]> bbs.cooldavid.org Git - net-next-2.6.git/blob - security/selinux/hooks.c
SELinux: special dontaudit for access checks
[net-next-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define NUM_SEL_MNT_OPTS 5
91
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern struct security_operations *security_ops;
94
95 /* SECMARK reference count */
96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
97
98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
99 int selinux_enforcing;
100
101 static int __init enforcing_setup(char *str)
102 {
103         unsigned long enforcing;
104         if (!strict_strtoul(str, 0, &enforcing))
105                 selinux_enforcing = enforcing ? 1 : 0;
106         return 1;
107 }
108 __setup("enforcing=", enforcing_setup);
109 #endif
110
111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
113
114 static int __init selinux_enabled_setup(char *str)
115 {
116         unsigned long enabled;
117         if (!strict_strtoul(str, 0, &enabled))
118                 selinux_enabled = enabled ? 1 : 0;
119         return 1;
120 }
121 __setup("selinux=", selinux_enabled_setup);
122 #else
123 int selinux_enabled = 1;
124 #endif
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /**
129  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
130  *
131  * Description:
132  * This function checks the SECMARK reference counter to see if any SECMARK
133  * targets are currently configured, if the reference counter is greater than
134  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
135  * enabled, false (0) if SECMARK is disabled.
136  *
137  */
138 static int selinux_secmark_enabled(void)
139 {
140         return (atomic_read(&selinux_secmark_refcount) > 0);
141 }
142
143 /*
144  * initialise the security for the init task
145  */
146 static void cred_init_security(void)
147 {
148         struct cred *cred = (struct cred *) current->real_cred;
149         struct task_security_struct *tsec;
150
151         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
152         if (!tsec)
153                 panic("SELinux:  Failed to initialize initial task.\n");
154
155         tsec->osid = tsec->sid = SECINITSID_KERNEL;
156         cred->security = tsec;
157 }
158
159 /*
160  * get the security ID of a set of credentials
161  */
162 static inline u32 cred_sid(const struct cred *cred)
163 {
164         const struct task_security_struct *tsec;
165
166         tsec = cred->security;
167         return tsec->sid;
168 }
169
170 /*
171  * get the objective security ID of a task
172  */
173 static inline u32 task_sid(const struct task_struct *task)
174 {
175         u32 sid;
176
177         rcu_read_lock();
178         sid = cred_sid(__task_cred(task));
179         rcu_read_unlock();
180         return sid;
181 }
182
183 /*
184  * get the subjective security ID of the current task
185  */
186 static inline u32 current_sid(void)
187 {
188         const struct task_security_struct *tsec = current_security();
189
190         return tsec->sid;
191 }
192
193 /* Allocate and free functions for each kind of security blob. */
194
195 static int inode_alloc_security(struct inode *inode)
196 {
197         struct inode_security_struct *isec;
198         u32 sid = current_sid();
199
200         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
201         if (!isec)
202                 return -ENOMEM;
203
204         mutex_init(&isec->lock);
205         INIT_LIST_HEAD(&isec->list);
206         isec->inode = inode;
207         isec->sid = SECINITSID_UNLABELED;
208         isec->sclass = SECCLASS_FILE;
209         isec->task_sid = sid;
210         inode->i_security = isec;
211
212         return 0;
213 }
214
215 static void inode_free_security(struct inode *inode)
216 {
217         struct inode_security_struct *isec = inode->i_security;
218         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
219
220         spin_lock(&sbsec->isec_lock);
221         if (!list_empty(&isec->list))
222                 list_del_init(&isec->list);
223         spin_unlock(&sbsec->isec_lock);
224
225         inode->i_security = NULL;
226         kmem_cache_free(sel_inode_cache, isec);
227 }
228
229 static int file_alloc_security(struct file *file)
230 {
231         struct file_security_struct *fsec;
232         u32 sid = current_sid();
233
234         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
235         if (!fsec)
236                 return -ENOMEM;
237
238         fsec->sid = sid;
239         fsec->fown_sid = sid;
240         file->f_security = fsec;
241
242         return 0;
243 }
244
245 static void file_free_security(struct file *file)
246 {
247         struct file_security_struct *fsec = file->f_security;
248         file->f_security = NULL;
249         kfree(fsec);
250 }
251
252 static int superblock_alloc_security(struct super_block *sb)
253 {
254         struct superblock_security_struct *sbsec;
255
256         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
257         if (!sbsec)
258                 return -ENOMEM;
259
260         mutex_init(&sbsec->lock);
261         INIT_LIST_HEAD(&sbsec->isec_head);
262         spin_lock_init(&sbsec->isec_lock);
263         sbsec->sb = sb;
264         sbsec->sid = SECINITSID_UNLABELED;
265         sbsec->def_sid = SECINITSID_FILE;
266         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
267         sb->s_security = sbsec;
268
269         return 0;
270 }
271
272 static void superblock_free_security(struct super_block *sb)
273 {
274         struct superblock_security_struct *sbsec = sb->s_security;
275         sb->s_security = NULL;
276         kfree(sbsec);
277 }
278
279 /* The security server must be initialized before
280    any labeling or access decisions can be provided. */
281 extern int ss_initialized;
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                 };
991                 /* we need a comma before each option */
992                 seq_putc(m, ',');
993                 seq_puts(m, prefix);
994                 if (has_comma)
995                         seq_putc(m, '\"');
996                 seq_puts(m, opts->mnt_opts[i]);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999         }
1000 }
1001
1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1003 {
1004         struct security_mnt_opts opts;
1005         int rc;
1006
1007         rc = selinux_get_mnt_opts(sb, &opts);
1008         if (rc) {
1009                 /* before policy load we may get EINVAL, don't show anything */
1010                 if (rc == -EINVAL)
1011                         rc = 0;
1012                 return rc;
1013         }
1014
1015         selinux_write_opts(m, &opts);
1016
1017         security_free_mnt_opts(&opts);
1018
1019         return rc;
1020 }
1021
1022 static inline u16 inode_mode_to_security_class(umode_t mode)
1023 {
1024         switch (mode & S_IFMT) {
1025         case S_IFSOCK:
1026                 return SECCLASS_SOCK_FILE;
1027         case S_IFLNK:
1028                 return SECCLASS_LNK_FILE;
1029         case S_IFREG:
1030                 return SECCLASS_FILE;
1031         case S_IFBLK:
1032                 return SECCLASS_BLK_FILE;
1033         case S_IFDIR:
1034                 return SECCLASS_DIR;
1035         case S_IFCHR:
1036                 return SECCLASS_CHR_FILE;
1037         case S_IFIFO:
1038                 return SECCLASS_FIFO_FILE;
1039
1040         }
1041
1042         return SECCLASS_FILE;
1043 }
1044
1045 static inline int default_protocol_stream(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1048 }
1049
1050 static inline int default_protocol_dgram(int protocol)
1051 {
1052         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1053 }
1054
1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1056 {
1057         switch (family) {
1058         case PF_UNIX:
1059                 switch (type) {
1060                 case SOCK_STREAM:
1061                 case SOCK_SEQPACKET:
1062                         return SECCLASS_UNIX_STREAM_SOCKET;
1063                 case SOCK_DGRAM:
1064                         return SECCLASS_UNIX_DGRAM_SOCKET;
1065                 }
1066                 break;
1067         case PF_INET:
1068         case PF_INET6:
1069                 switch (type) {
1070                 case SOCK_STREAM:
1071                         if (default_protocol_stream(protocol))
1072                                 return SECCLASS_TCP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DGRAM:
1076                         if (default_protocol_dgram(protocol))
1077                                 return SECCLASS_UDP_SOCKET;
1078                         else
1079                                 return SECCLASS_RAWIP_SOCKET;
1080                 case SOCK_DCCP:
1081                         return SECCLASS_DCCP_SOCKET;
1082                 default:
1083                         return SECCLASS_RAWIP_SOCKET;
1084                 }
1085                 break;
1086         case PF_NETLINK:
1087                 switch (protocol) {
1088                 case NETLINK_ROUTE:
1089                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1090                 case NETLINK_FIREWALL:
1091                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1092                 case NETLINK_INET_DIAG:
1093                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1094                 case NETLINK_NFLOG:
1095                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1096                 case NETLINK_XFRM:
1097                         return SECCLASS_NETLINK_XFRM_SOCKET;
1098                 case NETLINK_SELINUX:
1099                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1100                 case NETLINK_AUDIT:
1101                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1102                 case NETLINK_IP6_FW:
1103                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1104                 case NETLINK_DNRTMSG:
1105                         return SECCLASS_NETLINK_DNRT_SOCKET;
1106                 case NETLINK_KOBJECT_UEVENT:
1107                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1108                 default:
1109                         return SECCLASS_NETLINK_SOCKET;
1110                 }
1111         case PF_PACKET:
1112                 return SECCLASS_PACKET_SOCKET;
1113         case PF_KEY:
1114                 return SECCLASS_KEY_SOCKET;
1115         case PF_APPLETALK:
1116                 return SECCLASS_APPLETALK_SOCKET;
1117         }
1118
1119         return SECCLASS_SOCKET;
1120 }
1121
1122 #ifdef CONFIG_PROC_FS
1123 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1124                                 u16 tclass,
1125                                 u32 *sid)
1126 {
1127         int buflen, rc;
1128         char *buffer, *path, *end;
1129
1130         buffer = (char *)__get_free_page(GFP_KERNEL);
1131         if (!buffer)
1132                 return -ENOMEM;
1133
1134         buflen = PAGE_SIZE;
1135         end = buffer+buflen;
1136         *--end = '\0';
1137         buflen--;
1138         path = end-1;
1139         *path = '/';
1140         while (de && de != de->parent) {
1141                 buflen -= de->namelen + 1;
1142                 if (buflen < 0)
1143                         break;
1144                 end -= de->namelen;
1145                 memcpy(end, de->name, de->namelen);
1146                 *--end = '/';
1147                 path = end;
1148                 de = de->parent;
1149         }
1150         rc = security_genfs_sid("proc", path, tclass, sid);
1151         free_page((unsigned long)buffer);
1152         return rc;
1153 }
1154 #else
1155 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1156                                 u16 tclass,
1157                                 u32 *sid)
1158 {
1159         return -EINVAL;
1160 }
1161 #endif
1162
1163 /* The inode's security attributes must be initialized before first use. */
1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165 {
1166         struct superblock_security_struct *sbsec = NULL;
1167         struct inode_security_struct *isec = inode->i_security;
1168         u32 sid;
1169         struct dentry *dentry;
1170 #define INITCONTEXTLEN 255
1171         char *context = NULL;
1172         unsigned len = 0;
1173         int rc = 0;
1174
1175         if (isec->initialized)
1176                 goto out;
1177
1178         mutex_lock(&isec->lock);
1179         if (isec->initialized)
1180                 goto out_unlock;
1181
1182         sbsec = inode->i_sb->s_security;
1183         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184                 /* Defer initialization until selinux_complete_init,
1185                    after the initial policy is loaded and the security
1186                    server is ready to handle calls. */
1187                 spin_lock(&sbsec->isec_lock);
1188                 if (list_empty(&isec->list))
1189                         list_add(&isec->list, &sbsec->isec_head);
1190                 spin_unlock(&sbsec->isec_lock);
1191                 goto out_unlock;
1192         }
1193
1194         switch (sbsec->behavior) {
1195         case SECURITY_FS_USE_XATTR:
1196                 if (!inode->i_op->getxattr) {
1197                         isec->sid = sbsec->def_sid;
1198                         break;
1199                 }
1200
1201                 /* Need a dentry, since the xattr API requires one.
1202                    Life would be simpler if we could just pass the inode. */
1203                 if (opt_dentry) {
1204                         /* Called from d_instantiate or d_splice_alias. */
1205                         dentry = dget(opt_dentry);
1206                 } else {
1207                         /* Called from selinux_complete_init, try to find a dentry. */
1208                         dentry = d_find_alias(inode);
1209                 }
1210                 if (!dentry) {
1211                         /*
1212                          * this is can be hit on boot when a file is accessed
1213                          * before the policy is loaded.  When we load policy we
1214                          * may find inodes that have no dentry on the
1215                          * sbsec->isec_head list.  No reason to complain as these
1216                          * will get fixed up the next time we go through
1217                          * inode_doinit with a dentry, before these inodes could
1218                          * be used again by userspace.
1219                          */
1220                         goto out_unlock;
1221                 }
1222
1223                 len = INITCONTEXTLEN;
1224                 context = kmalloc(len+1, GFP_NOFS);
1225                 if (!context) {
1226                         rc = -ENOMEM;
1227                         dput(dentry);
1228                         goto out_unlock;
1229                 }
1230                 context[len] = '\0';
1231                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232                                            context, len);
1233                 if (rc == -ERANGE) {
1234                         kfree(context);
1235
1236                         /* Need a larger buffer.  Query for the right size. */
1237                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238                                                    NULL, 0);
1239                         if (rc < 0) {
1240                                 dput(dentry);
1241                                 goto out_unlock;
1242                         }
1243                         len = rc;
1244                         context = kmalloc(len+1, GFP_NOFS);
1245                         if (!context) {
1246                                 rc = -ENOMEM;
1247                                 dput(dentry);
1248                                 goto out_unlock;
1249                         }
1250                         context[len] = '\0';
1251                         rc = inode->i_op->getxattr(dentry,
1252                                                    XATTR_NAME_SELINUX,
1253                                                    context, len);
1254                 }
1255                 dput(dentry);
1256                 if (rc < 0) {
1257                         if (rc != -ENODATA) {
1258                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259                                        "%d for dev=%s ino=%ld\n", __func__,
1260                                        -rc, inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 goto out_unlock;
1263                         }
1264                         /* Map ENODATA to the default file SID */
1265                         sid = sbsec->def_sid;
1266                         rc = 0;
1267                 } else {
1268                         rc = security_context_to_sid_default(context, rc, &sid,
1269                                                              sbsec->def_sid,
1270                                                              GFP_NOFS);
1271                         if (rc) {
1272                                 char *dev = inode->i_sb->s_id;
1273                                 unsigned long ino = inode->i_ino;
1274
1275                                 if (rc == -EINVAL) {
1276                                         if (printk_ratelimit())
1277                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1279                                                         "filesystem in question.\n", ino, dev, context);
1280                                 } else {
1281                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                                "returned %d for dev=%s ino=%ld\n",
1283                                                __func__, context, -rc, dev, ino);
1284                                 }
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid,
1304                                              sbsec->sid,
1305                                              isec->sclass,
1306                                              &sid);
1307                 if (rc)
1308                         goto out_unlock;
1309                 isec->sid = sid;
1310                 break;
1311         case SECURITY_FS_USE_MNTPOINT:
1312                 isec->sid = sbsec->mntpoint_sid;
1313                 break;
1314         default:
1315                 /* Default to the fs superblock SID. */
1316                 isec->sid = sbsec->sid;
1317
1318                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1319                         struct proc_inode *proci = PROC_I(inode);
1320                         if (proci->pde) {
1321                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1322                                 rc = selinux_proc_get_sid(proci->pde,
1323                                                           isec->sclass,
1324                                                           &sid);
1325                                 if (rc)
1326                                         goto out_unlock;
1327                                 isec->sid = sid;
1328                         }
1329                 }
1330                 break;
1331         }
1332
1333         isec->initialized = 1;
1334
1335 out_unlock:
1336         mutex_unlock(&isec->lock);
1337 out:
1338         if (isec->sclass == SECCLASS_FILE)
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340         return rc;
1341 }
1342
1343 /* Convert a Linux signal to an access vector. */
1344 static inline u32 signal_to_av(int sig)
1345 {
1346         u32 perm = 0;
1347
1348         switch (sig) {
1349         case SIGCHLD:
1350                 /* Commonly granted from child to parent. */
1351                 perm = PROCESS__SIGCHLD;
1352                 break;
1353         case SIGKILL:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGKILL;
1356                 break;
1357         case SIGSTOP:
1358                 /* Cannot be caught or ignored */
1359                 perm = PROCESS__SIGSTOP;
1360                 break;
1361         default:
1362                 /* All other signals. */
1363                 perm = PROCESS__SIGNAL;
1364                 break;
1365         }
1366
1367         return perm;
1368 }
1369
1370 /*
1371  * Check permission between a pair of credentials
1372  * fork check, ptrace check, etc.
1373  */
1374 static int cred_has_perm(const struct cred *actor,
1375                          const struct cred *target,
1376                          u32 perms)
1377 {
1378         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1379
1380         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1381 }
1382
1383 /*
1384  * Check permission between a pair of tasks, e.g. signal checks,
1385  * fork check, ptrace check, etc.
1386  * tsk1 is the actor and tsk2 is the target
1387  * - this uses the default subjective creds of tsk1
1388  */
1389 static int task_has_perm(const struct task_struct *tsk1,
1390                          const struct task_struct *tsk2,
1391                          u32 perms)
1392 {
1393         const struct task_security_struct *__tsec1, *__tsec2;
1394         u32 sid1, sid2;
1395
1396         rcu_read_lock();
1397         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1398         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1399         rcu_read_unlock();
1400         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1401 }
1402
1403 /*
1404  * Check permission between current and another task, e.g. signal checks,
1405  * fork check, ptrace check, etc.
1406  * current is the actor and tsk2 is the target
1407  * - this uses current's subjective creds
1408  */
1409 static int current_has_perm(const struct task_struct *tsk,
1410                             u32 perms)
1411 {
1412         u32 sid, tsid;
1413
1414         sid = current_sid();
1415         tsid = task_sid(tsk);
1416         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1417 }
1418
1419 #if CAP_LAST_CAP > 63
1420 #error Fix SELinux to handle capabilities > 63.
1421 #endif
1422
1423 /* Check whether a task is allowed to use a capability. */
1424 static int task_has_capability(struct task_struct *tsk,
1425                                const struct cred *cred,
1426                                int cap, int audit)
1427 {
1428         struct common_audit_data ad;
1429         struct av_decision avd;
1430         u16 sclass;
1431         u32 sid = cred_sid(cred);
1432         u32 av = CAP_TO_MASK(cap);
1433         int rc;
1434
1435         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1436         ad.tsk = tsk;
1437         ad.u.cap = cap;
1438
1439         switch (CAP_TO_INDEX(cap)) {
1440         case 0:
1441                 sclass = SECCLASS_CAPABILITY;
1442                 break;
1443         case 1:
1444                 sclass = SECCLASS_CAPABILITY2;
1445                 break;
1446         default:
1447                 printk(KERN_ERR
1448                        "SELinux:  out of range capability %d\n", cap);
1449                 BUG();
1450         }
1451
1452         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1453         if (audit == SECURITY_CAP_AUDIT)
1454                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1455         return rc;
1456 }
1457
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460                            u32 perms)
1461 {
1462         u32 sid = task_sid(tsk);
1463
1464         return avc_has_perm(sid, SECINITSID_KERNEL,
1465                             SECCLASS_SYSTEM, perms, NULL);
1466 }
1467
1468 /* Check whether a task has a particular permission to an inode.
1469    The 'adp' parameter is optional and allows other audit
1470    data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472                           struct inode *inode,
1473                           u32 perms,
1474                           struct common_audit_data *adp)
1475 {
1476         struct inode_security_struct *isec;
1477         struct common_audit_data ad;
1478         u32 sid;
1479
1480         validate_creds(cred);
1481
1482         if (unlikely(IS_PRIVATE(inode)))
1483                 return 0;
1484
1485         sid = cred_sid(cred);
1486         isec = inode->i_security;
1487
1488         if (!adp) {
1489                 adp = &ad;
1490                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1491                 ad.u.fs.inode = inode;
1492         }
1493
1494         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1495 }
1496
1497 /* Same as inode_has_perm, but pass explicit audit data containing
1498    the dentry to help the auditing code to more easily generate the
1499    pathname if needed. */
1500 static inline int dentry_has_perm(const struct cred *cred,
1501                                   struct vfsmount *mnt,
1502                                   struct dentry *dentry,
1503                                   u32 av)
1504 {
1505         struct inode *inode = dentry->d_inode;
1506         struct common_audit_data ad;
1507
1508         COMMON_AUDIT_DATA_INIT(&ad, FS);
1509         ad.u.fs.path.mnt = mnt;
1510         ad.u.fs.path.dentry = dentry;
1511         return inode_has_perm(cred, inode, av, &ad);
1512 }
1513
1514 /* Check whether a task can use an open file descriptor to
1515    access an inode in a given way.  Check access to the
1516    descriptor itself, and then use dentry_has_perm to
1517    check a particular permission to the file.
1518    Access to the descriptor is implicitly granted if it
1519    has the same SID as the process.  If av is zero, then
1520    access to the file is not checked, e.g. for cases
1521    where only the descriptor is affected like seek. */
1522 static int file_has_perm(const struct cred *cred,
1523                          struct file *file,
1524                          u32 av)
1525 {
1526         struct file_security_struct *fsec = file->f_security;
1527         struct inode *inode = file->f_path.dentry->d_inode;
1528         struct common_audit_data ad;
1529         u32 sid = cred_sid(cred);
1530         int rc;
1531
1532         COMMON_AUDIT_DATA_INIT(&ad, FS);
1533         ad.u.fs.path = file->f_path;
1534
1535         if (sid != fsec->sid) {
1536                 rc = avc_has_perm(sid, fsec->sid,
1537                                   SECCLASS_FD,
1538                                   FD__USE,
1539                                   &ad);
1540                 if (rc)
1541                         goto out;
1542         }
1543
1544         /* av is zero if only checking access to the descriptor. */
1545         rc = 0;
1546         if (av)
1547                 rc = inode_has_perm(cred, inode, av, &ad);
1548
1549 out:
1550         return rc;
1551 }
1552
1553 /* Check whether a task can create a file. */
1554 static int may_create(struct inode *dir,
1555                       struct dentry *dentry,
1556                       u16 tclass)
1557 {
1558         const struct task_security_struct *tsec = current_security();
1559         struct inode_security_struct *dsec;
1560         struct superblock_security_struct *sbsec;
1561         u32 sid, newsid;
1562         struct common_audit_data ad;
1563         int rc;
1564
1565         dsec = dir->i_security;
1566         sbsec = dir->i_sb->s_security;
1567
1568         sid = tsec->sid;
1569         newsid = tsec->create_sid;
1570
1571         COMMON_AUDIT_DATA_INIT(&ad, FS);
1572         ad.u.fs.path.dentry = dentry;
1573
1574         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1575                           DIR__ADD_NAME | DIR__SEARCH,
1576                           &ad);
1577         if (rc)
1578                 return rc;
1579
1580         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1581                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1582                 if (rc)
1583                         return rc;
1584         }
1585
1586         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1587         if (rc)
1588                 return rc;
1589
1590         return avc_has_perm(newsid, sbsec->sid,
1591                             SECCLASS_FILESYSTEM,
1592                             FILESYSTEM__ASSOCIATE, &ad);
1593 }
1594
1595 /* Check whether a task can create a key. */
1596 static int may_create_key(u32 ksid,
1597                           struct task_struct *ctx)
1598 {
1599         u32 sid = task_sid(ctx);
1600
1601         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1602 }
1603
1604 #define MAY_LINK        0
1605 #define MAY_UNLINK      1
1606 #define MAY_RMDIR       2
1607
1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1609 static int may_link(struct inode *dir,
1610                     struct dentry *dentry,
1611                     int kind)
1612
1613 {
1614         struct inode_security_struct *dsec, *isec;
1615         struct common_audit_data ad;
1616         u32 sid = current_sid();
1617         u32 av;
1618         int rc;
1619
1620         dsec = dir->i_security;
1621         isec = dentry->d_inode->i_security;
1622
1623         COMMON_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.path.dentry = dentry;
1625
1626         av = DIR__SEARCH;
1627         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1628         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1629         if (rc)
1630                 return rc;
1631
1632         switch (kind) {
1633         case MAY_LINK:
1634                 av = FILE__LINK;
1635                 break;
1636         case MAY_UNLINK:
1637                 av = FILE__UNLINK;
1638                 break;
1639         case MAY_RMDIR:
1640                 av = DIR__RMDIR;
1641                 break;
1642         default:
1643                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1644                         __func__, kind);
1645                 return 0;
1646         }
1647
1648         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1649         return rc;
1650 }
1651
1652 static inline int may_rename(struct inode *old_dir,
1653                              struct dentry *old_dentry,
1654                              struct inode *new_dir,
1655                              struct dentry *new_dentry)
1656 {
1657         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1658         struct common_audit_data ad;
1659         u32 sid = current_sid();
1660         u32 av;
1661         int old_is_dir, new_is_dir;
1662         int rc;
1663
1664         old_dsec = old_dir->i_security;
1665         old_isec = old_dentry->d_inode->i_security;
1666         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1667         new_dsec = new_dir->i_security;
1668
1669         COMMON_AUDIT_DATA_INIT(&ad, FS);
1670
1671         ad.u.fs.path.dentry = old_dentry;
1672         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1673                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1674         if (rc)
1675                 return rc;
1676         rc = avc_has_perm(sid, old_isec->sid,
1677                           old_isec->sclass, FILE__RENAME, &ad);
1678         if (rc)
1679                 return rc;
1680         if (old_is_dir && new_dir != old_dir) {
1681                 rc = avc_has_perm(sid, old_isec->sid,
1682                                   old_isec->sclass, DIR__REPARENT, &ad);
1683                 if (rc)
1684                         return rc;
1685         }
1686
1687         ad.u.fs.path.dentry = new_dentry;
1688         av = DIR__ADD_NAME | DIR__SEARCH;
1689         if (new_dentry->d_inode)
1690                 av |= DIR__REMOVE_NAME;
1691         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1692         if (rc)
1693                 return rc;
1694         if (new_dentry->d_inode) {
1695                 new_isec = new_dentry->d_inode->i_security;
1696                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1697                 rc = avc_has_perm(sid, new_isec->sid,
1698                                   new_isec->sclass,
1699                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1700                 if (rc)
1701                         return rc;
1702         }
1703
1704         return 0;
1705 }
1706
1707 /* Check whether a task can perform a filesystem operation. */
1708 static int superblock_has_perm(const struct cred *cred,
1709                                struct super_block *sb,
1710                                u32 perms,
1711                                struct common_audit_data *ad)
1712 {
1713         struct superblock_security_struct *sbsec;
1714         u32 sid = cred_sid(cred);
1715
1716         sbsec = sb->s_security;
1717         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1718 }
1719
1720 /* Convert a Linux mode and permission mask to an access vector. */
1721 static inline u32 file_mask_to_av(int mode, int mask)
1722 {
1723         u32 av = 0;
1724
1725         if ((mode & S_IFMT) != S_IFDIR) {
1726                 if (mask & MAY_EXEC)
1727                         av |= FILE__EXECUTE;
1728                 if (mask & MAY_READ)
1729                         av |= FILE__READ;
1730
1731                 if (mask & MAY_APPEND)
1732                         av |= FILE__APPEND;
1733                 else if (mask & MAY_WRITE)
1734                         av |= FILE__WRITE;
1735
1736         } else {
1737                 if (mask & MAY_EXEC)
1738                         av |= DIR__SEARCH;
1739                 if (mask & MAY_WRITE)
1740                         av |= DIR__WRITE;
1741                 if (mask & MAY_READ)
1742                         av |= DIR__READ;
1743         }
1744
1745         return av;
1746 }
1747
1748 /* Convert a Linux file to an access vector. */
1749 static inline u32 file_to_av(struct file *file)
1750 {
1751         u32 av = 0;
1752
1753         if (file->f_mode & FMODE_READ)
1754                 av |= FILE__READ;
1755         if (file->f_mode & FMODE_WRITE) {
1756                 if (file->f_flags & O_APPEND)
1757                         av |= FILE__APPEND;
1758                 else
1759                         av |= FILE__WRITE;
1760         }
1761         if (!av) {
1762                 /*
1763                  * Special file opened with flags 3 for ioctl-only use.
1764                  */
1765                 av = FILE__IOCTL;
1766         }
1767
1768         return av;
1769 }
1770
1771 /*
1772  * Convert a file to an access vector and include the correct open
1773  * open permission.
1774  */
1775 static inline u32 open_file_to_av(struct file *file)
1776 {
1777         u32 av = file_to_av(file);
1778
1779         if (selinux_policycap_openperm) {
1780                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1781                 /*
1782                  * lnk files and socks do not really have an 'open'
1783                  */
1784                 if (S_ISREG(mode))
1785                         av |= FILE__OPEN;
1786                 else if (S_ISCHR(mode))
1787                         av |= CHR_FILE__OPEN;
1788                 else if (S_ISBLK(mode))
1789                         av |= BLK_FILE__OPEN;
1790                 else if (S_ISFIFO(mode))
1791                         av |= FIFO_FILE__OPEN;
1792                 else if (S_ISDIR(mode))
1793                         av |= DIR__OPEN;
1794                 else if (S_ISSOCK(mode))
1795                         av |= SOCK_FILE__OPEN;
1796                 else
1797                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1798                                 "unknown mode:%o\n", __func__, mode);
1799         }
1800         return av;
1801 }
1802
1803 /* Hook functions begin here. */
1804
1805 static int selinux_ptrace_access_check(struct task_struct *child,
1806                                      unsigned int mode)
1807 {
1808         int rc;
1809
1810         rc = cap_ptrace_access_check(child, mode);
1811         if (rc)
1812                 return rc;
1813
1814         if (mode == PTRACE_MODE_READ) {
1815                 u32 sid = current_sid();
1816                 u32 csid = task_sid(child);
1817                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1818         }
1819
1820         return current_has_perm(child, PROCESS__PTRACE);
1821 }
1822
1823 static int selinux_ptrace_traceme(struct task_struct *parent)
1824 {
1825         int rc;
1826
1827         rc = cap_ptrace_traceme(parent);
1828         if (rc)
1829                 return rc;
1830
1831         return task_has_perm(parent, current, PROCESS__PTRACE);
1832 }
1833
1834 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1835                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1836 {
1837         int error;
1838
1839         error = current_has_perm(target, PROCESS__GETCAP);
1840         if (error)
1841                 return error;
1842
1843         return cap_capget(target, effective, inheritable, permitted);
1844 }
1845
1846 static int selinux_capset(struct cred *new, const struct cred *old,
1847                           const kernel_cap_t *effective,
1848                           const kernel_cap_t *inheritable,
1849                           const kernel_cap_t *permitted)
1850 {
1851         int error;
1852
1853         error = cap_capset(new, old,
1854                                       effective, inheritable, permitted);
1855         if (error)
1856                 return error;
1857
1858         return cred_has_perm(old, new, PROCESS__SETCAP);
1859 }
1860
1861 /*
1862  * (This comment used to live with the selinux_task_setuid hook,
1863  * which was removed).
1864  *
1865  * Since setuid only affects the current process, and since the SELinux
1866  * controls are not based on the Linux identity attributes, SELinux does not
1867  * need to control this operation.  However, SELinux does control the use of
1868  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1869  */
1870
1871 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1872                            int cap, int audit)
1873 {
1874         int rc;
1875
1876         rc = cap_capable(tsk, cred, cap, audit);
1877         if (rc)
1878                 return rc;
1879
1880         return task_has_capability(tsk, cred, cap, audit);
1881 }
1882
1883 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1884 {
1885         int buflen, rc;
1886         char *buffer, *path, *end;
1887
1888         rc = -ENOMEM;
1889         buffer = (char *)__get_free_page(GFP_KERNEL);
1890         if (!buffer)
1891                 goto out;
1892
1893         buflen = PAGE_SIZE;
1894         end = buffer+buflen;
1895         *--end = '\0';
1896         buflen--;
1897         path = end-1;
1898         *path = '/';
1899         while (table) {
1900                 const char *name = table->procname;
1901                 size_t namelen = strlen(name);
1902                 buflen -= namelen + 1;
1903                 if (buflen < 0)
1904                         goto out_free;
1905                 end -= namelen;
1906                 memcpy(end, name, namelen);
1907                 *--end = '/';
1908                 path = end;
1909                 table = table->parent;
1910         }
1911         buflen -= 4;
1912         if (buflen < 0)
1913                 goto out_free;
1914         end -= 4;
1915         memcpy(end, "/sys", 4);
1916         path = end;
1917         rc = security_genfs_sid("proc", path, tclass, sid);
1918 out_free:
1919         free_page((unsigned long)buffer);
1920 out:
1921         return rc;
1922 }
1923
1924 static int selinux_sysctl(ctl_table *table, int op)
1925 {
1926         int error = 0;
1927         u32 av;
1928         u32 tsid, sid;
1929         int rc;
1930
1931         sid = current_sid();
1932
1933         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1934                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1935         if (rc) {
1936                 /* Default to the well-defined sysctl SID. */
1937                 tsid = SECINITSID_SYSCTL;
1938         }
1939
1940         /* The op values are "defined" in sysctl.c, thereby creating
1941          * a bad coupling between this module and sysctl.c */
1942         if (op == 001) {
1943                 error = avc_has_perm(sid, tsid,
1944                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1945         } else {
1946                 av = 0;
1947                 if (op & 004)
1948                         av |= FILE__READ;
1949                 if (op & 002)
1950                         av |= FILE__WRITE;
1951                 if (av)
1952                         error = avc_has_perm(sid, tsid,
1953                                              SECCLASS_FILE, av, NULL);
1954         }
1955
1956         return error;
1957 }
1958
1959 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1960 {
1961         const struct cred *cred = current_cred();
1962         int rc = 0;
1963
1964         if (!sb)
1965                 return 0;
1966
1967         switch (cmds) {
1968         case Q_SYNC:
1969         case Q_QUOTAON:
1970         case Q_QUOTAOFF:
1971         case Q_SETINFO:
1972         case Q_SETQUOTA:
1973                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1974                 break;
1975         case Q_GETFMT:
1976         case Q_GETINFO:
1977         case Q_GETQUOTA:
1978                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1979                 break;
1980         default:
1981                 rc = 0;  /* let the kernel handle invalid cmds */
1982                 break;
1983         }
1984         return rc;
1985 }
1986
1987 static int selinux_quota_on(struct dentry *dentry)
1988 {
1989         const struct cred *cred = current_cred();
1990
1991         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1992 }
1993
1994 static int selinux_syslog(int type, bool from_file)
1995 {
1996         int rc;
1997
1998         rc = cap_syslog(type, from_file);
1999         if (rc)
2000                 return rc;
2001
2002         switch (type) {
2003         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2004         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2005                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2006                 break;
2007         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2008         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2009         /* Set level of messages printed to console */
2010         case SYSLOG_ACTION_CONSOLE_LEVEL:
2011                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2012                 break;
2013         case SYSLOG_ACTION_CLOSE:       /* Close log */
2014         case SYSLOG_ACTION_OPEN:        /* Open log */
2015         case SYSLOG_ACTION_READ:        /* Read from log */
2016         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2017         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2018         default:
2019                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2020                 break;
2021         }
2022         return rc;
2023 }
2024
2025 /*
2026  * Check that a process has enough memory to allocate a new virtual
2027  * mapping. 0 means there is enough memory for the allocation to
2028  * succeed and -ENOMEM implies there is not.
2029  *
2030  * Do not audit the selinux permission check, as this is applied to all
2031  * processes that allocate mappings.
2032  */
2033 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2034 {
2035         int rc, cap_sys_admin = 0;
2036
2037         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2038                              SECURITY_CAP_NOAUDIT);
2039         if (rc == 0)
2040                 cap_sys_admin = 1;
2041
2042         return __vm_enough_memory(mm, pages, cap_sys_admin);
2043 }
2044
2045 /* binprm security operations */
2046
2047 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2048 {
2049         const struct task_security_struct *old_tsec;
2050         struct task_security_struct *new_tsec;
2051         struct inode_security_struct *isec;
2052         struct common_audit_data ad;
2053         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2054         int rc;
2055
2056         rc = cap_bprm_set_creds(bprm);
2057         if (rc)
2058                 return rc;
2059
2060         /* SELinux context only depends on initial program or script and not
2061          * the script interpreter */
2062         if (bprm->cred_prepared)
2063                 return 0;
2064
2065         old_tsec = current_security();
2066         new_tsec = bprm->cred->security;
2067         isec = inode->i_security;
2068
2069         /* Default to the current task SID. */
2070         new_tsec->sid = old_tsec->sid;
2071         new_tsec->osid = old_tsec->sid;
2072
2073         /* Reset fs, key, and sock SIDs on execve. */
2074         new_tsec->create_sid = 0;
2075         new_tsec->keycreate_sid = 0;
2076         new_tsec->sockcreate_sid = 0;
2077
2078         if (old_tsec->exec_sid) {
2079                 new_tsec->sid = old_tsec->exec_sid;
2080                 /* Reset exec SID on execve. */
2081                 new_tsec->exec_sid = 0;
2082         } else {
2083                 /* Check for a default transition on this program. */
2084                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2085                                              SECCLASS_PROCESS, &new_tsec->sid);
2086                 if (rc)
2087                         return rc;
2088         }
2089
2090         COMMON_AUDIT_DATA_INIT(&ad, FS);
2091         ad.u.fs.path = bprm->file->f_path;
2092
2093         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2094                 new_tsec->sid = old_tsec->sid;
2095
2096         if (new_tsec->sid == old_tsec->sid) {
2097                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2098                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2099                 if (rc)
2100                         return rc;
2101         } else {
2102                 /* Check permissions for the transition. */
2103                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2104                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2105                 if (rc)
2106                         return rc;
2107
2108                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2109                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2110                 if (rc)
2111                         return rc;
2112
2113                 /* Check for shared state */
2114                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2115                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2116                                           SECCLASS_PROCESS, PROCESS__SHARE,
2117                                           NULL);
2118                         if (rc)
2119                                 return -EPERM;
2120                 }
2121
2122                 /* Make sure that anyone attempting to ptrace over a task that
2123                  * changes its SID has the appropriate permit */
2124                 if (bprm->unsafe &
2125                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2126                         struct task_struct *tracer;
2127                         struct task_security_struct *sec;
2128                         u32 ptsid = 0;
2129
2130                         rcu_read_lock();
2131                         tracer = tracehook_tracer_task(current);
2132                         if (likely(tracer != NULL)) {
2133                                 sec = __task_cred(tracer)->security;
2134                                 ptsid = sec->sid;
2135                         }
2136                         rcu_read_unlock();
2137
2138                         if (ptsid != 0) {
2139                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2140                                                   SECCLASS_PROCESS,
2141                                                   PROCESS__PTRACE, NULL);
2142                                 if (rc)
2143                                         return -EPERM;
2144                         }
2145                 }
2146
2147                 /* Clear any possibly unsafe personality bits on exec: */
2148                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2149         }
2150
2151         return 0;
2152 }
2153
2154 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2155 {
2156         const struct task_security_struct *tsec = current_security();
2157         u32 sid, osid;
2158         int atsecure = 0;
2159
2160         sid = tsec->sid;
2161         osid = tsec->osid;
2162
2163         if (osid != sid) {
2164                 /* Enable secure mode for SIDs transitions unless
2165                    the noatsecure permission is granted between
2166                    the two SIDs, i.e. ahp returns 0. */
2167                 atsecure = avc_has_perm(osid, sid,
2168                                         SECCLASS_PROCESS,
2169                                         PROCESS__NOATSECURE, NULL);
2170         }
2171
2172         return (atsecure || cap_bprm_secureexec(bprm));
2173 }
2174
2175 extern struct vfsmount *selinuxfs_mount;
2176 extern struct dentry *selinux_null;
2177
2178 /* Derived from fs/exec.c:flush_old_files. */
2179 static inline void flush_unauthorized_files(const struct cred *cred,
2180                                             struct files_struct *files)
2181 {
2182         struct common_audit_data ad;
2183         struct file *file, *devnull = NULL;
2184         struct tty_struct *tty;
2185         struct fdtable *fdt;
2186         long j = -1;
2187         int drop_tty = 0;
2188
2189         tty = get_current_tty();
2190         if (tty) {
2191                 file_list_lock();
2192                 if (!list_empty(&tty->tty_files)) {
2193                         struct inode *inode;
2194
2195                         /* Revalidate access to controlling tty.
2196                            Use inode_has_perm on the tty inode directly rather
2197                            than using file_has_perm, as this particular open
2198                            file may belong to another process and we are only
2199                            interested in the inode-based check here. */
2200                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2201                         inode = file->f_path.dentry->d_inode;
2202                         if (inode_has_perm(cred, inode,
2203                                            FILE__READ | FILE__WRITE, NULL)) {
2204                                 drop_tty = 1;
2205                         }
2206                 }
2207                 file_list_unlock();
2208                 tty_kref_put(tty);
2209         }
2210         /* Reset controlling tty. */
2211         if (drop_tty)
2212                 no_tty();
2213
2214         /* Revalidate access to inherited open files. */
2215
2216         COMMON_AUDIT_DATA_INIT(&ad, FS);
2217
2218         spin_lock(&files->file_lock);
2219         for (;;) {
2220                 unsigned long set, i;
2221                 int fd;
2222
2223                 j++;
2224                 i = j * __NFDBITS;
2225                 fdt = files_fdtable(files);
2226                 if (i >= fdt->max_fds)
2227                         break;
2228                 set = fdt->open_fds->fds_bits[j];
2229                 if (!set)
2230                         continue;
2231                 spin_unlock(&files->file_lock);
2232                 for ( ; set ; i++, set >>= 1) {
2233                         if (set & 1) {
2234                                 file = fget(i);
2235                                 if (!file)
2236                                         continue;
2237                                 if (file_has_perm(cred,
2238                                                   file,
2239                                                   file_to_av(file))) {
2240                                         sys_close(i);
2241                                         fd = get_unused_fd();
2242                                         if (fd != i) {
2243                                                 if (fd >= 0)
2244                                                         put_unused_fd(fd);
2245                                                 fput(file);
2246                                                 continue;
2247                                         }
2248                                         if (devnull) {
2249                                                 get_file(devnull);
2250                                         } else {
2251                                                 devnull = dentry_open(
2252                                                         dget(selinux_null),
2253                                                         mntget(selinuxfs_mount),
2254                                                         O_RDWR, cred);
2255                                                 if (IS_ERR(devnull)) {
2256                                                         devnull = NULL;
2257                                                         put_unused_fd(fd);
2258                                                         fput(file);
2259                                                         continue;
2260                                                 }
2261                                         }
2262                                         fd_install(fd, devnull);
2263                                 }
2264                                 fput(file);
2265                         }
2266                 }
2267                 spin_lock(&files->file_lock);
2268
2269         }
2270         spin_unlock(&files->file_lock);
2271 }
2272
2273 /*
2274  * Prepare a process for imminent new credential changes due to exec
2275  */
2276 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2277 {
2278         struct task_security_struct *new_tsec;
2279         struct rlimit *rlim, *initrlim;
2280         int rc, i;
2281
2282         new_tsec = bprm->cred->security;
2283         if (new_tsec->sid == new_tsec->osid)
2284                 return;
2285
2286         /* Close files for which the new task SID is not authorized. */
2287         flush_unauthorized_files(bprm->cred, current->files);
2288
2289         /* Always clear parent death signal on SID transitions. */
2290         current->pdeath_signal = 0;
2291
2292         /* Check whether the new SID can inherit resource limits from the old
2293          * SID.  If not, reset all soft limits to the lower of the current
2294          * task's hard limit and the init task's soft limit.
2295          *
2296          * Note that the setting of hard limits (even to lower them) can be
2297          * controlled by the setrlimit check.  The inclusion of the init task's
2298          * soft limit into the computation is to avoid resetting soft limits
2299          * higher than the default soft limit for cases where the default is
2300          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2301          */
2302         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2303                           PROCESS__RLIMITINH, NULL);
2304         if (rc) {
2305                 for (i = 0; i < RLIM_NLIMITS; i++) {
2306                         rlim = current->signal->rlim + i;
2307                         initrlim = init_task.signal->rlim + i;
2308                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2309                 }
2310                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2311         }
2312 }
2313
2314 /*
2315  * Clean up the process immediately after the installation of new credentials
2316  * due to exec
2317  */
2318 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2319 {
2320         const struct task_security_struct *tsec = current_security();
2321         struct itimerval itimer;
2322         u32 osid, sid;
2323         int rc, i;
2324
2325         osid = tsec->osid;
2326         sid = tsec->sid;
2327
2328         if (sid == osid)
2329                 return;
2330
2331         /* Check whether the new SID can inherit signal state from the old SID.
2332          * If not, clear itimers to avoid subsequent signal generation and
2333          * flush and unblock signals.
2334          *
2335          * This must occur _after_ the task SID has been updated so that any
2336          * kill done after the flush will be checked against the new SID.
2337          */
2338         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2339         if (rc) {
2340                 memset(&itimer, 0, sizeof itimer);
2341                 for (i = 0; i < 3; i++)
2342                         do_setitimer(i, &itimer, NULL);
2343                 spin_lock_irq(&current->sighand->siglock);
2344                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2345                         __flush_signals(current);
2346                         flush_signal_handlers(current, 1);
2347                         sigemptyset(&current->blocked);
2348                 }
2349                 spin_unlock_irq(&current->sighand->siglock);
2350         }
2351
2352         /* Wake up the parent if it is waiting so that it can recheck
2353          * wait permission to the new task SID. */
2354         read_lock(&tasklist_lock);
2355         __wake_up_parent(current, current->real_parent);
2356         read_unlock(&tasklist_lock);
2357 }
2358
2359 /* superblock security operations */
2360
2361 static int selinux_sb_alloc_security(struct super_block *sb)
2362 {
2363         return superblock_alloc_security(sb);
2364 }
2365
2366 static void selinux_sb_free_security(struct super_block *sb)
2367 {
2368         superblock_free_security(sb);
2369 }
2370
2371 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2372 {
2373         if (plen > olen)
2374                 return 0;
2375
2376         return !memcmp(prefix, option, plen);
2377 }
2378
2379 static inline int selinux_option(char *option, int len)
2380 {
2381         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2382                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2383                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2384                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2385                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2386 }
2387
2388 static inline void take_option(char **to, char *from, int *first, int len)
2389 {
2390         if (!*first) {
2391                 **to = ',';
2392                 *to += 1;
2393         } else
2394                 *first = 0;
2395         memcpy(*to, from, len);
2396         *to += len;
2397 }
2398
2399 static inline void take_selinux_option(char **to, char *from, int *first,
2400                                        int len)
2401 {
2402         int current_size = 0;
2403
2404         if (!*first) {
2405                 **to = '|';
2406                 *to += 1;
2407         } else
2408                 *first = 0;
2409
2410         while (current_size < len) {
2411                 if (*from != '"') {
2412                         **to = *from;
2413                         *to += 1;
2414                 }
2415                 from += 1;
2416                 current_size += 1;
2417         }
2418 }
2419
2420 static int selinux_sb_copy_data(char *orig, char *copy)
2421 {
2422         int fnosec, fsec, rc = 0;
2423         char *in_save, *in_curr, *in_end;
2424         char *sec_curr, *nosec_save, *nosec;
2425         int open_quote = 0;
2426
2427         in_curr = orig;
2428         sec_curr = copy;
2429
2430         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2431         if (!nosec) {
2432                 rc = -ENOMEM;
2433                 goto out;
2434         }
2435
2436         nosec_save = nosec;
2437         fnosec = fsec = 1;
2438         in_save = in_end = orig;
2439
2440         do {
2441                 if (*in_end == '"')
2442                         open_quote = !open_quote;
2443                 if ((*in_end == ',' && open_quote == 0) ||
2444                                 *in_end == '\0') {
2445                         int len = in_end - in_curr;
2446
2447                         if (selinux_option(in_curr, len))
2448                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2449                         else
2450                                 take_option(&nosec, in_curr, &fnosec, len);
2451
2452                         in_curr = in_end + 1;
2453                 }
2454         } while (*in_end++);
2455
2456         strcpy(in_save, nosec_save);
2457         free_page((unsigned long)nosec_save);
2458 out:
2459         return rc;
2460 }
2461
2462 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2463 {
2464         const struct cred *cred = current_cred();
2465         struct common_audit_data ad;
2466         int rc;
2467
2468         rc = superblock_doinit(sb, data);
2469         if (rc)
2470                 return rc;
2471
2472         /* Allow all mounts performed by the kernel */
2473         if (flags & MS_KERNMOUNT)
2474                 return 0;
2475
2476         COMMON_AUDIT_DATA_INIT(&ad, FS);
2477         ad.u.fs.path.dentry = sb->s_root;
2478         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2479 }
2480
2481 static int selinux_sb_statfs(struct dentry *dentry)
2482 {
2483         const struct cred *cred = current_cred();
2484         struct common_audit_data ad;
2485
2486         COMMON_AUDIT_DATA_INIT(&ad, FS);
2487         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2488         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2489 }
2490
2491 static int selinux_mount(char *dev_name,
2492                          struct path *path,
2493                          char *type,
2494                          unsigned long flags,
2495                          void *data)
2496 {
2497         const struct cred *cred = current_cred();
2498
2499         if (flags & MS_REMOUNT)
2500                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2501                                            FILESYSTEM__REMOUNT, NULL);
2502         else
2503                 return dentry_has_perm(cred, path->mnt, path->dentry,
2504                                        FILE__MOUNTON);
2505 }
2506
2507 static int selinux_umount(struct vfsmount *mnt, int flags)
2508 {
2509         const struct cred *cred = current_cred();
2510
2511         return superblock_has_perm(cred, mnt->mnt_sb,
2512                                    FILESYSTEM__UNMOUNT, NULL);
2513 }
2514
2515 /* inode security operations */
2516
2517 static int selinux_inode_alloc_security(struct inode *inode)
2518 {
2519         return inode_alloc_security(inode);
2520 }
2521
2522 static void selinux_inode_free_security(struct inode *inode)
2523 {
2524         inode_free_security(inode);
2525 }
2526
2527 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2528                                        char **name, void **value,
2529                                        size_t *len)
2530 {
2531         const struct task_security_struct *tsec = current_security();
2532         struct inode_security_struct *dsec;
2533         struct superblock_security_struct *sbsec;
2534         u32 sid, newsid, clen;
2535         int rc;
2536         char *namep = NULL, *context;
2537
2538         dsec = dir->i_security;
2539         sbsec = dir->i_sb->s_security;
2540
2541         sid = tsec->sid;
2542         newsid = tsec->create_sid;
2543
2544         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2545                 rc = security_transition_sid(sid, dsec->sid,
2546                                              inode_mode_to_security_class(inode->i_mode),
2547                                              &newsid);
2548                 if (rc) {
2549                         printk(KERN_WARNING "%s:  "
2550                                "security_transition_sid failed, rc=%d (dev=%s "
2551                                "ino=%ld)\n",
2552                                __func__,
2553                                -rc, inode->i_sb->s_id, inode->i_ino);
2554                         return rc;
2555                 }
2556         }
2557
2558         /* Possibly defer initialization to selinux_complete_init. */
2559         if (sbsec->flags & SE_SBINITIALIZED) {
2560                 struct inode_security_struct *isec = inode->i_security;
2561                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2562                 isec->sid = newsid;
2563                 isec->initialized = 1;
2564         }
2565
2566         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2567                 return -EOPNOTSUPP;
2568
2569         if (name) {
2570                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2571                 if (!namep)
2572                         return -ENOMEM;
2573                 *name = namep;
2574         }
2575
2576         if (value && len) {
2577                 rc = security_sid_to_context_force(newsid, &context, &clen);
2578                 if (rc) {
2579                         kfree(namep);
2580                         return rc;
2581                 }
2582                 *value = context;
2583                 *len = clen;
2584         }
2585
2586         return 0;
2587 }
2588
2589 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2590 {
2591         return may_create(dir, dentry, SECCLASS_FILE);
2592 }
2593
2594 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2595 {
2596         return may_link(dir, old_dentry, MAY_LINK);
2597 }
2598
2599 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2600 {
2601         return may_link(dir, dentry, MAY_UNLINK);
2602 }
2603
2604 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2605 {
2606         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2607 }
2608
2609 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2610 {
2611         return may_create(dir, dentry, SECCLASS_DIR);
2612 }
2613
2614 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2615 {
2616         return may_link(dir, dentry, MAY_RMDIR);
2617 }
2618
2619 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2620 {
2621         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2622 }
2623
2624 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2625                                 struct inode *new_inode, struct dentry *new_dentry)
2626 {
2627         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2628 }
2629
2630 static int selinux_inode_readlink(struct dentry *dentry)
2631 {
2632         const struct cred *cred = current_cred();
2633
2634         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2635 }
2636
2637 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2638 {
2639         const struct cred *cred = current_cred();
2640
2641         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2642 }
2643
2644 static int selinux_inode_permission(struct inode *inode, int mask)
2645 {
2646         const struct cred *cred = current_cred();
2647         struct common_audit_data ad;
2648         u32 perms;
2649         bool from_access;
2650
2651         from_access = mask & MAY_ACCESS;
2652         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2653
2654         /* No permission to check.  Existence test. */
2655         if (!mask)
2656                 return 0;
2657
2658         COMMON_AUDIT_DATA_INIT(&ad, FS);
2659         ad.u.fs.inode = inode;
2660
2661         if (from_access)
2662                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2663
2664         perms = file_mask_to_av(inode->i_mode, mask);
2665
2666         return inode_has_perm(cred, inode, perms, &ad);
2667 }
2668
2669 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2670 {
2671         const struct cred *cred = current_cred();
2672         unsigned int ia_valid = iattr->ia_valid;
2673
2674         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2675         if (ia_valid & ATTR_FORCE) {
2676                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2677                               ATTR_FORCE);
2678                 if (!ia_valid)
2679                         return 0;
2680         }
2681
2682         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2683                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2684                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2685
2686         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2687 }
2688
2689 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2690 {
2691         const struct cred *cred = current_cred();
2692
2693         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2694 }
2695
2696 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2697 {
2698         const struct cred *cred = current_cred();
2699
2700         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2701                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2702                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2703                         if (!capable(CAP_SETFCAP))
2704                                 return -EPERM;
2705                 } else if (!capable(CAP_SYS_ADMIN)) {
2706                         /* A different attribute in the security namespace.
2707                            Restrict to administrator. */
2708                         return -EPERM;
2709                 }
2710         }
2711
2712         /* Not an attribute we recognize, so just check the
2713            ordinary setattr permission. */
2714         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2715 }
2716
2717 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2718                                   const void *value, size_t size, int flags)
2719 {
2720         struct inode *inode = dentry->d_inode;
2721         struct inode_security_struct *isec = inode->i_security;
2722         struct superblock_security_struct *sbsec;
2723         struct common_audit_data ad;
2724         u32 newsid, sid = current_sid();
2725         int rc = 0;
2726
2727         if (strcmp(name, XATTR_NAME_SELINUX))
2728                 return selinux_inode_setotherxattr(dentry, name);
2729
2730         sbsec = inode->i_sb->s_security;
2731         if (!(sbsec->flags & SE_SBLABELSUPP))
2732                 return -EOPNOTSUPP;
2733
2734         if (!is_owner_or_cap(inode))
2735                 return -EPERM;
2736
2737         COMMON_AUDIT_DATA_INIT(&ad, FS);
2738         ad.u.fs.path.dentry = dentry;
2739
2740         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2741                           FILE__RELABELFROM, &ad);
2742         if (rc)
2743                 return rc;
2744
2745         rc = security_context_to_sid(value, size, &newsid);
2746         if (rc == -EINVAL) {
2747                 if (!capable(CAP_MAC_ADMIN))
2748                         return rc;
2749                 rc = security_context_to_sid_force(value, size, &newsid);
2750         }
2751         if (rc)
2752                 return rc;
2753
2754         rc = avc_has_perm(sid, newsid, isec->sclass,
2755                           FILE__RELABELTO, &ad);
2756         if (rc)
2757                 return rc;
2758
2759         rc = security_validate_transition(isec->sid, newsid, sid,
2760                                           isec->sclass);
2761         if (rc)
2762                 return rc;
2763
2764         return avc_has_perm(newsid,
2765                             sbsec->sid,
2766                             SECCLASS_FILESYSTEM,
2767                             FILESYSTEM__ASSOCIATE,
2768                             &ad);
2769 }
2770
2771 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2772                                         const void *value, size_t size,
2773                                         int flags)
2774 {
2775         struct inode *inode = dentry->d_inode;
2776         struct inode_security_struct *isec = inode->i_security;
2777         u32 newsid;
2778         int rc;
2779
2780         if (strcmp(name, XATTR_NAME_SELINUX)) {
2781                 /* Not an attribute we recognize, so nothing to do. */
2782                 return;
2783         }
2784
2785         rc = security_context_to_sid_force(value, size, &newsid);
2786         if (rc) {
2787                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2788                        "for (%s, %lu), rc=%d\n",
2789                        inode->i_sb->s_id, inode->i_ino, -rc);
2790                 return;
2791         }
2792
2793         isec->sid = newsid;
2794         return;
2795 }
2796
2797 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2798 {
2799         const struct cred *cred = current_cred();
2800
2801         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2802 }
2803
2804 static int selinux_inode_listxattr(struct dentry *dentry)
2805 {
2806         const struct cred *cred = current_cred();
2807
2808         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2809 }
2810
2811 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2812 {
2813         if (strcmp(name, XATTR_NAME_SELINUX))
2814                 return selinux_inode_setotherxattr(dentry, name);
2815
2816         /* No one is allowed to remove a SELinux security label.
2817            You can change the label, but all data must be labeled. */
2818         return -EACCES;
2819 }
2820
2821 /*
2822  * Copy the inode security context value to the user.
2823  *
2824  * Permission check is handled by selinux_inode_getxattr hook.
2825  */
2826 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2827 {
2828         u32 size;
2829         int error;
2830         char *context = NULL;
2831         struct inode_security_struct *isec = inode->i_security;
2832
2833         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2834                 return -EOPNOTSUPP;
2835
2836         /*
2837          * If the caller has CAP_MAC_ADMIN, then get the raw context
2838          * value even if it is not defined by current policy; otherwise,
2839          * use the in-core value under current policy.
2840          * Use the non-auditing forms of the permission checks since
2841          * getxattr may be called by unprivileged processes commonly
2842          * and lack of permission just means that we fall back to the
2843          * in-core context value, not a denial.
2844          */
2845         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2846                                 SECURITY_CAP_NOAUDIT);
2847         if (!error)
2848                 error = security_sid_to_context_force(isec->sid, &context,
2849                                                       &size);
2850         else
2851                 error = security_sid_to_context(isec->sid, &context, &size);
2852         if (error)
2853                 return error;
2854         error = size;
2855         if (alloc) {
2856                 *buffer = context;
2857                 goto out_nofree;
2858         }
2859         kfree(context);
2860 out_nofree:
2861         return error;
2862 }
2863
2864 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2865                                      const void *value, size_t size, int flags)
2866 {
2867         struct inode_security_struct *isec = inode->i_security;
2868         u32 newsid;
2869         int rc;
2870
2871         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2872                 return -EOPNOTSUPP;
2873
2874         if (!value || !size)
2875                 return -EACCES;
2876
2877         rc = security_context_to_sid((void *)value, size, &newsid);
2878         if (rc)
2879                 return rc;
2880
2881         isec->sid = newsid;
2882         isec->initialized = 1;
2883         return 0;
2884 }
2885
2886 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2887 {
2888         const int len = sizeof(XATTR_NAME_SELINUX);
2889         if (buffer && len <= buffer_size)
2890                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2891         return len;
2892 }
2893
2894 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2895 {
2896         struct inode_security_struct *isec = inode->i_security;
2897         *secid = isec->sid;
2898 }
2899
2900 /* file security operations */
2901
2902 static int selinux_revalidate_file_permission(struct file *file, int mask)
2903 {
2904         const struct cred *cred = current_cred();
2905         struct inode *inode = file->f_path.dentry->d_inode;
2906
2907         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2908         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2909                 mask |= MAY_APPEND;
2910
2911         return file_has_perm(cred, file,
2912                              file_mask_to_av(inode->i_mode, mask));
2913 }
2914
2915 static int selinux_file_permission(struct file *file, int mask)
2916 {
2917         struct inode *inode = file->f_path.dentry->d_inode;
2918         struct file_security_struct *fsec = file->f_security;
2919         struct inode_security_struct *isec = inode->i_security;
2920         u32 sid = current_sid();
2921
2922         if (!mask)
2923                 /* No permission to check.  Existence test. */
2924                 return 0;
2925
2926         if (sid == fsec->sid && fsec->isid == isec->sid &&
2927             fsec->pseqno == avc_policy_seqno())
2928                 /* No change since dentry_open check. */
2929                 return 0;
2930
2931         return selinux_revalidate_file_permission(file, mask);
2932 }
2933
2934 static int selinux_file_alloc_security(struct file *file)
2935 {
2936         return file_alloc_security(file);
2937 }
2938
2939 static void selinux_file_free_security(struct file *file)
2940 {
2941         file_free_security(file);
2942 }
2943
2944 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2945                               unsigned long arg)
2946 {
2947         const struct cred *cred = current_cred();
2948         u32 av = 0;
2949
2950         if (_IOC_DIR(cmd) & _IOC_WRITE)
2951                 av |= FILE__WRITE;
2952         if (_IOC_DIR(cmd) & _IOC_READ)
2953                 av |= FILE__READ;
2954         if (!av)
2955                 av = FILE__IOCTL;
2956
2957         return file_has_perm(cred, file, av);
2958 }
2959
2960 static int default_noexec;
2961
2962 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2963 {
2964         const struct cred *cred = current_cred();
2965         int rc = 0;
2966
2967         if (default_noexec &&
2968             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2969                 /*
2970                  * We are making executable an anonymous mapping or a
2971                  * private file mapping that will also be writable.
2972                  * This has an additional check.
2973                  */
2974                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2975                 if (rc)
2976                         goto error;
2977         }
2978
2979         if (file) {
2980                 /* read access is always possible with a mapping */
2981                 u32 av = FILE__READ;
2982
2983                 /* write access only matters if the mapping is shared */
2984                 if (shared && (prot & PROT_WRITE))
2985                         av |= FILE__WRITE;
2986
2987                 if (prot & PROT_EXEC)
2988                         av |= FILE__EXECUTE;
2989
2990                 return file_has_perm(cred, file, av);
2991         }
2992
2993 error:
2994         return rc;
2995 }
2996
2997 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2998                              unsigned long prot, unsigned long flags,
2999                              unsigned long addr, unsigned long addr_only)
3000 {
3001         int rc = 0;
3002         u32 sid = current_sid();
3003
3004         /*
3005          * notice that we are intentionally putting the SELinux check before
3006          * the secondary cap_file_mmap check.  This is such a likely attempt
3007          * at bad behaviour/exploit that we always want to get the AVC, even
3008          * if DAC would have also denied the operation.
3009          */
3010         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3011                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3012                                   MEMPROTECT__MMAP_ZERO, NULL);
3013                 if (rc)
3014                         return rc;
3015         }
3016
3017         /* do DAC check on address space usage */
3018         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3019         if (rc || addr_only)
3020                 return rc;
3021
3022         if (selinux_checkreqprot)
3023                 prot = reqprot;
3024
3025         return file_map_prot_check(file, prot,
3026                                    (flags & MAP_TYPE) == MAP_SHARED);
3027 }
3028
3029 static int selinux_file_mprotect(struct vm_area_struct *vma,
3030                                  unsigned long reqprot,
3031                                  unsigned long prot)
3032 {
3033         const struct cred *cred = current_cred();
3034
3035         if (selinux_checkreqprot)
3036                 prot = reqprot;
3037
3038         if (default_noexec &&
3039             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3040                 int rc = 0;
3041                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3042                     vma->vm_end <= vma->vm_mm->brk) {
3043                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3044                 } else if (!vma->vm_file &&
3045                            vma->vm_start <= vma->vm_mm->start_stack &&
3046                            vma->vm_end >= vma->vm_mm->start_stack) {
3047                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3048                 } else if (vma->vm_file && vma->anon_vma) {
3049                         /*
3050                          * We are making executable a file mapping that has
3051                          * had some COW done. Since pages might have been
3052                          * written, check ability to execute the possibly
3053                          * modified content.  This typically should only
3054                          * occur for text relocations.
3055                          */
3056                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3057                 }
3058                 if (rc)
3059                         return rc;
3060         }
3061
3062         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3063 }
3064
3065 static int selinux_file_lock(struct file *file, unsigned int cmd)
3066 {
3067         const struct cred *cred = current_cred();
3068
3069         return file_has_perm(cred, file, FILE__LOCK);
3070 }
3071
3072 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3073                               unsigned long arg)
3074 {
3075         const struct cred *cred = current_cred();
3076         int err = 0;
3077
3078         switch (cmd) {
3079         case F_SETFL:
3080                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3081                         err = -EINVAL;
3082                         break;
3083                 }
3084
3085                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3086                         err = file_has_perm(cred, file, FILE__WRITE);
3087                         break;
3088                 }
3089                 /* fall through */
3090         case F_SETOWN:
3091         case F_SETSIG:
3092         case F_GETFL:
3093         case F_GETOWN:
3094         case F_GETSIG:
3095                 /* Just check FD__USE permission */
3096                 err = file_has_perm(cred, file, 0);
3097                 break;
3098         case F_GETLK:
3099         case F_SETLK:
3100         case F_SETLKW:
3101 #if BITS_PER_LONG == 32
3102         case F_GETLK64:
3103         case F_SETLK64:
3104         case F_SETLKW64:
3105 #endif
3106                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3107                         err = -EINVAL;
3108                         break;
3109                 }
3110                 err = file_has_perm(cred, file, FILE__LOCK);
3111                 break;
3112         }
3113
3114         return err;
3115 }
3116
3117 static int selinux_file_set_fowner(struct file *file)
3118 {
3119         struct file_security_struct *fsec;
3120
3121         fsec = file->f_security;
3122         fsec->fown_sid = current_sid();
3123
3124         return 0;
3125 }
3126
3127 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3128                                        struct fown_struct *fown, int signum)
3129 {
3130         struct file *file;
3131         u32 sid = task_sid(tsk);
3132         u32 perm;
3133         struct file_security_struct *fsec;
3134
3135         /* struct fown_struct is never outside the context of a struct file */
3136         file = container_of(fown, struct file, f_owner);
3137
3138         fsec = file->f_security;
3139
3140         if (!signum)
3141                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3142         else
3143                 perm = signal_to_av(signum);
3144
3145         return avc_has_perm(fsec->fown_sid, sid,
3146                             SECCLASS_PROCESS, perm, NULL);
3147 }
3148
3149 static int selinux_file_receive(struct file *file)
3150 {
3151         const struct cred *cred = current_cred();
3152
3153         return file_has_perm(cred, file, file_to_av(file));
3154 }
3155
3156 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3157 {
3158         struct file_security_struct *fsec;
3159         struct inode *inode;
3160         struct inode_security_struct *isec;
3161
3162         inode = file->f_path.dentry->d_inode;
3163         fsec = file->f_security;
3164         isec = inode->i_security;
3165         /*
3166          * Save inode label and policy sequence number
3167          * at open-time so that selinux_file_permission
3168          * can determine whether revalidation is necessary.
3169          * Task label is already saved in the file security
3170          * struct as its SID.
3171          */
3172         fsec->isid = isec->sid;
3173         fsec->pseqno = avc_policy_seqno();
3174         /*
3175          * Since the inode label or policy seqno may have changed
3176          * between the selinux_inode_permission check and the saving
3177          * of state above, recheck that access is still permitted.
3178          * Otherwise, access might never be revalidated against the
3179          * new inode label or new policy.
3180          * This check is not redundant - do not remove.
3181          */
3182         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3183 }
3184
3185 /* task security operations */
3186
3187 static int selinux_task_create(unsigned long clone_flags)
3188 {
3189         return current_has_perm(current, PROCESS__FORK);
3190 }
3191
3192 /*
3193  * allocate the SELinux part of blank credentials
3194  */
3195 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3196 {
3197         struct task_security_struct *tsec;
3198
3199         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3200         if (!tsec)
3201                 return -ENOMEM;
3202
3203         cred->security = tsec;
3204         return 0;
3205 }
3206
3207 /*
3208  * detach and free the LSM part of a set of credentials
3209  */
3210 static void selinux_cred_free(struct cred *cred)
3211 {
3212         struct task_security_struct *tsec = cred->security;
3213
3214         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3215         cred->security = (void *) 0x7UL;
3216         kfree(tsec);
3217 }
3218
3219 /*
3220  * prepare a new set of credentials for modification
3221  */
3222 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3223                                 gfp_t gfp)
3224 {
3225         const struct task_security_struct *old_tsec;
3226         struct task_security_struct *tsec;
3227
3228         old_tsec = old->security;
3229
3230         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3231         if (!tsec)
3232                 return -ENOMEM;
3233
3234         new->security = tsec;
3235         return 0;
3236 }
3237
3238 /*
3239  * transfer the SELinux data to a blank set of creds
3240  */
3241 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3242 {
3243         const struct task_security_struct *old_tsec = old->security;
3244         struct task_security_struct *tsec = new->security;
3245
3246         *tsec = *old_tsec;
3247 }
3248
3249 /*
3250  * set the security data for a kernel service
3251  * - all the creation contexts are set to unlabelled
3252  */
3253 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3254 {
3255         struct task_security_struct *tsec = new->security;
3256         u32 sid = current_sid();
3257         int ret;
3258
3259         ret = avc_has_perm(sid, secid,
3260                            SECCLASS_KERNEL_SERVICE,
3261                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3262                            NULL);
3263         if (ret == 0) {
3264                 tsec->sid = secid;
3265                 tsec->create_sid = 0;
3266                 tsec->keycreate_sid = 0;
3267                 tsec->sockcreate_sid = 0;
3268         }
3269         return ret;
3270 }
3271
3272 /*
3273  * set the file creation context in a security record to the same as the
3274  * objective context of the specified inode
3275  */
3276 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3277 {
3278         struct inode_security_struct *isec = inode->i_security;
3279         struct task_security_struct *tsec = new->security;
3280         u32 sid = current_sid();
3281         int ret;
3282
3283         ret = avc_has_perm(sid, isec->sid,
3284                            SECCLASS_KERNEL_SERVICE,
3285                            KERNEL_SERVICE__CREATE_FILES_AS,
3286                            NULL);
3287
3288         if (ret == 0)
3289                 tsec->create_sid = isec->sid;
3290         return ret;
3291 }
3292
3293 static int selinux_kernel_module_request(char *kmod_name)
3294 {
3295         u32 sid;
3296         struct common_audit_data ad;
3297
3298         sid = task_sid(current);
3299
3300         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3301         ad.u.kmod_name = kmod_name;
3302
3303         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3304                             SYSTEM__MODULE_REQUEST, &ad);
3305 }
3306
3307 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3308 {
3309         return current_has_perm(p, PROCESS__SETPGID);
3310 }
3311
3312 static int selinux_task_getpgid(struct task_struct *p)
3313 {
3314         return current_has_perm(p, PROCESS__GETPGID);
3315 }
3316
3317 static int selinux_task_getsid(struct task_struct *p)
3318 {
3319         return current_has_perm(p, PROCESS__GETSESSION);
3320 }
3321
3322 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3323 {
3324         *secid = task_sid(p);
3325 }
3326
3327 static int selinux_task_setnice(struct task_struct *p, int nice)
3328 {
3329         int rc;
3330
3331         rc = cap_task_setnice(p, nice);
3332         if (rc)
3333                 return rc;
3334
3335         return current_has_perm(p, PROCESS__SETSCHED);
3336 }
3337
3338 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3339 {
3340         int rc;
3341
3342         rc = cap_task_setioprio(p, ioprio);
3343         if (rc)
3344                 return rc;
3345
3346         return current_has_perm(p, PROCESS__SETSCHED);
3347 }
3348
3349 static int selinux_task_getioprio(struct task_struct *p)
3350 {
3351         return current_has_perm(p, PROCESS__GETSCHED);
3352 }
3353
3354 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3355 {
3356         struct rlimit *old_rlim = current->signal->rlim + resource;
3357
3358         /* Control the ability to change the hard limit (whether
3359            lowering or raising it), so that the hard limit can
3360            later be used as a safe reset point for the soft limit
3361            upon context transitions.  See selinux_bprm_committing_creds. */
3362         if (old_rlim->rlim_max != new_rlim->rlim_max)
3363                 return current_has_perm(current, PROCESS__SETRLIMIT);
3364
3365         return 0;
3366 }
3367
3368 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3369 {
3370         int rc;
3371
3372         rc = cap_task_setscheduler(p, policy, lp);
3373         if (rc)
3374                 return rc;
3375
3376         return current_has_perm(p, PROCESS__SETSCHED);
3377 }
3378
3379 static int selinux_task_getscheduler(struct task_struct *p)
3380 {
3381         return current_has_perm(p, PROCESS__GETSCHED);
3382 }
3383
3384 static int selinux_task_movememory(struct task_struct *p)
3385 {
3386         return current_has_perm(p, PROCESS__SETSCHED);
3387 }
3388
3389 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3390                                 int sig, u32 secid)
3391 {
3392         u32 perm;
3393         int rc;
3394
3395         if (!sig)
3396                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3397         else
3398                 perm = signal_to_av(sig);
3399         if (secid)
3400                 rc = avc_has_perm(secid, task_sid(p),
3401                                   SECCLASS_PROCESS, perm, NULL);
3402         else
3403                 rc = current_has_perm(p, perm);
3404         return rc;
3405 }
3406
3407 static int selinux_task_wait(struct task_struct *p)
3408 {
3409         return task_has_perm(p, current, PROCESS__SIGCHLD);
3410 }
3411
3412 static void selinux_task_to_inode(struct task_struct *p,
3413                                   struct inode *inode)
3414 {
3415         struct inode_security_struct *isec = inode->i_security;
3416         u32 sid = task_sid(p);
3417
3418         isec->sid = sid;
3419         isec->initialized = 1;
3420 }
3421
3422 /* Returns error only if unable to parse addresses */
3423 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3424                         struct common_audit_data *ad, u8 *proto)
3425 {
3426         int offset, ihlen, ret = -EINVAL;
3427         struct iphdr _iph, *ih;
3428
3429         offset = skb_network_offset(skb);
3430         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3431         if (ih == NULL)
3432                 goto out;
3433
3434         ihlen = ih->ihl * 4;
3435         if (ihlen < sizeof(_iph))
3436                 goto out;
3437
3438         ad->u.net.v4info.saddr = ih->saddr;
3439         ad->u.net.v4info.daddr = ih->daddr;
3440         ret = 0;
3441
3442         if (proto)
3443                 *proto = ih->protocol;
3444
3445         switch (ih->protocol) {
3446         case IPPROTO_TCP: {
3447                 struct tcphdr _tcph, *th;
3448
3449                 if (ntohs(ih->frag_off) & IP_OFFSET)
3450                         break;
3451
3452                 offset += ihlen;
3453                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3454                 if (th == NULL)
3455                         break;
3456
3457                 ad->u.net.sport = th->source;
3458                 ad->u.net.dport = th->dest;
3459                 break;
3460         }
3461
3462         case IPPROTO_UDP: {
3463                 struct udphdr _udph, *uh;
3464
3465                 if (ntohs(ih->frag_off) & IP_OFFSET)
3466                         break;
3467
3468                 offset += ihlen;
3469                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3470                 if (uh == NULL)
3471                         break;
3472
3473                 ad->u.net.sport = uh->source;
3474                 ad->u.net.dport = uh->dest;
3475                 break;
3476         }
3477
3478         case IPPROTO_DCCP: {
3479                 struct dccp_hdr _dccph, *dh;
3480
3481                 if (ntohs(ih->frag_off) & IP_OFFSET)
3482                         break;
3483
3484                 offset += ihlen;
3485                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3486                 if (dh == NULL)
3487                         break;
3488
3489                 ad->u.net.sport = dh->dccph_sport;
3490                 ad->u.net.dport = dh->dccph_dport;
3491                 break;
3492         }
3493
3494         default:
3495                 break;
3496         }
3497 out:
3498         return ret;
3499 }
3500
3501 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3502
3503 /* Returns error only if unable to parse addresses */
3504 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3505                         struct common_audit_data *ad, u8 *proto)
3506 {
3507         u8 nexthdr;
3508         int ret = -EINVAL, offset;
3509         struct ipv6hdr _ipv6h, *ip6;
3510
3511         offset = skb_network_offset(skb);
3512         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3513         if (ip6 == NULL)
3514                 goto out;
3515
3516         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3517         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3518         ret = 0;
3519
3520         nexthdr = ip6->nexthdr;
3521         offset += sizeof(_ipv6h);
3522         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3523         if (offset < 0)
3524                 goto out;
3525
3526         if (proto)
3527                 *proto = nexthdr;
3528
3529         switch (nexthdr) {
3530         case IPPROTO_TCP: {
3531                 struct tcphdr _tcph, *th;
3532
3533                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3534                 if (th == NULL)
3535                         break;
3536
3537                 ad->u.net.sport = th->source;
3538                 ad->u.net.dport = th->dest;
3539                 break;
3540         }
3541
3542         case IPPROTO_UDP: {
3543                 struct udphdr _udph, *uh;
3544
3545                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3546                 if (uh == NULL)
3547                         break;
3548
3549                 ad->u.net.sport = uh->source;
3550                 ad->u.net.dport = uh->dest;
3551                 break;
3552         }
3553
3554         case IPPROTO_DCCP: {
3555                 struct dccp_hdr _dccph, *dh;
3556
3557                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3558                 if (dh == NULL)
3559                         break;
3560
3561                 ad->u.net.sport = dh->dccph_sport;
3562                 ad->u.net.dport = dh->dccph_dport;
3563                 break;
3564         }
3565
3566         /* includes fragments */
3567         default:
3568                 break;
3569         }
3570 out:
3571         return ret;
3572 }
3573
3574 #endif /* IPV6 */
3575
3576 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3577                              char **_addrp, int src, u8 *proto)
3578 {
3579         char *addrp;
3580         int ret;
3581
3582         switch (ad->u.net.family) {
3583         case PF_INET:
3584                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3585                 if (ret)
3586                         goto parse_error;
3587                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3588                                        &ad->u.net.v4info.daddr);
3589                 goto okay;
3590
3591 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3592         case PF_INET6:
3593                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3594                 if (ret)
3595                         goto parse_error;
3596                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3597                                        &ad->u.net.v6info.daddr);
3598                 goto okay;
3599 #endif  /* IPV6 */
3600         default:
3601                 addrp = NULL;
3602                 goto okay;
3603         }
3604
3605 parse_error:
3606         printk(KERN_WARNING
3607                "SELinux: failure in selinux_parse_skb(),"
3608                " unable to parse packet\n");
3609         return ret;
3610
3611 okay:
3612         if (_addrp)
3613                 *_addrp = addrp;
3614         return 0;
3615 }
3616
3617 /**
3618  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3619  * @skb: the packet
3620  * @family: protocol family
3621  * @sid: the packet's peer label SID
3622  *
3623  * Description:
3624  * Check the various different forms of network peer labeling and determine
3625  * the peer label/SID for the packet; most of the magic actually occurs in
3626  * the security server function security_net_peersid_cmp().  The function
3627  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3628  * or -EACCES if @sid is invalid due to inconsistencies with the different
3629  * peer labels.
3630  *
3631  */
3632 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3633 {
3634         int err;
3635         u32 xfrm_sid;
3636         u32 nlbl_sid;
3637         u32 nlbl_type;
3638
3639         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3640         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3641
3642         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3643         if (unlikely(err)) {
3644                 printk(KERN_WARNING
3645                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3646                        " unable to determine packet's peer label\n");
3647                 return -EACCES;
3648         }
3649
3650         return 0;
3651 }
3652
3653 /* socket security operations */
3654
3655 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3656 {
3657         return tsec->sockcreate_sid ? : tsec->sid;
3658 }
3659
3660 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3661 {
3662         struct sk_security_struct *sksec = sk->sk_security;
3663         struct common_audit_data ad;
3664         u32 tsid = task_sid(task);
3665
3666         if (sksec->sid == SECINITSID_KERNEL)
3667                 return 0;
3668
3669         COMMON_AUDIT_DATA_INIT(&ad, NET);
3670         ad.u.net.sk = sk;
3671
3672         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3673 }
3674
3675 static int selinux_socket_create(int family, int type,
3676                                  int protocol, int kern)
3677 {
3678         const struct task_security_struct *tsec = current_security();
3679         u32 newsid;
3680         u16 secclass;
3681
3682         if (kern)
3683                 return 0;
3684
3685         newsid = socket_sockcreate_sid(tsec);
3686         secclass = socket_type_to_security_class(family, type, protocol);
3687         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3688 }
3689
3690 static int selinux_socket_post_create(struct socket *sock, int family,
3691                                       int type, int protocol, int kern)
3692 {
3693         const struct task_security_struct *tsec = current_security();
3694         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3695         struct sk_security_struct *sksec;
3696         int err = 0;
3697
3698         if (kern)
3699                 isec->sid = SECINITSID_KERNEL;
3700         else
3701                 isec->sid = socket_sockcreate_sid(tsec);
3702
3703         isec->sclass = socket_type_to_security_class(family, type, protocol);
3704         isec->initialized = 1;
3705
3706         if (sock->sk) {
3707                 sksec = sock->sk->sk_security;
3708                 sksec->sid = isec->sid;
3709                 sksec->sclass = isec->sclass;
3710                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3711         }
3712
3713         return err;
3714 }
3715
3716 /* Range of port numbers used to automatically bind.
3717    Need to determine whether we should perform a name_bind
3718    permission check between the socket and the port number. */
3719
3720 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3721 {
3722         struct sock *sk = sock->sk;
3723         u16 family;
3724         int err;
3725
3726         err = sock_has_perm(current, sk, SOCKET__BIND);
3727         if (err)
3728                 goto out;
3729
3730         /*
3731          * If PF_INET or PF_INET6, check name_bind permission for the port.
3732          * Multiple address binding for SCTP is not supported yet: we just
3733          * check the first address now.
3734          */
3735         family = sk->sk_family;
3736         if (family == PF_INET || family == PF_INET6) {
3737                 char *addrp;
3738                 struct sk_security_struct *sksec = sk->sk_security;
3739                 struct common_audit_data ad;
3740                 struct sockaddr_in *addr4 = NULL;
3741                 struct sockaddr_in6 *addr6 = NULL;
3742                 unsigned short snum;
3743                 u32 sid, node_perm;
3744
3745                 if (family == PF_INET) {
3746                         addr4 = (struct sockaddr_in *)address;
3747                         snum = ntohs(addr4->sin_port);
3748                         addrp = (char *)&addr4->sin_addr.s_addr;
3749                 } else {
3750                         addr6 = (struct sockaddr_in6 *)address;
3751                         snum = ntohs(addr6->sin6_port);
3752                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3753                 }
3754
3755                 if (snum) {
3756                         int low, high;
3757
3758                         inet_get_local_port_range(&low, &high);
3759
3760                         if (snum < max(PROT_SOCK, low) || snum > high) {
3761                                 err = sel_netport_sid(sk->sk_protocol,
3762                                                       snum, &sid);
3763                                 if (err)
3764                                         goto out;
3765                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3766                                 ad.u.net.sport = htons(snum);
3767                                 ad.u.net.family = family;
3768                                 err = avc_has_perm(sksec->sid, sid,
3769                                                    sksec->sclass,
3770                                                    SOCKET__NAME_BIND, &ad);
3771                                 if (err)
3772                                         goto out;
3773                         }
3774                 }
3775
3776                 switch (sksec->sclass) {
3777                 case SECCLASS_TCP_SOCKET:
3778                         node_perm = TCP_SOCKET__NODE_BIND;
3779                         break;
3780
3781                 case SECCLASS_UDP_SOCKET:
3782                         node_perm = UDP_SOCKET__NODE_BIND;
3783                         break;
3784
3785                 case SECCLASS_DCCP_SOCKET:
3786                         node_perm = DCCP_SOCKET__NODE_BIND;
3787                         break;
3788
3789                 default:
3790                         node_perm = RAWIP_SOCKET__NODE_BIND;
3791                         break;
3792                 }
3793
3794                 err = sel_netnode_sid(addrp, family, &sid);
3795                 if (err)
3796                         goto out;
3797
3798                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3799                 ad.u.net.sport = htons(snum);
3800                 ad.u.net.family = family;
3801
3802                 if (family == PF_INET)
3803                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3804                 else
3805                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3806
3807                 err = avc_has_perm(sksec->sid, sid,
3808                                    sksec->sclass, node_perm, &ad);
3809                 if (err)
3810                         goto out;
3811         }
3812 out:
3813         return err;
3814 }
3815
3816 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3817 {
3818         struct sock *sk = sock->sk;
3819         struct sk_security_struct *sksec = sk->sk_security;
3820         int err;
3821
3822         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3823         if (err)
3824                 return err;
3825
3826         /*
3827          * If a TCP or DCCP socket, check name_connect permission for the port.
3828          */
3829         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3830             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3831                 struct common_audit_data ad;
3832                 struct sockaddr_in *addr4 = NULL;
3833                 struct sockaddr_in6 *addr6 = NULL;
3834                 unsigned short snum;
3835                 u32 sid, perm;
3836
3837                 if (sk->sk_family == PF_INET) {
3838                         addr4 = (struct sockaddr_in *)address;
3839                         if (addrlen < sizeof(struct sockaddr_in))
3840                                 return -EINVAL;
3841                         snum = ntohs(addr4->sin_port);
3842                 } else {
3843                         addr6 = (struct sockaddr_in6 *)address;
3844                         if (addrlen < SIN6_LEN_RFC2133)
3845                                 return -EINVAL;
3846                         snum = ntohs(addr6->sin6_port);
3847                 }
3848
3849                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3850                 if (err)
3851                         goto out;
3852
3853                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3854                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3855
3856                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3857                 ad.u.net.dport = htons(snum);
3858                 ad.u.net.family = sk->sk_family;
3859                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3860                 if (err)
3861                         goto out;
3862         }
3863
3864         err = selinux_netlbl_socket_connect(sk, address);
3865
3866 out:
3867         return err;
3868 }
3869
3870 static int selinux_socket_listen(struct socket *sock, int backlog)
3871 {
3872         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3873 }
3874
3875 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3876 {
3877         int err;
3878         struct inode_security_struct *isec;
3879         struct inode_security_struct *newisec;
3880
3881         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3882         if (err)
3883                 return err;
3884
3885         newisec = SOCK_INODE(newsock)->i_security;
3886
3887         isec = SOCK_INODE(sock)->i_security;
3888         newisec->sclass = isec->sclass;
3889         newisec->sid = isec->sid;
3890         newisec->initialized = 1;
3891
3892         return 0;
3893 }
3894
3895 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3896                                   int size)
3897 {
3898         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3899 }
3900
3901 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3902                                   int size, int flags)
3903 {
3904         return sock_has_perm(current, sock->sk, SOCKET__READ);
3905 }
3906
3907 static int selinux_socket_getsockname(struct socket *sock)
3908 {
3909         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3910 }
3911
3912 static int selinux_socket_getpeername(struct socket *sock)
3913 {
3914         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3915 }
3916
3917 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3918 {
3919         int err;
3920
3921         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3922         if (err)
3923                 return err;
3924
3925         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3926 }
3927
3928 static int selinux_socket_getsockopt(struct socket *sock, int level,
3929                                      int optname)
3930 {
3931         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3932 }
3933
3934 static int selinux_socket_shutdown(struct socket *sock, int how)
3935 {
3936         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3937 }
3938
3939 static int selinux_socket_unix_stream_connect(struct socket *sock,
3940                                               struct socket *other,
3941                                               struct sock *newsk)
3942 {
3943         struct sk_security_struct *sksec_sock = sock->sk->sk_security;
3944         struct sk_security_struct *sksec_other = other->sk->sk_security;
3945         struct sk_security_struct *sksec_new = newsk->sk_security;
3946         struct common_audit_data ad;
3947         int err;
3948
3949         COMMON_AUDIT_DATA_INIT(&ad, NET);
3950         ad.u.net.sk = other->sk;
3951
3952         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3953                            sksec_other->sclass,
3954                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3955         if (err)
3956                 return err;
3957
3958         /* server child socket */
3959         sksec_new->peer_sid = sksec_sock->sid;
3960         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3961                                     &sksec_new->sid);
3962         if (err)
3963                 return err;
3964
3965         /* connecting socket */
3966         sksec_sock->peer_sid = sksec_new->sid;
3967
3968         return 0;
3969 }
3970
3971 static int selinux_socket_unix_may_send(struct socket *sock,
3972                                         struct socket *other)
3973 {
3974         struct sk_security_struct *ssec = sock->sk->sk_security;
3975         struct sk_security_struct *osec = other->sk->sk_security;
3976         struct common_audit_data ad;
3977
3978         COMMON_AUDIT_DATA_INIT(&ad, NET);
3979         ad.u.net.sk = other->sk;
3980
3981         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3982                             &ad);
3983 }
3984
3985 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3986                                     u32 peer_sid,
3987                                     struct common_audit_data *ad)
3988 {
3989         int err;
3990         u32 if_sid;
3991         u32 node_sid;
3992
3993         err = sel_netif_sid(ifindex, &if_sid);
3994         if (err)
3995                 return err;
3996         err = avc_has_perm(peer_sid, if_sid,
3997                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3998         if (err)
3999                 return err;
4000
4001         err = sel_netnode_sid(addrp, family, &node_sid);
4002         if (err)
4003                 return err;
4004         return avc_has_perm(peer_sid, node_sid,
4005                             SECCLASS_NODE, NODE__RECVFROM, ad);
4006 }
4007
4008 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4009                                        u16 family)
4010 {
4011         int err = 0;
4012         struct sk_security_struct *sksec = sk->sk_security;
4013         u32 peer_sid;
4014         u32 sk_sid = sksec->sid;
4015         struct common_audit_data ad;
4016         char *addrp;
4017
4018         COMMON_AUDIT_DATA_INIT(&ad, NET);
4019         ad.u.net.netif = skb->skb_iif;
4020         ad.u.net.family = family;
4021         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4022         if (err)
4023                 return err;
4024
4025         if (selinux_secmark_enabled()) {
4026                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4027                                    PACKET__RECV, &ad);
4028                 if (err)
4029                         return err;
4030         }
4031
4032         if (selinux_policycap_netpeer) {
4033                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4034                 if (err)
4035                         return err;
4036                 err = avc_has_perm(sk_sid, peer_sid,
4037                                    SECCLASS_PEER, PEER__RECV, &ad);
4038                 if (err)
4039                         selinux_netlbl_err(skb, err, 0);
4040         } else {
4041                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4042                 if (err)
4043                         return err;
4044                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4045         }
4046
4047         return err;
4048 }
4049
4050 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4051 {
4052         int err;
4053         struct sk_security_struct *sksec = sk->sk_security;
4054         u16 family = sk->sk_family;
4055         u32 sk_sid = sksec->sid;
4056         struct common_audit_data ad;
4057         char *addrp;
4058         u8 secmark_active;
4059         u8 peerlbl_active;
4060
4061         if (family != PF_INET && family != PF_INET6)
4062                 return 0;
4063
4064         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4065         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4066                 family = PF_INET;
4067
4068         /* If any sort of compatibility mode is enabled then handoff processing
4069          * to the selinux_sock_rcv_skb_compat() function to deal with the
4070          * special handling.  We do this in an attempt to keep this function
4071          * as fast and as clean as possible. */
4072         if (!selinux_policycap_netpeer)
4073                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4074
4075         secmark_active = selinux_secmark_enabled();
4076         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4077         if (!secmark_active && !peerlbl_active)
4078                 return 0;
4079
4080         COMMON_AUDIT_DATA_INIT(&ad, NET);
4081         ad.u.net.netif = skb->skb_iif;
4082         ad.u.net.family = family;
4083         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4084         if (err)
4085                 return err;
4086
4087         if (peerlbl_active) {
4088                 u32 peer_sid;
4089
4090                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4091                 if (err)
4092                         return err;
4093                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4094                                                peer_sid, &ad);
4095                 if (err) {
4096                         selinux_netlbl_err(skb, err, 0);
4097                         return err;
4098                 }
4099                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4100                                    PEER__RECV, &ad);
4101                 if (err)
4102                         selinux_netlbl_err(skb, err, 0);
4103         }
4104
4105         if (secmark_active) {
4106                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4107                                    PACKET__RECV, &ad);
4108                 if (err)
4109                         return err;
4110         }
4111
4112         return err;
4113 }
4114
4115 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4116                                             int __user *optlen, unsigned len)
4117 {
4118         int err = 0;
4119         char *scontext;
4120         u32 scontext_len;
4121         struct sk_security_struct *sksec = sock->sk->sk_security;
4122         u32 peer_sid = SECSID_NULL;
4123
4124         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4125             sksec->sclass == SECCLASS_TCP_SOCKET)
4126                 peer_sid = sksec->peer_sid;
4127         if (peer_sid == SECSID_NULL)
4128                 return -ENOPROTOOPT;
4129
4130         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4131         if (err)
4132                 return err;
4133
4134         if (scontext_len > len) {
4135                 err = -ERANGE;
4136                 goto out_len;
4137         }
4138
4139         if (copy_to_user(optval, scontext, scontext_len))
4140                 err = -EFAULT;
4141
4142 out_len:
4143         if (put_user(scontext_len, optlen))
4144                 err = -EFAULT;
4145         kfree(scontext);
4146         return err;
4147 }
4148
4149 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4150 {
4151         u32 peer_secid = SECSID_NULL;
4152         u16 family;
4153
4154         if (skb && skb->protocol == htons(ETH_P_IP))
4155                 family = PF_INET;
4156         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4157                 family = PF_INET6;
4158         else if (sock)
4159                 family = sock->sk->sk_family;
4160         else
4161                 goto out;
4162
4163         if (sock && family == PF_UNIX)
4164                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4165         else if (skb)
4166                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4167
4168 out:
4169         *secid = peer_secid;
4170         if (peer_secid == SECSID_NULL)
4171                 return -EINVAL;
4172         return 0;
4173 }
4174
4175 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4176 {
4177         struct sk_security_struct *sksec;
4178
4179         sksec = kzalloc(sizeof(*sksec), priority);
4180         if (!sksec)
4181                 return -ENOMEM;
4182
4183         sksec->peer_sid = SECINITSID_UNLABELED;
4184         sksec->sid = SECINITSID_UNLABELED;
4185         selinux_netlbl_sk_security_reset(sksec);
4186         sk->sk_security = sksec;
4187
4188         return 0;
4189 }
4190
4191 static void selinux_sk_free_security(struct sock *sk)
4192 {
4193         struct sk_security_struct *sksec = sk->sk_security;
4194
4195         sk->sk_security = NULL;
4196         selinux_netlbl_sk_security_free(sksec);
4197         kfree(sksec);
4198 }
4199
4200 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4201 {
4202         struct sk_security_struct *sksec = sk->sk_security;
4203         struct sk_security_struct *newsksec = newsk->sk_security;
4204
4205         newsksec->sid = sksec->sid;
4206         newsksec->peer_sid = sksec->peer_sid;
4207         newsksec->sclass = sksec->sclass;
4208
4209         selinux_netlbl_sk_security_reset(newsksec);
4210 }
4211
4212 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4213 {
4214         if (!sk)
4215                 *secid = SECINITSID_ANY_SOCKET;
4216         else {
4217                 struct sk_security_struct *sksec = sk->sk_security;
4218
4219                 *secid = sksec->sid;
4220         }
4221 }
4222
4223 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4224 {
4225         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4226         struct sk_security_struct *sksec = sk->sk_security;
4227
4228         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4229             sk->sk_family == PF_UNIX)
4230                 isec->sid = sksec->sid;
4231         sksec->sclass = isec->sclass;
4232 }
4233
4234 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4235                                      struct request_sock *req)
4236 {
4237         struct sk_security_struct *sksec = sk->sk_security;
4238         int err;
4239         u16 family = sk->sk_family;
4240         u32 newsid;
4241         u32 peersid;
4242
4243         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4244         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4245                 family = PF_INET;
4246
4247         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4248         if (err)
4249                 return err;
4250         if (peersid == SECSID_NULL) {
4251                 req->secid = sksec->sid;
4252                 req->peer_secid = SECSID_NULL;
4253         } else {
4254                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4255                 if (err)
4256                         return err;
4257                 req->secid = newsid;
4258                 req->peer_secid = peersid;
4259         }
4260
4261         return selinux_netlbl_inet_conn_request(req, family);
4262 }
4263
4264 static void selinux_inet_csk_clone(struct sock *newsk,
4265                                    const struct request_sock *req)
4266 {
4267         struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269         newsksec->sid = req->secid;
4270         newsksec->peer_sid = req->peer_secid;
4271         /* NOTE: Ideally, we should also get the isec->sid for the
4272            new socket in sync, but we don't have the isec available yet.
4273            So we will wait until sock_graft to do it, by which
4274            time it will have been created and available. */
4275
4276         /* We don't need to take any sort of lock here as we are the only
4277          * thread with access to newsksec */
4278         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4279 }
4280
4281 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4282 {
4283         u16 family = sk->sk_family;
4284         struct sk_security_struct *sksec = sk->sk_security;
4285
4286         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4287         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4288                 family = PF_INET;
4289
4290         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4291 }
4292
4293 static void selinux_req_classify_flow(const struct request_sock *req,
4294                                       struct flowi *fl)
4295 {
4296         fl->secid = req->secid;
4297 }
4298
4299 static int selinux_tun_dev_create(void)
4300 {
4301         u32 sid = current_sid();
4302
4303         /* we aren't taking into account the "sockcreate" SID since the socket
4304          * that is being created here is not a socket in the traditional sense,
4305          * instead it is a private sock, accessible only to the kernel, and
4306          * representing a wide range of network traffic spanning multiple
4307          * connections unlike traditional sockets - check the TUN driver to
4308          * get a better understanding of why this socket is special */
4309
4310         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4311                             NULL);
4312 }
4313
4314 static void selinux_tun_dev_post_create(struct sock *sk)
4315 {
4316         struct sk_security_struct *sksec = sk->sk_security;
4317
4318         /* we don't currently perform any NetLabel based labeling here and it
4319          * isn't clear that we would want to do so anyway; while we could apply
4320          * labeling without the support of the TUN user the resulting labeled
4321          * traffic from the other end of the connection would almost certainly
4322          * cause confusion to the TUN user that had no idea network labeling
4323          * protocols were being used */
4324
4325         /* see the comments in selinux_tun_dev_create() about why we don't use
4326          * the sockcreate SID here */
4327
4328         sksec->sid = current_sid();
4329         sksec->sclass = SECCLASS_TUN_SOCKET;
4330 }
4331
4332 static int selinux_tun_dev_attach(struct sock *sk)
4333 {
4334         struct sk_security_struct *sksec = sk->sk_security;
4335         u32 sid = current_sid();
4336         int err;
4337
4338         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4339                            TUN_SOCKET__RELABELFROM, NULL);
4340         if (err)
4341                 return err;
4342         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4343                            TUN_SOCKET__RELABELTO, NULL);
4344         if (err)
4345                 return err;
4346
4347         sksec->sid = sid;
4348
4349         return 0;
4350 }
4351
4352 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4353 {
4354         int err = 0;
4355         u32 perm;
4356         struct nlmsghdr *nlh;
4357         struct sk_security_struct *sksec = sk->sk_security;
4358
4359         if (skb->len < NLMSG_SPACE(0)) {
4360                 err = -EINVAL;
4361                 goto out;
4362         }
4363         nlh = nlmsg_hdr(skb);
4364
4365         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4366         if (err) {
4367                 if (err == -EINVAL) {
4368                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4369                                   "SELinux:  unrecognized netlink message"
4370                                   " type=%hu for sclass=%hu\n",
4371                                   nlh->nlmsg_type, sksec->sclass);
4372                         if (!selinux_enforcing || security_get_allow_unknown())
4373                                 err = 0;
4374                 }
4375
4376                 /* Ignore */
4377                 if (err == -ENOENT)
4378                         err = 0;
4379                 goto out;
4380         }
4381
4382         err = sock_has_perm(current, sk, perm);
4383 out:
4384         return err;
4385 }
4386
4387 #ifdef CONFIG_NETFILTER
4388
4389 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4390                                        u16 family)
4391 {
4392         int err;
4393         char *addrp;
4394         u32 peer_sid;
4395         struct common_audit_data ad;
4396         u8 secmark_active;
4397         u8 netlbl_active;
4398         u8 peerlbl_active;
4399
4400         if (!selinux_policycap_netpeer)
4401                 return NF_ACCEPT;
4402
4403         secmark_active = selinux_secmark_enabled();
4404         netlbl_active = netlbl_enabled();
4405         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4406         if (!secmark_active && !peerlbl_active)
4407                 return NF_ACCEPT;
4408
4409         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4410                 return NF_DROP;
4411
4412         COMMON_AUDIT_DATA_INIT(&ad, NET);
4413         ad.u.net.netif = ifindex;
4414         ad.u.net.family = family;
4415         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4416                 return NF_DROP;
4417
4418         if (peerlbl_active) {
4419                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4420                                                peer_sid, &ad);
4421                 if (err) {
4422                         selinux_netlbl_err(skb, err, 1);
4423                         return NF_DROP;
4424                 }
4425         }
4426
4427         if (secmark_active)
4428                 if (avc_has_perm(peer_sid, skb->secmark,
4429                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4430                         return NF_DROP;
4431
4432         if (netlbl_active)
4433                 /* we do this in the FORWARD path and not the POST_ROUTING
4434                  * path because we want to make sure we apply the necessary
4435                  * labeling before IPsec is applied so we can leverage AH
4436                  * protection */
4437                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4438                         return NF_DROP;
4439
4440         return NF_ACCEPT;
4441 }
4442
4443 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4444                                          struct sk_buff *skb,
4445                                          const struct net_device *in,
4446                                          const struct net_device *out,
4447                                          int (*okfn)(struct sk_buff *))
4448 {
4449         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4450 }
4451
4452 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4453 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4454                                          struct sk_buff *skb,
4455                                          const struct net_device *in,
4456                                          const struct net_device *out,
4457                                          int (*okfn)(struct sk_buff *))
4458 {
4459         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4460 }
4461 #endif  /* IPV6 */
4462
4463 static unsigned int selinux_ip_output(struct sk_buff *skb,
4464                                       u16 family)
4465 {
4466         u32 sid;
4467
4468         if (!netlbl_enabled())
4469                 return NF_ACCEPT;
4470
4471         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4472          * because we want to make sure we apply the necessary labeling
4473          * before IPsec is applied so we can leverage AH protection */
4474         if (skb->sk) {
4475                 struct sk_security_struct *sksec = skb->sk->sk_security;
4476                 sid = sksec->sid;
4477         } else
4478                 sid = SECINITSID_KERNEL;
4479         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4480                 return NF_DROP;
4481
4482         return NF_ACCEPT;
4483 }
4484
4485 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4486                                         struct sk_buff *skb,
4487                                         const struct net_device *in,
4488                                         const struct net_device *out,
4489                                         int (*okfn)(struct sk_buff *))
4490 {
4491         return selinux_ip_output(skb, PF_INET);
4492 }
4493
4494 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4495                                                 int ifindex,
4496                                                 u16 family)
4497 {
4498         struct sock *sk = skb->sk;
4499         struct sk_security_struct *sksec;
4500         struct common_audit_data ad;
4501         char *addrp;
4502         u8 proto;
4503
4504         if (sk == NULL)
4505                 return NF_ACCEPT;
4506         sksec = sk->sk_security;
4507
4508         COMMON_AUDIT_DATA_INIT(&ad, NET);
4509         ad.u.net.netif = ifindex;
4510         ad.u.net.family = family;
4511         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4512                 return NF_DROP;
4513
4514         if (selinux_secmark_enabled())
4515                 if (avc_has_perm(sksec->sid, skb->secmark,
4516                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4517                         return NF_DROP;
4518
4519         if (selinux_policycap_netpeer)
4520                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4521                         return NF_DROP;
4522
4523         return NF_ACCEPT;
4524 }
4525
4526 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4527                                          u16 family)
4528 {
4529         u32 secmark_perm;
4530         u32 peer_sid;
4531         struct sock *sk;
4532         struct common_audit_data ad;
4533         char *addrp;
4534         u8 secmark_active;
4535         u8 peerlbl_active;
4536
4537         /* If any sort of compatibility mode is enabled then handoff processing
4538          * to the selinux_ip_postroute_compat() function to deal with the
4539          * special handling.  We do this in an attempt to keep this function
4540          * as fast and as clean as possible. */
4541         if (!selinux_policycap_netpeer)
4542                 return selinux_ip_postroute_compat(skb, ifindex, family);
4543 #ifdef CONFIG_XFRM
4544         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4545          * packet transformation so allow the packet to pass without any checks
4546          * since we'll have another chance to perform access control checks
4547          * when the packet is on it's final way out.
4548          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4549          *       is NULL, in this case go ahead and apply access control. */
4550         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4551                 return NF_ACCEPT;
4552 #endif
4553         secmark_active = selinux_secmark_enabled();
4554         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4555         if (!secmark_active && !peerlbl_active)
4556                 return NF_ACCEPT;
4557
4558         /* if the packet is being forwarded then get the peer label from the
4559          * packet itself; otherwise check to see if it is from a local
4560          * application or the kernel, if from an application get the peer label
4561          * from the sending socket, otherwise use the kernel's sid */
4562         sk = skb->sk;
4563         if (sk == NULL) {
4564                 switch (family) {
4565                 case PF_INET:
4566                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4567                                 secmark_perm = PACKET__FORWARD_OUT;
4568                         else
4569                                 secmark_perm = PACKET__SEND;
4570                         break;
4571                 case PF_INET6:
4572                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4573                                 secmark_perm = PACKET__FORWARD_OUT;
4574                         else
4575                                 secmark_perm = PACKET__SEND;
4576                         break;
4577                 default:
4578                         return NF_DROP;
4579                 }
4580                 if (secmark_perm == PACKET__FORWARD_OUT) {
4581                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4582                                 return NF_DROP;
4583                 } else
4584                         peer_sid = SECINITSID_KERNEL;
4585         } else {
4586                 struct sk_security_struct *sksec = sk->sk_security;
4587                 peer_sid = sksec->sid;
4588                 secmark_perm = PACKET__SEND;
4589         }
4590
4591         COMMON_AUDIT_DATA_INIT(&ad, NET);
4592         ad.u.net.netif = ifindex;
4593         ad.u.net.family = family;
4594         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4595                 return NF_DROP;
4596
4597         if (secmark_active)
4598                 if (avc_has_perm(peer_sid, skb->secmark,
4599                                  SECCLASS_PACKET, secmark_perm, &ad))
4600                         return NF_DROP;
4601
4602         if (peerlbl_active) {
4603                 u32 if_sid;
4604                 u32 node_sid;
4605
4606                 if (sel_netif_sid(ifindex, &if_sid))
4607                         return NF_DROP;
4608                 if (avc_has_perm(peer_sid, if_sid,
4609                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4610                         return NF_DROP;
4611
4612                 if (sel_netnode_sid(addrp, family, &node_sid))
4613                         return NF_DROP;
4614                 if (avc_has_perm(peer_sid, node_sid,
4615                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4616                         return NF_DROP;
4617         }
4618
4619         return NF_ACCEPT;
4620 }
4621
4622 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4623                                            struct sk_buff *skb,
4624                                            const struct net_device *in,
4625                                            const struct net_device *out,
4626                                            int (*okfn)(struct sk_buff *))
4627 {
4628         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4629 }
4630
4631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4632 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4633                                            struct sk_buff *skb,
4634                                            const struct net_device *in,
4635                                            const struct net_device *out,
4636                                            int (*okfn)(struct sk_buff *))
4637 {
4638         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4639 }
4640 #endif  /* IPV6 */
4641
4642 #endif  /* CONFIG_NETFILTER */
4643
4644 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4645 {
4646         int err;
4647
4648         err = cap_netlink_send(sk, skb);
4649         if (err)
4650                 return err;
4651
4652         return selinux_nlmsg_perm(sk, skb);
4653 }
4654
4655 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4656 {
4657         int err;
4658         struct common_audit_data ad;
4659
4660         err = cap_netlink_recv(skb, capability);
4661         if (err)
4662                 return err;
4663
4664         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4665         ad.u.cap = capability;
4666
4667         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4668                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4669 }
4670
4671 static int ipc_alloc_security(struct task_struct *task,
4672                               struct kern_ipc_perm *perm,
4673                               u16 sclass)
4674 {
4675         struct ipc_security_struct *isec;
4676         u32 sid;
4677
4678         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4679         if (!isec)
4680                 return -ENOMEM;
4681
4682         sid = task_sid(task);
4683         isec->sclass = sclass;
4684         isec->sid = sid;
4685         perm->security = isec;
4686
4687         return 0;
4688 }
4689
4690 static void ipc_free_security(struct kern_ipc_perm *perm)
4691 {
4692         struct ipc_security_struct *isec = perm->security;
4693         perm->security = NULL;
4694         kfree(isec);
4695 }
4696
4697 static int msg_msg_alloc_security(struct msg_msg *msg)
4698 {
4699         struct msg_security_struct *msec;
4700
4701         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4702         if (!msec)
4703                 return -ENOMEM;
4704
4705         msec->sid = SECINITSID_UNLABELED;
4706         msg->security = msec;
4707
4708         return 0;
4709 }
4710
4711 static void msg_msg_free_security(struct msg_msg *msg)
4712 {
4713         struct msg_security_struct *msec = msg->security;
4714
4715         msg->security = NULL;
4716         kfree(msec);
4717 }
4718
4719 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4720                         u32 perms)
4721 {
4722         struct ipc_security_struct *isec;
4723         struct common_audit_data ad;
4724         u32 sid = current_sid();
4725
4726         isec = ipc_perms->security;
4727
4728         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4729         ad.u.ipc_id = ipc_perms->key;
4730
4731         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4732 }
4733
4734 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4735 {
4736         return msg_msg_alloc_security(msg);
4737 }
4738
4739 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4740 {
4741         msg_msg_free_security(msg);
4742 }
4743
4744 /* message queue security operations */
4745 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4746 {
4747         struct ipc_security_struct *isec;
4748         struct common_audit_data ad;
4749         u32 sid = current_sid();
4750         int rc;
4751
4752         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4753         if (rc)
4754                 return rc;
4755
4756         isec = msq->q_perm.security;
4757
4758         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4759         ad.u.ipc_id = msq->q_perm.key;
4760
4761         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4762                           MSGQ__CREATE, &ad);
4763         if (rc) {
4764                 ipc_free_security(&msq->q_perm);
4765                 return rc;
4766         }
4767         return 0;
4768 }
4769
4770 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4771 {
4772         ipc_free_security(&msq->q_perm);
4773 }
4774
4775 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4776 {
4777         struct ipc_security_struct *isec;
4778         struct common_audit_data ad;
4779         u32 sid = current_sid();
4780
4781         isec = msq->q_perm.security;
4782
4783         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4784         ad.u.ipc_id = msq->q_perm.key;
4785
4786         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4787                             MSGQ__ASSOCIATE, &ad);
4788 }
4789
4790 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4791 {
4792         int err;
4793         int perms;
4794
4795         switch (cmd) {
4796         case IPC_INFO:
4797         case MSG_INFO:
4798                 /* No specific object, just general system-wide information. */
4799                 return task_has_system(current, SYSTEM__IPC_INFO);
4800         case IPC_STAT:
4801         case MSG_STAT:
4802                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4803                 break;
4804         case IPC_SET:
4805                 perms = MSGQ__SETATTR;
4806                 break;
4807         case IPC_RMID:
4808                 perms = MSGQ__DESTROY;
4809                 break;
4810         default:
4811                 return 0;
4812         }
4813
4814         err = ipc_has_perm(&msq->q_perm, perms);
4815         return err;
4816 }
4817
4818 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4819 {
4820         struct ipc_security_struct *isec;
4821         struct msg_security_struct *msec;
4822         struct common_audit_data ad;
4823         u32 sid = current_sid();
4824         int rc;
4825
4826         isec = msq->q_perm.security;
4827         msec = msg->security;
4828
4829         /*
4830          * First time through, need to assign label to the message
4831          */
4832         if (msec->sid == SECINITSID_UNLABELED) {
4833                 /*
4834                  * Compute new sid based on current process and
4835                  * message queue this message will be stored in
4836                  */
4837                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4838                                              &msec->sid);
4839                 if (rc)
4840                         return rc;
4841         }
4842
4843         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4844         ad.u.ipc_id = msq->q_perm.key;
4845
4846         /* Can this process write to the queue? */
4847         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4848                           MSGQ__WRITE, &ad);
4849         if (!rc)
4850                 /* Can this process send the message */
4851                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4852                                   MSG__SEND, &ad);
4853         if (!rc)
4854                 /* Can the message be put in the queue? */
4855                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4856                                   MSGQ__ENQUEUE, &ad);
4857
4858         return rc;
4859 }
4860
4861 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4862                                     struct task_struct *target,
4863                                     long type, int mode)
4864 {
4865         struct ipc_security_struct *isec;
4866         struct msg_security_struct *msec;
4867         struct common_audit_data ad;
4868         u32 sid = task_sid(target);
4869         int rc;
4870
4871         isec = msq->q_perm.security;
4872         msec = msg->security;
4873
4874         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4875         ad.u.ipc_id = msq->q_perm.key;
4876
4877         rc = avc_has_perm(sid, isec->sid,
4878                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4879         if (!rc)
4880                 rc = avc_has_perm(sid, msec->sid,
4881                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4882         return rc;
4883 }
4884
4885 /* Shared Memory security operations */
4886 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4887 {
4888         struct ipc_security_struct *isec;
4889         struct common_audit_data ad;
4890         u32 sid = current_sid();
4891         int rc;
4892
4893         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4894         if (rc)
4895                 return rc;
4896
4897         isec = shp->shm_perm.security;
4898
4899         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4900         ad.u.ipc_id = shp->shm_perm.key;
4901
4902         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4903                           SHM__CREATE, &ad);
4904         if (rc) {
4905                 ipc_free_security(&shp->shm_perm);
4906                 return rc;
4907         }
4908         return 0;
4909 }
4910
4911 static void selinux_shm_free_security(struct shmid_kernel *shp)
4912 {
4913         ipc_free_security(&shp->shm_perm);
4914 }
4915
4916 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4917 {
4918         struct ipc_security_struct *isec;
4919         struct common_audit_data ad;
4920         u32 sid = current_sid();
4921
4922         isec = shp->shm_perm.security;
4923
4924         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4925         ad.u.ipc_id = shp->shm_perm.key;
4926
4927         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4928                             SHM__ASSOCIATE, &ad);
4929 }
4930
4931 /* Note, at this point, shp is locked down */
4932 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4933 {
4934         int perms;
4935         int err;
4936
4937         switch (cmd) {
4938         case IPC_INFO:
4939         case SHM_INFO:
4940                 /* No specific object, just general system-wide information. */
4941                 return task_has_system(current, SYSTEM__IPC_INFO);
4942         case IPC_STAT:
4943         case SHM_STAT:
4944                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4945                 break;
4946         case IPC_SET:
4947                 perms = SHM__SETATTR;
4948                 break;
4949         case SHM_LOCK:
4950         case SHM_UNLOCK:
4951                 perms = SHM__LOCK;
4952                 break;
4953         case IPC_RMID:
4954                 perms = SHM__DESTROY;
4955                 break;
4956         default:
4957                 return 0;
4958         }
4959
4960         err = ipc_has_perm(&shp->shm_perm, perms);
4961         return err;
4962 }
4963
4964 static int selinux_shm_shmat(struct shmid_kernel *shp,
4965                              char __user *shmaddr, int shmflg)
4966 {
4967         u32 perms;
4968
4969         if (shmflg & SHM_RDONLY)
4970                 perms = SHM__READ;
4971         else
4972                 perms = SHM__READ | SHM__WRITE;
4973
4974         return ipc_has_perm(&shp->shm_perm, perms);
4975 }
4976
4977 /* Semaphore security operations */
4978 static int selinux_sem_alloc_security(struct sem_array *sma)
4979 {
4980         struct ipc_security_struct *isec;
4981         struct common_audit_data ad;
4982         u32 sid = current_sid();
4983         int rc;
4984
4985         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4986         if (rc)
4987                 return rc;
4988
4989         isec = sma->sem_perm.security;
4990
4991         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4992         ad.u.ipc_id = sma->sem_perm.key;
4993
4994         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4995                           SEM__CREATE, &ad);
4996         if (rc) {
4997                 ipc_free_security(&sma->sem_perm);
4998                 return rc;
4999         }
5000         return 0;
5001 }
5002
5003 static void selinux_sem_free_security(struct sem_array *sma)
5004 {
5005         ipc_free_security(&sma->sem_perm);
5006 }
5007
5008 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5009 {
5010         struct ipc_security_struct *isec;
5011         struct common_audit_data ad;
5012         u32 sid = current_sid();
5013
5014         isec = sma->sem_perm.security;
5015
5016         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5017         ad.u.ipc_id = sma->sem_perm.key;
5018
5019         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5020                             SEM__ASSOCIATE, &ad);
5021 }
5022
5023 /* Note, at this point, sma is locked down */
5024 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5025 {
5026         int err;
5027         u32 perms;
5028
5029         switch (cmd) {
5030         case IPC_INFO:
5031         case SEM_INFO:
5032                 /* No specific object, just general system-wide information. */
5033                 return task_has_system(current, SYSTEM__IPC_INFO);
5034         case GETPID:
5035         case GETNCNT:
5036         case GETZCNT:
5037                 perms = SEM__GETATTR;
5038                 break;
5039         case GETVAL:
5040         case GETALL:
5041                 perms = SEM__READ;
5042                 break;
5043         case SETVAL:
5044         case SETALL:
5045                 perms = SEM__WRITE;
5046                 break;
5047         case IPC_RMID:
5048                 perms = SEM__DESTROY;
5049                 break;
5050         case IPC_SET:
5051                 perms = SEM__SETATTR;
5052                 break;
5053         case IPC_STAT:
5054         case SEM_STAT:
5055                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5056                 break;
5057         default:
5058                 return 0;
5059         }
5060
5061         err = ipc_has_perm(&sma->sem_perm, perms);
5062         return err;
5063 }
5064
5065 static int selinux_sem_semop(struct sem_array *sma,
5066                              struct sembuf *sops, unsigned nsops, int alter)
5067 {
5068         u32 perms;
5069
5070         if (alter)
5071                 perms = SEM__READ | SEM__WRITE;
5072         else
5073                 perms = SEM__READ;
5074
5075         return ipc_has_perm(&sma->sem_perm, perms);
5076 }
5077
5078 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5079 {
5080         u32 av = 0;
5081
5082         av = 0;
5083         if (flag & S_IRUGO)
5084                 av |= IPC__UNIX_READ;
5085         if (flag & S_IWUGO)
5086                 av |= IPC__UNIX_WRITE;
5087
5088         if (av == 0)
5089                 return 0;
5090
5091         return ipc_has_perm(ipcp, av);
5092 }
5093
5094 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5095 {
5096         struct ipc_security_struct *isec = ipcp->security;
5097         *secid = isec->sid;
5098 }
5099
5100 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5101 {
5102         if (inode)
5103                 inode_doinit_with_dentry(inode, dentry);
5104 }
5105
5106 static int selinux_getprocattr(struct task_struct *p,
5107                                char *name, char **value)
5108 {
5109         const struct task_security_struct *__tsec;
5110         u32 sid;
5111         int error;
5112         unsigned len;
5113
5114         if (current != p) {
5115                 error = current_has_perm(p, PROCESS__GETATTR);
5116                 if (error)
5117                         return error;
5118         }
5119
5120         rcu_read_lock();
5121         __tsec = __task_cred(p)->security;
5122
5123         if (!strcmp(name, "current"))
5124                 sid = __tsec->sid;
5125         else if (!strcmp(name, "prev"))
5126                 sid = __tsec->osid;
5127         else if (!strcmp(name, "exec"))
5128                 sid = __tsec->exec_sid;
5129         else if (!strcmp(name, "fscreate"))
5130                 sid = __tsec->create_sid;
5131         else if (!strcmp(name, "keycreate"))
5132                 sid = __tsec->keycreate_sid;
5133         else if (!strcmp(name, "sockcreate"))
5134                 sid = __tsec->sockcreate_sid;
5135         else
5136                 goto invalid;
5137         rcu_read_unlock();
5138
5139         if (!sid)
5140                 return 0;
5141
5142         error = security_sid_to_context(sid, value, &len);
5143         if (error)
5144                 return error;
5145         return len;
5146
5147 invalid:
5148         rcu_read_unlock();
5149         return -EINVAL;
5150 }
5151
5152 static int selinux_setprocattr(struct task_struct *p,
5153                                char *name, void *value, size_t size)
5154 {
5155         struct task_security_struct *tsec;
5156         struct task_struct *tracer;
5157         struct cred *new;
5158         u32 sid = 0, ptsid;
5159         int error;
5160         char *str = value;
5161
5162         if (current != p) {
5163                 /* SELinux only allows a process to change its own
5164                    security attributes. */
5165                 return -EACCES;
5166         }
5167
5168         /*
5169          * Basic control over ability to set these attributes at all.
5170          * current == p, but we'll pass them separately in case the
5171          * above restriction is ever removed.
5172          */
5173         if (!strcmp(name, "exec"))
5174                 error = current_has_perm(p, PROCESS__SETEXEC);
5175         else if (!strcmp(name, "fscreate"))
5176                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5177         else if (!strcmp(name, "keycreate"))
5178                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5179         else if (!strcmp(name, "sockcreate"))
5180                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5181         else if (!strcmp(name, "current"))
5182                 error = current_has_perm(p, PROCESS__SETCURRENT);
5183         else
5184                 error = -EINVAL;
5185         if (error)
5186                 return error;
5187
5188         /* Obtain a SID for the context, if one was specified. */
5189         if (size && str[1] && str[1] != '\n') {
5190                 if (str[size-1] == '\n') {
5191                         str[size-1] = 0;
5192                         size--;
5193                 }
5194                 error = security_context_to_sid(value, size, &sid);
5195                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5196                         if (!capable(CAP_MAC_ADMIN))
5197                                 return error;
5198                         error = security_context_to_sid_force(value, size,
5199                                                               &sid);
5200                 }
5201                 if (error)
5202                         return error;
5203         }
5204
5205         new = prepare_creds();
5206         if (!new)
5207                 return -ENOMEM;
5208
5209         /* Permission checking based on the specified context is
5210            performed during the actual operation (execve,
5211            open/mkdir/...), when we know the full context of the
5212            operation.  See selinux_bprm_set_creds for the execve
5213            checks and may_create for the file creation checks. The
5214            operation will then fail if the context is not permitted. */
5215         tsec = new->security;
5216         if (!strcmp(name, "exec")) {
5217                 tsec->exec_sid = sid;
5218         } else if (!strcmp(name, "fscreate")) {
5219                 tsec->create_sid = sid;
5220         } else if (!strcmp(name, "keycreate")) {
5221                 error = may_create_key(sid, p);
5222                 if (error)
5223                         goto abort_change;
5224                 tsec->keycreate_sid = sid;
5225         } else if (!strcmp(name, "sockcreate")) {
5226                 tsec->sockcreate_sid = sid;
5227         } else if (!strcmp(name, "current")) {
5228                 error = -EINVAL;
5229                 if (sid == 0)
5230                         goto abort_change;
5231
5232                 /* Only allow single threaded processes to change context */
5233                 error = -EPERM;
5234                 if (!current_is_single_threaded()) {
5235                         error = security_bounded_transition(tsec->sid, sid);
5236                         if (error)
5237                                 goto abort_change;
5238                 }
5239
5240                 /* Check permissions for the transition. */
5241                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5242                                      PROCESS__DYNTRANSITION, NULL);
5243                 if (error)
5244                         goto abort_change;
5245
5246                 /* Check for ptracing, and update the task SID if ok.
5247                    Otherwise, leave SID unchanged and fail. */
5248                 ptsid = 0;
5249                 task_lock(p);
5250                 tracer = tracehook_tracer_task(p);
5251                 if (tracer)
5252                         ptsid = task_sid(tracer);
5253                 task_unlock(p);
5254
5255                 if (tracer) {
5256                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5257                                              PROCESS__PTRACE, NULL);
5258                         if (error)
5259                                 goto abort_change;
5260                 }
5261
5262                 tsec->sid = sid;
5263         } else {
5264                 error = -EINVAL;
5265                 goto abort_change;
5266         }
5267
5268         commit_creds(new);
5269         return size;
5270
5271 abort_change:
5272         abort_creds(new);
5273         return error;
5274 }
5275
5276 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5277 {
5278         return security_sid_to_context(secid, secdata, seclen);
5279 }
5280
5281 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5282 {
5283         return security_context_to_sid(secdata, seclen, secid);
5284 }
5285
5286 static void selinux_release_secctx(char *secdata, u32 seclen)
5287 {
5288         kfree(secdata);
5289 }
5290
5291 /*
5292  *      called with inode->i_mutex locked
5293  */
5294 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5295 {
5296         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5297 }
5298
5299 /*
5300  *      called with inode->i_mutex locked
5301  */
5302 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5303 {
5304         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5305 }
5306
5307 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5308 {
5309         int len = 0;
5310         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5311                                                 ctx, true);
5312         if (len < 0)
5313                 return len;
5314         *ctxlen = len;
5315         return 0;
5316 }
5317 #ifdef CONFIG_KEYS
5318
5319 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5320                              unsigned long flags)
5321 {
5322         const struct task_security_struct *tsec;
5323         struct key_security_struct *ksec;
5324
5325         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5326         if (!ksec)
5327                 return -ENOMEM;
5328
5329         tsec = cred->security;
5330         if (tsec->keycreate_sid)
5331                 ksec->sid = tsec->keycreate_sid;
5332         else
5333                 ksec->sid = tsec->sid;
5334
5335         k->security = ksec;
5336         return 0;
5337 }
5338
5339 static void selinux_key_free(struct key *k)
5340 {
5341         struct key_security_struct *ksec = k->security;
5342
5343         k->security = NULL;
5344         kfree(ksec);
5345 }
5346
5347 static int selinux_key_permission(key_ref_t key_ref,
5348                                   const struct cred *cred,
5349                                   key_perm_t perm)
5350 {
5351         struct key *key;
5352         struct key_security_struct *ksec;
5353         u32 sid;
5354
5355         /* if no specific permissions are requested, we skip the
5356            permission check. No serious, additional covert channels
5357            appear to be created. */
5358         if (perm == 0)
5359                 return 0;
5360
5361         sid = cred_sid(cred);
5362
5363         key = key_ref_to_ptr(key_ref);
5364         ksec = key->security;
5365
5366         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5367 }
5368
5369 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5370 {
5371         struct key_security_struct *ksec = key->security;
5372         char *context = NULL;
5373         unsigned len;
5374         int rc;
5375
5376         rc = security_sid_to_context(ksec->sid, &context, &len);
5377         if (!rc)
5378                 rc = len;
5379         *_buffer = context;
5380         return rc;
5381 }
5382
5383 #endif
5384
5385 static struct security_operations selinux_ops = {
5386         .name =                         "selinux",
5387
5388         .ptrace_access_check =          selinux_ptrace_access_check,
5389         .ptrace_traceme =               selinux_ptrace_traceme,
5390         .capget =                       selinux_capget,
5391         .capset =                       selinux_capset,
5392         .sysctl =                       selinux_sysctl,
5393         .capable =                      selinux_capable,
5394         .quotactl =                     selinux_quotactl,
5395         .quota_on =                     selinux_quota_on,
5396         .syslog =                       selinux_syslog,
5397         .vm_enough_memory =             selinux_vm_enough_memory,
5398
5399         .netlink_send =                 selinux_netlink_send,
5400         .netlink_recv =                 selinux_netlink_recv,
5401
5402         .bprm_set_creds =               selinux_bprm_set_creds,
5403         .bprm_committing_creds =        selinux_bprm_committing_creds,
5404         .bprm_committed_creds =         selinux_bprm_committed_creds,
5405         .bprm_secureexec =              selinux_bprm_secureexec,
5406
5407         .sb_alloc_security =            selinux_sb_alloc_security,
5408         .sb_free_security =             selinux_sb_free_security,
5409         .sb_copy_data =                 selinux_sb_copy_data,
5410         .sb_kern_mount =                selinux_sb_kern_mount,
5411         .sb_show_options =              selinux_sb_show_options,
5412         .sb_statfs =                    selinux_sb_statfs,
5413         .sb_mount =                     selinux_mount,
5414         .sb_umount =                    selinux_umount,
5415         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5416         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5417         .sb_parse_opts_str =            selinux_parse_opts_str,
5418
5419
5420         .inode_alloc_security =         selinux_inode_alloc_security,
5421         .inode_free_security =          selinux_inode_free_security,
5422         .inode_init_security =          selinux_inode_init_security,
5423         .inode_create =                 selinux_inode_create,
5424         .inode_link =                   selinux_inode_link,
5425         .inode_unlink =                 selinux_inode_unlink,
5426         .inode_symlink =                selinux_inode_symlink,
5427         .inode_mkdir =                  selinux_inode_mkdir,
5428         .inode_rmdir =                  selinux_inode_rmdir,
5429         .inode_mknod =                  selinux_inode_mknod,
5430         .inode_rename =                 selinux_inode_rename,
5431         .inode_readlink =               selinux_inode_readlink,
5432         .inode_follow_link =            selinux_inode_follow_link,
5433         .inode_permission =             selinux_inode_permission,
5434         .inode_setattr =                selinux_inode_setattr,
5435         .inode_getattr =                selinux_inode_getattr,
5436         .inode_setxattr =               selinux_inode_setxattr,
5437         .inode_post_setxattr =          selinux_inode_post_setxattr,
5438         .inode_getxattr =               selinux_inode_getxattr,
5439         .inode_listxattr =              selinux_inode_listxattr,
5440         .inode_removexattr =            selinux_inode_removexattr,
5441         .inode_getsecurity =            selinux_inode_getsecurity,
5442         .inode_setsecurity =            selinux_inode_setsecurity,
5443         .inode_listsecurity =           selinux_inode_listsecurity,
5444         .inode_getsecid =               selinux_inode_getsecid,
5445
5446         .file_permission =              selinux_file_permission,
5447         .file_alloc_security =          selinux_file_alloc_security,
5448         .file_free_security =           selinux_file_free_security,
5449         .file_ioctl =                   selinux_file_ioctl,
5450         .file_mmap =                    selinux_file_mmap,
5451         .file_mprotect =                selinux_file_mprotect,
5452         .file_lock =                    selinux_file_lock,
5453         .file_fcntl =                   selinux_file_fcntl,
5454         .file_set_fowner =              selinux_file_set_fowner,
5455         .file_send_sigiotask =          selinux_file_send_sigiotask,
5456         .file_receive =                 selinux_file_receive,
5457
5458         .dentry_open =                  selinux_dentry_open,
5459
5460         .task_create =                  selinux_task_create,
5461         .cred_alloc_blank =             selinux_cred_alloc_blank,
5462         .cred_free =                    selinux_cred_free,
5463         .cred_prepare =                 selinux_cred_prepare,
5464         .cred_transfer =                selinux_cred_transfer,
5465         .kernel_act_as =                selinux_kernel_act_as,
5466         .kernel_create_files_as =       selinux_kernel_create_files_as,
5467         .kernel_module_request =        selinux_kernel_module_request,
5468         .task_setpgid =                 selinux_task_setpgid,
5469         .task_getpgid =                 selinux_task_getpgid,
5470         .task_getsid =                  selinux_task_getsid,
5471         .task_getsecid =                selinux_task_getsecid,
5472         .task_setnice =                 selinux_task_setnice,
5473         .task_setioprio =               selinux_task_setioprio,
5474         .task_getioprio =               selinux_task_getioprio,
5475         .task_setrlimit =               selinux_task_setrlimit,
5476         .task_setscheduler =            selinux_task_setscheduler,
5477         .task_getscheduler =            selinux_task_getscheduler,
5478         .task_movememory =              selinux_task_movememory,
5479         .task_kill =                    selinux_task_kill,
5480         .task_wait =                    selinux_task_wait,
5481         .task_to_inode =                selinux_task_to_inode,
5482
5483         .ipc_permission =               selinux_ipc_permission,
5484         .ipc_getsecid =                 selinux_ipc_getsecid,
5485
5486         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5487         .msg_msg_free_security =        selinux_msg_msg_free_security,
5488
5489         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5490         .msg_queue_free_security =      selinux_msg_queue_free_security,
5491         .msg_queue_associate =          selinux_msg_queue_associate,
5492         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5493         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5494         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5495
5496         .shm_alloc_security =           selinux_shm_alloc_security,
5497         .shm_free_security =            selinux_shm_free_security,
5498         .shm_associate =                selinux_shm_associate,
5499         .shm_shmctl =                   selinux_shm_shmctl,
5500         .shm_shmat =                    selinux_shm_shmat,
5501
5502         .sem_alloc_security =           selinux_sem_alloc_security,
5503         .sem_free_security =            selinux_sem_free_security,
5504         .sem_associate =                selinux_sem_associate,
5505         .sem_semctl =                   selinux_sem_semctl,
5506         .sem_semop =                    selinux_sem_semop,
5507
5508         .d_instantiate =                selinux_d_instantiate,
5509
5510         .getprocattr =                  selinux_getprocattr,
5511         .setprocattr =                  selinux_setprocattr,
5512
5513         .secid_to_secctx =              selinux_secid_to_secctx,
5514         .secctx_to_secid =              selinux_secctx_to_secid,
5515         .release_secctx =               selinux_release_secctx,
5516         .inode_notifysecctx =           selinux_inode_notifysecctx,
5517         .inode_setsecctx =              selinux_inode_setsecctx,
5518         .inode_getsecctx =              selinux_inode_getsecctx,
5519
5520         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5521         .unix_may_send =                selinux_socket_unix_may_send,
5522
5523         .socket_create =                selinux_socket_create,
5524         .socket_post_create =           selinux_socket_post_create,
5525         .socket_bind =                  selinux_socket_bind,
5526         .socket_connect =               selinux_socket_connect,
5527         .socket_listen =                selinux_socket_listen,
5528         .socket_accept =                selinux_socket_accept,
5529         .socket_sendmsg =               selinux_socket_sendmsg,
5530         .socket_recvmsg =               selinux_socket_recvmsg,
5531         .socket_getsockname =           selinux_socket_getsockname,
5532         .socket_getpeername =           selinux_socket_getpeername,
5533         .socket_getsockopt =            selinux_socket_getsockopt,
5534         .socket_setsockopt =            selinux_socket_setsockopt,
5535         .socket_shutdown =              selinux_socket_shutdown,
5536         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5537         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5538         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5539         .sk_alloc_security =            selinux_sk_alloc_security,
5540         .sk_free_security =             selinux_sk_free_security,
5541         .sk_clone_security =            selinux_sk_clone_security,
5542         .sk_getsecid =                  selinux_sk_getsecid,
5543         .sock_graft =                   selinux_sock_graft,
5544         .inet_conn_request =            selinux_inet_conn_request,
5545         .inet_csk_clone =               selinux_inet_csk_clone,
5546         .inet_conn_established =        selinux_inet_conn_established,
5547         .req_classify_flow =            selinux_req_classify_flow,
5548         .tun_dev_create =               selinux_tun_dev_create,
5549         .tun_dev_post_create =          selinux_tun_dev_post_create,
5550         .tun_dev_attach =               selinux_tun_dev_attach,
5551
5552 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5553         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5554         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5555         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5556         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5557         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5558         .xfrm_state_free_security =     selinux_xfrm_state_free,
5559         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5560         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5561         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5562         .xfrm_decode_session =          selinux_xfrm_decode_session,
5563 #endif
5564
5565 #ifdef CONFIG_KEYS
5566         .key_alloc =                    selinux_key_alloc,
5567         .key_free =                     selinux_key_free,
5568         .key_permission =               selinux_key_permission,
5569         .key_getsecurity =              selinux_key_getsecurity,
5570 #endif
5571
5572 #ifdef CONFIG_AUDIT
5573         .audit_rule_init =              selinux_audit_rule_init,
5574         .audit_rule_known =             selinux_audit_rule_known,
5575         .audit_rule_match =             selinux_audit_rule_match,
5576         .audit_rule_free =              selinux_audit_rule_free,
5577 #endif
5578 };
5579
5580 static __init int selinux_init(void)
5581 {
5582         if (!security_module_enable(&selinux_ops)) {
5583                 selinux_enabled = 0;
5584                 return 0;
5585         }
5586
5587         if (!selinux_enabled) {
5588                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5589                 return 0;
5590         }
5591
5592         printk(KERN_INFO "SELinux:  Initializing.\n");
5593
5594         /* Set the security state for the initial task. */
5595         cred_init_security();
5596
5597         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5598
5599         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5600                                             sizeof(struct inode_security_struct),
5601                                             0, SLAB_PANIC, NULL);
5602         avc_init();
5603
5604         if (register_security(&selinux_ops))
5605                 panic("SELinux: Unable to register with kernel.\n");
5606
5607         if (selinux_enforcing)
5608                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5609         else
5610                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5611
5612         return 0;
5613 }
5614
5615 static void delayed_superblock_init(struct super_block *sb, void *unused)
5616 {
5617         superblock_doinit(sb, NULL);
5618 }
5619
5620 void selinux_complete_init(void)
5621 {
5622         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5623
5624         /* Set up any superblocks initialized prior to the policy load. */
5625         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5626         iterate_supers(delayed_superblock_init, NULL);
5627 }
5628
5629 /* SELinux requires early initialization in order to label
5630    all processes and objects when they are created. */
5631 security_initcall(selinux_init);
5632
5633 #if defined(CONFIG_NETFILTER)
5634
5635 static struct nf_hook_ops selinux_ipv4_ops[] = {
5636         {
5637                 .hook =         selinux_ipv4_postroute,
5638                 .owner =        THIS_MODULE,
5639                 .pf =           PF_INET,
5640                 .hooknum =      NF_INET_POST_ROUTING,
5641                 .priority =     NF_IP_PRI_SELINUX_LAST,
5642         },
5643         {
5644                 .hook =         selinux_ipv4_forward,
5645                 .owner =        THIS_MODULE,
5646                 .pf =           PF_INET,
5647                 .hooknum =      NF_INET_FORWARD,
5648                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5649         },
5650         {
5651                 .hook =         selinux_ipv4_output,
5652                 .owner =        THIS_MODULE,
5653                 .pf =           PF_INET,
5654                 .hooknum =      NF_INET_LOCAL_OUT,
5655                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5656         }
5657 };
5658
5659 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5660
5661 static struct nf_hook_ops selinux_ipv6_ops[] = {
5662         {
5663                 .hook =         selinux_ipv6_postroute,
5664                 .owner =        THIS_MODULE,
5665                 .pf =           PF_INET6,
5666                 .hooknum =      NF_INET_POST_ROUTING,
5667                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5668         },
5669         {
5670                 .hook =         selinux_ipv6_forward,
5671                 .owner =        THIS_MODULE,
5672                 .pf =           PF_INET6,
5673                 .hooknum =      NF_INET_FORWARD,
5674                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5675         }
5676 };
5677
5678 #endif  /* IPV6 */
5679
5680 static int __init selinux_nf_ip_init(void)
5681 {
5682         int err = 0;
5683
5684         if (!selinux_enabled)
5685                 goto out;
5686
5687         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5688
5689         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5690         if (err)
5691                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5692
5693 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5694         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5695         if (err)
5696                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5697 #endif  /* IPV6 */
5698
5699 out:
5700         return err;
5701 }
5702
5703 __initcall(selinux_nf_ip_init);
5704
5705 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5706 static void selinux_nf_ip_exit(void)
5707 {
5708         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5709
5710         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5711 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5712         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5713 #endif  /* IPV6 */
5714 }
5715 #endif
5716
5717 #else /* CONFIG_NETFILTER */
5718
5719 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5720 #define selinux_nf_ip_exit()
5721 #endif
5722
5723 #endif /* CONFIG_NETFILTER */
5724
5725 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5726 static int selinux_disabled;
5727
5728 int selinux_disable(void)
5729 {
5730         extern void exit_sel_fs(void);
5731
5732         if (ss_initialized) {
5733                 /* Not permitted after initial policy load. */
5734                 return -EINVAL;
5735         }
5736
5737         if (selinux_disabled) {
5738                 /* Only do this once. */
5739                 return -EINVAL;
5740         }
5741
5742         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5743
5744         selinux_disabled = 1;
5745         selinux_enabled = 0;
5746
5747         reset_security_ops();
5748
5749         /* Try to destroy the avc node cache */
5750         avc_disable();
5751
5752         /* Unregister netfilter hooks. */
5753         selinux_nf_ip_exit();
5754
5755         /* Unregister selinuxfs. */
5756         exit_sel_fs();
5757
5758         return 0;
5759 }
5760 #endif