]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/sunrpc/cache.c
svcrpc: svc_tcp_sendto XPT_DEAD check is redundant
[net-next-2.6.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <linux/smp_lock.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
38
39 #define  RPCDBG_FACILITY RPCDBG_CACHE
40
41 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
43
44 static void cache_init(struct cache_head *h)
45 {
46         time_t now = seconds_since_boot();
47         h->next = NULL;
48         h->flags = 0;
49         kref_init(&h->ref);
50         h->expiry_time = now + CACHE_NEW_EXPIRY;
51         h->last_refresh = now;
52 }
53
54 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
55 {
56         return  (h->expiry_time < seconds_since_boot()) ||
57                 (detail->flush_time > h->last_refresh);
58 }
59
60 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
61                                        struct cache_head *key, int hash)
62 {
63         struct cache_head **head,  **hp;
64         struct cache_head *new = NULL, *freeme = NULL;
65
66         head = &detail->hash_table[hash];
67
68         read_lock(&detail->hash_lock);
69
70         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
71                 struct cache_head *tmp = *hp;
72                 if (detail->match(tmp, key)) {
73                         if (cache_is_expired(detail, tmp))
74                                 /* This entry is expired, we will discard it. */
75                                 break;
76                         cache_get(tmp);
77                         read_unlock(&detail->hash_lock);
78                         return tmp;
79                 }
80         }
81         read_unlock(&detail->hash_lock);
82         /* Didn't find anything, insert an empty entry */
83
84         new = detail->alloc();
85         if (!new)
86                 return NULL;
87         /* must fully initialise 'new', else
88          * we might get lose if we need to
89          * cache_put it soon.
90          */
91         cache_init(new);
92         detail->init(new, key);
93
94         write_lock(&detail->hash_lock);
95
96         /* check if entry appeared while we slept */
97         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
98                 struct cache_head *tmp = *hp;
99                 if (detail->match(tmp, key)) {
100                         if (cache_is_expired(detail, tmp)) {
101                                 *hp = tmp->next;
102                                 tmp->next = NULL;
103                                 detail->entries --;
104                                 freeme = tmp;
105                                 break;
106                         }
107                         cache_get(tmp);
108                         write_unlock(&detail->hash_lock);
109                         cache_put(new, detail);
110                         return tmp;
111                 }
112         }
113         new->next = *head;
114         *head = new;
115         detail->entries++;
116         cache_get(new);
117         write_unlock(&detail->hash_lock);
118
119         if (freeme)
120                 cache_put(freeme, detail);
121         return new;
122 }
123 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
124
125
126 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
127
128 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
129 {
130         head->expiry_time = expiry;
131         head->last_refresh = seconds_since_boot();
132         set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136                                  struct cache_detail *detail)
137 {
138         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139                 cache_revisit_request(head);
140                 cache_dequeue(detail, head);
141         }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145                                        struct cache_head *new, struct cache_head *old, int hash)
146 {
147         /* The 'old' entry is to be replaced by 'new'.
148          * If 'old' is not VALID, we update it directly,
149          * otherwise we need to replace it
150          */
151         struct cache_head **head;
152         struct cache_head *tmp;
153
154         if (!test_bit(CACHE_VALID, &old->flags)) {
155                 write_lock(&detail->hash_lock);
156                 if (!test_bit(CACHE_VALID, &old->flags)) {
157                         if (test_bit(CACHE_NEGATIVE, &new->flags))
158                                 set_bit(CACHE_NEGATIVE, &old->flags);
159                         else
160                                 detail->update(old, new);
161                         cache_fresh_locked(old, new->expiry_time);
162                         write_unlock(&detail->hash_lock);
163                         cache_fresh_unlocked(old, detail);
164                         return old;
165                 }
166                 write_unlock(&detail->hash_lock);
167         }
168         /* We need to insert a new entry */
169         tmp = detail->alloc();
170         if (!tmp) {
171                 cache_put(old, detail);
172                 return NULL;
173         }
174         cache_init(tmp);
175         detail->init(tmp, old);
176         head = &detail->hash_table[hash];
177
178         write_lock(&detail->hash_lock);
179         if (test_bit(CACHE_NEGATIVE, &new->flags))
180                 set_bit(CACHE_NEGATIVE, &tmp->flags);
181         else
182                 detail->update(tmp, new);
183         tmp->next = *head;
184         *head = tmp;
185         detail->entries++;
186         cache_get(tmp);
187         cache_fresh_locked(tmp, new->expiry_time);
188         cache_fresh_locked(old, 0);
189         write_unlock(&detail->hash_lock);
190         cache_fresh_unlocked(tmp, detail);
191         cache_fresh_unlocked(old, detail);
192         cache_put(old, detail);
193         return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199         if (!cd->cache_upcall)
200                 return -EINVAL;
201         return cd->cache_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206         if (!test_bit(CACHE_VALID, &h->flags))
207                 return -EAGAIN;
208         else {
209                 /* entry is valid */
210                 if (test_bit(CACHE_NEGATIVE, &h->flags))
211                         return -ENOENT;
212                 else
213                         return 0;
214         }
215 }
216
217 /*
218  * This is the generic cache management routine for all
219  * the authentication caches.
220  * It checks the currency of a cache item and will (later)
221  * initiate an upcall to fill it if needed.
222  *
223  *
224  * Returns 0 if the cache_head can be used, or cache_puts it and returns
225  * -EAGAIN if upcall is pending and request has been queued
226  * -ETIMEDOUT if upcall failed or request could not be queue or
227  *           upcall completed but item is still invalid (implying that
228  *           the cache item has been replaced with a newer one).
229  * -ENOENT if cache entry was negative
230  */
231 int cache_check(struct cache_detail *detail,
232                     struct cache_head *h, struct cache_req *rqstp)
233 {
234         int rv;
235         long refresh_age, age;
236
237         /* First decide return status as best we can */
238         rv = cache_is_valid(detail, h);
239
240         /* now see if we want to start an upcall */
241         refresh_age = (h->expiry_time - h->last_refresh);
242         age = seconds_since_boot() - h->last_refresh;
243
244         if (rqstp == NULL) {
245                 if (rv == -EAGAIN)
246                         rv = -ENOENT;
247         } else if (rv == -EAGAIN || age > refresh_age/2) {
248                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
249                                 refresh_age, age);
250                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
251                         switch (cache_make_upcall(detail, h)) {
252                         case -EINVAL:
253                                 clear_bit(CACHE_PENDING, &h->flags);
254                                 cache_revisit_request(h);
255                                 if (rv == -EAGAIN) {
256                                         set_bit(CACHE_NEGATIVE, &h->flags);
257                                         cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
258                                         cache_fresh_unlocked(h, detail);
259                                         rv = -ENOENT;
260                                 }
261                                 break;
262
263                         case -EAGAIN:
264                                 clear_bit(CACHE_PENDING, &h->flags);
265                                 cache_revisit_request(h);
266                                 break;
267                         }
268                 }
269         }
270
271         if (rv == -EAGAIN) {
272                 cache_defer_req(rqstp, h);
273                 if (!test_bit(CACHE_PENDING, &h->flags)) {
274                         /* Request is not deferred */
275                         rv = cache_is_valid(detail, h);
276                         if (rv == -EAGAIN)
277                                 rv = -ETIMEDOUT;
278                 }
279         }
280         if (rv)
281                 cache_put(h, detail);
282         return rv;
283 }
284 EXPORT_SYMBOL_GPL(cache_check);
285
286 /*
287  * caches need to be periodically cleaned.
288  * For this we maintain a list of cache_detail and
289  * a current pointer into that list and into the table
290  * for that entry.
291  *
292  * Each time clean_cache is called it finds the next non-empty entry
293  * in the current table and walks the list in that entry
294  * looking for entries that can be removed.
295  *
296  * An entry gets removed if:
297  * - The expiry is before current time
298  * - The last_refresh time is before the flush_time for that cache
299  *
300  * later we might drop old entries with non-NEVER expiry if that table
301  * is getting 'full' for some definition of 'full'
302  *
303  * The question of "how often to scan a table" is an interesting one
304  * and is answered in part by the use of the "nextcheck" field in the
305  * cache_detail.
306  * When a scan of a table begins, the nextcheck field is set to a time
307  * that is well into the future.
308  * While scanning, if an expiry time is found that is earlier than the
309  * current nextcheck time, nextcheck is set to that expiry time.
310  * If the flush_time is ever set to a time earlier than the nextcheck
311  * time, the nextcheck time is then set to that flush_time.
312  *
313  * A table is then only scanned if the current time is at least
314  * the nextcheck time.
315  *
316  */
317
318 static LIST_HEAD(cache_list);
319 static DEFINE_SPINLOCK(cache_list_lock);
320 static struct cache_detail *current_detail;
321 static int current_index;
322
323 static void do_cache_clean(struct work_struct *work);
324 static struct delayed_work cache_cleaner;
325
326 static void sunrpc_init_cache_detail(struct cache_detail *cd)
327 {
328         rwlock_init(&cd->hash_lock);
329         INIT_LIST_HEAD(&cd->queue);
330         spin_lock(&cache_list_lock);
331         cd->nextcheck = 0;
332         cd->entries = 0;
333         atomic_set(&cd->readers, 0);
334         cd->last_close = 0;
335         cd->last_warn = -1;
336         list_add(&cd->others, &cache_list);
337         spin_unlock(&cache_list_lock);
338
339         /* start the cleaning process */
340         schedule_delayed_work(&cache_cleaner, 0);
341 }
342
343 static void sunrpc_destroy_cache_detail(struct cache_detail *cd)
344 {
345         cache_purge(cd);
346         spin_lock(&cache_list_lock);
347         write_lock(&cd->hash_lock);
348         if (cd->entries || atomic_read(&cd->inuse)) {
349                 write_unlock(&cd->hash_lock);
350                 spin_unlock(&cache_list_lock);
351                 goto out;
352         }
353         if (current_detail == cd)
354                 current_detail = NULL;
355         list_del_init(&cd->others);
356         write_unlock(&cd->hash_lock);
357         spin_unlock(&cache_list_lock);
358         if (list_empty(&cache_list)) {
359                 /* module must be being unloaded so its safe to kill the worker */
360                 cancel_delayed_work_sync(&cache_cleaner);
361         }
362         return;
363 out:
364         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
365 }
366
367 /* clean cache tries to find something to clean
368  * and cleans it.
369  * It returns 1 if it cleaned something,
370  *            0 if it didn't find anything this time
371  *           -1 if it fell off the end of the list.
372  */
373 static int cache_clean(void)
374 {
375         int rv = 0;
376         struct list_head *next;
377
378         spin_lock(&cache_list_lock);
379
380         /* find a suitable table if we don't already have one */
381         while (current_detail == NULL ||
382             current_index >= current_detail->hash_size) {
383                 if (current_detail)
384                         next = current_detail->others.next;
385                 else
386                         next = cache_list.next;
387                 if (next == &cache_list) {
388                         current_detail = NULL;
389                         spin_unlock(&cache_list_lock);
390                         return -1;
391                 }
392                 current_detail = list_entry(next, struct cache_detail, others);
393                 if (current_detail->nextcheck > seconds_since_boot())
394                         current_index = current_detail->hash_size;
395                 else {
396                         current_index = 0;
397                         current_detail->nextcheck = seconds_since_boot()+30*60;
398                 }
399         }
400
401         /* find a non-empty bucket in the table */
402         while (current_detail &&
403                current_index < current_detail->hash_size &&
404                current_detail->hash_table[current_index] == NULL)
405                 current_index++;
406
407         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
408
409         if (current_detail && current_index < current_detail->hash_size) {
410                 struct cache_head *ch, **cp;
411                 struct cache_detail *d;
412
413                 write_lock(&current_detail->hash_lock);
414
415                 /* Ok, now to clean this strand */
416
417                 cp = & current_detail->hash_table[current_index];
418                 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
419                         if (current_detail->nextcheck > ch->expiry_time)
420                                 current_detail->nextcheck = ch->expiry_time+1;
421                         if (!cache_is_expired(current_detail, ch))
422                                 continue;
423
424                         *cp = ch->next;
425                         ch->next = NULL;
426                         current_detail->entries--;
427                         rv = 1;
428                         break;
429                 }
430
431                 write_unlock(&current_detail->hash_lock);
432                 d = current_detail;
433                 if (!ch)
434                         current_index ++;
435                 spin_unlock(&cache_list_lock);
436                 if (ch) {
437                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
438                                 cache_dequeue(current_detail, ch);
439                         cache_revisit_request(ch);
440                         cache_put(ch, d);
441                 }
442         } else
443                 spin_unlock(&cache_list_lock);
444
445         return rv;
446 }
447
448 /*
449  * We want to regularly clean the cache, so we need to schedule some work ...
450  */
451 static void do_cache_clean(struct work_struct *work)
452 {
453         int delay = 5;
454         if (cache_clean() == -1)
455                 delay = round_jiffies_relative(30*HZ);
456
457         if (list_empty(&cache_list))
458                 delay = 0;
459
460         if (delay)
461                 schedule_delayed_work(&cache_cleaner, delay);
462 }
463
464
465 /*
466  * Clean all caches promptly.  This just calls cache_clean
467  * repeatedly until we are sure that every cache has had a chance to
468  * be fully cleaned
469  */
470 void cache_flush(void)
471 {
472         while (cache_clean() != -1)
473                 cond_resched();
474         while (cache_clean() != -1)
475                 cond_resched();
476 }
477 EXPORT_SYMBOL_GPL(cache_flush);
478
479 void cache_purge(struct cache_detail *detail)
480 {
481         detail->flush_time = LONG_MAX;
482         detail->nextcheck = seconds_since_boot();
483         cache_flush();
484         detail->flush_time = 1;
485 }
486 EXPORT_SYMBOL_GPL(cache_purge);
487
488
489 /*
490  * Deferral and Revisiting of Requests.
491  *
492  * If a cache lookup finds a pending entry, we
493  * need to defer the request and revisit it later.
494  * All deferred requests are stored in a hash table,
495  * indexed by "struct cache_head *".
496  * As it may be wasteful to store a whole request
497  * structure, we allow the request to provide a
498  * deferred form, which must contain a
499  * 'struct cache_deferred_req'
500  * This cache_deferred_req contains a method to allow
501  * it to be revisited when cache info is available
502  */
503
504 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
505 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
506
507 #define DFR_MAX 300     /* ??? */
508
509 static DEFINE_SPINLOCK(cache_defer_lock);
510 static LIST_HEAD(cache_defer_list);
511 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
512 static int cache_defer_cnt;
513
514 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
515 {
516         hlist_del_init(&dreq->hash);
517         if (!list_empty(&dreq->recent)) {
518                 list_del_init(&dreq->recent);
519                 cache_defer_cnt--;
520         }
521 }
522
523 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
524 {
525         int hash = DFR_HASH(item);
526
527         INIT_LIST_HEAD(&dreq->recent);
528         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
529 }
530
531 static void setup_deferral(struct cache_deferred_req *dreq,
532                            struct cache_head *item,
533                            int count_me)
534 {
535
536         dreq->item = item;
537
538         spin_lock(&cache_defer_lock);
539
540         __hash_deferred_req(dreq, item);
541
542         if (count_me) {
543                 cache_defer_cnt++;
544                 list_add(&dreq->recent, &cache_defer_list);
545         }
546
547         spin_unlock(&cache_defer_lock);
548
549 }
550
551 struct thread_deferred_req {
552         struct cache_deferred_req handle;
553         struct completion completion;
554 };
555
556 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
557 {
558         struct thread_deferred_req *dr =
559                 container_of(dreq, struct thread_deferred_req, handle);
560         complete(&dr->completion);
561 }
562
563 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
564 {
565         struct thread_deferred_req sleeper;
566         struct cache_deferred_req *dreq = &sleeper.handle;
567
568         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
569         dreq->revisit = cache_restart_thread;
570
571         setup_deferral(dreq, item, 0);
572
573         if (!test_bit(CACHE_PENDING, &item->flags) ||
574             wait_for_completion_interruptible_timeout(
575                     &sleeper.completion, req->thread_wait) <= 0) {
576                 /* The completion wasn't completed, so we need
577                  * to clean up
578                  */
579                 spin_lock(&cache_defer_lock);
580                 if (!hlist_unhashed(&sleeper.handle.hash)) {
581                         __unhash_deferred_req(&sleeper.handle);
582                         spin_unlock(&cache_defer_lock);
583                 } else {
584                         /* cache_revisit_request already removed
585                          * this from the hash table, but hasn't
586                          * called ->revisit yet.  It will very soon
587                          * and we need to wait for it.
588                          */
589                         spin_unlock(&cache_defer_lock);
590                         wait_for_completion(&sleeper.completion);
591                 }
592         }
593 }
594
595 static void cache_limit_defers(void)
596 {
597         /* Make sure we haven't exceed the limit of allowed deferred
598          * requests.
599          */
600         struct cache_deferred_req *discard = NULL;
601
602         if (cache_defer_cnt <= DFR_MAX)
603                 return;
604
605         spin_lock(&cache_defer_lock);
606
607         /* Consider removing either the first or the last */
608         if (cache_defer_cnt > DFR_MAX) {
609                 if (net_random() & 1)
610                         discard = list_entry(cache_defer_list.next,
611                                              struct cache_deferred_req, recent);
612                 else
613                         discard = list_entry(cache_defer_list.prev,
614                                              struct cache_deferred_req, recent);
615                 __unhash_deferred_req(discard);
616         }
617         spin_unlock(&cache_defer_lock);
618         if (discard)
619                 discard->revisit(discard, 1);
620 }
621
622 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
623 {
624         struct cache_deferred_req *dreq;
625
626         if (req->thread_wait) {
627                 cache_wait_req(req, item);
628                 if (!test_bit(CACHE_PENDING, &item->flags))
629                         return;
630         }
631         dreq = req->defer(req);
632         if (dreq == NULL)
633                 return;
634         setup_deferral(dreq, item, 1);
635         if (!test_bit(CACHE_PENDING, &item->flags))
636                 /* Bit could have been cleared before we managed to
637                  * set up the deferral, so need to revisit just in case
638                  */
639                 cache_revisit_request(item);
640
641         cache_limit_defers();
642 }
643
644 static void cache_revisit_request(struct cache_head *item)
645 {
646         struct cache_deferred_req *dreq;
647         struct list_head pending;
648         struct hlist_node *lp, *tmp;
649         int hash = DFR_HASH(item);
650
651         INIT_LIST_HEAD(&pending);
652         spin_lock(&cache_defer_lock);
653
654         hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
655                 if (dreq->item == item) {
656                         __unhash_deferred_req(dreq);
657                         list_add(&dreq->recent, &pending);
658                 }
659
660         spin_unlock(&cache_defer_lock);
661
662         while (!list_empty(&pending)) {
663                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
664                 list_del_init(&dreq->recent);
665                 dreq->revisit(dreq, 0);
666         }
667 }
668
669 void cache_clean_deferred(void *owner)
670 {
671         struct cache_deferred_req *dreq, *tmp;
672         struct list_head pending;
673
674
675         INIT_LIST_HEAD(&pending);
676         spin_lock(&cache_defer_lock);
677
678         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
679                 if (dreq->owner == owner) {
680                         __unhash_deferred_req(dreq);
681                         list_add(&dreq->recent, &pending);
682                 }
683         }
684         spin_unlock(&cache_defer_lock);
685
686         while (!list_empty(&pending)) {
687                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
688                 list_del_init(&dreq->recent);
689                 dreq->revisit(dreq, 1);
690         }
691 }
692
693 /*
694  * communicate with user-space
695  *
696  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
697  * On read, you get a full request, or block.
698  * On write, an update request is processed.
699  * Poll works if anything to read, and always allows write.
700  *
701  * Implemented by linked list of requests.  Each open file has
702  * a ->private that also exists in this list.  New requests are added
703  * to the end and may wakeup and preceding readers.
704  * New readers are added to the head.  If, on read, an item is found with
705  * CACHE_UPCALLING clear, we free it from the list.
706  *
707  */
708
709 static DEFINE_SPINLOCK(queue_lock);
710 static DEFINE_MUTEX(queue_io_mutex);
711
712 struct cache_queue {
713         struct list_head        list;
714         int                     reader; /* if 0, then request */
715 };
716 struct cache_request {
717         struct cache_queue      q;
718         struct cache_head       *item;
719         char                    * buf;
720         int                     len;
721         int                     readers;
722 };
723 struct cache_reader {
724         struct cache_queue      q;
725         int                     offset; /* if non-0, we have a refcnt on next request */
726 };
727
728 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
729                           loff_t *ppos, struct cache_detail *cd)
730 {
731         struct cache_reader *rp = filp->private_data;
732         struct cache_request *rq;
733         struct inode *inode = filp->f_path.dentry->d_inode;
734         int err;
735
736         if (count == 0)
737                 return 0;
738
739         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
740                               * readers on this file */
741  again:
742         spin_lock(&queue_lock);
743         /* need to find next request */
744         while (rp->q.list.next != &cd->queue &&
745                list_entry(rp->q.list.next, struct cache_queue, list)
746                ->reader) {
747                 struct list_head *next = rp->q.list.next;
748                 list_move(&rp->q.list, next);
749         }
750         if (rp->q.list.next == &cd->queue) {
751                 spin_unlock(&queue_lock);
752                 mutex_unlock(&inode->i_mutex);
753                 BUG_ON(rp->offset);
754                 return 0;
755         }
756         rq = container_of(rp->q.list.next, struct cache_request, q.list);
757         BUG_ON(rq->q.reader);
758         if (rp->offset == 0)
759                 rq->readers++;
760         spin_unlock(&queue_lock);
761
762         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
763                 err = -EAGAIN;
764                 spin_lock(&queue_lock);
765                 list_move(&rp->q.list, &rq->q.list);
766                 spin_unlock(&queue_lock);
767         } else {
768                 if (rp->offset + count > rq->len)
769                         count = rq->len - rp->offset;
770                 err = -EFAULT;
771                 if (copy_to_user(buf, rq->buf + rp->offset, count))
772                         goto out;
773                 rp->offset += count;
774                 if (rp->offset >= rq->len) {
775                         rp->offset = 0;
776                         spin_lock(&queue_lock);
777                         list_move(&rp->q.list, &rq->q.list);
778                         spin_unlock(&queue_lock);
779                 }
780                 err = 0;
781         }
782  out:
783         if (rp->offset == 0) {
784                 /* need to release rq */
785                 spin_lock(&queue_lock);
786                 rq->readers--;
787                 if (rq->readers == 0 &&
788                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
789                         list_del(&rq->q.list);
790                         spin_unlock(&queue_lock);
791                         cache_put(rq->item, cd);
792                         kfree(rq->buf);
793                         kfree(rq);
794                 } else
795                         spin_unlock(&queue_lock);
796         }
797         if (err == -EAGAIN)
798                 goto again;
799         mutex_unlock(&inode->i_mutex);
800         return err ? err :  count;
801 }
802
803 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
804                                  size_t count, struct cache_detail *cd)
805 {
806         ssize_t ret;
807
808         if (copy_from_user(kaddr, buf, count))
809                 return -EFAULT;
810         kaddr[count] = '\0';
811         ret = cd->cache_parse(cd, kaddr, count);
812         if (!ret)
813                 ret = count;
814         return ret;
815 }
816
817 static ssize_t cache_slow_downcall(const char __user *buf,
818                                    size_t count, struct cache_detail *cd)
819 {
820         static char write_buf[8192]; /* protected by queue_io_mutex */
821         ssize_t ret = -EINVAL;
822
823         if (count >= sizeof(write_buf))
824                 goto out;
825         mutex_lock(&queue_io_mutex);
826         ret = cache_do_downcall(write_buf, buf, count, cd);
827         mutex_unlock(&queue_io_mutex);
828 out:
829         return ret;
830 }
831
832 static ssize_t cache_downcall(struct address_space *mapping,
833                               const char __user *buf,
834                               size_t count, struct cache_detail *cd)
835 {
836         struct page *page;
837         char *kaddr;
838         ssize_t ret = -ENOMEM;
839
840         if (count >= PAGE_CACHE_SIZE)
841                 goto out_slow;
842
843         page = find_or_create_page(mapping, 0, GFP_KERNEL);
844         if (!page)
845                 goto out_slow;
846
847         kaddr = kmap(page);
848         ret = cache_do_downcall(kaddr, buf, count, cd);
849         kunmap(page);
850         unlock_page(page);
851         page_cache_release(page);
852         return ret;
853 out_slow:
854         return cache_slow_downcall(buf, count, cd);
855 }
856
857 static ssize_t cache_write(struct file *filp, const char __user *buf,
858                            size_t count, loff_t *ppos,
859                            struct cache_detail *cd)
860 {
861         struct address_space *mapping = filp->f_mapping;
862         struct inode *inode = filp->f_path.dentry->d_inode;
863         ssize_t ret = -EINVAL;
864
865         if (!cd->cache_parse)
866                 goto out;
867
868         mutex_lock(&inode->i_mutex);
869         ret = cache_downcall(mapping, buf, count, cd);
870         mutex_unlock(&inode->i_mutex);
871 out:
872         return ret;
873 }
874
875 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
876
877 static unsigned int cache_poll(struct file *filp, poll_table *wait,
878                                struct cache_detail *cd)
879 {
880         unsigned int mask;
881         struct cache_reader *rp = filp->private_data;
882         struct cache_queue *cq;
883
884         poll_wait(filp, &queue_wait, wait);
885
886         /* alway allow write */
887         mask = POLL_OUT | POLLWRNORM;
888
889         if (!rp)
890                 return mask;
891
892         spin_lock(&queue_lock);
893
894         for (cq= &rp->q; &cq->list != &cd->queue;
895              cq = list_entry(cq->list.next, struct cache_queue, list))
896                 if (!cq->reader) {
897                         mask |= POLLIN | POLLRDNORM;
898                         break;
899                 }
900         spin_unlock(&queue_lock);
901         return mask;
902 }
903
904 static int cache_ioctl(struct inode *ino, struct file *filp,
905                        unsigned int cmd, unsigned long arg,
906                        struct cache_detail *cd)
907 {
908         int len = 0;
909         struct cache_reader *rp = filp->private_data;
910         struct cache_queue *cq;
911
912         if (cmd != FIONREAD || !rp)
913                 return -EINVAL;
914
915         spin_lock(&queue_lock);
916
917         /* only find the length remaining in current request,
918          * or the length of the next request
919          */
920         for (cq= &rp->q; &cq->list != &cd->queue;
921              cq = list_entry(cq->list.next, struct cache_queue, list))
922                 if (!cq->reader) {
923                         struct cache_request *cr =
924                                 container_of(cq, struct cache_request, q);
925                         len = cr->len - rp->offset;
926                         break;
927                 }
928         spin_unlock(&queue_lock);
929
930         return put_user(len, (int __user *)arg);
931 }
932
933 static int cache_open(struct inode *inode, struct file *filp,
934                       struct cache_detail *cd)
935 {
936         struct cache_reader *rp = NULL;
937
938         if (!cd || !try_module_get(cd->owner))
939                 return -EACCES;
940         nonseekable_open(inode, filp);
941         if (filp->f_mode & FMODE_READ) {
942                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
943                 if (!rp)
944                         return -ENOMEM;
945                 rp->offset = 0;
946                 rp->q.reader = 1;
947                 atomic_inc(&cd->readers);
948                 spin_lock(&queue_lock);
949                 list_add(&rp->q.list, &cd->queue);
950                 spin_unlock(&queue_lock);
951         }
952         filp->private_data = rp;
953         return 0;
954 }
955
956 static int cache_release(struct inode *inode, struct file *filp,
957                          struct cache_detail *cd)
958 {
959         struct cache_reader *rp = filp->private_data;
960
961         if (rp) {
962                 spin_lock(&queue_lock);
963                 if (rp->offset) {
964                         struct cache_queue *cq;
965                         for (cq= &rp->q; &cq->list != &cd->queue;
966                              cq = list_entry(cq->list.next, struct cache_queue, list))
967                                 if (!cq->reader) {
968                                         container_of(cq, struct cache_request, q)
969                                                 ->readers--;
970                                         break;
971                                 }
972                         rp->offset = 0;
973                 }
974                 list_del(&rp->q.list);
975                 spin_unlock(&queue_lock);
976
977                 filp->private_data = NULL;
978                 kfree(rp);
979
980                 cd->last_close = seconds_since_boot();
981                 atomic_dec(&cd->readers);
982         }
983         module_put(cd->owner);
984         return 0;
985 }
986
987
988
989 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
990 {
991         struct cache_queue *cq;
992         spin_lock(&queue_lock);
993         list_for_each_entry(cq, &detail->queue, list)
994                 if (!cq->reader) {
995                         struct cache_request *cr = container_of(cq, struct cache_request, q);
996                         if (cr->item != ch)
997                                 continue;
998                         if (cr->readers != 0)
999                                 continue;
1000                         list_del(&cr->q.list);
1001                         spin_unlock(&queue_lock);
1002                         cache_put(cr->item, detail);
1003                         kfree(cr->buf);
1004                         kfree(cr);
1005                         return;
1006                 }
1007         spin_unlock(&queue_lock);
1008 }
1009
1010 /*
1011  * Support routines for text-based upcalls.
1012  * Fields are separated by spaces.
1013  * Fields are either mangled to quote space tab newline slosh with slosh
1014  * or a hexified with a leading \x
1015  * Record is terminated with newline.
1016  *
1017  */
1018
1019 void qword_add(char **bpp, int *lp, char *str)
1020 {
1021         char *bp = *bpp;
1022         int len = *lp;
1023         char c;
1024
1025         if (len < 0) return;
1026
1027         while ((c=*str++) && len)
1028                 switch(c) {
1029                 case ' ':
1030                 case '\t':
1031                 case '\n':
1032                 case '\\':
1033                         if (len >= 4) {
1034                                 *bp++ = '\\';
1035                                 *bp++ = '0' + ((c & 0300)>>6);
1036                                 *bp++ = '0' + ((c & 0070)>>3);
1037                                 *bp++ = '0' + ((c & 0007)>>0);
1038                         }
1039                         len -= 4;
1040                         break;
1041                 default:
1042                         *bp++ = c;
1043                         len--;
1044                 }
1045         if (c || len <1) len = -1;
1046         else {
1047                 *bp++ = ' ';
1048                 len--;
1049         }
1050         *bpp = bp;
1051         *lp = len;
1052 }
1053 EXPORT_SYMBOL_GPL(qword_add);
1054
1055 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1056 {
1057         char *bp = *bpp;
1058         int len = *lp;
1059
1060         if (len < 0) return;
1061
1062         if (len > 2) {
1063                 *bp++ = '\\';
1064                 *bp++ = 'x';
1065                 len -= 2;
1066                 while (blen && len >= 2) {
1067                         unsigned char c = *buf++;
1068                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1069                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1070                         len -= 2;
1071                         blen--;
1072                 }
1073         }
1074         if (blen || len<1) len = -1;
1075         else {
1076                 *bp++ = ' ';
1077                 len--;
1078         }
1079         *bpp = bp;
1080         *lp = len;
1081 }
1082 EXPORT_SYMBOL_GPL(qword_addhex);
1083
1084 static void warn_no_listener(struct cache_detail *detail)
1085 {
1086         if (detail->last_warn != detail->last_close) {
1087                 detail->last_warn = detail->last_close;
1088                 if (detail->warn_no_listener)
1089                         detail->warn_no_listener(detail, detail->last_close != 0);
1090         }
1091 }
1092
1093 static bool cache_listeners_exist(struct cache_detail *detail)
1094 {
1095         if (atomic_read(&detail->readers))
1096                 return true;
1097         if (detail->last_close == 0)
1098                 /* This cache was never opened */
1099                 return false;
1100         if (detail->last_close < seconds_since_boot() - 30)
1101                 /*
1102                  * We allow for the possibility that someone might
1103                  * restart a userspace daemon without restarting the
1104                  * server; but after 30 seconds, we give up.
1105                  */
1106                  return false;
1107         return true;
1108 }
1109
1110 /*
1111  * register an upcall request to user-space and queue it up for read() by the
1112  * upcall daemon.
1113  *
1114  * Each request is at most one page long.
1115  */
1116 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1117                 void (*cache_request)(struct cache_detail *,
1118                                       struct cache_head *,
1119                                       char **,
1120                                       int *))
1121 {
1122
1123         char *buf;
1124         struct cache_request *crq;
1125         char *bp;
1126         int len;
1127
1128         if (!cache_listeners_exist(detail)) {
1129                 warn_no_listener(detail);
1130                 return -EINVAL;
1131         }
1132
1133         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1134         if (!buf)
1135                 return -EAGAIN;
1136
1137         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1138         if (!crq) {
1139                 kfree(buf);
1140                 return -EAGAIN;
1141         }
1142
1143         bp = buf; len = PAGE_SIZE;
1144
1145         cache_request(detail, h, &bp, &len);
1146
1147         if (len < 0) {
1148                 kfree(buf);
1149                 kfree(crq);
1150                 return -EAGAIN;
1151         }
1152         crq->q.reader = 0;
1153         crq->item = cache_get(h);
1154         crq->buf = buf;
1155         crq->len = PAGE_SIZE - len;
1156         crq->readers = 0;
1157         spin_lock(&queue_lock);
1158         list_add_tail(&crq->q.list, &detail->queue);
1159         spin_unlock(&queue_lock);
1160         wake_up(&queue_wait);
1161         return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1164
1165 /*
1166  * parse a message from user-space and pass it
1167  * to an appropriate cache
1168  * Messages are, like requests, separated into fields by
1169  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1170  *
1171  * Message is
1172  *   reply cachename expiry key ... content....
1173  *
1174  * key and content are both parsed by cache
1175  */
1176
1177 #define isodigit(c) (isdigit(c) && c <= '7')
1178 int qword_get(char **bpp, char *dest, int bufsize)
1179 {
1180         /* return bytes copied, or -1 on error */
1181         char *bp = *bpp;
1182         int len = 0;
1183
1184         while (*bp == ' ') bp++;
1185
1186         if (bp[0] == '\\' && bp[1] == 'x') {
1187                 /* HEX STRING */
1188                 bp += 2;
1189                 while (len < bufsize) {
1190                         int h, l;
1191
1192                         h = hex_to_bin(bp[0]);
1193                         if (h < 0)
1194                                 break;
1195
1196                         l = hex_to_bin(bp[1]);
1197                         if (l < 0)
1198                                 break;
1199
1200                         *dest++ = (h << 4) | l;
1201                         bp += 2;
1202                         len++;
1203                 }
1204         } else {
1205                 /* text with \nnn octal quoting */
1206                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1207                         if (*bp == '\\' &&
1208                             isodigit(bp[1]) && (bp[1] <= '3') &&
1209                             isodigit(bp[2]) &&
1210                             isodigit(bp[3])) {
1211                                 int byte = (*++bp -'0');
1212                                 bp++;
1213                                 byte = (byte << 3) | (*bp++ - '0');
1214                                 byte = (byte << 3) | (*bp++ - '0');
1215                                 *dest++ = byte;
1216                                 len++;
1217                         } else {
1218                                 *dest++ = *bp++;
1219                                 len++;
1220                         }
1221                 }
1222         }
1223
1224         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1225                 return -1;
1226         while (*bp == ' ') bp++;
1227         *bpp = bp;
1228         *dest = '\0';
1229         return len;
1230 }
1231 EXPORT_SYMBOL_GPL(qword_get);
1232
1233
1234 /*
1235  * support /proc/sunrpc/cache/$CACHENAME/content
1236  * as a seqfile.
1237  * We call ->cache_show passing NULL for the item to
1238  * get a header, then pass each real item in the cache
1239  */
1240
1241 struct handle {
1242         struct cache_detail *cd;
1243 };
1244
1245 static void *c_start(struct seq_file *m, loff_t *pos)
1246         __acquires(cd->hash_lock)
1247 {
1248         loff_t n = *pos;
1249         unsigned hash, entry;
1250         struct cache_head *ch;
1251         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1252
1253
1254         read_lock(&cd->hash_lock);
1255         if (!n--)
1256                 return SEQ_START_TOKEN;
1257         hash = n >> 32;
1258         entry = n & ((1LL<<32) - 1);
1259
1260         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1261                 if (!entry--)
1262                         return ch;
1263         n &= ~((1LL<<32) - 1);
1264         do {
1265                 hash++;
1266                 n += 1LL<<32;
1267         } while(hash < cd->hash_size &&
1268                 cd->hash_table[hash]==NULL);
1269         if (hash >= cd->hash_size)
1270                 return NULL;
1271         *pos = n+1;
1272         return cd->hash_table[hash];
1273 }
1274
1275 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1276 {
1277         struct cache_head *ch = p;
1278         int hash = (*pos >> 32);
1279         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1280
1281         if (p == SEQ_START_TOKEN)
1282                 hash = 0;
1283         else if (ch->next == NULL) {
1284                 hash++;
1285                 *pos += 1LL<<32;
1286         } else {
1287                 ++*pos;
1288                 return ch->next;
1289         }
1290         *pos &= ~((1LL<<32) - 1);
1291         while (hash < cd->hash_size &&
1292                cd->hash_table[hash] == NULL) {
1293                 hash++;
1294                 *pos += 1LL<<32;
1295         }
1296         if (hash >= cd->hash_size)
1297                 return NULL;
1298         ++*pos;
1299         return cd->hash_table[hash];
1300 }
1301
1302 static void c_stop(struct seq_file *m, void *p)
1303         __releases(cd->hash_lock)
1304 {
1305         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1306         read_unlock(&cd->hash_lock);
1307 }
1308
1309 static int c_show(struct seq_file *m, void *p)
1310 {
1311         struct cache_head *cp = p;
1312         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1313
1314         if (p == SEQ_START_TOKEN)
1315                 return cd->cache_show(m, cd, NULL);
1316
1317         ifdebug(CACHE)
1318                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1319                            convert_to_wallclock(cp->expiry_time),
1320                            atomic_read(&cp->ref.refcount), cp->flags);
1321         cache_get(cp);
1322         if (cache_check(cd, cp, NULL))
1323                 /* cache_check does a cache_put on failure */
1324                 seq_printf(m, "# ");
1325         else
1326                 cache_put(cp, cd);
1327
1328         return cd->cache_show(m, cd, cp);
1329 }
1330
1331 static const struct seq_operations cache_content_op = {
1332         .start  = c_start,
1333         .next   = c_next,
1334         .stop   = c_stop,
1335         .show   = c_show,
1336 };
1337
1338 static int content_open(struct inode *inode, struct file *file,
1339                         struct cache_detail *cd)
1340 {
1341         struct handle *han;
1342
1343         if (!cd || !try_module_get(cd->owner))
1344                 return -EACCES;
1345         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1346         if (han == NULL) {
1347                 module_put(cd->owner);
1348                 return -ENOMEM;
1349         }
1350
1351         han->cd = cd;
1352         return 0;
1353 }
1354
1355 static int content_release(struct inode *inode, struct file *file,
1356                 struct cache_detail *cd)
1357 {
1358         int ret = seq_release_private(inode, file);
1359         module_put(cd->owner);
1360         return ret;
1361 }
1362
1363 static int open_flush(struct inode *inode, struct file *file,
1364                         struct cache_detail *cd)
1365 {
1366         if (!cd || !try_module_get(cd->owner))
1367                 return -EACCES;
1368         return nonseekable_open(inode, file);
1369 }
1370
1371 static int release_flush(struct inode *inode, struct file *file,
1372                         struct cache_detail *cd)
1373 {
1374         module_put(cd->owner);
1375         return 0;
1376 }
1377
1378 static ssize_t read_flush(struct file *file, char __user *buf,
1379                           size_t count, loff_t *ppos,
1380                           struct cache_detail *cd)
1381 {
1382         char tbuf[20];
1383         unsigned long p = *ppos;
1384         size_t len;
1385
1386         sprintf(tbuf, "%lu\n", convert_to_wallclock(cd->flush_time));
1387         len = strlen(tbuf);
1388         if (p >= len)
1389                 return 0;
1390         len -= p;
1391         if (len > count)
1392                 len = count;
1393         if (copy_to_user(buf, (void*)(tbuf+p), len))
1394                 return -EFAULT;
1395         *ppos += len;
1396         return len;
1397 }
1398
1399 static ssize_t write_flush(struct file *file, const char __user *buf,
1400                            size_t count, loff_t *ppos,
1401                            struct cache_detail *cd)
1402 {
1403         char tbuf[20];
1404         char *bp, *ep;
1405
1406         if (*ppos || count > sizeof(tbuf)-1)
1407                 return -EINVAL;
1408         if (copy_from_user(tbuf, buf, count))
1409                 return -EFAULT;
1410         tbuf[count] = 0;
1411         simple_strtoul(tbuf, &ep, 0);
1412         if (*ep && *ep != '\n')
1413                 return -EINVAL;
1414
1415         bp = tbuf;
1416         cd->flush_time = get_expiry(&bp);
1417         cd->nextcheck = seconds_since_boot();
1418         cache_flush();
1419
1420         *ppos += count;
1421         return count;
1422 }
1423
1424 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1425                                  size_t count, loff_t *ppos)
1426 {
1427         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1428
1429         return cache_read(filp, buf, count, ppos, cd);
1430 }
1431
1432 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1433                                   size_t count, loff_t *ppos)
1434 {
1435         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1436
1437         return cache_write(filp, buf, count, ppos, cd);
1438 }
1439
1440 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1441 {
1442         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1443
1444         return cache_poll(filp, wait, cd);
1445 }
1446
1447 static long cache_ioctl_procfs(struct file *filp,
1448                                unsigned int cmd, unsigned long arg)
1449 {
1450         long ret;
1451         struct inode *inode = filp->f_path.dentry->d_inode;
1452         struct cache_detail *cd = PDE(inode)->data;
1453
1454         lock_kernel();
1455         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1456         unlock_kernel();
1457
1458         return ret;
1459 }
1460
1461 static int cache_open_procfs(struct inode *inode, struct file *filp)
1462 {
1463         struct cache_detail *cd = PDE(inode)->data;
1464
1465         return cache_open(inode, filp, cd);
1466 }
1467
1468 static int cache_release_procfs(struct inode *inode, struct file *filp)
1469 {
1470         struct cache_detail *cd = PDE(inode)->data;
1471
1472         return cache_release(inode, filp, cd);
1473 }
1474
1475 static const struct file_operations cache_file_operations_procfs = {
1476         .owner          = THIS_MODULE,
1477         .llseek         = no_llseek,
1478         .read           = cache_read_procfs,
1479         .write          = cache_write_procfs,
1480         .poll           = cache_poll_procfs,
1481         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1482         .open           = cache_open_procfs,
1483         .release        = cache_release_procfs,
1484 };
1485
1486 static int content_open_procfs(struct inode *inode, struct file *filp)
1487 {
1488         struct cache_detail *cd = PDE(inode)->data;
1489
1490         return content_open(inode, filp, cd);
1491 }
1492
1493 static int content_release_procfs(struct inode *inode, struct file *filp)
1494 {
1495         struct cache_detail *cd = PDE(inode)->data;
1496
1497         return content_release(inode, filp, cd);
1498 }
1499
1500 static const struct file_operations content_file_operations_procfs = {
1501         .open           = content_open_procfs,
1502         .read           = seq_read,
1503         .llseek         = seq_lseek,
1504         .release        = content_release_procfs,
1505 };
1506
1507 static int open_flush_procfs(struct inode *inode, struct file *filp)
1508 {
1509         struct cache_detail *cd = PDE(inode)->data;
1510
1511         return open_flush(inode, filp, cd);
1512 }
1513
1514 static int release_flush_procfs(struct inode *inode, struct file *filp)
1515 {
1516         struct cache_detail *cd = PDE(inode)->data;
1517
1518         return release_flush(inode, filp, cd);
1519 }
1520
1521 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1522                             size_t count, loff_t *ppos)
1523 {
1524         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1525
1526         return read_flush(filp, buf, count, ppos, cd);
1527 }
1528
1529 static ssize_t write_flush_procfs(struct file *filp,
1530                                   const char __user *buf,
1531                                   size_t count, loff_t *ppos)
1532 {
1533         struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1534
1535         return write_flush(filp, buf, count, ppos, cd);
1536 }
1537
1538 static const struct file_operations cache_flush_operations_procfs = {
1539         .open           = open_flush_procfs,
1540         .read           = read_flush_procfs,
1541         .write          = write_flush_procfs,
1542         .release        = release_flush_procfs,
1543 };
1544
1545 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1546 {
1547         struct sunrpc_net *sn;
1548
1549         if (cd->u.procfs.proc_ent == NULL)
1550                 return;
1551         if (cd->u.procfs.flush_ent)
1552                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1553         if (cd->u.procfs.channel_ent)
1554                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1555         if (cd->u.procfs.content_ent)
1556                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1557         cd->u.procfs.proc_ent = NULL;
1558         sn = net_generic(net, sunrpc_net_id);
1559         remove_proc_entry(cd->name, sn->proc_net_rpc);
1560 }
1561
1562 #ifdef CONFIG_PROC_FS
1563 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1564 {
1565         struct proc_dir_entry *p;
1566         struct sunrpc_net *sn;
1567
1568         sn = net_generic(net, sunrpc_net_id);
1569         cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1570         if (cd->u.procfs.proc_ent == NULL)
1571                 goto out_nomem;
1572         cd->u.procfs.channel_ent = NULL;
1573         cd->u.procfs.content_ent = NULL;
1574
1575         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1576                              cd->u.procfs.proc_ent,
1577                              &cache_flush_operations_procfs, cd);
1578         cd->u.procfs.flush_ent = p;
1579         if (p == NULL)
1580                 goto out_nomem;
1581
1582         if (cd->cache_upcall || cd->cache_parse) {
1583                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1584                                      cd->u.procfs.proc_ent,
1585                                      &cache_file_operations_procfs, cd);
1586                 cd->u.procfs.channel_ent = p;
1587                 if (p == NULL)
1588                         goto out_nomem;
1589         }
1590         if (cd->cache_show) {
1591                 p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1592                                 cd->u.procfs.proc_ent,
1593                                 &content_file_operations_procfs, cd);
1594                 cd->u.procfs.content_ent = p;
1595                 if (p == NULL)
1596                         goto out_nomem;
1597         }
1598         return 0;
1599 out_nomem:
1600         remove_cache_proc_entries(cd, net);
1601         return -ENOMEM;
1602 }
1603 #else /* CONFIG_PROC_FS */
1604 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1605 {
1606         return 0;
1607 }
1608 #endif
1609
1610 void __init cache_initialize(void)
1611 {
1612         INIT_DELAYED_WORK_DEFERRABLE(&cache_cleaner, do_cache_clean);
1613 }
1614
1615 int cache_register_net(struct cache_detail *cd, struct net *net)
1616 {
1617         int ret;
1618
1619         sunrpc_init_cache_detail(cd);
1620         ret = create_cache_proc_entries(cd, net);
1621         if (ret)
1622                 sunrpc_destroy_cache_detail(cd);
1623         return ret;
1624 }
1625
1626 int cache_register(struct cache_detail *cd)
1627 {
1628         return cache_register_net(cd, &init_net);
1629 }
1630 EXPORT_SYMBOL_GPL(cache_register);
1631
1632 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1633 {
1634         remove_cache_proc_entries(cd, net);
1635         sunrpc_destroy_cache_detail(cd);
1636 }
1637
1638 void cache_unregister(struct cache_detail *cd)
1639 {
1640         cache_unregister_net(cd, &init_net);
1641 }
1642 EXPORT_SYMBOL_GPL(cache_unregister);
1643
1644 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1645                                  size_t count, loff_t *ppos)
1646 {
1647         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1648
1649         return cache_read(filp, buf, count, ppos, cd);
1650 }
1651
1652 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1653                                   size_t count, loff_t *ppos)
1654 {
1655         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1656
1657         return cache_write(filp, buf, count, ppos, cd);
1658 }
1659
1660 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1661 {
1662         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1663
1664         return cache_poll(filp, wait, cd);
1665 }
1666
1667 static long cache_ioctl_pipefs(struct file *filp,
1668                               unsigned int cmd, unsigned long arg)
1669 {
1670         struct inode *inode = filp->f_dentry->d_inode;
1671         struct cache_detail *cd = RPC_I(inode)->private;
1672         long ret;
1673
1674         lock_kernel();
1675         ret = cache_ioctl(inode, filp, cmd, arg, cd);
1676         unlock_kernel();
1677
1678         return ret;
1679 }
1680
1681 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1682 {
1683         struct cache_detail *cd = RPC_I(inode)->private;
1684
1685         return cache_open(inode, filp, cd);
1686 }
1687
1688 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1689 {
1690         struct cache_detail *cd = RPC_I(inode)->private;
1691
1692         return cache_release(inode, filp, cd);
1693 }
1694
1695 const struct file_operations cache_file_operations_pipefs = {
1696         .owner          = THIS_MODULE,
1697         .llseek         = no_llseek,
1698         .read           = cache_read_pipefs,
1699         .write          = cache_write_pipefs,
1700         .poll           = cache_poll_pipefs,
1701         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1702         .open           = cache_open_pipefs,
1703         .release        = cache_release_pipefs,
1704 };
1705
1706 static int content_open_pipefs(struct inode *inode, struct file *filp)
1707 {
1708         struct cache_detail *cd = RPC_I(inode)->private;
1709
1710         return content_open(inode, filp, cd);
1711 }
1712
1713 static int content_release_pipefs(struct inode *inode, struct file *filp)
1714 {
1715         struct cache_detail *cd = RPC_I(inode)->private;
1716
1717         return content_release(inode, filp, cd);
1718 }
1719
1720 const struct file_operations content_file_operations_pipefs = {
1721         .open           = content_open_pipefs,
1722         .read           = seq_read,
1723         .llseek         = seq_lseek,
1724         .release        = content_release_pipefs,
1725 };
1726
1727 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1728 {
1729         struct cache_detail *cd = RPC_I(inode)->private;
1730
1731         return open_flush(inode, filp, cd);
1732 }
1733
1734 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1735 {
1736         struct cache_detail *cd = RPC_I(inode)->private;
1737
1738         return release_flush(inode, filp, cd);
1739 }
1740
1741 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1742                             size_t count, loff_t *ppos)
1743 {
1744         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1745
1746         return read_flush(filp, buf, count, ppos, cd);
1747 }
1748
1749 static ssize_t write_flush_pipefs(struct file *filp,
1750                                   const char __user *buf,
1751                                   size_t count, loff_t *ppos)
1752 {
1753         struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1754
1755         return write_flush(filp, buf, count, ppos, cd);
1756 }
1757
1758 const struct file_operations cache_flush_operations_pipefs = {
1759         .open           = open_flush_pipefs,
1760         .read           = read_flush_pipefs,
1761         .write          = write_flush_pipefs,
1762         .release        = release_flush_pipefs,
1763 };
1764
1765 int sunrpc_cache_register_pipefs(struct dentry *parent,
1766                                  const char *name, mode_t umode,
1767                                  struct cache_detail *cd)
1768 {
1769         struct qstr q;
1770         struct dentry *dir;
1771         int ret = 0;
1772
1773         sunrpc_init_cache_detail(cd);
1774         q.name = name;
1775         q.len = strlen(name);
1776         q.hash = full_name_hash(q.name, q.len);
1777         dir = rpc_create_cache_dir(parent, &q, umode, cd);
1778         if (!IS_ERR(dir))
1779                 cd->u.pipefs.dir = dir;
1780         else {
1781                 sunrpc_destroy_cache_detail(cd);
1782                 ret = PTR_ERR(dir);
1783         }
1784         return ret;
1785 }
1786 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1787
1788 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1789 {
1790         rpc_remove_cache_dir(cd->u.pipefs.dir);
1791         cd->u.pipefs.dir = NULL;
1792         sunrpc_destroy_cache_detail(cd);
1793 }
1794 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1795