pcm_runtime *runtime = substream->runtime;
393         struct fsl_dma_private *dma_private;
394         struct ccsr_dma_channel __iomem *dma_channel;
395         dma_addr_t ld_buf_phys;
396         u64 temp_link;          /* Pointer to next link descriptor */
397         u32 mr;
398         unsigned int channel;
399         int ret = 0;
400         unsigned int i;
401
402         /*
403          * Reject any DMA buffer whose size is not a multiple of the period
404          * size.  We need to make sure that the DMA buffer can be evenly divided
405          * into periods.
406          */
407         ret = snd_pcm_hw_constraint_integer(runtime,
408                 SNDRV_PCM_HW_PARAM_PERIODS);
409         if (ret < 0) {
410                 dev_err(substream->pcm->card->dev, "invalid buffer size\n");
411                 return ret;
412         }
413
414         channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
415
416         if (dma_global_data.assigned[channel]) {
417                 dev_err(substream->pcm->card->dev,
418                         "DMA channel already assigned\n");
419                 return -EBUSY;
420         }
421
422         dma_private = dma_alloc_coherent(substream->pcm->card->dev,
423                 sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
424         if (!dma_private) {
425                 dev_err(substream->pcm->card->dev,
426                         "can't allocate DMA private data\n");
427                 return -ENOMEM;
428         }
429         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
430                 dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
431         else
432                 dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
433
434         dma_private->dma_channel = dma_global_data.dma_channel[channel];
435         dma_private->irq = dma_global_data.irq[channel];
436         dma_private->substream = substream;
437         dma_private->ld_buf_phys = ld_buf_phys;
438         dma_private->dma_buf_phys = substream->dma_buffer.addr;
439
440         /* We only support one DMA controller for now */
441         dma_private->controller_id = 0;
442         dma_private->channel_id = channel;
443
444         ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
445         if (ret) {
446                 dev_err(substream->pcm->card->dev,
447                         "can't register ISR for IRQ %u (ret=%i)\n",
448                         dma_private->irq, ret);
449                 dma_free_coherent(substream->pcm->card->dev,
450                         sizeof(struct fsl_dma_private),
451                         dma_private, dma_private->ld_buf_phys);
452                 return ret;
453         }
454
455         dma_global_data.assigned[channel] = 1;
456
457         snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
458         snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
459         runtime->private_data = dma_private;
460
461         /* Program the fixed DMA controller parameters */
462
463         dma_channel = dma_private->dma_channel;
464
465         temp_link = dma_private->ld_buf_phys +
466                 sizeof(struct fsl_dma_link_descriptor);
467
468         for (i = 0; i < NUM_DMA_LINKS; i++) {
469                 dma_private->link[i].next = cpu_to_be64(temp_link);
470
471                 temp_link += sizeof(struct fsl_dma_link_descriptor);
472         }
473         /* The last link descriptor points to the first */
474         dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
475
476         /* Tell the DMA controller where the first link descriptor is */
477         out_be32(&dma_channel->clndar,
478                 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
479         out_be32(&dma_channel->eclndar,
480                 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
481
482         /* The manual says the BCR must be clear before enabling EMP */
483         out_be32(&dma_channel->bcr, 0);
484
485         /*
486          * Program the mode register for interrupts, external master control,
487          * and source/destination hold.  Also clear the Channel Abort bit.
488          */
489         mr = in_be32(&dma_channel->mr) &
490                 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
491
492         /*
493          * We want External Master Start and External Master Pause enabled,
494          * because the SSI is controlling the DMA controller.  We want the DMA
495          * controller to be set up in advance, and then we signal only the SSI
496          * to start transferring.
497          *
498          * We want End-Of-Segment Interrupts enabled, because this will generate
499          * an interrupt at the end of each segment (each link descriptor
500          * represents one segment).  Each DMA segment is the same thing as an
501          * ALSA period, so this is how we get an interrupt at the end of every
502          * period.
503          *
504          * We want Error Interrupt enabled, so that we can get an error if
505          * the DMA controller is mis-programmed somehow.
506          */
507         mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
508                 CCSR_DMA_MR_EMS_EN;
509
510         /* For playback, we want the destination address to be held.  For
511            capture, set the source address to be held. */
512         mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
513                 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
514
515         out_be32(&dma_channel->mr, mr);
516
517         return 0;
518 }
519
520 /**
521  * fsl_dma_hw_params: continue initializing the DMA links
522  *
523  * This function obtains hardware parameters about the opened stream and
524  * programs the DMA controller accordingly.
525  *
526  * One drawback of big-endian is that when copying integers of different
527  * sizes to a fixed-sized register, the address to which the integer must be
528  * copied is dependent on the size of the integer.
529  *
530  * For example, if P is the address of a 32-bit register, and X is a 32-bit
531  * integer, then X should be copied to address P.  However, if X is a 16-bit
532  * integer, then it should be copied to P+2.  If X is an 8-bit register,
533  * then it should be copied to P+3.
534  *
535  * So for playback of 8-bit samples, the DMA controller must transfer single
536  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
537  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
538  *
539  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
540  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
541  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
542  * 24-bit data must be padded to 32 bits.
543  */
544 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
545         struct snd_pcm_hw_params *hw_params)
546 {
547         struct snd_pcm_runtime *runtime = substream->runtime;
548         struct fsl_dma_private *dma_private = runtime->private_data;
549
550         /* Number of bits per sample */
551         unsigned int sample_size =
552                 snd_pcm_format_physical_width(params_format(hw_params));
553
554         /* Number of bytes per frame */
555         unsigned int frame_size = 2 * (sample_size / 8);
556
557         /* Bus address of SSI STX register */
558         dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
559
560         /* Size of the DMA buffer, in bytes */
561         size_t buffer_size = params_buffer_bytes(hw_params);
562
563         /* Number of bytes per period */
564         size_t period_size = params_period_bytes(hw_params);
565
566         /* Pointer to next period */
567         dma_addr_t temp_addr = substream->dma_buffer.addr;
568
569         /* Pointer to DMA controller */
570         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
571
572         u32 mr; /* DMA Mode Register */
573
574         unsigned int i;
575
576         /* Initialize our DMA tracking variables */
577         dma_private->period_size = period_size;
578         dma_private->num_periods = params_periods(hw_params);
579         dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
580         dma_private->dma_buf_next = dma_private->dma_buf_phys +
581                 (NUM_DMA_LINKS * period_size);
582
583         if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
584                 /* This happens if the number of periods == NUM_DMA_LINKS */
585                 dma_private->dma_buf_next = dma_private->dma_buf_phys;
586
587         mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
588                   CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
589
590         /* Due to a quirk of the SSI's STX register, the target address
591          * for the DMA operations depends on the sample size.  So we calculate
592          * that offset here.  While we're at it, also tell the DMA controller
593          * how much data to transfer per sample.
594          */
595         switch (sample_size) {
596         case 8:
597                 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
598                 ssi_sxx_phys += 3;
599                 break;
600         case 16:
601                 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
602                 ssi_sxx_phys += 2;
603                 break;
604         case 32:
605                 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
606                 break;
607         default:
608                 /* We should never get here */
609                 dev_err(substream->pcm->card->dev,
610                         "unsupported sample size %u\n", sample_size);
611                 return -EINVAL;
612         }
613
614         /*
615          * BWC should always be a multiple of the frame size.  BWC determines
616          * how many bytes are sent/received before the DMA controller checks the
617          * SSI to see if it needs to stop.  For playback, the transmit FIFO can
618          * hold three frames, so we want to send two frames at a time. For
619          * capture, the receive FIFO is triggered when it contains one frame, so
620          * we want to receive one frame at a time.
621          */
622         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
623                 mr |= CCSR_DMA_MR_BWC(2 * frame_size);
624         else
625                 mr |= CCSR_DMA_MR_BWC(frame_size);
626
627         out_be32(&dma_channel->mr, mr);
628
629         for (i = 0; i < NUM_DMA_LINKS; i++) {
630                 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
631
632                 link->count = cpu_to_be32(period_size);
633
634                 /* Even though the DMA controller supports 36-bit addressing,
635                  * for simplicity we allow only 32-bit addresses for the audio
636                  * buffer itself.  This was enforced in fsl_dma_new() with the
637                  * DMA mask.
638                  *
639                  * The snoop bit tells the DMA controller whether it should tell
640                  * the ECM to snoop during a read or write to an address. For
641                  * audio, we use DMA to transfer data between memory and an I/O
642                  * device (the SSI's STX0 or SRX0 register). Snooping is only
643                  * needed if there is a cache, so we need to snoop memory
644                  * addresses only.  For playback, that means we snoop the source
645                  * but not the destination.  For capture, we snoop the
646                  * destination but not the source.
647                  *
648                  * Note that failing to snoop properly is unlikely to cause
649                  * cache incoherency if the period size is larger than the
650                  * size of L1 cache.  This is because filling in one period will
651                  * flush out the data for the previous period.  So if you
652                  * increased period_bytes_min to a large enough size, you might
653                  * get more performance by not snooping, and you'll still be
654                  * okay.
655                  */
656                 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
657                         link->source_addr = cpu_to_be32(temp_addr);
658                         link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
659
660                         link->dest_addr = cpu_to_be32(ssi_sxx_phys);
661                         link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
662                 } else {
663                         link->source_addr = cpu_to_be32(ssi_sxx_phys);
664                         link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
665
666                         link->dest_addr = cpu_to_be32(temp_addr);
667                         link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
668                 }
669
670                 temp_addr += period_size;
671         }
672
673         return 0;
674 }
675
676 /**
677  * fsl_dma_pointer: determine the current position of the DMA transfer
678  *
679  * This function is called by ALSA when ALSA wants to know where in the
680  * stream buffer the hardware currently is.
681  *
682  * For playback, the SAR register contains the physical address of the most
683  * recent DMA transfer.  For capture, the value is in the DAR register.
684  *
685  * The base address of the buffer is stored in the source_addr field of the
686  * first link descriptor.
687  */
688 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
689 {
690         struct snd_pcm_runtime *runtime = substream->runtime;
691         struct fsl_dma_private *dma_private = runtime->private_data;
692         struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
693         dma_addr_t position;
694         snd_pcm_uframes_t frames;
695
696         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
697                 position = in_be32(&dma_channel->sar);
698         else
699                 position = in_be32(&dma_channel->dar);
700
701         /*
702          * When capture is started, the SSI immediately starts to fill its FIFO.
703          * This means that the DMA controller is not started until the FIFO is
704          * full.  However, ALSA calls this function before that happens, when
705          * MR.DAR is still zero.  In this case, just return zero to indicate
706          * that nothing has been received yet.
707          */
708         if (!position)
709                 return 0;
710
711         if ((position < dma_private->dma_buf_phys) ||
712             (position > dma_private->dma_buf_end)) {
713                 dev_err(substream->pcm->card->dev,
714                         "dma pointer is out of range, halting stream\n");
715                 return SNDRV_PCM_POS_XRUN;
716         }
717
718         frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
719
720         /*
721          * If the current address is just past the end of the buffer, wrap it
722          * around.
723          */
724         if (frames == runtime->buffer_size)
725                 frames = 0;
726
727         return frames;
728 }
729
730 /**
731  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
732  *
733  * Release the resources allocated in fsl_dma_hw_params() and de-program the
734  * registers.
735  *
736  * This function can be called multiple times.
737  */
738 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
739 {
740         struct snd_pcm_runtime *runtime = substream->runtime;
741         struct fsl_dma_private *dma_private = runtime->private_data;
742
743         if (dma_private) {
744                 struct ccsr_dma_channel __iomem *dma_channel;
745
746                 dma_channel = dma_private->dma_channel;
747
748                 /* Stop the DMA */
749                 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
750                 out_be32(&dma_channel->mr, 0);
751
752                 /* Reset all the other registers */
753                 out_be32(&dma_channel->sr, -1);
754                 out_be32(&dma_channel->clndar, 0);
755                 out_be32(&dma_channel->eclndar, 0);
756                 out_be32(&dma_channel->satr, 0);
757                 out_be32(&dma_channel->sar, 0);
758                 out_be32(&dma_channel->datr, 0);
759                 out_be32(&dma_channel->dar, 0);
760                 out_be32(&dma_channel->bcr, 0);
761                 out_be32(&dma_channel->nlndar, 0);
762                 out_be32(&dma_channel->enlndar, 0);
763         }
764
765         return 0;
766 }
767
768 /**
769  * fsl_dma_close: close the stream.
770  */
771 static int fsl_dma_close(struct snd_pcm_substream *substream)
772 {
773         struct snd_pcm_runtime *runtime = substream->runtime;
774         struct fsl_dma_private *dma_private = runtime->private_data;
775         int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
776
777         if (dma_private) {
778                 if (dma_private->irq)
779                         free_irq(dma_private->irq, dma_private);
780
781                 if (dma_private->ld_buf_phys) {
782                         dma_unmap_single(substream->pcm->card->dev,
783                                 dma_private->ld_buf_phys,
784                                 sizeof(dma_private->link), DMA_TO_DEVICE);
785                 }
786
787                 /* Deallocate the fsl_dma_private structure */
788                 dma_free_coherent(substream->pcm->card->dev,
789                         sizeof(struct fsl_dma_private),
790                         dma_private, dma_private->ld_buf_phys);
791                 substream->runtime->private_data = NULL;
792         }
793
794         dma_global_data.assigned[dir] = 0;
795
796         return 0;
797 }
798
799 /*
800  * Remove this PCM driver.
801  */
802 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
803 {
804         struct snd_pcm_substream *substream;
805         unsigned int i;
806
807         for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
808                 substream = pcm->streams[i].substream;
809                 if (substream) {
810                         snd_dma_free_pages(&substream->dma_buffer);
811                         substream->dma_buffer.area = NULL;
812                         substream->dma_buffer.addr = 0;
813                 }
814         }
815 }
816
817 static struct snd_pcm_ops fsl_dma_ops = {
818         .open           = fsl_dma_open,
819         .close          = fsl_dma_close,
820         .ioctl          = snd_pcm_lib_ioctl,
821         .hw_params      = fsl_dma_hw_params,
822         .hw_free        = fsl_dma_hw_free,
823         .pointer        = fsl_dma_pointer,
824 };
825
826 struct snd_soc_platform fsl_soc_platform = {
827         .name           = "fsl-dma",
828         .pcm_ops        = &fsl_dma_ops,
829         .pcm_new        = fsl_dma_new,
830         .pcm_free       = fsl_dma_free_dma_buffers,
831 };
832 EXPORT_SYMBOL_GPL(fsl_soc_platform);
833
834 /**
835  * fsl_dma_configure: store the DMA parameters from the fabric driver.
836  *
837  * This function is called by the ASoC fabric driver to give us the DMA and
838  * SSI channel information.
839  *
840  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
841  * data when a substream is created, so for now we need to store this data
842  * into a global variable.  This means that we can only support one DMA
843  * controller, and hence only one SSI.
844  */
845 int fsl_dma_configure(struct fsl_dma_info *dma_info)
846 {
847         static int initialized;
848
849         /* We only support one DMA controller for now */
850         if (initialized)
851                 return 0;
852
853         dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
854         dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
855         dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
856         dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
857         dma_global_data.irq[0] = dma_info->dma_irq[0];
858         dma_global_data.irq[1] = dma_info->dma_irq[1];
859         dma_global_data.assigned[0] = 0;
860         dma_global_data.assigned[1] = 0;
861
862         initialized = 1;
863         return 1;
864 }
865 EXPORT_SYMBOL_GPL(fsl_dma_configure);
866
867 static int __init fsl_soc_platform_init(void)
868 {
869         return snd_soc_register_platform(&fsl_soc_platform);
870 }
871 module_init(fsl_soc_platform_init);
872
873 static void __exit fsl_soc_platform_exit(void)
874 {
875         snd_soc_unregister_platform(&fsl_soc_platform);
876 }
877 module_exit(fsl_soc_platform_exit);
878
879 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
880 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
881 MODULE_LICENSE("GPL");