]> bbs.cooldavid.org Git - net-next-2.6.git/blob - net/ipv4/tcp_input.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[net-next-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:     Ross Biro
9  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *              Florian La Roche, <flla@stud.uni-sb.de>
13  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *              Matthew Dillon, <dillon@apollo.west.oic.com>
17  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *              Jorge Cwik, <jorge@laser.satlink.net>
19  */
20
21 /*
22  * Changes:
23  *              Pedro Roque     :       Fast Retransmit/Recovery.
24  *                                      Two receive queues.
25  *                                      Retransmit queue handled by TCP.
26  *                                      Better retransmit timer handling.
27  *                                      New congestion avoidance.
28  *                                      Header prediction.
29  *                                      Variable renaming.
30  *
31  *              Eric            :       Fast Retransmit.
32  *              Randy Scott     :       MSS option defines.
33  *              Eric Schenk     :       Fixes to slow start algorithm.
34  *              Eric Schenk     :       Yet another double ACK bug.
35  *              Eric Schenk     :       Delayed ACK bug fixes.
36  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
37  *              David S. Miller :       Don't allow zero congestion window.
38  *              Eric Schenk     :       Fix retransmitter so that it sends
39  *                                      next packet on ack of previous packet.
40  *              Andi Kleen      :       Moved open_request checking here
41  *                                      and process RSTs for open_requests.
42  *              Andi Kleen      :       Better prune_queue, and other fixes.
43  *              Andrey Savochkin:       Fix RTT measurements in the presence of
44  *                                      timestamps.
45  *              Andrey Savochkin:       Check sequence numbers correctly when
46  *                                      removing SACKs due to in sequence incoming
47  *                                      data segments.
48  *              Andi Kleen:             Make sure we never ack data there is not
49  *                                      enough room for. Also make this condition
50  *                                      a fatal error if it might still happen.
51  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
52  *                                      connections with MSS<min(MTU,ann. MSS)
53  *                                      work without delayed acks.
54  *              Andi Kleen:             Process packets with PSH set in the
55  *                                      fast path.
56  *              J Hadi Salim:           ECN support
57  *              Andrei Gurtov,
58  *              Pasi Sarolahti,
59  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
60  *                                      engine. Lots of bugs are found.
61  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
62  */
63
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
95
96 int sysctl_tcp_thin_dupack __read_mostly;
97
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
100
101 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
102 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
103 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
105 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
106 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
107 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
108 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
109 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
115
116 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
121
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
124
125 /* Adapt the MSS value used to make delayed ack decision to the
126  * real world.
127  */
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
129 {
130         struct inet_connection_sock *icsk = inet_csk(sk);
131         const unsigned int lss = icsk->icsk_ack.last_seg_size;
132         unsigned int len;
133
134         icsk->icsk_ack.last_seg_size = 0;
135
136         /* skb->len may jitter because of SACKs, even if peer
137          * sends good full-sized frames.
138          */
139         len = skb_shinfo(skb)->gso_size ? : skb->len;
140         if (len >= icsk->icsk_ack.rcv_mss) {
141                 icsk->icsk_ack.rcv_mss = len;
142         } else {
143                 /* Otherwise, we make more careful check taking into account,
144                  * that SACKs block is variable.
145                  *
146                  * "len" is invariant segment length, including TCP header.
147                  */
148                 len += skb->data - skb_transport_header(skb);
149                 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150                     /* If PSH is not set, packet should be
151                      * full sized, provided peer TCP is not badly broken.
152                      * This observation (if it is correct 8)) allows
153                      * to handle super-low mtu links fairly.
154                      */
155                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157                         /* Subtract also invariant (if peer is RFC compliant),
158                          * tcp header plus fixed timestamp option length.
159                          * Resulting "len" is MSS free of SACK jitter.
160                          */
161                         len -= tcp_sk(sk)->tcp_header_len;
162                         icsk->icsk_ack.last_seg_size = len;
163                         if (len == lss) {
164                                 icsk->icsk_ack.rcv_mss = len;
165                                 return;
166                         }
167                 }
168                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
171         }
172 }
173
174 static void tcp_incr_quickack(struct sock *sk)
175 {
176         struct inet_connection_sock *icsk = inet_csk(sk);
177         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
178
179         if (quickacks == 0)
180                 quickacks = 2;
181         if (quickacks > icsk->icsk_ack.quick)
182                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
183 }
184
185 static void tcp_enter_quickack_mode(struct sock *sk)
186 {
187         struct inet_connection_sock *icsk = inet_csk(sk);
188         tcp_incr_quickack(sk);
189         icsk->icsk_ack.pingpong = 0;
190         icsk->icsk_ack.ato = TCP_ATO_MIN;
191 }
192
193 /* Send ACKs quickly, if "quick" count is not exhausted
194  * and the session is not interactive.
195  */
196
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
198 {
199         const struct inet_connection_sock *icsk = inet_csk(sk);
200         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205         if (tp->ecn_flags & TCP_ECN_OK)
206                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
210 {
211         if (tcp_hdr(skb)->cwr)
212                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
221 {
222         if (tp->ecn_flags & TCP_ECN_OK) {
223                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225                 /* Funny extension: if ECT is not set on a segment,
226                  * it is surely retransmit. It is not in ECN RFC,
227                  * but Linux follows this rule. */
228                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229                         tcp_enter_quickack_mode((struct sock *)tp);
230         }
231 }
232
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
234 {
235         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236                 tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
240 {
241         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242                 tp->ecn_flags &= ~TCP_ECN_OK;
243 }
244
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
246 {
247         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248                 return 1;
249         return 0;
250 }
251
252 /* Buffer size and advertised window tuning.
253  *
254  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
255  */
256
257 static void tcp_fixup_sndbuf(struct sock *sk)
258 {
259         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260                      sizeof(struct sk_buff);
261
262         if (sk->sk_sndbuf < 3 * sndmem)
263                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
264 }
265
266 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
267  *
268  * All tcp_full_space() is split to two parts: "network" buffer, allocated
269  * forward and advertised in receiver window (tp->rcv_wnd) and
270  * "application buffer", required to isolate scheduling/application
271  * latencies from network.
272  * window_clamp is maximal advertised window. It can be less than
273  * tcp_full_space(), in this case tcp_full_space() - window_clamp
274  * is reserved for "application" buffer. The less window_clamp is
275  * the smoother our behaviour from viewpoint of network, but the lower
276  * throughput and the higher sensitivity of the connection to losses. 8)
277  *
278  * rcv_ssthresh is more strict window_clamp used at "slow start"
279  * phase to predict further behaviour of this connection.
280  * It is used for two goals:
281  * - to enforce header prediction at sender, even when application
282  *   requires some significant "application buffer". It is check #1.
283  * - to prevent pruning of receive queue because of misprediction
284  *   of receiver window. Check #2.
285  *
286  * The scheme does not work when sender sends good segments opening
287  * window and then starts to feed us spaghetti. But it should work
288  * in common situations. Otherwise, we have to rely on queue collapsing.
289  */
290
291 /* Slow part of check#2. */
292 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
293 {
294         struct tcp_sock *tp = tcp_sk(sk);
295         /* Optimize this! */
296         int truesize = tcp_win_from_space(skb->truesize) >> 1;
297         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
298
299         while (tp->rcv_ssthresh <= window) {
300                 if (truesize <= skb->len)
301                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
302
303                 truesize >>= 1;
304                 window >>= 1;
305         }
306         return 0;
307 }
308
309 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
310 {
311         struct tcp_sock *tp = tcp_sk(sk);
312
313         /* Check #1 */
314         if (tp->rcv_ssthresh < tp->window_clamp &&
315             (int)tp->rcv_ssthresh < tcp_space(sk) &&
316             !tcp_memory_pressure) {
317                 int incr;
318
319                 /* Check #2. Increase window, if skb with such overhead
320                  * will fit to rcvbuf in future.
321                  */
322                 if (tcp_win_from_space(skb->truesize) <= skb->len)
323                         incr = 2 * tp->advmss;
324                 else
325                         incr = __tcp_grow_window(sk, skb);
326
327                 if (incr) {
328                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
329                                                tp->window_clamp);
330                         inet_csk(sk)->icsk_ack.quick |= 1;
331                 }
332         }
333 }
334
335 /* 3. Tuning rcvbuf, when connection enters established state. */
336
337 static void tcp_fixup_rcvbuf(struct sock *sk)
338 {
339         struct tcp_sock *tp = tcp_sk(sk);
340         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
341
342         /* Try to select rcvbuf so that 4 mss-sized segments
343          * will fit to window and corresponding skbs will fit to our rcvbuf.
344          * (was 3; 4 is minimum to allow fast retransmit to work.)
345          */
346         while (tcp_win_from_space(rcvmem) < tp->advmss)
347                 rcvmem += 128;
348         if (sk->sk_rcvbuf < 4 * rcvmem)
349                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
350 }
351
352 /* 4. Try to fixup all. It is made immediately after connection enters
353  *    established state.
354  */
355 static void tcp_init_buffer_space(struct sock *sk)
356 {
357         struct tcp_sock *tp = tcp_sk(sk);
358         int maxwin;
359
360         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
361                 tcp_fixup_rcvbuf(sk);
362         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
363                 tcp_fixup_sndbuf(sk);
364
365         tp->rcvq_space.space = tp->rcv_wnd;
366
367         maxwin = tcp_full_space(sk);
368
369         if (tp->window_clamp >= maxwin) {
370                 tp->window_clamp = maxwin;
371
372                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
373                         tp->window_clamp = max(maxwin -
374                                                (maxwin >> sysctl_tcp_app_win),
375                                                4 * tp->advmss);
376         }
377
378         /* Force reservation of one segment. */
379         if (sysctl_tcp_app_win &&
380             tp->window_clamp > 2 * tp->advmss &&
381             tp->window_clamp + tp->advmss > maxwin)
382                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
383
384         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
385         tp->snd_cwnd_stamp = tcp_time_stamp;
386 }
387
388 /* 5. Recalculate window clamp after socket hit its memory bounds. */
389 static void tcp_clamp_window(struct sock *sk)
390 {
391         struct tcp_sock *tp = tcp_sk(sk);
392         struct inet_connection_sock *icsk = inet_csk(sk);
393
394         icsk->icsk_ack.quick = 0;
395
396         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
397             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
398             !tcp_memory_pressure &&
399             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
400                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
401                                     sysctl_tcp_rmem[2]);
402         }
403         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
404                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
405 }
406
407 /* Initialize RCV_MSS value.
408  * RCV_MSS is an our guess about MSS used by the peer.
409  * We haven't any direct information about the MSS.
410  * It's better to underestimate the RCV_MSS rather than overestimate.
411  * Overestimations make us ACKing less frequently than needed.
412  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
413  */
414 void tcp_initialize_rcv_mss(struct sock *sk)
415 {
416         struct tcp_sock *tp = tcp_sk(sk);
417         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
418
419         hint = min(hint, tp->rcv_wnd / 2);
420         hint = min(hint, TCP_MSS_DEFAULT);
421         hint = max(hint, TCP_MIN_MSS);
422
423         inet_csk(sk)->icsk_ack.rcv_mss = hint;
424 }
425 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
426
427 /* Receiver "autotuning" code.
428  *
429  * The algorithm for RTT estimation w/o timestamps is based on
430  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
431  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
432  *
433  * More detail on this code can be found at
434  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
435  * though this reference is out of date.  A new paper
436  * is pending.
437  */
438 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
439 {
440         u32 new_sample = tp->rcv_rtt_est.rtt;
441         long m = sample;
442
443         if (m == 0)
444                 m = 1;
445
446         if (new_sample != 0) {
447                 /* If we sample in larger samples in the non-timestamp
448                  * case, we could grossly overestimate the RTT especially
449                  * with chatty applications or bulk transfer apps which
450                  * are stalled on filesystem I/O.
451                  *
452                  * Also, since we are only going for a minimum in the
453                  * non-timestamp case, we do not smooth things out
454                  * else with timestamps disabled convergence takes too
455                  * long.
456                  */
457                 if (!win_dep) {
458                         m -= (new_sample >> 3);
459                         new_sample += m;
460                 } else if (m < new_sample)
461                         new_sample = m << 3;
462         } else {
463                 /* No previous measure. */
464                 new_sample = m << 3;
465         }
466
467         if (tp->rcv_rtt_est.rtt != new_sample)
468                 tp->rcv_rtt_est.rtt = new_sample;
469 }
470
471 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
472 {
473         if (tp->rcv_rtt_est.time == 0)
474                 goto new_measure;
475         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
476                 return;
477         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
478
479 new_measure:
480         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
481         tp->rcv_rtt_est.time = tcp_time_stamp;
482 }
483
484 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
485                                           const struct sk_buff *skb)
486 {
487         struct tcp_sock *tp = tcp_sk(sk);
488         if (tp->rx_opt.rcv_tsecr &&
489             (TCP_SKB_CB(skb)->end_seq -
490              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
491                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
492 }
493
494 /*
495  * This function should be called every time data is copied to user space.
496  * It calculates the appropriate TCP receive buffer space.
497  */
498 void tcp_rcv_space_adjust(struct sock *sk)
499 {
500         struct tcp_sock *tp = tcp_sk(sk);
501         int time;
502         int space;
503
504         if (tp->rcvq_space.time == 0)
505                 goto new_measure;
506
507         time = tcp_time_stamp - tp->rcvq_space.time;
508         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
509                 return;
510
511         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
512
513         space = max(tp->rcvq_space.space, space);
514
515         if (tp->rcvq_space.space != space) {
516                 int rcvmem;
517
518                 tp->rcvq_space.space = space;
519
520                 if (sysctl_tcp_moderate_rcvbuf &&
521                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
522                         int new_clamp = space;
523
524                         /* Receive space grows, normalize in order to
525                          * take into account packet headers and sk_buff
526                          * structure overhead.
527                          */
528                         space /= tp->advmss;
529                         if (!space)
530                                 space = 1;
531                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
532                                   16 + sizeof(struct sk_buff));
533                         while (tcp_win_from_space(rcvmem) < tp->advmss)
534                                 rcvmem += 128;
535                         space *= rcvmem;
536                         space = min(space, sysctl_tcp_rmem[2]);
537                         if (space > sk->sk_rcvbuf) {
538                                 sk->sk_rcvbuf = space;
539
540                                 /* Make the window clamp follow along.  */
541                                 tp->window_clamp = new_clamp;
542                         }
543                 }
544         }
545
546 new_measure:
547         tp->rcvq_space.seq = tp->copied_seq;
548         tp->rcvq_space.time = tcp_time_stamp;
549 }
550
551 /* There is something which you must keep in mind when you analyze the
552  * behavior of the tp->ato delayed ack timeout interval.  When a
553  * connection starts up, we want to ack as quickly as possible.  The
554  * problem is that "good" TCP's do slow start at the beginning of data
555  * transmission.  The means that until we send the first few ACK's the
556  * sender will sit on his end and only queue most of his data, because
557  * he can only send snd_cwnd unacked packets at any given time.  For
558  * each ACK we send, he increments snd_cwnd and transmits more of his
559  * queue.  -DaveM
560  */
561 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
562 {
563         struct tcp_sock *tp = tcp_sk(sk);
564         struct inet_connection_sock *icsk = inet_csk(sk);
565         u32 now;
566
567         inet_csk_schedule_ack(sk);
568
569         tcp_measure_rcv_mss(sk, skb);
570
571         tcp_rcv_rtt_measure(tp);
572
573         now = tcp_time_stamp;
574
575         if (!icsk->icsk_ack.ato) {
576                 /* The _first_ data packet received, initialize
577                  * delayed ACK engine.
578                  */
579                 tcp_incr_quickack(sk);
580                 icsk->icsk_ack.ato = TCP_ATO_MIN;
581         } else {
582                 int m = now - icsk->icsk_ack.lrcvtime;
583
584                 if (m <= TCP_ATO_MIN / 2) {
585                         /* The fastest case is the first. */
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
587                 } else if (m < icsk->icsk_ack.ato) {
588                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
589                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
590                                 icsk->icsk_ack.ato = icsk->icsk_rto;
591                 } else if (m > icsk->icsk_rto) {
592                         /* Too long gap. Apparently sender failed to
593                          * restart window, so that we send ACKs quickly.
594                          */
595                         tcp_incr_quickack(sk);
596                         sk_mem_reclaim(sk);
597                 }
598         }
599         icsk->icsk_ack.lrcvtime = now;
600
601         TCP_ECN_check_ce(tp, skb);
602
603         if (skb->len >= 128)
604                 tcp_grow_window(sk, skb);
605 }
606
607 /* Called to compute a smoothed rtt estimate. The data fed to this
608  * routine either comes from timestamps, or from segments that were
609  * known _not_ to have been retransmitted [see Karn/Partridge
610  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
611  * piece by Van Jacobson.
612  * NOTE: the next three routines used to be one big routine.
613  * To save cycles in the RFC 1323 implementation it was better to break
614  * it up into three procedures. -- erics
615  */
616 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
617 {
618         struct tcp_sock *tp = tcp_sk(sk);
619         long m = mrtt; /* RTT */
620
621         /*      The following amusing code comes from Jacobson's
622          *      article in SIGCOMM '88.  Note that rtt and mdev
623          *      are scaled versions of rtt and mean deviation.
624          *      This is designed to be as fast as possible
625          *      m stands for "measurement".
626          *
627          *      On a 1990 paper the rto value is changed to:
628          *      RTO = rtt + 4 * mdev
629          *
630          * Funny. This algorithm seems to be very broken.
631          * These formulae increase RTO, when it should be decreased, increase
632          * too slowly, when it should be increased quickly, decrease too quickly
633          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
634          * does not matter how to _calculate_ it. Seems, it was trap
635          * that VJ failed to avoid. 8)
636          */
637         if (m == 0)
638                 m = 1;
639         if (tp->srtt != 0) {
640                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
641                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
642                 if (m < 0) {
643                         m = -m;         /* m is now abs(error) */
644                         m -= (tp->mdev >> 2);   /* similar update on mdev */
645                         /* This is similar to one of Eifel findings.
646                          * Eifel blocks mdev updates when rtt decreases.
647                          * This solution is a bit different: we use finer gain
648                          * for mdev in this case (alpha*beta).
649                          * Like Eifel it also prevents growth of rto,
650                          * but also it limits too fast rto decreases,
651                          * happening in pure Eifel.
652                          */
653                         if (m > 0)
654                                 m >>= 3;
655                 } else {
656                         m -= (tp->mdev >> 2);   /* similar update on mdev */
657                 }
658                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
659                 if (tp->mdev > tp->mdev_max) {
660                         tp->mdev_max = tp->mdev;
661                         if (tp->mdev_max > tp->rttvar)
662                                 tp->rttvar = tp->mdev_max;
663                 }
664                 if (after(tp->snd_una, tp->rtt_seq)) {
665                         if (tp->mdev_max < tp->rttvar)
666                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
667                         tp->rtt_seq = tp->snd_nxt;
668                         tp->mdev_max = tcp_rto_min(sk);
669                 }
670         } else {
671                 /* no previous measure. */
672                 tp->srtt = m << 3;      /* take the measured time to be rtt */
673                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
674                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
675                 tp->rtt_seq = tp->snd_nxt;
676         }
677 }
678
679 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
680  * routine referred to above.
681  */
682 static inline void tcp_set_rto(struct sock *sk)
683 {
684         const struct tcp_sock *tp = tcp_sk(sk);
685         /* Old crap is replaced with new one. 8)
686          *
687          * More seriously:
688          * 1. If rtt variance happened to be less 50msec, it is hallucination.
689          *    It cannot be less due to utterly erratic ACK generation made
690          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
691          *    to do with delayed acks, because at cwnd>2 true delack timeout
692          *    is invisible. Actually, Linux-2.4 also generates erratic
693          *    ACKs in some circumstances.
694          */
695         inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
696
697         /* 2. Fixups made earlier cannot be right.
698          *    If we do not estimate RTO correctly without them,
699          *    all the algo is pure shit and should be replaced
700          *    with correct one. It is exactly, which we pretend to do.
701          */
702
703         /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
704          * guarantees that rto is higher.
705          */
706         tcp_bound_rto(sk);
707 }
708
709 /* Save metrics learned by this TCP session.
710    This function is called only, when TCP finishes successfully
711    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
712  */
713 void tcp_update_metrics(struct sock *sk)
714 {
715         struct tcp_sock *tp = tcp_sk(sk);
716         struct dst_entry *dst = __sk_dst_get(sk);
717
718         if (sysctl_tcp_nometrics_save)
719                 return;
720
721         dst_confirm(dst);
722
723         if (dst && (dst->flags & DST_HOST)) {
724                 const struct inet_connection_sock *icsk = inet_csk(sk);
725                 int m;
726                 unsigned long rtt;
727
728                 if (icsk->icsk_backoff || !tp->srtt) {
729                         /* This session failed to estimate rtt. Why?
730                          * Probably, no packets returned in time.
731                          * Reset our results.
732                          */
733                         if (!(dst_metric_locked(dst, RTAX_RTT)))
734                                 dst->metrics[RTAX_RTT - 1] = 0;
735                         return;
736                 }
737
738                 rtt = dst_metric_rtt(dst, RTAX_RTT);
739                 m = rtt - tp->srtt;
740
741                 /* If newly calculated rtt larger than stored one,
742                  * store new one. Otherwise, use EWMA. Remember,
743                  * rtt overestimation is always better than underestimation.
744                  */
745                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
746                         if (m <= 0)
747                                 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
748                         else
749                                 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
750                 }
751
752                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
753                         unsigned long var;
754                         if (m < 0)
755                                 m = -m;
756
757                         /* Scale deviation to rttvar fixed point */
758                         m >>= 1;
759                         if (m < tp->mdev)
760                                 m = tp->mdev;
761
762                         var = dst_metric_rtt(dst, RTAX_RTTVAR);
763                         if (m >= var)
764                                 var = m;
765                         else
766                                 var -= (var - m) >> 2;
767
768                         set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
769                 }
770
771                 if (tcp_in_initial_slowstart(tp)) {
772                         /* Slow start still did not finish. */
773                         if (dst_metric(dst, RTAX_SSTHRESH) &&
774                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
775                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
776                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
777                         if (!dst_metric_locked(dst, RTAX_CWND) &&
778                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
779                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
780                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
781                            icsk->icsk_ca_state == TCP_CA_Open) {
782                         /* Cong. avoidance phase, cwnd is reliable. */
783                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
784                                 dst->metrics[RTAX_SSTHRESH-1] =
785                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
786                         if (!dst_metric_locked(dst, RTAX_CWND))
787                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
788                 } else {
789                         /* Else slow start did not finish, cwnd is non-sense,
790                            ssthresh may be also invalid.
791                          */
792                         if (!dst_metric_locked(dst, RTAX_CWND))
793                                 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
794                         if (dst_metric(dst, RTAX_SSTHRESH) &&
795                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
796                             tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
797                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
798                 }
799
800                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
801                         if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
802                             tp->reordering != sysctl_tcp_reordering)
803                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
804                 }
805         }
806 }
807
808 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
809 {
810         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
811
812         if (!cwnd)
813                 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
814         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
815 }
816
817 /* Set slow start threshold and cwnd not falling to slow start */
818 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
819 {
820         struct tcp_sock *tp = tcp_sk(sk);
821         const struct inet_connection_sock *icsk = inet_csk(sk);
822
823         tp->prior_ssthresh = 0;
824         tp->bytes_acked = 0;
825         if (icsk->icsk_ca_state < TCP_CA_CWR) {
826                 tp->undo_marker = 0;
827                 if (set_ssthresh)
828                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
829                 tp->snd_cwnd = min(tp->snd_cwnd,
830                                    tcp_packets_in_flight(tp) + 1U);
831                 tp->snd_cwnd_cnt = 0;
832                 tp->high_seq = tp->snd_nxt;
833                 tp->snd_cwnd_stamp = tcp_time_stamp;
834                 TCP_ECN_queue_cwr(tp);
835
836                 tcp_set_ca_state(sk, TCP_CA_CWR);
837         }
838 }
839
840 /*
841  * Packet counting of FACK is based on in-order assumptions, therefore TCP
842  * disables it when reordering is detected
843  */
844 static void tcp_disable_fack(struct tcp_sock *tp)
845 {
846         /* RFC3517 uses different metric in lost marker => reset on change */
847         if (tcp_is_fack(tp))
848                 tp->lost_skb_hint = NULL;
849         tp->rx_opt.sack_ok &= ~2;
850 }
851
852 /* Take a notice that peer is sending D-SACKs */
853 static void tcp_dsack_seen(struct tcp_sock *tp)
854 {
855         tp->rx_opt.sack_ok |= 4;
856 }
857
858 /* Initialize metrics on socket. */
859
860 static void tcp_init_metrics(struct sock *sk)
861 {
862         struct tcp_sock *tp = tcp_sk(sk);
863         struct dst_entry *dst = __sk_dst_get(sk);
864
865         if (dst == NULL)
866                 goto reset;
867
868         dst_confirm(dst);
869
870         if (dst_metric_locked(dst, RTAX_CWND))
871                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
872         if (dst_metric(dst, RTAX_SSTHRESH)) {
873                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
874                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
875                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
876         }
877         if (dst_metric(dst, RTAX_REORDERING) &&
878             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
879                 tcp_disable_fack(tp);
880                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
881         }
882
883         if (dst_metric(dst, RTAX_RTT) == 0)
884                 goto reset;
885
886         if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
887                 goto reset;
888
889         /* Initial rtt is determined from SYN,SYN-ACK.
890          * The segment is small and rtt may appear much
891          * less than real one. Use per-dst memory
892          * to make it more realistic.
893          *
894          * A bit of theory. RTT is time passed after "normal" sized packet
895          * is sent until it is ACKed. In normal circumstances sending small
896          * packets force peer to delay ACKs and calculation is correct too.
897          * The algorithm is adaptive and, provided we follow specs, it
898          * NEVER underestimate RTT. BUT! If peer tries to make some clever
899          * tricks sort of "quick acks" for time long enough to decrease RTT
900          * to low value, and then abruptly stops to do it and starts to delay
901          * ACKs, wait for troubles.
902          */
903         if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
904                 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
905                 tp->rtt_seq = tp->snd_nxt;
906         }
907         if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
908                 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
909                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
910         }
911         tcp_set_rto(sk);
912         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
913                 goto reset;
914
915 cwnd:
916         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
917         tp->snd_cwnd_stamp = tcp_time_stamp;
918         return;
919
920 reset:
921         /* Play conservative. If timestamps are not
922          * supported, TCP will fail to recalculate correct
923          * rtt, if initial rto is too small. FORGET ALL AND RESET!
924          */
925         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926                 tp->srtt = 0;
927                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
929         }
930         goto cwnd;
931 }
932
933 static void tcp_update_reordering(struct sock *sk, const int metric,
934                                   const int ts)
935 {
936         struct tcp_sock *tp = tcp_sk(sk);
937         if (metric > tp->reordering) {
938                 int mib_idx;
939
940                 tp->reordering = min(TCP_MAX_REORDERING, metric);
941
942                 /* This exciting event is worth to be remembered. 8) */
943                 if (ts)
944                         mib_idx = LINUX_MIB_TCPTSREORDER;
945                 else if (tcp_is_reno(tp))
946                         mib_idx = LINUX_MIB_TCPRENOREORDER;
947                 else if (tcp_is_fack(tp))
948                         mib_idx = LINUX_MIB_TCPFACKREORDER;
949                 else
950                         mib_idx = LINUX_MIB_TCPSACKREORDER;
951
952                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
953 #if FASTRETRANS_DEBUG > 1
954                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
955                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
956                        tp->reordering,
957                        tp->fackets_out,
958                        tp->sacked_out,
959                        tp->undo_marker ? tp->undo_retrans : 0);
960 #endif
961                 tcp_disable_fack(tp);
962         }
963 }
964
965 /* This must be called before lost_out is incremented */
966 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
967 {
968         if ((tp->retransmit_skb_hint == NULL) ||
969             before(TCP_SKB_CB(skb)->seq,
970                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
971                 tp->retransmit_skb_hint = skb;
972
973         if (!tp->lost_out ||
974             after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
975                 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
976 }
977
978 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
979 {
980         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
981                 tcp_verify_retransmit_hint(tp, skb);
982
983                 tp->lost_out += tcp_skb_pcount(skb);
984                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
985         }
986 }
987
988 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
989                                             struct sk_buff *skb)
990 {
991         tcp_verify_retransmit_hint(tp, skb);
992
993         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
994                 tp->lost_out += tcp_skb_pcount(skb);
995                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
996         }
997 }
998
999 /* This procedure tags the retransmission queue when SACKs arrive.
1000  *
1001  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1002  * Packets in queue with these bits set are counted in variables
1003  * sacked_out, retrans_out and lost_out, correspondingly.
1004  *
1005  * Valid combinations are:
1006  * Tag  InFlight        Description
1007  * 0    1               - orig segment is in flight.
1008  * S    0               - nothing flies, orig reached receiver.
1009  * L    0               - nothing flies, orig lost by net.
1010  * R    2               - both orig and retransmit are in flight.
1011  * L|R  1               - orig is lost, retransmit is in flight.
1012  * S|R  1               - orig reached receiver, retrans is still in flight.
1013  * (L|S|R is logically valid, it could occur when L|R is sacked,
1014  *  but it is equivalent to plain S and code short-curcuits it to S.
1015  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1016  *
1017  * These 6 states form finite state machine, controlled by the following events:
1018  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1019  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1020  * 3. Loss detection event of one of three flavors:
1021  *      A. Scoreboard estimator decided the packet is lost.
1022  *         A'. Reno "three dupacks" marks head of queue lost.
1023  *         A''. Its FACK modfication, head until snd.fack is lost.
1024  *      B. SACK arrives sacking data transmitted after never retransmitted
1025  *         hole was sent out.
1026  *      C. SACK arrives sacking SND.NXT at the moment, when the
1027  *         segment was retransmitted.
1028  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1029  *
1030  * It is pleasant to note, that state diagram turns out to be commutative,
1031  * so that we are allowed not to be bothered by order of our actions,
1032  * when multiple events arrive simultaneously. (see the function below).
1033  *
1034  * Reordering detection.
1035  * --------------------
1036  * Reordering metric is maximal distance, which a packet can be displaced
1037  * in packet stream. With SACKs we can estimate it:
1038  *
1039  * 1. SACK fills old hole and the corresponding segment was not
1040  *    ever retransmitted -> reordering. Alas, we cannot use it
1041  *    when segment was retransmitted.
1042  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1043  *    for retransmitted and already SACKed segment -> reordering..
1044  * Both of these heuristics are not used in Loss state, when we cannot
1045  * account for retransmits accurately.
1046  *
1047  * SACK block validation.
1048  * ----------------------
1049  *
1050  * SACK block range validation checks that the received SACK block fits to
1051  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1052  * Note that SND.UNA is not included to the range though being valid because
1053  * it means that the receiver is rather inconsistent with itself reporting
1054  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1055  * perfectly valid, however, in light of RFC2018 which explicitly states
1056  * that "SACK block MUST reflect the newest segment.  Even if the newest
1057  * segment is going to be discarded ...", not that it looks very clever
1058  * in case of head skb. Due to potentional receiver driven attacks, we
1059  * choose to avoid immediate execution of a walk in write queue due to
1060  * reneging and defer head skb's loss recovery to standard loss recovery
1061  * procedure that will eventually trigger (nothing forbids us doing this).
1062  *
1063  * Implements also blockage to start_seq wrap-around. Problem lies in the
1064  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1065  * there's no guarantee that it will be before snd_nxt (n). The problem
1066  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1067  * wrap (s_w):
1068  *
1069  *         <- outs wnd ->                          <- wrapzone ->
1070  *         u     e      n                         u_w   e_w  s n_w
1071  *         |     |      |                          |     |   |  |
1072  * |<------------+------+----- TCP seqno space --------------+---------->|
1073  * ...-- <2^31 ->|                                           |<--------...
1074  * ...---- >2^31 ------>|                                    |<--------...
1075  *
1076  * Current code wouldn't be vulnerable but it's better still to discard such
1077  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1078  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1079  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1080  * equal to the ideal case (infinite seqno space without wrap caused issues).
1081  *
1082  * With D-SACK the lower bound is extended to cover sequence space below
1083  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1084  * again, D-SACK block must not to go across snd_una (for the same reason as
1085  * for the normal SACK blocks, explained above). But there all simplicity
1086  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1087  * fully below undo_marker they do not affect behavior in anyway and can
1088  * therefore be safely ignored. In rare cases (which are more or less
1089  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1090  * fragmentation and packet reordering past skb's retransmission. To consider
1091  * them correctly, the acceptable range must be extended even more though
1092  * the exact amount is rather hard to quantify. However, tp->max_window can
1093  * be used as an exaggerated estimate.
1094  */
1095 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1096                                   u32 start_seq, u32 end_seq)
1097 {
1098         /* Too far in future, or reversed (interpretation is ambiguous) */
1099         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1100                 return 0;
1101
1102         /* Nasty start_seq wrap-around check (see comments above) */
1103         if (!before(start_seq, tp->snd_nxt))
1104                 return 0;
1105
1106         /* In outstanding window? ...This is valid exit for D-SACKs too.
1107          * start_seq == snd_una is non-sensical (see comments above)
1108          */
1109         if (after(start_seq, tp->snd_una))
1110                 return 1;
1111
1112         if (!is_dsack || !tp->undo_marker)
1113                 return 0;
1114
1115         /* ...Then it's D-SACK, and must reside below snd_una completely */
1116         if (!after(end_seq, tp->snd_una))
1117                 return 0;
1118
1119         if (!before(start_seq, tp->undo_marker))
1120                 return 1;
1121
1122         /* Too old */
1123         if (!after(end_seq, tp->undo_marker))
1124                 return 0;
1125
1126         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1127          *   start_seq < undo_marker and end_seq >= undo_marker.
1128          */
1129         return !before(start_seq, end_seq - tp->max_window);
1130 }
1131
1132 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1133  * Event "C". Later note: FACK people cheated me again 8), we have to account
1134  * for reordering! Ugly, but should help.
1135  *
1136  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1137  * less than what is now known to be received by the other end (derived from
1138  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1139  * retransmitted skbs to avoid some costly processing per ACKs.
1140  */
1141 static void tcp_mark_lost_retrans(struct sock *sk)
1142 {
1143         const struct inet_connection_sock *icsk = inet_csk(sk);
1144         struct tcp_sock *tp = tcp_sk(sk);
1145         struct sk_buff *skb;
1146         int cnt = 0;
1147         u32 new_low_seq = tp->snd_nxt;
1148         u32 received_upto = tcp_highest_sack_seq(tp);
1149
1150         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1151             !after(received_upto, tp->lost_retrans_low) ||
1152             icsk->icsk_ca_state != TCP_CA_Recovery)
1153                 return;
1154
1155         tcp_for_write_queue(skb, sk) {
1156                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1157
1158                 if (skb == tcp_send_head(sk))
1159                         break;
1160                 if (cnt == tp->retrans_out)
1161                         break;
1162                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1163                         continue;
1164
1165                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1166                         continue;
1167
1168                 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1169                  * constraint here (see above) but figuring out that at
1170                  * least tp->reordering SACK blocks reside between ack_seq
1171                  * and received_upto is not easy task to do cheaply with
1172                  * the available datastructures.
1173                  *
1174                  * Whether FACK should check here for tp->reordering segs
1175                  * in-between one could argue for either way (it would be
1176                  * rather simple to implement as we could count fack_count
1177                  * during the walk and do tp->fackets_out - fack_count).
1178                  */
1179                 if (after(received_upto, ack_seq)) {
1180                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1181                         tp->retrans_out -= tcp_skb_pcount(skb);
1182
1183                         tcp_skb_mark_lost_uncond_verify(tp, skb);
1184                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1185                 } else {
1186                         if (before(ack_seq, new_low_seq))
1187                                 new_low_seq = ack_seq;
1188                         cnt += tcp_skb_pcount(skb);
1189                 }
1190         }
1191
1192         if (tp->retrans_out)
1193                 tp->lost_retrans_low = new_low_seq;
1194 }
1195
1196 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1197                            struct tcp_sack_block_wire *sp, int num_sacks,
1198                            u32 prior_snd_una)
1199 {
1200         struct tcp_sock *tp = tcp_sk(sk);
1201         u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1202         u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1203         int dup_sack = 0;
1204
1205         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1206                 dup_sack = 1;
1207                 tcp_dsack_seen(tp);
1208                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1209         } else if (num_sacks > 1) {
1210                 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1211                 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1212
1213                 if (!after(end_seq_0, end_seq_1) &&
1214                     !before(start_seq_0, start_seq_1)) {
1215                         dup_sack = 1;
1216                         tcp_dsack_seen(tp);
1217                         NET_INC_STATS_BH(sock_net(sk),
1218                                         LINUX_MIB_TCPDSACKOFORECV);
1219                 }
1220         }
1221
1222         /* D-SACK for already forgotten data... Do dumb counting. */
1223         if (dup_sack &&
1224             !after(end_seq_0, prior_snd_una) &&
1225             after(end_seq_0, tp->undo_marker))
1226                 tp->undo_retrans--;
1227
1228         return dup_sack;
1229 }
1230
1231 struct tcp_sacktag_state {
1232         int reord;
1233         int fack_count;
1234         int flag;
1235 };
1236
1237 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1238  * the incoming SACK may not exactly match but we can find smaller MSS
1239  * aligned portion of it that matches. Therefore we might need to fragment
1240  * which may fail and creates some hassle (caller must handle error case
1241  * returns).
1242  *
1243  * FIXME: this could be merged to shift decision code
1244  */
1245 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1246                                  u32 start_seq, u32 end_seq)
1247 {
1248         int in_sack, err;
1249         unsigned int pkt_len;
1250         unsigned int mss;
1251
1252         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1253                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1254
1255         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1256             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1257                 mss = tcp_skb_mss(skb);
1258                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1259
1260                 if (!in_sack) {
1261                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1262                         if (pkt_len < mss)
1263                                 pkt_len = mss;
1264                 } else {
1265                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1266                         if (pkt_len < mss)
1267                                 return -EINVAL;
1268                 }
1269
1270                 /* Round if necessary so that SACKs cover only full MSSes
1271                  * and/or the remaining small portion (if present)
1272                  */
1273                 if (pkt_len > mss) {
1274                         unsigned int new_len = (pkt_len / mss) * mss;
1275                         if (!in_sack && new_len < pkt_len) {
1276                                 new_len += mss;
1277                                 if (new_len > skb->len)
1278                                         return 0;
1279                         }
1280                         pkt_len = new_len;
1281                 }
1282                 err = tcp_fragment(sk, skb, pkt_len, mss);
1283                 if (err < 0)
1284                         return err;
1285         }
1286
1287         return in_sack;
1288 }
1289
1290 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1291                           struct tcp_sacktag_state *state,
1292                           int dup_sack, int pcount)
1293 {
1294         struct tcp_sock *tp = tcp_sk(sk);
1295         u8 sacked = TCP_SKB_CB(skb)->sacked;
1296         int fack_count = state->fack_count;
1297
1298         /* Account D-SACK for retransmitted packet. */
1299         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1300                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1301                         tp->undo_retrans--;
1302                 if (sacked & TCPCB_SACKED_ACKED)
1303                         state->reord = min(fack_count, state->reord);
1304         }
1305
1306         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1307         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1308                 return sacked;
1309
1310         if (!(sacked & TCPCB_SACKED_ACKED)) {
1311                 if (sacked & TCPCB_SACKED_RETRANS) {
1312                         /* If the segment is not tagged as lost,
1313                          * we do not clear RETRANS, believing
1314                          * that retransmission is still in flight.
1315                          */
1316                         if (sacked & TCPCB_LOST) {
1317                                 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1318                                 tp->lost_out -= pcount;
1319                                 tp->retrans_out -= pcount;
1320                         }
1321                 } else {
1322                         if (!(sacked & TCPCB_RETRANS)) {
1323                                 /* New sack for not retransmitted frame,
1324                                  * which was in hole. It is reordering.
1325                                  */
1326                                 if (before(TCP_SKB_CB(skb)->seq,
1327                                            tcp_highest_sack_seq(tp)))
1328                                         state->reord = min(fack_count,
1329                                                            state->reord);
1330
1331                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1332                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1333                                         state->flag |= FLAG_ONLY_ORIG_SACKED;
1334                         }
1335
1336                         if (sacked & TCPCB_LOST) {
1337                                 sacked &= ~TCPCB_LOST;
1338                                 tp->lost_out -= pcount;
1339                         }
1340                 }
1341
1342                 sacked |= TCPCB_SACKED_ACKED;
1343                 state->flag |= FLAG_DATA_SACKED;
1344                 tp->sacked_out += pcount;
1345
1346                 fack_count += pcount;
1347
1348                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1349                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1350                     before(TCP_SKB_CB(skb)->seq,
1351                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1352                         tp->lost_cnt_hint += pcount;
1353
1354                 if (fack_count > tp->fackets_out)
1355                         tp->fackets_out = fack_count;
1356         }
1357
1358         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1359          * frames and clear it. undo_retrans is decreased above, L|R frames
1360          * are accounted above as well.
1361          */
1362         if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1363                 sacked &= ~TCPCB_SACKED_RETRANS;
1364                 tp->retrans_out -= pcount;
1365         }
1366
1367         return sacked;
1368 }
1369
1370 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1371                            struct tcp_sacktag_state *state,
1372                            unsigned int pcount, int shifted, int mss,
1373                            int dup_sack)
1374 {
1375         struct tcp_sock *tp = tcp_sk(sk);
1376         struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1377
1378         BUG_ON(!pcount);
1379
1380         /* Tweak before seqno plays */
1381         if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1382             !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1383                 tp->lost_cnt_hint += pcount;
1384
1385         TCP_SKB_CB(prev)->end_seq += shifted;
1386         TCP_SKB_CB(skb)->seq += shifted;
1387
1388         skb_shinfo(prev)->gso_segs += pcount;
1389         BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1390         skb_shinfo(skb)->gso_segs -= pcount;
1391
1392         /* When we're adding to gso_segs == 1, gso_size will be zero,
1393          * in theory this shouldn't be necessary but as long as DSACK
1394          * code can come after this skb later on it's better to keep
1395          * setting gso_size to something.
1396          */
1397         if (!skb_shinfo(prev)->gso_size) {
1398                 skb_shinfo(prev)->gso_size = mss;
1399                 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1400         }
1401
1402         /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1403         if (skb_shinfo(skb)->gso_segs <= 1) {
1404                 skb_shinfo(skb)->gso_size = 0;
1405                 skb_shinfo(skb)->gso_type = 0;
1406         }
1407
1408         /* We discard results */
1409         tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1410
1411         /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1412         TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1413
1414         if (skb->len > 0) {
1415                 BUG_ON(!tcp_skb_pcount(skb));
1416                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1417                 return 0;
1418         }
1419
1420         /* Whole SKB was eaten :-) */
1421
1422         if (skb == tp->retransmit_skb_hint)
1423                 tp->retransmit_skb_hint = prev;
1424         if (skb == tp->scoreboard_skb_hint)
1425                 tp->scoreboard_skb_hint = prev;
1426         if (skb == tp->lost_skb_hint) {
1427                 tp->lost_skb_hint = prev;
1428                 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1429         }
1430
1431         TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1432         if (skb == tcp_highest_sack(sk))
1433                 tcp_advance_highest_sack(sk, skb);
1434
1435         tcp_unlink_write_queue(skb, sk);
1436         sk_wmem_free_skb(sk, skb);
1437
1438         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1439
1440         return 1;
1441 }
1442
1443 /* I wish gso_size would have a bit more sane initialization than
1444  * something-or-zero which complicates things
1445  */
1446 static int tcp_skb_seglen(struct sk_buff *skb)
1447 {
1448         return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1449 }
1450
1451 /* Shifting pages past head area doesn't work */
1452 static int skb_can_shift(struct sk_buff *skb)
1453 {
1454         return !skb_headlen(skb) && skb_is_nonlinear(skb);
1455 }
1456
1457 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1458  * skb.
1459  */
1460 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1461                                           struct tcp_sacktag_state *state,
1462                                           u32 start_seq, u32 end_seq,
1463                                           int dup_sack)
1464 {
1465         struct tcp_sock *tp = tcp_sk(sk);
1466         struct sk_buff *prev;
1467         int mss;
1468         int pcount = 0;
1469         int len;
1470         int in_sack;
1471
1472         if (!sk_can_gso(sk))
1473                 goto fallback;
1474
1475         /* Normally R but no L won't result in plain S */
1476         if (!dup_sack &&
1477             (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1478                 goto fallback;
1479         if (!skb_can_shift(skb))
1480                 goto fallback;
1481         /* This frame is about to be dropped (was ACKed). */
1482         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1483                 goto fallback;
1484
1485         /* Can only happen with delayed DSACK + discard craziness */
1486         if (unlikely(skb == tcp_write_queue_head(sk)))
1487                 goto fallback;
1488         prev = tcp_write_queue_prev(sk, skb);
1489
1490         if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1491                 goto fallback;
1492
1493         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1494                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1495
1496         if (in_sack) {
1497                 len = skb->len;
1498                 pcount = tcp_skb_pcount(skb);
1499                 mss = tcp_skb_seglen(skb);
1500
1501                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1502                  * drop this restriction as unnecessary
1503                  */
1504                 if (mss != tcp_skb_seglen(prev))
1505                         goto fallback;
1506         } else {
1507                 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1508                         goto noop;
1509                 /* CHECKME: This is non-MSS split case only?, this will
1510                  * cause skipped skbs due to advancing loop btw, original
1511                  * has that feature too
1512                  */
1513                 if (tcp_skb_pcount(skb) <= 1)
1514                         goto noop;
1515
1516                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1517                 if (!in_sack) {
1518                         /* TODO: head merge to next could be attempted here
1519                          * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1520                          * though it might not be worth of the additional hassle
1521                          *
1522                          * ...we can probably just fallback to what was done
1523                          * previously. We could try merging non-SACKed ones
1524                          * as well but it probably isn't going to buy off
1525                          * because later SACKs might again split them, and
1526                          * it would make skb timestamp tracking considerably
1527                          * harder problem.
1528                          */
1529                         goto fallback;
1530                 }
1531
1532                 len = end_seq - TCP_SKB_CB(skb)->seq;
1533                 BUG_ON(len < 0);
1534                 BUG_ON(len > skb->len);
1535
1536                 /* MSS boundaries should be honoured or else pcount will
1537                  * severely break even though it makes things bit trickier.
1538                  * Optimize common case to avoid most of the divides
1539                  */
1540                 mss = tcp_skb_mss(skb);
1541
1542                 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1543                  * drop this restriction as unnecessary
1544                  */
1545                 if (mss != tcp_skb_seglen(prev))
1546                         goto fallback;
1547
1548                 if (len == mss) {
1549                         pcount = 1;
1550                 } else if (len < mss) {
1551                         goto noop;
1552                 } else {
1553                         pcount = len / mss;
1554                         len = pcount * mss;
1555                 }
1556         }
1557
1558         if (!skb_shift(prev, skb, len))
1559                 goto fallback;
1560         if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1561                 goto out;
1562
1563         /* Hole filled allows collapsing with the next as well, this is very
1564          * useful when hole on every nth skb pattern happens
1565          */
1566         if (prev == tcp_write_queue_tail(sk))
1567                 goto out;
1568         skb = tcp_write_queue_next(sk, prev);
1569
1570         if (!skb_can_shift(skb) ||
1571             (skb == tcp_send_head(sk)) ||
1572             ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1573             (mss != tcp_skb_seglen(skb)))
1574                 goto out;
1575
1576         len = skb->len;
1577         if (skb_shift(prev, skb, len)) {
1578                 pcount += tcp_skb_pcount(skb);
1579                 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1580         }
1581
1582 out:
1583         state->fack_count += pcount;
1584         return prev;
1585
1586 noop:
1587         return skb;
1588
1589 fallback:
1590         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1591         return NULL;
1592 }
1593
1594 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1595                                         struct tcp_sack_block *next_dup,
1596                                         struct tcp_sacktag_state *state,
1597                                         u32 start_seq, u32 end_seq,
1598                                         int dup_sack_in)
1599 {
1600         struct tcp_sock *tp = tcp_sk(sk);
1601         struct sk_buff *tmp;
1602
1603         tcp_for_write_queue_from(skb, sk) {
1604                 int in_sack = 0;
1605                 int dup_sack = dup_sack_in;
1606
1607                 if (skb == tcp_send_head(sk))
1608                         break;
1609
1610                 /* queue is in-order => we can short-circuit the walk early */
1611                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1612                         break;
1613
1614                 if ((next_dup != NULL) &&
1615                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1616                         in_sack = tcp_match_skb_to_sack(sk, skb,
1617                                                         next_dup->start_seq,
1618                                                         next_dup->end_seq);
1619                         if (in_sack > 0)
1620                                 dup_sack = 1;
1621                 }
1622
1623                 /* skb reference here is a bit tricky to get right, since
1624                  * shifting can eat and free both this skb and the next,
1625                  * so not even _safe variant of the loop is enough.
1626                  */
1627                 if (in_sack <= 0) {
1628                         tmp = tcp_shift_skb_data(sk, skb, state,
1629                                                  start_seq, end_seq, dup_sack);
1630                         if (tmp != NULL) {
1631                                 if (tmp != skb) {
1632                                         skb = tmp;
1633                                         continue;
1634                                 }
1635
1636                                 in_sack = 0;
1637                         } else {
1638                                 in_sack = tcp_match_skb_to_sack(sk, skb,
1639                                                                 start_seq,
1640                                                                 end_seq);
1641                         }
1642                 }
1643
1644                 if (unlikely(in_sack < 0))
1645                         break;
1646
1647                 if (in_sack) {
1648                         TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1649                                                                   state,
1650                                                                   dup_sack,
1651                                                                   tcp_skb_pcount(skb));
1652
1653                         if (!before(TCP_SKB_CB(skb)->seq,
1654                                     tcp_highest_sack_seq(tp)))
1655                                 tcp_advance_highest_sack(sk, skb);
1656                 }
1657
1658                 state->fack_count += tcp_skb_pcount(skb);
1659         }
1660         return skb;
1661 }
1662
1663 /* Avoid all extra work that is being done by sacktag while walking in
1664  * a normal way
1665  */
1666 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1667                                         struct tcp_sacktag_state *state,
1668                                         u32 skip_to_seq)
1669 {
1670         tcp_for_write_queue_from(skb, sk) {
1671                 if (skb == tcp_send_head(sk))
1672                         break;
1673
1674                 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1675                         break;
1676
1677                 state->fack_count += tcp_skb_pcount(skb);
1678         }
1679         return skb;
1680 }
1681
1682 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1683                                                 struct sock *sk,
1684                                                 struct tcp_sack_block *next_dup,
1685                                                 struct tcp_sacktag_state *state,
1686                                                 u32 skip_to_seq)
1687 {
1688         if (next_dup == NULL)
1689                 return skb;
1690
1691         if (before(next_dup->start_seq, skip_to_seq)) {
1692                 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1693                 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1694                                        next_dup->start_seq, next_dup->end_seq,
1695                                        1);
1696         }
1697
1698         return skb;
1699 }
1700
1701 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1702 {
1703         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1704 }
1705
1706 static int
1707 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1708                         u32 prior_snd_una)
1709 {
1710         const struct inet_connection_sock *icsk = inet_csk(sk);
1711         struct tcp_sock *tp = tcp_sk(sk);
1712         unsigned char *ptr = (skb_transport_header(ack_skb) +
1713                               TCP_SKB_CB(ack_skb)->sacked);
1714         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1715         struct tcp_sack_block sp[TCP_NUM_SACKS];
1716         struct tcp_sack_block *cache;
1717         struct tcp_sacktag_state state;
1718         struct sk_buff *skb;
1719         int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1720         int used_sacks;
1721         int found_dup_sack = 0;
1722         int i, j;
1723         int first_sack_index;
1724
1725         state.flag = 0;
1726         state.reord = tp->packets_out;
1727
1728         if (!tp->sacked_out) {
1729                 if (WARN_ON(tp->fackets_out))
1730                         tp->fackets_out = 0;
1731                 tcp_highest_sack_reset(sk);
1732         }
1733
1734         found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1735                                          num_sacks, prior_snd_una);
1736         if (found_dup_sack)
1737                 state.flag |= FLAG_DSACKING_ACK;
1738
1739         /* Eliminate too old ACKs, but take into
1740          * account more or less fresh ones, they can
1741          * contain valid SACK info.
1742          */
1743         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1744                 return 0;
1745
1746         if (!tp->packets_out)
1747                 goto out;
1748
1749         used_sacks = 0;
1750         first_sack_index = 0;
1751         for (i = 0; i < num_sacks; i++) {
1752                 int dup_sack = !i && found_dup_sack;
1753
1754                 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1755                 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1756
1757                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1758                                             sp[used_sacks].start_seq,
1759                                             sp[used_sacks].end_seq)) {
1760                         int mib_idx;
1761
1762                         if (dup_sack) {
1763                                 if (!tp->undo_marker)
1764                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1765                                 else
1766                                         mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1767                         } else {
1768                                 /* Don't count olds caused by ACK reordering */
1769                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1770                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1771                                         continue;
1772                                 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1773                         }
1774
1775                         NET_INC_STATS_BH(sock_net(sk), mib_idx);
1776                         if (i == 0)
1777                                 first_sack_index = -1;
1778                         continue;
1779                 }
1780
1781                 /* Ignore very old stuff early */
1782                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1783                         continue;
1784
1785                 used_sacks++;
1786         }
1787
1788         /* order SACK blocks to allow in order walk of the retrans queue */
1789         for (i = used_sacks - 1; i > 0; i--) {
1790                 for (j = 0; j < i; j++) {
1791                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1792                                 swap(sp[j], sp[j + 1]);
1793
1794                                 /* Track where the first SACK block goes to */
1795                                 if (j == first_sack_index)
1796                                         first_sack_index = j + 1;
1797                         }
1798                 }
1799         }
1800
1801         skb = tcp_write_queue_head(sk);
1802         state.fack_count = 0;
1803         i = 0;
1804
1805         if (!tp->sacked_out) {
1806                 /* It's already past, so skip checking against it */
1807                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1808         } else {
1809                 cache = tp->recv_sack_cache;
1810                 /* Skip empty blocks in at head of the cache */
1811                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1812                        !cache->end_seq)
1813                         cache++;
1814         }
1815
1816         while (i < used_sacks) {
1817                 u32 start_seq = sp[i].start_seq;
1818                 u32 end_seq = sp[i].end_seq;
1819                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1820                 struct tcp_sack_block *next_dup = NULL;
1821
1822                 if (found_dup_sack && ((i + 1) == first_sack_index))
1823                         next_dup = &sp[i + 1];
1824
1825                 /* Event "B" in the comment above. */
1826                 if (after(end_seq, tp->high_seq))
1827                         state.flag |= FLAG_DATA_LOST;
1828
1829                 /* Skip too early cached blocks */
1830                 while (tcp_sack_cache_ok(tp, cache) &&
1831                        !before(start_seq, cache->end_seq))
1832                         cache++;
1833
1834                 /* Can skip some work by looking recv_sack_cache? */
1835                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1836                     after(end_seq, cache->start_seq)) {
1837
1838                         /* Head todo? */
1839                         if (before(start_seq, cache->start_seq)) {
1840                                 skb = tcp_sacktag_skip(skb, sk, &state,
1841                                                        start_seq);
1842                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1843                                                        &state,
1844                                                        start_seq,
1845                                                        cache->start_seq,
1846                                                        dup_sack);
1847                         }
1848
1849                         /* Rest of the block already fully processed? */
1850                         if (!after(end_seq, cache->end_seq))
1851                                 goto advance_sp;
1852
1853                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1854                                                        &state,
1855                                                        cache->end_seq);
1856
1857                         /* ...tail remains todo... */
1858                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1859                                 /* ...but better entrypoint exists! */
1860                                 skb = tcp_highest_sack(sk);
1861                                 if (skb == NULL)
1862                                         break;
1863                                 state.fack_count = tp->fackets_out;
1864                                 cache++;
1865                                 goto walk;
1866                         }
1867
1868                         skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1869                         /* Check overlap against next cached too (past this one already) */
1870                         cache++;
1871                         continue;
1872                 }
1873
1874                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1875                         skb = tcp_highest_sack(sk);
1876                         if (skb == NULL)
1877                                 break;
1878                         state.fack_count = tp->fackets_out;
1879                 }
1880                 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1881
1882 walk:
1883                 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1884                                        start_seq, end_seq, dup_sack);
1885
1886 advance_sp:
1887                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1888                  * due to in-order walk
1889                  */
1890                 if (after(end_seq, tp->frto_highmark))
1891                         state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1892
1893                 i++;
1894         }
1895
1896         /* Clear the head of the cache sack blocks so we can skip it next time */
1897         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1898                 tp->recv_sack_cache[i].start_seq = 0;
1899                 tp->recv_sack_cache[i].end_seq = 0;
1900         }
1901         for (j = 0; j < used_sacks; j++)
1902                 tp->recv_sack_cache[i++] = sp[j];
1903
1904         tcp_mark_lost_retrans(sk);
1905
1906         tcp_verify_left_out(tp);
1907
1908         if ((state.reord < tp->fackets_out) &&
1909             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1910             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1911                 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1912
1913 out:
1914
1915 #if FASTRETRANS_DEBUG > 0
1916         WARN_ON((int)tp->sacked_out < 0);
1917         WARN_ON((int)tp->lost_out < 0);
1918         WARN_ON((int)tp->retrans_out < 0);
1919         WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1920 #endif
1921         return state.flag;
1922 }
1923
1924 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1925  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1926  */
1927 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1928 {
1929         u32 holes;
1930
1931         holes = max(tp->lost_out, 1U);
1932         holes = min(holes, tp->packets_out);
1933
1934         if ((tp->sacked_out + holes) > tp->packets_out) {
1935                 tp->sacked_out = tp->packets_out - holes;
1936                 return 1;
1937         }
1938         return 0;
1939 }
1940
1941 /* If we receive more dupacks than we expected counting segments
1942  * in assumption of absent reordering, interpret this as reordering.
1943  * The only another reason could be bug in receiver TCP.
1944  */
1945 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1946 {
1947         struct tcp_sock *tp = tcp_sk(sk);
1948         if (tcp_limit_reno_sacked(tp))
1949                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1950 }
1951
1952 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1953
1954 static void tcp_add_reno_sack(struct sock *sk)
1955 {
1956         struct tcp_sock *tp = tcp_sk(sk);
1957         tp->sacked_out++;
1958         tcp_check_reno_reordering(sk, 0);
1959         tcp_verify_left_out(tp);
1960 }
1961
1962 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1963
1964 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1965 {
1966         struct tcp_sock *tp = tcp_sk(sk);
1967
1968         if (acked > 0) {
1969                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1970                 if (acked - 1 >= tp->sacked_out)
1971                         tp->sacked_out = 0;
1972                 else
1973                         tp->sacked_out -= acked - 1;
1974         }
1975         tcp_check_reno_reordering(sk, acked);
1976         tcp_verify_left_out(tp);
1977 }
1978
1979 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1980 {
1981         tp->sacked_out = 0;
1982 }
1983
1984 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1985 {
1986         return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1987 }
1988
1989 /* F-RTO can only be used if TCP has never retransmitted anything other than
1990  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1991  */
1992 int tcp_use_frto(struct sock *sk)
1993 {
1994         const struct tcp_sock *tp = tcp_sk(sk);
1995         const struct inet_connection_sock *icsk = inet_csk(sk);
1996         struct sk_buff *skb;
1997
1998         if (!sysctl_tcp_frto)
1999                 return 0;
2000
2001         /* MTU probe and F-RTO won't really play nicely along currently */
2002         if (icsk->icsk_mtup.probe_size)
2003                 return 0;
2004
2005         if (tcp_is_sackfrto(tp))
2006                 return 1;
2007
2008         /* Avoid expensive walking of rexmit queue if possible */
2009         if (tp->retrans_out > 1)
2010                 return 0;
2011
2012         skb = tcp_write_queue_head(sk);
2013         if (tcp_skb_is_last(sk, skb))
2014                 return 1;
2015         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
2016         tcp_for_write_queue_from(skb, sk) {
2017                 if (skb == tcp_send_head(sk))
2018                         break;
2019                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2020                         return 0;
2021                 /* Short-circuit when first non-SACKed skb has been checked */
2022                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2023                         break;
2024         }
2025         return 1;
2026 }
2027
2028 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2029  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2030  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2031  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2032  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2033  * bits are handled if the Loss state is really to be entered (in
2034  * tcp_enter_frto_loss).
2035  *
2036  * Do like tcp_enter_loss() would; when RTO expires the second time it
2037  * does:
2038  *  "Reduce ssthresh if it has not yet been made inside this window."
2039  */
2040 void tcp_enter_frto(struct sock *sk)
2041 {
2042         const struct inet_connection_sock *icsk = inet_csk(sk);
2043         struct tcp_sock *tp = tcp_sk(sk);
2044         struct sk_buff *skb;
2045
2046         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2047             tp->snd_una == tp->high_seq ||
2048             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2049              !icsk->icsk_retransmits)) {
2050                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2051                 /* Our state is too optimistic in ssthresh() call because cwnd
2052                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2053                  * recovery has not yet completed. Pattern would be this: RTO,
2054                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
2055                  * up here twice).
2056                  * RFC4138 should be more specific on what to do, even though
2057                  * RTO is quite unlikely to occur after the first Cumulative ACK
2058                  * due to back-off and complexity of triggering events ...
2059                  */
2060                 if (tp->frto_counter) {
2061                         u32 stored_cwnd;
2062                         stored_cwnd = tp->snd_cwnd;
2063                         tp->snd_cwnd = 2;
2064                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2065                         tp->snd_cwnd = stored_cwnd;
2066                 } else {
2067                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2068                 }
2069                 /* ... in theory, cong.control module could do "any tricks" in
2070                  * ssthresh(), which means that ca_state, lost bits and lost_out
2071                  * counter would have to be faked before the call occurs. We
2072                  * consider that too expensive, unlikely and hacky, so modules
2073                  * using these in ssthresh() must deal these incompatibility
2074                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2075                  */
2076                 tcp_ca_event(sk, CA_EVENT_FRTO);
2077         }
2078
2079         tp->undo_marker = tp->snd_una;
2080         tp->undo_retrans = 0;
2081
2082         skb = tcp_write_queue_head(sk);
2083         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2084                 tp->undo_marker = 0;
2085         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2086                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2087                 tp->retrans_out -= tcp_skb_pcount(skb);
2088         }
2089         tcp_verify_left_out(tp);
2090
2091         /* Too bad if TCP was application limited */
2092         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2093
2094         /* Earlier loss recovery underway (see RFC4138; Appendix B).
2095          * The last condition is necessary at least in tp->frto_counter case.
2096          */
2097         if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2098             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2099             after(tp->high_seq, tp->snd_una)) {
2100                 tp->frto_highmark = tp->high_seq;
2101         } else {
2102                 tp->frto_highmark = tp->snd_nxt;
2103         }
2104         tcp_set_ca_state(sk, TCP_CA_Disorder);
2105         tp->high_seq = tp->snd_nxt;
2106         tp->frto_counter = 1;
2107 }
2108
2109 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2110  * which indicates that we should follow the traditional RTO recovery,
2111  * i.e. mark everything lost and do go-back-N retransmission.
2112  */
2113 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2114 {
2115         struct tcp_sock *tp = tcp_sk(sk);
2116         struct sk_buff *skb;
2117
2118         tp->lost_out = 0;
2119         tp->retrans_out = 0;
2120         if (tcp_is_reno(tp))
2121                 tcp_reset_reno_sack(tp);
2122
2123         tcp_for_write_queue(skb, sk) {
2124                 if (skb == tcp_send_head(sk))
2125                         break;
2126
2127                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2128                 /*
2129                  * Count the retransmission made on RTO correctly (only when
2130                  * waiting for the first ACK and did not get it)...
2131                  */
2132                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2133                         /* For some reason this R-bit might get cleared? */
2134                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2135                                 tp->retrans_out += tcp_skb_pcount(skb);
2136                         /* ...enter this if branch just for the first segment */
2137                         flag |= FLAG_DATA_ACKED;
2138                 } else {
2139                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2140                                 tp->undo_marker = 0;
2141                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2142                 }
2143
2144                 /* Marking forward transmissions that were made after RTO lost
2145                  * can cause unnecessary retransmissions in some scenarios,
2146                  * SACK blocks will mitigate that in some but not in all cases.
2147                  * We used to not mark them but it was causing break-ups with
2148                  * receivers that do only in-order receival.
2149                  *
2150                  * TODO: we could detect presence of such receiver and select
2151                  * different behavior per flow.
2152                  */
2153                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2154                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2155                         tp->lost_out += tcp_skb_pcount(skb);
2156                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2157                 }
2158         }
2159         tcp_verify_left_out(tp);
2160
2161         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2162         tp->snd_cwnd_cnt = 0;
2163         tp->snd_cwnd_stamp = tcp_time_stamp;
2164         tp->frto_counter = 0;
2165         tp->bytes_acked = 0;
2166
2167         tp->reordering = min_t(unsigned int, tp->reordering,
2168                                sysctl_tcp_reordering);
2169         tcp_set_ca_state(sk, TCP_CA_Loss);
2170         tp->high_seq = tp->snd_nxt;
2171         TCP_ECN_queue_cwr(tp);
2172
2173         tcp_clear_all_retrans_hints(tp);
2174 }
2175
2176 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2177 {
2178         tp->retrans_out = 0;
2179         tp->lost_out = 0;
2180
2181         tp->undo_marker = 0;
2182         tp->undo_retrans = 0;
2183 }
2184
2185 void tcp_clear_retrans(struct tcp_sock *tp)
2186 {
2187         tcp_clear_retrans_partial(tp);
2188
2189         tp->fackets_out = 0;
2190         tp->sacked_out = 0;
2191 }
2192
2193 /* Enter Loss state. If "how" is not zero, forget all SACK information
2194  * and reset tags completely, otherwise preserve SACKs. If receiver
2195  * dropped its ofo queue, we will know this due to reneging detection.
2196  */
2197 void tcp_enter_loss(struct sock *sk, int how)
2198 {
2199         const struct inet_connection_sock *icsk = inet_csk(sk);
2200         struct tcp_sock *tp = tcp_sk(sk);
2201         struct sk_buff *skb;
2202
2203         /* Reduce ssthresh if it has not yet been made inside this window. */
2204         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2205             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2206                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2207                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2208                 tcp_ca_event(sk, CA_EVENT_LOSS);
2209         }
2210         tp->snd_cwnd       = 1;
2211         tp->snd_cwnd_cnt   = 0;
2212         tp->snd_cwnd_stamp = tcp_time_stamp;
2213
2214         tp->bytes_acked = 0;
2215         tcp_clear_retrans_partial(tp);
2216
2217         if (tcp_is_reno(tp))
2218                 tcp_reset_reno_sack(tp);
2219
2220         if (!how) {
2221                 /* Push undo marker, if it was plain RTO and nothing
2222                  * was retransmitted. */
2223                 tp->undo_marker = tp->snd_una;
2224         } else {
2225                 tp->sacked_out = 0;
2226                 tp->fackets_out = 0;
2227         }
2228         tcp_clear_all_retrans_hints(tp);
2229
2230         tcp_for_write_queue(skb, sk) {
2231                 if (skb == tcp_send_head(sk))
2232                         break;
2233
2234                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2235                         tp->undo_marker = 0;
2236                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2237                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2238                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2239                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2240                         tp->lost_out += tcp_skb_pcount(skb);
2241                         tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2242                 }
2243         }
2244         tcp_verify_left_out(tp);
2245
2246         tp->reordering = min_t(unsigned int, tp->reordering,
2247                                sysctl_tcp_reordering);
2248         tcp_set_ca_state(sk, TCP_CA_Loss);
2249         tp->high_seq = tp->snd_nxt;
2250         TCP_ECN_queue_cwr(tp);
2251         /* Abort F-RTO algorithm if one is in progress */
2252         tp->frto_counter = 0;
2253 }
2254
2255 /* If ACK arrived pointing to a remembered SACK, it means that our
2256  * remembered SACKs do not reflect real state of receiver i.e.
2257  * receiver _host_ is heavily congested (or buggy).
2258  *
2259  * Do processing similar to RTO timeout.
2260  */
2261 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2262 {
2263         if (flag & FLAG_SACK_RENEGING) {
2264                 struct inet_connection_sock *icsk = inet_csk(sk);
2265                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2266
2267                 tcp_enter_loss(sk, 1);
2268                 icsk->icsk_retransmits++;
2269                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2270                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2271                                           icsk->icsk_rto, TCP_RTO_MAX);
2272                 return 1;
2273         }
2274         return 0;
2275 }
2276
2277 static inline int tcp_fackets_out(struct tcp_sock *tp)
2278 {
2279         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2280 }
2281
2282 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2283  * counter when SACK is enabled (without SACK, sacked_out is used for
2284  * that purpose).
2285  *
2286  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2287  * segments up to the highest received SACK block so far and holes in
2288  * between them.
2289  *
2290  * With reordering, holes may still be in flight, so RFC3517 recovery
2291  * uses pure sacked_out (total number of SACKed segments) even though
2292  * it violates the RFC that uses duplicate ACKs, often these are equal
2293  * but when e.g. out-of-window ACKs or packet duplication occurs,
2294  * they differ. Since neither occurs due to loss, TCP should really
2295  * ignore them.
2296  */
2297 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2298 {
2299         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2300 }
2301
2302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2303 {
2304         return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2305 }
2306
2307 static inline int tcp_head_timedout(struct sock *sk)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310
2311         return tp->packets_out &&
2312                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2313 }
2314
2315 /* Linux NewReno/SACK/FACK/ECN state machine.
2316  * --------------------------------------
2317  *
2318  * "Open"       Normal state, no dubious events, fast path.
2319  * "Disorder"   In all the respects it is "Open",
2320  *              but requires a bit more attention. It is entered when
2321  *              we see some SACKs or dupacks. It is split of "Open"
2322  *              mainly to move some processing from fast path to slow one.
2323  * "CWR"        CWND was reduced due to some Congestion Notification event.
2324  *              It can be ECN, ICMP source quench, local device congestion.
2325  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2326  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2327  *
2328  * tcp_fastretrans_alert() is entered:
2329  * - each incoming ACK, if state is not "Open"
2330  * - when arrived ACK is unusual, namely:
2331  *      * SACK
2332  *      * Duplicate ACK.
2333  *      * ECN ECE.
2334  *
2335  * Counting packets in flight is pretty simple.
2336  *
2337  *      in_flight = packets_out - left_out + retrans_out
2338  *
2339  *      packets_out is SND.NXT-SND.UNA counted in packets.
2340  *
2341  *      retrans_out is number of retransmitted segments.
2342  *
2343  *      left_out is number of segments left network, but not ACKed yet.
2344  *
2345  *              left_out = sacked_out + lost_out
2346  *
2347  *     sacked_out: Packets, which arrived to receiver out of order
2348  *                 and hence not ACKed. With SACKs this number is simply
2349  *                 amount of SACKed data. Even without SACKs
2350  *                 it is easy to give pretty reliable estimate of this number,
2351  *                 counting duplicate ACKs.
2352  *
2353  *       lost_out: Packets lost by network. TCP has no explicit
2354  *                 "loss notification" feedback from network (for now).
2355  *                 It means that this number can be only _guessed_.
2356  *                 Actually, it is the heuristics to predict lossage that
2357  *                 distinguishes different algorithms.
2358  *
2359  *      F.e. after RTO, when all the queue is considered as lost,
2360  *      lost_out = packets_out and in_flight = retrans_out.
2361  *
2362  *              Essentially, we have now two algorithms counting
2363  *              lost packets.
2364  *
2365  *              FACK: It is the simplest heuristics. As soon as we decided
2366  *              that something is lost, we decide that _all_ not SACKed
2367  *              packets until the most forward SACK are lost. I.e.
2368  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2369  *              It is absolutely correct estimate, if network does not reorder
2370  *              packets. And it loses any connection to reality when reordering
2371  *              takes place. We use FACK by default until reordering
2372  *              is suspected on the path to this destination.
2373  *
2374  *              NewReno: when Recovery is entered, we assume that one segment
2375  *              is lost (classic Reno). While we are in Recovery and
2376  *              a partial ACK arrives, we assume that one more packet
2377  *              is lost (NewReno). This heuristics are the same in NewReno
2378  *              and SACK.
2379  *
2380  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2381  *  deflation etc. CWND is real congestion window, never inflated, changes
2382  *  only according to classic VJ rules.
2383  *
2384  * Really tricky (and requiring careful tuning) part of algorithm
2385  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2386  * The first determines the moment _when_ we should reduce CWND and,
2387  * hence, slow down forward transmission. In fact, it determines the moment
2388  * when we decide that hole is caused by loss, rather than by a reorder.
2389  *
2390  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2391  * holes, caused by lost packets.
2392  *
2393  * And the most logically complicated part of algorithm is undo
2394  * heuristics. We detect false retransmits due to both too early
2395  * fast retransmit (reordering) and underestimated RTO, analyzing
2396  * timestamps and D-SACKs. When we detect that some segments were
2397  * retransmitted by mistake and CWND reduction was wrong, we undo
2398  * window reduction and abort recovery phase. This logic is hidden
2399  * inside several functions named tcp_try_undo_<something>.
2400  */
2401
2402 /* This function decides, when we should leave Disordered state
2403  * and enter Recovery phase, reducing congestion window.
2404  *
2405  * Main question: may we further continue forward transmission
2406  * with the same cwnd?
2407  */
2408 static int tcp_time_to_recover(struct sock *sk)
2409 {
2410         struct tcp_sock *tp = tcp_sk(sk);
2411         __u32 packets_out;
2412
2413         /* Do not perform any recovery during F-RTO algorithm */
2414         if (tp->frto_counter)
2415                 return 0;
2416
2417         /* Trick#1: The loss is proven. */
2418         if (tp->lost_out)
2419                 return 1;
2420
2421         /* Not-A-Trick#2 : Classic rule... */
2422         if (tcp_dupack_heuristics(tp) > tp->reordering)
2423                 return 1;
2424
2425         /* Trick#3 : when we use RFC2988 timer restart, fast
2426          * retransmit can be triggered by timeout of queue head.
2427          */
2428         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2429                 return 1;
2430
2431         /* Trick#4: It is still not OK... But will it be useful to delay
2432          * recovery more?
2433          */
2434         packets_out = tp->packets_out;
2435         if (packets_out <= tp->reordering &&
2436             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2437             !tcp_may_send_now(sk)) {
2438                 /* We have nothing to send. This connection is limited
2439                  * either by receiver window or by application.
2440                  */
2441                 return 1;
2442         }
2443
2444         /* If a thin stream is detected, retransmit after first
2445          * received dupack. Employ only if SACK is supported in order
2446          * to avoid possible corner-case series of spurious retransmissions
2447          * Use only if there are no unsent data.
2448          */
2449         if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2450             tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2451             tcp_is_sack(tp) && !tcp_send_head(sk))
2452                 return 1;
2453
2454         return 0;
2455 }
2456
2457 /* New heuristics: it is possible only after we switched to restart timer
2458  * each time when something is ACKed. Hence, we can detect timed out packets
2459  * during fast retransmit without falling to slow start.
2460  *
2461  * Usefulness of this as is very questionable, since we should know which of
2462  * the segments is the next to timeout which is relatively expensive to find
2463  * in general case unless we add some data structure just for that. The
2464  * current approach certainly won't find the right one too often and when it
2465  * finally does find _something_ it usually marks large part of the window
2466  * right away (because a retransmission with a larger timestamp blocks the
2467  * loop from advancing). -ij
2468  */
2469 static void tcp_timeout_skbs(struct sock *sk)
2470 {
2471         struct tcp_sock *tp = tcp_sk(sk);
2472         struct sk_buff *skb;
2473
2474         if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2475                 return;
2476
2477         skb = tp->scoreboard_skb_hint;
2478         if (tp->scoreboard_skb_hint == NULL)
2479                 skb = tcp_write_queue_head(sk);
2480
2481         tcp_for_write_queue_from(skb, sk) {
2482                 if (skb == tcp_send_head(sk))
2483                         break;
2484                 if (!tcp_skb_timedout(sk, skb))
2485                         break;
2486
2487                 tcp_skb_mark_lost(tp, skb);
2488         }
2489
2490         tp->scoreboard_skb_hint = skb;
2491
2492         tcp_verify_left_out(tp);
2493 }
2494
2495 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2496  * is against sacked "cnt", otherwise it's against facked "cnt"
2497  */
2498 static void tcp_mark_head_lost(struct sock *sk, int packets)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         struct sk_buff *skb;
2502         int cnt, oldcnt;
2503         int err;
2504         unsigned int mss;
2505
2506         if (packets == 0)
2507                 return;
2508
2509         WARN_ON(packets > tp->packets_out);
2510         if (tp->lost_skb_hint) {
2511                 skb = tp->lost_skb_hint;
2512                 cnt = tp->lost_cnt_hint;
2513         } else {
2514                 skb = tcp_write_queue_head(sk);
2515                 cnt = 0;
2516         }
2517
2518         tcp_for_write_queue_from(skb, sk) {
2519                 if (skb == tcp_send_head(sk))
2520                         break;
2521                 /* TODO: do this better */
2522                 /* this is not the most efficient way to do this... */
2523                 tp->lost_skb_hint = skb;
2524                 tp->lost_cnt_hint = cnt;
2525
2526                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2527                         break;
2528
2529                 oldcnt = cnt;
2530                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2531                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2532                         cnt += tcp_skb_pcount(skb);
2533
2534                 if (cnt > packets) {
2535                         if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2536                             (oldcnt >= packets))
2537                                 break;
2538
2539                         mss = skb_shinfo(skb)->gso_size;
2540                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2541                         if (err < 0)
2542                                 break;
2543                         cnt = packets;
2544                 }
2545
2546                 tcp_skb_mark_lost(tp, skb);
2547         }
2548         tcp_verify_left_out(tp);
2549 }
2550
2551 /* Account newly detected lost packet(s) */
2552
2553 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2554 {
2555         struct tcp_sock *tp = tcp_sk(sk);
2556
2557         if (tcp_is_reno(tp)) {
2558                 tcp_mark_head_lost(sk, 1);
2559         } else if (tcp_is_fack(tp)) {
2560                 int lost = tp->fackets_out - tp->reordering;
2561                 if (lost <= 0)
2562                         lost = 1;
2563                 tcp_mark_head_lost(sk, lost);
2564         } else {
2565                 int sacked_upto = tp->sacked_out - tp->reordering;
2566                 if (sacked_upto < fast_rexmit)
2567                         sacked_upto = fast_rexmit;
2568                 tcp_mark_head_lost(sk, sacked_upto);
2569         }
2570
2571         tcp_timeout_skbs(sk);
2572 }
2573
2574 /* CWND moderation, preventing bursts due to too big ACKs
2575  * in dubious situations.
2576  */
2577 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2578 {
2579         tp->snd_cwnd = min(tp->snd_cwnd,
2580                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2581         tp->snd_cwnd_stamp = tcp_time_stamp;
2582 }
2583
2584 /* Lower bound on congestion window is slow start threshold
2585  * unless congestion avoidance choice decides to overide it.
2586  */
2587 static inline u32 tcp_cwnd_min(const struct sock *sk)
2588 {
2589         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2590
2591         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2592 }
2593
2594 /* Decrease cwnd each second ack. */
2595 static void tcp_cwnd_down(struct sock *sk, int flag)
2596 {
2597         struct tcp_sock *tp = tcp_sk(sk);
2598         int decr = tp->snd_cwnd_cnt + 1;
2599
2600         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2601             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2602                 tp->snd_cwnd_cnt = decr & 1;
2603                 decr >>= 1;
2604
2605                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2606                         tp->snd_cwnd -= decr;
2607
2608                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2609                 tp->snd_cwnd_stamp = tcp_time_stamp;
2610         }
2611 }
2612
2613 /* Nothing was retransmitted or returned timestamp is less
2614  * than timestamp of the first retransmission.
2615  */
2616 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2617 {
2618         return !tp->retrans_stamp ||
2619                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2620                  before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2621 }
2622
2623 /* Undo procedures. */
2624
2625 #if FASTRETRANS_DEBUG > 1
2626 static void DBGUNDO(struct sock *sk, const char *msg)
2627 {
2628         struct tcp_sock *tp = tcp_sk(sk);
2629         struct inet_sock *inet = inet_sk(sk);
2630
2631         if (sk->sk_family == AF_INET) {
2632                 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2633                        msg,
2634                        &inet->inet_daddr, ntohs(inet->inet_dport),
2635                        tp->snd_cwnd, tcp_left_out(tp),
2636                        tp->snd_ssthresh, tp->prior_ssthresh,
2637                        tp->packets_out);
2638         }
2639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2640         else if (sk->sk_family == AF_INET6) {
2641                 struct ipv6_pinfo *np = inet6_sk(sk);
2642                 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2643                        msg,
2644                        &np->daddr, ntohs(inet->inet_dport),
2645                        tp->snd_cwnd, tcp_left_out(tp),
2646                        tp->snd_ssthresh, tp->prior_ssthresh,
2647                        tp->packets_out);
2648         }
2649 #endif
2650 }
2651 #else
2652 #define DBGUNDO(x...) do { } while (0)
2653 #endif
2654
2655 static void tcp_undo_cwr(struct sock *sk, const int undo)
2656 {
2657         struct tcp_sock *tp = tcp_sk(sk);
2658
2659         if (tp->prior_ssthresh) {
2660                 const struct inet_connection_sock *icsk = inet_csk(sk);
2661
2662                 if (icsk->icsk_ca_ops->undo_cwnd)
2663                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2664                 else
2665                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2666
2667                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2668                         tp->snd_ssthresh = tp->prior_ssthresh;
2669                         TCP_ECN_withdraw_cwr(tp);
2670                 }
2671         } else {
2672                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2673         }
2674         tcp_moderate_cwnd(tp);
2675         tp->snd_cwnd_stamp = tcp_time_stamp;
2676 }
2677
2678 static inline int tcp_may_undo(struct tcp_sock *tp)
2679 {
2680         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2681 }
2682
2683 /* People celebrate: "We love our President!" */
2684 static int tcp_try_undo_recovery(struct sock *sk)
2685 {
2686         struct tcp_sock *tp = tcp_sk(sk);
2687
2688         if (tcp_may_undo(tp)) {
2689                 int mib_idx;
2690
2691                 /* Happy end! We did not retransmit anything
2692                  * or our original transmission succeeded.
2693                  */
2694                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2695                 tcp_undo_cwr(sk, 1);
2696                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2697                         mib_idx = LINUX_MIB_TCPLOSSUNDO;
2698                 else
2699                         mib_idx = LINUX_MIB_TCPFULLUNDO;
2700
2701                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2702                 tp->undo_marker = 0;
2703         }
2704         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2705                 /* Hold old state until something *above* high_seq
2706                  * is ACKed. For Reno it is MUST to prevent false
2707                  * fast retransmits (RFC2582). SACK TCP is safe. */
2708                 tcp_moderate_cwnd(tp);
2709                 return 1;
2710         }
2711         tcp_set_ca_state(sk, TCP_CA_Open);
2712         return 0;
2713 }
2714
2715 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2716 static void tcp_try_undo_dsack(struct sock *sk)
2717 {
2718         struct tcp_sock *tp = tcp_sk(sk);
2719
2720         if (tp->undo_marker && !tp->undo_retrans) {
2721                 DBGUNDO(sk, "D-SACK");
2722                 tcp_undo_cwr(sk, 1);
2723                 tp->undo_marker = 0;
2724                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2725         }
2726 }
2727
2728 /* We can clear retrans_stamp when there are no retransmissions in the
2729  * window. It would seem that it is trivially available for us in
2730  * tp->retrans_out, however, that kind of assumptions doesn't consider
2731  * what will happen if errors occur when sending retransmission for the
2732  * second time. ...It could the that such segment has only
2733  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2734  * the head skb is enough except for some reneging corner cases that
2735  * are not worth the effort.
2736  *
2737  * Main reason for all this complexity is the fact that connection dying
2738  * time now depends on the validity of the retrans_stamp, in particular,
2739  * that successive retransmissions of a segment must not advance
2740  * retrans_stamp under any conditions.
2741  */
2742 static int tcp_any_retrans_done(struct sock *sk)
2743 {
2744         struct tcp_sock *tp = tcp_sk(sk);
2745         struct sk_buff *skb;
2746
2747         if (tp->retrans_out)
2748                 return 1;
2749
2750         skb = tcp_write_queue_head(sk);
2751         if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2752                 return 1;
2753
2754         return 0;
2755 }
2756
2757 /* Undo during fast recovery after partial ACK. */
2758
2759 static int tcp_try_undo_partial(struct sock *sk, int acked)
2760 {
2761         struct tcp_sock *tp = tcp_sk(sk);
2762         /* Partial ACK arrived. Force Hoe's retransmit. */
2763         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2764
2765         if (tcp_may_undo(tp)) {
2766                 /* Plain luck! Hole if filled with delayed
2767                  * packet, rather than with a retransmit.
2768                  */
2769                 if (!tcp_any_retrans_done(sk))
2770                         tp->retrans_stamp = 0;
2771
2772                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2773
2774                 DBGUNDO(sk, "Hoe");
2775                 tcp_undo_cwr(sk, 0);
2776                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2777
2778                 /* So... Do not make Hoe's retransmit yet.
2779                  * If the first packet was delayed, the rest
2780                  * ones are most probably delayed as well.
2781                  */
2782                 failed = 0;
2783         }
2784         return failed;
2785 }
2786
2787 /* Undo during loss recovery after partial ACK. */
2788 static int tcp_try_undo_loss(struct sock *sk)
2789 {
2790         struct tcp_sock *tp = tcp_sk(sk);
2791
2792         if (tcp_may_undo(tp)) {
2793                 struct sk_buff *skb;
2794                 tcp_for_write_queue(skb, sk) {
2795                         if (skb == tcp_send_head(sk))
2796                                 break;
2797                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2798                 }
2799
2800                 tcp_clear_all_retrans_hints(tp);
2801
2802                 DBGUNDO(sk, "partial loss");
2803                 tp->lost_out = 0;
2804                 tcp_undo_cwr(sk, 1);
2805                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2806                 inet_csk(sk)->icsk_retransmits = 0;
2807                 tp->undo_marker = 0;
2808                 if (tcp_is_sack(tp))
2809                         tcp_set_ca_state(sk, TCP_CA_Open);
2810                 return 1;
2811         }
2812         return 0;
2813 }
2814
2815 static inline void tcp_complete_cwr(struct sock *sk)
2816 {
2817         struct tcp_sock *tp = tcp_sk(sk);
2818         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2819         tp->snd_cwnd_stamp = tcp_time_stamp;
2820         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2821 }
2822
2823 static void tcp_try_keep_open(struct sock *sk)
2824 {
2825         struct tcp_sock *tp = tcp_sk(sk);
2826         int state = TCP_CA_Open;
2827
2828         if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2829                 state = TCP_CA_Disorder;
2830
2831         if (inet_csk(sk)->icsk_ca_state != state) {
2832                 tcp_set_ca_state(sk, state);
2833                 tp->high_seq = tp->snd_nxt;
2834         }
2835 }
2836
2837 static void tcp_try_to_open(struct sock *sk, int flag)
2838 {
2839         struct tcp_sock *tp = tcp_sk(sk);
2840
2841         tcp_verify_left_out(tp);
2842
2843         if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2844                 tp->retrans_stamp = 0;
2845
2846         if (flag & FLAG_ECE)
2847                 tcp_enter_cwr(sk, 1);
2848
2849         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2850                 tcp_try_keep_open(sk);
2851                 tcp_moderate_cwnd(tp);
2852         } else {
2853                 tcp_cwnd_down(sk, flag);
2854         }
2855 }
2856
2857 static void tcp_mtup_probe_failed(struct sock *sk)
2858 {
2859         struct inet_connection_sock *icsk = inet_csk(sk);
2860
2861         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2862         icsk->icsk_mtup.probe_size = 0;
2863 }
2864
2865 static void tcp_mtup_probe_success(struct sock *sk)
2866 {
2867         struct tcp_sock *tp = tcp_sk(sk);
2868         struct inet_connection_sock *icsk = inet_csk(sk);
2869
2870         /* FIXME: breaks with very large cwnd */
2871         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2872         tp->snd_cwnd = tp->snd_cwnd *
2873                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2874                        icsk->icsk_mtup.probe_size;
2875         tp->snd_cwnd_cnt = 0;
2876         tp->snd_cwnd_stamp = tcp_time_stamp;
2877         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2878
2879         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2880         icsk->icsk_mtup.probe_size = 0;
2881         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2882 }
2883
2884 /* Do a simple retransmit without using the backoff mechanisms in
2885  * tcp_timer. This is used for path mtu discovery.
2886  * The socket is already locked here.
2887  */
2888 void tcp_simple_retransmit(struct sock *sk)
2889 {
2890         const struct inet_connection_sock *icsk = inet_csk(sk);
2891         struct tcp_sock *tp = tcp_sk(sk);
2892         struct sk_buff *skb;
2893         unsigned int mss = tcp_current_mss(sk);
2894         u32 prior_lost = tp->lost_out;
2895
2896         tcp_for_write_queue(skb, sk) {
2897                 if (skb == tcp_send_head(sk))
2898                         break;
2899                 if (tcp_skb_seglen(skb) > mss &&
2900                     !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2901                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2902                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2903                                 tp->retrans_out -= tcp_skb_pcount(skb);
2904                         }
2905                         tcp_skb_mark_lost_uncond_verify(tp, skb);
2906                 }
2907         }
2908
2909         tcp_clear_retrans_hints_partial(tp);
2910
2911         if (prior_lost == tp->lost_out)
2912                 return;
2913
2914         if (tcp_is_reno(tp))
2915                 tcp_limit_reno_sacked(tp);
2916
2917         tcp_verify_left_out(tp);
2918
2919         /* Don't muck with the congestion window here.
2920          * Reason is that we do not increase amount of _data_
2921          * in network, but units changed and effective
2922          * cwnd/ssthresh really reduced now.
2923          */
2924         if (icsk->icsk_ca_state != TCP_CA_Loss) {
2925                 tp->high_seq = tp->snd_nxt;
2926                 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2927                 tp->prior_ssthresh = 0;
2928                 tp->undo_marker = 0;
2929                 tcp_set_ca_state(sk, TCP_CA_Loss);
2930         }
2931         tcp_xmit_retransmit_queue(sk);
2932 }
2933 EXPORT_SYMBOL(tcp_simple_retransmit);
2934
2935 /* Process an event, which can update packets-in-flight not trivially.
2936  * Main goal of this function is to calculate new estimate for left_out,
2937  * taking into account both packets sitting in receiver's buffer and
2938  * packets lost by network.
2939  *
2940  * Besides that it does CWND reduction, when packet loss is detected
2941  * and changes state of machine.
2942  *
2943  * It does _not_ decide what to send, it is made in function
2944  * tcp_xmit_retransmit_queue().
2945  */
2946 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2947 {
2948         struct inet_connection_sock *icsk = inet_csk(sk);
2949         struct tcp_sock *tp = tcp_sk(sk);
2950         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2951         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2952                                     (tcp_fackets_out(tp) > tp->reordering));
2953         int fast_rexmit = 0, mib_idx;
2954
2955         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2956                 tp->sacked_out = 0;
2957         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2958                 tp->fackets_out = 0;
2959
2960         /* Now state machine starts.
2961          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2962         if (flag & FLAG_ECE)
2963                 tp->prior_ssthresh = 0;
2964
2965         /* B. In all the states check for reneging SACKs. */
2966         if (tcp_check_sack_reneging(sk, flag))
2967                 return;
2968
2969         /* C. Process data loss notification, provided it is valid. */
2970         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2971             before(tp->snd_una, tp->high_seq) &&
2972             icsk->icsk_ca_state != TCP_CA_Open &&
2973             tp->fackets_out > tp->reordering) {
2974                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2975                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2976         }
2977
2978         /* D. Check consistency of the current state. */
2979         tcp_verify_left_out(tp);
2980
2981         /* E. Check state exit conditions. State can be terminated
2982          *    when high_seq is ACKed. */
2983         if (icsk->icsk_ca_state == TCP_CA_Open) {
2984                 WARN_ON(tp->retrans_out != 0);
2985                 tp->retrans_stamp = 0;
2986         } else if (!before(tp->snd_una, tp->high_seq)) {
2987                 switch (icsk->icsk_ca_state) {
2988                 case TCP_CA_Loss:
2989                         icsk->icsk_retransmits = 0;
2990                         if (tcp_try_undo_recovery(sk))
2991                                 return;
2992                         break;
2993
2994                 case TCP_CA_CWR:
2995                         /* CWR is to be held something *above* high_seq
2996                          * is ACKed for CWR bit to reach receiver. */
2997                         if (tp->snd_una != tp->high_seq) {
2998                                 tcp_complete_cwr(sk);
2999                                 tcp_set_ca_state(sk, TCP_CA_Open);
3000                         }
3001                         break;
3002
3003                 case TCP_CA_Disorder:
3004                         tcp_try_undo_dsack(sk);
3005                         if (!tp->undo_marker ||
3006                             /* For SACK case do not Open to allow to undo
3007                              * catching for all duplicate ACKs. */
3008                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3009                                 tp->undo_marker = 0;
3010                                 tcp_set_ca_state(sk, TCP_CA_Open);
3011                         }
3012                         break;
3013
3014                 case TCP_CA_Recovery:
3015                         if (tcp_is_reno(tp))
3016                                 tcp_reset_reno_sack(tp);
3017                         if (tcp_try_undo_recovery(sk))
3018                                 return;
3019                         tcp_complete_cwr(sk);
3020                         break;
3021                 }
3022         }
3023
3024         /* F. Process state. */
3025         switch (icsk->icsk_ca_state) {
3026         case TCP_CA_Recovery:
3027                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3028                         if (tcp_is_reno(tp) && is_dupack)
3029                                 tcp_add_reno_sack(sk);
3030                 } else
3031                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
3032                 break;
3033         case TCP_CA_Loss:
3034                 if (flag & FLAG_DATA_ACKED)
3035                         icsk->icsk_retransmits = 0;
3036                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3037                         tcp_reset_reno_sack(tp);
3038                 if (!tcp_try_undo_loss(sk)) {
3039                         tcp_moderate_cwnd(tp);
3040                         tcp_xmit_retransmit_queue(sk);
3041                         return;
3042                 }
3043                 if (icsk->icsk_ca_state != TCP_CA_Open)
3044                         return;
3045                 /* Loss is undone; fall through to processing in Open state. */
3046         default:
3047                 if (tcp_is_reno(tp)) {
3048                         if (flag & FLAG_SND_UNA_ADVANCED)
3049                                 tcp_reset_reno_sack(tp);
3050                         if (is_dupack)
3051                                 tcp_add_reno_sack(sk);
3052                 }
3053
3054                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3055                         tcp_try_undo_dsack(sk);
3056
3057                 if (!tcp_time_to_recover(sk)) {
3058                         tcp_try_to_open(sk, flag);
3059                         return;
3060                 }
3061
3062                 /* MTU probe failure: don't reduce cwnd */
3063                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3064                     icsk->icsk_mtup.probe_size &&
3065                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
3066                         tcp_mtup_probe_failed(sk);
3067                         /* Restores the reduction we did in tcp_mtup_probe() */
3068                         tp->snd_cwnd++;
3069                         tcp_simple_retransmit(sk);
3070                         return;
3071                 }
3072
3073                 /* Otherwise enter Recovery state */
3074
3075                 if (tcp_is_reno(tp))
3076                         mib_idx = LINUX_MIB_TCPRENORECOVERY;
3077                 else
3078                         mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3079
3080                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3081
3082                 tp->high_seq = tp->snd_nxt;
3083                 tp->prior_ssthresh = 0;
3084                 tp->undo_marker = tp->snd_una;
3085                 tp->undo_retrans = tp->retrans_out;
3086
3087                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3088                         if (!(flag & FLAG_ECE))
3089                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3090                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3091                         TCP_ECN_queue_cwr(tp);
3092                 }
3093
3094                 tp->bytes_acked = 0;
3095                 tp->snd_cwnd_cnt = 0;
3096                 tcp_set_ca_state(sk, TCP_CA_Recovery);
3097                 fast_rexmit = 1;
3098         }
3099
3100         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3101                 tcp_update_scoreboard(sk, fast_rexmit);
3102         tcp_cwnd_down(sk, flag);
3103         tcp_xmit_retransmit_queue(sk);
3104 }
3105
3106 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3107 {
3108         tcp_rtt_estimator(sk, seq_rtt);
3109         tcp_set_rto(sk);
3110         inet_csk(sk)->icsk_backoff = 0;
3111 }
3112
3113 /* Read draft-ietf-tcplw-high-performance before mucking
3114  * with this code. (Supersedes RFC1323)
3115  */
3116 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3117 {
3118         /* RTTM Rule: A TSecr value received in a segment is used to
3119          * update the averaged RTT measurement only if the segment
3120          * acknowledges some new data, i.e., only if it advances the
3121          * left edge of the send window.
3122          *
3123          * See draft-ietf-tcplw-high-performance-00, section 3.3.
3124          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3125          *
3126          * Changed: reset backoff as soon as we see the first valid sample.
3127          * If we do not, we get strongly overestimated rto. With timestamps
3128          * samples are accepted even from very old segments: f.e., when rtt=1
3129          * increases to 8, we retransmit 5 times and after 8 seconds delayed
3130          * answer arrives rto becomes 120 seconds! If at least one of segments
3131          * in window is lost... Voila.                          --ANK (010210)
3132          */
3133         struct tcp_sock *tp = tcp_sk(sk);
3134
3135         tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3136 }
3137
3138 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3139 {
3140         /* We don't have a timestamp. Can only use
3141          * packets that are not retransmitted to determine
3142          * rtt estimates. Also, we must not reset the
3143          * backoff for rto until we get a non-retransmitted
3144          * packet. This allows us to deal with a situation
3145          * where the network delay has increased suddenly.
3146          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3147          */
3148
3149         if (flag & FLAG_RETRANS_DATA_ACKED)
3150                 return;
3151
3152         tcp_valid_rtt_meas(sk, seq_rtt);
3153 }
3154
3155 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3156                                       const s32 seq_rtt)
3157 {
3158         const struct tcp_sock *tp = tcp_sk(sk);
3159         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3160         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3161                 tcp_ack_saw_tstamp(sk, flag);
3162         else if (seq_rtt >= 0)
3163                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3164 }
3165
3166 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3167 {
3168         const struct inet_connection_sock *icsk = inet_csk(sk);
3169         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3170         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3171 }
3172
3173 /* Restart timer after forward progress on connection.
3174  * RFC2988 recommends to restart timer to now+rto.
3175  */
3176 static void tcp_rearm_rto(struct sock *sk)
3177 {
3178         struct tcp_sock *tp = tcp_sk(sk);
3179
3180         if (!tp->packets_out) {
3181                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3182         } else {
3183                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3184                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3185         }
3186 }
3187
3188 /* If we get here, the whole TSO packet has not been acked. */
3189 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3190 {
3191         struct tcp_sock *tp = tcp_sk(sk);
3192         u32 packets_acked;
3193
3194         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3195
3196         packets_acked = tcp_skb_pcount(skb);
3197         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3198                 return 0;
3199         packets_acked -= tcp_skb_pcount(skb);
3200
3201         if (packets_acked) {
3202                 BUG_ON(tcp_skb_pcount(skb) == 0);
3203                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3204         }
3205
3206         return packets_acked;
3207 }
3208
3209 /* Remove acknowledged frames from the retransmission queue. If our packet
3210  * is before the ack sequence we can discard it as it's confirmed to have
3211  * arrived at the other end.
3212  */
3213 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3214                                u32 prior_snd_una)
3215 {
3216         struct tcp_sock *tp = tcp_sk(sk);
3217         const struct inet_connection_sock *icsk = inet_csk(sk);
3218         struct sk_buff *skb;
3219         u32 now = tcp_time_stamp;
3220         int fully_acked = 1;
3221         int flag = 0;
3222         u32 pkts_acked = 0;
3223         u32 reord = tp->packets_out;
3224         u32 prior_sacked = tp->sacked_out;
3225         s32 seq_rtt = -1;
3226         s32 ca_seq_rtt = -1;
3227         ktime_t last_ackt = net_invalid_timestamp();
3228
3229         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3230                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3231                 u32 acked_pcount;
3232                 u8 sacked = scb->sacked;
3233
3234                 /* Determine how many packets and what bytes were acked, tso and else */
3235                 if (after(scb->end_seq, tp->snd_una)) {
3236                         if (tcp_skb_pcount(skb) == 1 ||
3237                             !after(tp->snd_una, scb->seq))
3238                                 break;
3239
3240                         acked_pcount = tcp_tso_acked(sk, skb);
3241                         if (!acked_pcount)
3242                                 break;
3243
3244                         fully_acked = 0;
3245                 } else {
3246                         acked_pcount = tcp_skb_pcount(skb);
3247                 }
3248
3249                 if (sacked & TCPCB_RETRANS) {
3250                         if (sacked & TCPCB_SACKED_RETRANS)
3251                                 tp->retrans_out -= acked_pcount;
3252                         flag |= FLAG_RETRANS_DATA_ACKED;
3253                         ca_seq_rtt = -1;
3254                         seq_rtt = -1;
3255                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3256                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3257                 } else {
3258                         ca_seq_rtt = now - scb->when;
3259                         last_ackt = skb->tstamp;
3260                         if (seq_rtt < 0) {
3261                                 seq_rtt = ca_seq_rtt;
3262                         }
3263                         if (!(sacked & TCPCB_SACKED_ACKED))
3264                                 reord = min(pkts_acked, reord);
3265                 }
3266
3267                 if (sacked & TCPCB_SACKED_ACKED)
3268                         tp->sacked_out -= acked_pcount;
3269                 if (sacked & TCPCB_LOST)
3270                         tp->lost_out -= acked_pcount;
3271
3272                 tp->packets_out -= acked_pcount;
3273                 pkts_acked += acked_pcount;
3274
3275                 /* Initial outgoing SYN's get put onto the write_queue
3276                  * just like anything else we transmit.  It is not
3277                  * true data, and if we misinform our callers that
3278                  * this ACK acks real data, we will erroneously exit
3279                  * connection startup slow start one packet too
3280                  * quickly.  This is severely frowned upon behavior.
3281                  */
3282                 if (!(scb->flags & TCPHDR_SYN)) {
3283                         flag |= FLAG_DATA_ACKED;
3284                 } else {
3285                         flag |= FLAG_SYN_ACKED;
3286                         tp->retrans_stamp = 0;
3287                 }
3288
3289                 if (!fully_acked)
3290                         break;
3291
3292                 tcp_unlink_write_queue(skb, sk);
3293                 sk_wmem_free_skb(sk, skb);
3294                 tp->scoreboard_skb_hint = NULL;
3295                 if (skb == tp->retransmit_skb_hint)
3296                         tp->retransmit_skb_hint = NULL;
3297                 if (skb == tp->lost_skb_hint)
3298                         tp->lost_skb_hint = NULL;
3299         }
3300
3301         if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3302                 tp->snd_up = tp->snd_una;
3303
3304         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3305                 flag |= FLAG_SACK_RENEGING;
3306
3307         if (flag & FLAG_ACKED) {
3308                 const struct tcp_congestion_ops *ca_ops
3309                         = inet_csk(sk)->icsk_ca_ops;
3310
3311                 if (unlikely(icsk->icsk_mtup.probe_size &&
3312                              !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3313                         tcp_mtup_probe_success(sk);
3314                 }
3315
3316                 tcp_ack_update_rtt(sk, flag, seq_rtt);
3317                 tcp_rearm_rto(sk);
3318
3319                 if (tcp_is_reno(tp)) {
3320                         tcp_remove_reno_sacks(sk, pkts_acked);
3321                 } else {
3322                         int delta;
3323
3324                         /* Non-retransmitted hole got filled? That's reordering */
3325                         if (reord < prior_fackets)
3326                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3327
3328                         delta = tcp_is_fack(tp) ? pkts_acked :
3329                                                   prior_sacked - tp->sacked_out;
3330                         tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3331                 }
3332
3333                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3334
3335                 if (ca_ops->pkts_acked) {
3336                         s32 rtt_us = -1;
3337
3338                         /* Is the ACK triggering packet unambiguous? */
3339                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3340                                 /* High resolution needed and available? */
3341                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3342                                     !ktime_equal(last_ackt,
3343                                                  net_invalid_timestamp()))
3344                                         rtt_us = ktime_us_delta(ktime_get_real(),
3345                                                                 last_ackt);
3346                                 else if (ca_seq_rtt > 0)
3347                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
3348                         }
3349
3350                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3351                 }
3352         }
3353
3354 #if FASTRETRANS_DEBUG > 0
3355         WARN_ON((int)tp->sacked_out < 0);
3356         WARN_ON((int)tp->lost_out < 0);
3357         WARN_ON((int)tp->retrans_out < 0);
3358         if (!tp->packets_out && tcp_is_sack(tp)) {
3359                 icsk = inet_csk(sk);
3360                 if (tp->lost_out) {
3361                         printk(KERN_DEBUG "Leak l=%u %d\n",
3362                                tp->lost_out, icsk->icsk_ca_state);
3363                         tp->lost_out = 0;
3364                 }
3365                 if (tp->sacked_out) {
3366                         printk(KERN_DEBUG "Leak s=%u %d\n",
3367                                tp->sacked_out, icsk->icsk_ca_state);
3368                         tp->sacked_out = 0;
3369                 }
3370                 if (tp->retrans_out) {
3371                         printk(KERN_DEBUG "Leak r=%u %d\n",
3372                                tp->retrans_out, icsk->icsk_ca_state);
3373                         tp->retrans_out = 0;
3374                 }
3375         }
3376 #endif
3377         return flag;
3378 }
3379
3380 static void tcp_ack_probe(struct sock *sk)
3381 {
3382         const struct tcp_sock *tp = tcp_sk(sk);
3383         struct inet_connection_sock *icsk = inet_csk(sk);
3384
3385         /* Was it a usable window open? */
3386
3387         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3388                 icsk->icsk_backoff = 0;
3389                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3390                 /* Socket must be waked up by subsequent tcp_data_snd_check().
3391                  * This function is not for random using!
3392                  */
3393         } else {
3394                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3395                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3396                                           TCP_RTO_MAX);
3397         }
3398 }
3399
3400 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3401 {
3402         return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3403                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3404 }
3405
3406 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3407 {
3408         const struct tcp_sock *tp = tcp_sk(sk);
3409         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3410                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3411 }
3412
3413 /* Check that window update is acceptable.
3414  * The function assumes that snd_una<=ack<=snd_next.
3415  */
3416 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3417                                         const u32 ack, const u32 ack_seq,
3418                                         const u32 nwin)
3419 {
3420         return  after(ack, tp->snd_una) ||
3421                 after(ack_seq, tp->snd_wl1) ||
3422                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3423 }
3424
3425 /* Update our send window.
3426  *
3427  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3428  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3429  */
3430 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3431                                  u32 ack_seq)
3432 {
3433         struct tcp_sock *tp = tcp_sk(sk);
3434         int flag = 0;
3435         u32 nwin = ntohs(tcp_hdr(skb)->window);
3436
3437         if (likely(!tcp_hdr(skb)->syn))
3438                 nwin <<= tp->rx_opt.snd_wscale;
3439
3440         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3441                 flag |= FLAG_WIN_UPDATE;
3442                 tcp_update_wl(tp, ack_seq);
3443
3444                 if (tp->snd_wnd != nwin) {
3445                         tp->snd_wnd = nwin;
3446
3447                         /* Note, it is the only place, where
3448                          * fast path is recovered for sending TCP.
3449                          */
3450                         tp->pred_flags = 0;
3451                         tcp_fast_path_check(sk);
3452
3453                         if (nwin > tp->max_window) {
3454                                 tp->max_window = nwin;
3455                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3456                         }
3457                 }
3458         }
3459
3460         tp->snd_una = ack;
3461
3462         return flag;
3463 }
3464
3465 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3466  * continue in congestion avoidance.
3467  */
3468 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3469 {
3470         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3471         tp->snd_cwnd_cnt = 0;
3472         tp->bytes_acked = 0;
3473         TCP_ECN_queue_cwr(tp);
3474         tcp_moderate_cwnd(tp);
3475 }
3476
3477 /* A conservative spurious RTO response algorithm: reduce cwnd using
3478  * rate halving and continue in congestion avoidance.
3479  */
3480 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3481 {
3482         tcp_enter_cwr(sk, 0);
3483 }
3484
3485 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3486 {
3487         if (flag & FLAG_ECE)
3488                 tcp_ratehalving_spur_to_response(sk);
3489         else
3490                 tcp_undo_cwr(sk, 1);
3491 }
3492
3493 /* F-RTO spurious RTO detection algorithm (RFC4138)
3494  *
3495  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3496  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3497  * window (but not to or beyond highest sequence sent before RTO):
3498  *   On First ACK,  send two new segments out.
3499  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3500  *                  algorithm is not part of the F-RTO detection algorithm
3501  *                  given in RFC4138 but can be selected separately).
3502  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3503  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3504  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3505  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3506  *
3507  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3508  * original window even after we transmit two new data segments.
3509  *
3510  * SACK version:
3511  *   on first step, wait until first cumulative ACK arrives, then move to
3512  *   the second step. In second step, the next ACK decides.
3513  *
3514  * F-RTO is implemented (mainly) in four functions:
3515  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3516  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3517  *     called when tcp_use_frto() showed green light
3518  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3519  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3520  *     to prove that the RTO is indeed spurious. It transfers the control
3521  *     from F-RTO to the conventional RTO recovery
3522  */
3523 static int tcp_process_frto(struct sock *sk, int flag)
3524 {
3525         struct tcp_sock *tp = tcp_sk(sk);
3526
3527         tcp_verify_left_out(tp);
3528
3529         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3530         if (flag & FLAG_DATA_ACKED)
3531                 inet_csk(sk)->icsk_retransmits = 0;
3532
3533         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3534             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3535                 tp->undo_marker = 0;
3536
3537         if (!before(tp->snd_una, tp->frto_highmark)) {
3538                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3539                 return 1;
3540         }
3541
3542         if (!tcp_is_sackfrto(tp)) {
3543                 /* RFC4138 shortcoming in step 2; should also have case c):
3544                  * ACK isn't duplicate nor advances window, e.g., opposite dir
3545                  * data, winupdate
3546                  */
3547                 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3548                         return 1;
3549
3550                 if (!(flag & FLAG_DATA_ACKED)) {
3551                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3552                                             flag);
3553                         return 1;
3554                 }
3555         } else {
3556                 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3557                         /* Prevent sending of new data. */
3558                         tp->snd_cwnd = min(tp->snd_cwnd,
3559                                            tcp_packets_in_flight(tp));
3560                         return 1;
3561                 }
3562
3563                 if ((tp->frto_counter >= 2) &&
3564                     (!(flag & FLAG_FORWARD_PROGRESS) ||
3565                      ((flag & FLAG_DATA_SACKED) &&
3566                       !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3567                         /* RFC4138 shortcoming (see comment above) */
3568                         if (!(flag & FLAG_FORWARD_PROGRESS) &&
3569                             (flag & FLAG_NOT_DUP))
3570                                 return 1;
3571
3572                         tcp_enter_frto_loss(sk, 3, flag);
3573                         return 1;
3574                 }
3575         }
3576
3577         if (tp->frto_counter == 1) {
3578                 /* tcp_may_send_now needs to see updated state */
3579                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3580                 tp->frto_counter = 2;
3581
3582                 if (!tcp_may_send_now(sk))
3583                         tcp_enter_frto_loss(sk, 2, flag);
3584
3585                 return 1;
3586         } else {
3587                 switch (sysctl_tcp_frto_response) {
3588                 case 2:
3589                         tcp_undo_spur_to_response(sk, flag);
3590                         break;
3591                 case 1:
3592                         tcp_conservative_spur_to_response(tp);
3593                         break;
3594                 default:
3595                         tcp_ratehalving_spur_to_response(sk);
3596                         break;
3597                 }
3598                 tp->frto_counter = 0;
3599                 tp->undo_marker = 0;
3600                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3601         }
3602         return 0;
3603 }
3604
3605 /* This routine deals with incoming acks, but not outgoing ones. */
3606 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3607 {
3608         struct inet_connection_sock *icsk = inet_csk(sk);
3609         struct tcp_sock *tp = tcp_sk(sk);
3610         u32 prior_snd_una = tp->snd_una;
3611         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3612         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3613         u32 prior_in_flight;
3614         u32 prior_fackets;
3615         int prior_packets;
3616         int frto_cwnd = 0;
3617
3618         /* If the ack is older than previous acks
3619          * then we can probably ignore it.
3620          */
3621         if (before(ack, prior_snd_una))
3622                 goto old_ack;
3623
3624         /* If the ack includes data we haven't sent yet, discard
3625          * this segment (RFC793 Section 3.9).
3626          */
3627         if (after(ack, tp->snd_nxt))
3628                 goto invalid_ack;
3629
3630         if (after(ack, prior_snd_una))
3631                 flag |= FLAG_SND_UNA_ADVANCED;
3632
3633         if (sysctl_tcp_abc) {
3634                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3635                         tp->bytes_acked += ack - prior_snd_una;
3636                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3637                         /* we assume just one segment left network */
3638                         tp->bytes_acked += min(ack - prior_snd_una,
3639                                                tp->mss_cache);
3640         }
3641
3642         prior_fackets = tp->fackets_out;
3643         prior_in_flight = tcp_packets_in_flight(tp);
3644
3645         if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3646                 /* Window is constant, pure forward advance.
3647                  * No more checks are required.
3648                  * Note, we use the fact that SND.UNA>=SND.WL2.
3649                  */
3650                 tcp_update_wl(tp, ack_seq);
3651                 tp->snd_una = ack;
3652                 flag |= FLAG_WIN_UPDATE;
3653
3654                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3655
3656                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3657         } else {
3658                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3659                         flag |= FLAG_DATA;
3660                 else
3661                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3662
3663                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3664
3665                 if (TCP_SKB_CB(skb)->sacked)
3666                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3667
3668                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3669                         flag |= FLAG_ECE;
3670
3671                 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3672         }
3673
3674         /* We passed data and got it acked, remove any soft error
3675          * log. Something worked...
3676          */
3677         sk->sk_err_soft = 0;
3678         icsk->icsk_probes_out = 0;
3679         tp->rcv_tstamp = tcp_time_stamp;
3680         prior_packets = tp->packets_out;
3681         if (!prior_packets)
3682                 goto no_queue;
3683
3684         /* See if we can take anything off of the retransmit queue. */
3685         flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3686
3687         if (tp->frto_counter)
3688                 frto_cwnd = tcp_process_frto(sk, flag);
3689         /* Guarantee sacktag reordering detection against wrap-arounds */
3690         if (before(tp->frto_highmark, tp->snd_una))
3691                 tp->frto_highmark = 0;
3692
3693         if (tcp_ack_is_dubious(sk, flag)) {
3694                 /* Advance CWND, if state allows this. */
3695                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3696                     tcp_may_raise_cwnd(sk, flag))
3697                         tcp_cong_avoid(sk, ack, prior_in_flight);
3698                 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3699                                       flag);
3700         } else {
3701                 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3702                         tcp_cong_avoid(sk, ack, prior_in_flight);
3703         }
3704
3705         if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3706                 dst_confirm(__sk_dst_get(sk));
3707
3708         return 1;
3709
3710 no_queue:
3711         /* If this ack opens up a zero window, clear backoff.  It was
3712          * being used to time the probes, and is probably far higher than
3713          * it needs to be for normal retransmission.
3714          */
3715         if (tcp_send_head(sk))
3716                 tcp_ack_probe(sk);
3717         return 1;
3718
3719 invalid_ack:
3720         SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3721         return -1;
3722
3723 old_ack:
3724         if (TCP_SKB_CB(skb)->sacked) {
3725                 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3726                 if (icsk->icsk_ca_state == TCP_CA_Open)
3727                         tcp_try_keep_open(sk);
3728         }
3729
3730         SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3731         return 0;
3732 }
3733
3734 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3735  * But, this can also be called on packets in the established flow when
3736  * the fast version below fails.
3737  */
3738 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3739                        u8 **hvpp, int estab)
3740 {
3741         unsigned char *ptr;
3742         struct tcphdr *th = tcp_hdr(skb);
3743         int length = (th->doff * 4) - sizeof(struct tcphdr);
3744
3745         ptr = (unsigned char *)(th + 1);
3746         opt_rx->saw_tstamp = 0;
3747
3748         while (length > 0) {
3749                 int opcode = *ptr++;
3750                 int opsize;
3751
3752                 switch (opcode) {
3753                 case TCPOPT_EOL:
3754                         return;
3755                 case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3756                         length--;
3757                         continue;
3758                 default:
3759                         opsize = *ptr++;
3760                         if (opsize < 2) /* "silly options" */
3761                                 return;
3762                         if (opsize > length)
3763                                 return; /* don't parse partial options */
3764                         switch (opcode) {
3765                         case TCPOPT_MSS:
3766                                 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3767                                         u16 in_mss = get_unaligned_be16(ptr);
3768                                         if (in_mss) {
3769                                                 if (opt_rx->user_mss &&
3770                                                     opt_rx->user_mss < in_mss)
3771                                                         in_mss = opt_rx->user_mss;
3772                                                 opt_rx->mss_clamp = in_mss;
3773                                         }
3774                                 }
3775                                 break;
3776                         case TCPOPT_WINDOW:
3777                                 if (opsize == TCPOLEN_WINDOW && th->syn &&
3778                                     !estab && sysctl_tcp_window_scaling) {
3779                                         __u8 snd_wscale = *(__u8 *)ptr;
3780                                         opt_rx->wscale_ok = 1;
3781                                         if (snd_wscale > 14) {
3782                                                 if (net_ratelimit())
3783                                                         printk(KERN_INFO "tcp_parse_options: Illegal window "
3784                                                                "scaling value %d >14 received.\n",
3785                                                                snd_wscale);
3786                                                 snd_wscale = 14;
3787                                         }
3788                                         opt_rx->snd_wscale = snd_wscale;
3789                                 }
3790                                 break;
3791                         case TCPOPT_TIMESTAMP:
3792                                 if ((opsize == TCPOLEN_TIMESTAMP) &&
3793                                     ((estab && opt_rx->tstamp_ok) ||
3794                                      (!estab && sysctl_tcp_timestamps))) {
3795                                         opt_rx->saw_tstamp = 1;
3796                                         opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3797                                         opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3798                                 }
3799                                 break;
3800                         case TCPOPT_SACK_PERM:
3801                                 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3802                                     !estab && sysctl_tcp_sack) {
3803                                         opt_rx->sack_ok = 1;
3804                                         tcp_sack_reset(opt_rx);
3805                                 }
3806                                 break;
3807
3808                         case TCPOPT_SACK:
3809                                 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3810                                    !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3811                                    opt_rx->sack_ok) {
3812                                         TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3813                                 }
3814                                 break;
3815 #ifdef CONFIG_TCP_MD5SIG
3816                         case TCPOPT_MD5SIG:
3817                                 /*
3818                                  * The MD5 Hash has already been
3819                                  * checked (see tcp_v{4,6}_do_rcv()).
3820                                  */
3821                                 break;
3822 #endif
3823                         case TCPOPT_COOKIE:
3824                                 /* This option is variable length.
3825                                  */
3826                                 switch (opsize) {
3827                                 case TCPOLEN_COOKIE_BASE:
3828                                         /* not yet implemented */
3829                                         break;
3830                                 case TCPOLEN_COOKIE_PAIR:
3831                                         /* not yet implemented */
3832                                         break;
3833                                 case TCPOLEN_COOKIE_MIN+0:
3834                                 case TCPOLEN_COOKIE_MIN+2:
3835                                 case TCPOLEN_COOKIE_MIN+4:
3836                                 case TCPOLEN_COOKIE_MIN+6:
3837                                 case TCPOLEN_COOKIE_MAX:
3838                                         /* 16-bit multiple */
3839                                         opt_rx->cookie_plus = opsize;
3840                                         *hvpp = ptr;
3841                                         break;
3842                                 default:
3843                                         /* ignore option */
3844                                         break;
3845                                 }
3846                                 break;
3847                         }
3848
3849                         ptr += opsize-2;
3850                         length -= opsize;
3851                 }
3852         }
3853 }
3854 EXPORT_SYMBOL(tcp_parse_options);
3855
3856 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3857 {
3858         __be32 *ptr = (__be32 *)(th + 1);
3859
3860         if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3861                           | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3862                 tp->rx_opt.saw_tstamp = 1;
3863                 ++ptr;
3864                 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3865                 ++ptr;
3866                 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3867                 return 1;
3868         }
3869         return 0;
3870 }
3871
3872 /* Fast parse options. This hopes to only see timestamps.
3873  * If it is wrong it falls back on tcp_parse_options().
3874  */
3875 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3876                                   struct tcp_sock *tp, u8 **hvpp)
3877 {
3878         /* In the spirit of fast parsing, compare doff directly to constant
3879          * values.  Because equality is used, short doff can be ignored here.
3880          */
3881         if (th->doff == (sizeof(*th) / 4)) {
3882                 tp->rx_opt.saw_tstamp = 0;
3883                 return 0;
3884         } else if (tp->rx_opt.tstamp_ok &&
3885                    th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3886                 if (tcp_parse_aligned_timestamp(tp, th))
3887                         return 1;
3888         }
3889         tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3890         return 1;
3891 }
3892
3893 #ifdef CONFIG_TCP_MD5SIG
3894 /*
3895  * Parse MD5 Signature option
3896  */
3897 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3898 {
3899         int length = (th->doff << 2) - sizeof (*th);
3900         u8 *ptr = (u8*)(th + 1);
3901
3902         /* If the TCP option is too short, we can short cut */
3903         if (length < TCPOLEN_MD5SIG)
3904                 return NULL;
3905
3906         while (length > 0) {
3907                 int opcode = *ptr++;
3908                 int opsize;
3909
3910                 switch(opcode) {
3911                 case TCPOPT_EOL:
3912                         return NULL;
3913                 case TCPOPT_NOP:
3914                         length--;
3915                         continue;
3916                 default:
3917                         opsize = *ptr++;
3918                         if (opsize < 2 || opsize > length)
3919                                 return NULL;
3920                         if (opcode == TCPOPT_MD5SIG)
3921                                 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3922                 }
3923                 ptr += opsize - 2;
3924                 length -= opsize;
3925         }
3926         return NULL;
3927 }
3928 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3929 #endif
3930
3931 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3932 {
3933         tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3934         tp->rx_opt.ts_recent_stamp = get_seconds();
3935 }
3936
3937 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3938 {
3939         if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3940                 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3941                  * extra check below makes sure this can only happen
3942                  * for pure ACK frames.  -DaveM
3943                  *
3944                  * Not only, also it occurs for expired timestamps.
3945                  */
3946
3947                 if (tcp_paws_check(&tp->rx_opt, 0))
3948                         tcp_store_ts_recent(tp);
3949         }
3950 }
3951
3952 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3953  *
3954  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3955  * it can pass through stack. So, the following predicate verifies that
3956  * this segment is not used for anything but congestion avoidance or
3957  * fast retransmit. Moreover, we even are able to eliminate most of such
3958  * second order effects, if we apply some small "replay" window (~RTO)
3959  * to timestamp space.
3960  *
3961  * All these measures still do not guarantee that we reject wrapped ACKs
3962  * on networks with high bandwidth, when sequence space is recycled fastly,
3963  * but it guarantees that such events will be very rare and do not affect
3964  * connection seriously. This doesn't look nice, but alas, PAWS is really
3965  * buggy extension.
3966  *
3967  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3968  * states that events when retransmit arrives after original data are rare.
3969  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3970  * the biggest problem on large power networks even with minor reordering.
3971  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3972  * up to bandwidth of 18Gigabit/sec. 8) ]
3973  */
3974
3975 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3976 {
3977         struct tcp_sock *tp = tcp_sk(sk);
3978         struct tcphdr *th = tcp_hdr(skb);
3979         u32 seq = TCP_SKB_CB(skb)->seq;
3980         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3981
3982         return (/* 1. Pure ACK with correct sequence number. */
3983                 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3984
3985                 /* 2. ... and duplicate ACK. */
3986                 ack == tp->snd_una &&
3987
3988                 /* 3. ... and does not update window. */
3989                 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3990
3991                 /* 4. ... and sits in replay window. */
3992                 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3993 }
3994
3995 static inline int tcp_paws_discard(const struct sock *sk,
3996                                    const struct sk_buff *skb)
3997 {
3998         const struct tcp_sock *tp = tcp_sk(sk);
3999
4000         return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4001                !tcp_disordered_ack(sk, skb);
4002 }
4003
4004 /* Check segment sequence number for validity.
4005  *
4006  * Segment controls are considered valid, if the segment
4007  * fits to the window after truncation to the window. Acceptability
4008  * of data (and SYN, FIN, of course) is checked separately.
4009  * See tcp_data_queue(), for example.
4010  *
4011  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4012  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4013  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4014  * (borrowed from freebsd)
4015  */
4016
4017 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4018 {
4019         return  !before(end_seq, tp->rcv_wup) &&
4020                 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4021 }
4022
4023 /* When we get a reset we do this. */
4024 static void tcp_reset(struct sock *sk)
4025 {
4026         /* We want the right error as BSD sees it (and indeed as we do). */
4027         switch (sk->sk_state) {
4028         case TCP_SYN_SENT:
4029                 sk->sk_err = ECONNREFUSED;
4030                 break;
4031         case TCP_CLOSE_WAIT:
4032                 sk->sk_err = EPIPE;
4033                 break;
4034         case TCP_CLOSE:
4035                 return;
4036         default:
4037                 sk->sk_err = ECONNRESET;
4038         }
4039         /* This barrier is coupled with smp_rmb() in tcp_poll() */
4040         smp_wmb();
4041
4042         if (!sock_flag(sk, SOCK_DEAD))
4043                 sk->sk_error_report(sk);
4044
4045         tcp_done(sk);
4046 }
4047
4048 /*
4049  *      Process the FIN bit. This now behaves as it is supposed to work
4050  *      and the FIN takes effect when it is validly part of sequence
4051  *      space. Not before when we get holes.
4052  *
4053  *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4054  *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4055  *      TIME-WAIT)
4056  *
4057  *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4058  *      close and we go into CLOSING (and later onto TIME-WAIT)
4059  *
4060  *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4061  */
4062 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4063 {
4064         struct tcp_sock *tp = tcp_sk(sk);
4065
4066         inet_csk_schedule_ack(sk);
4067
4068         sk->sk_shutdown |= RCV_SHUTDOWN;
4069         sock_set_flag(sk, SOCK_DONE);
4070
4071         switch (sk->sk_state) {
4072         case TCP_SYN_RECV:
4073         case TCP_ESTABLISHED:
4074                 /* Move to CLOSE_WAIT */
4075                 tcp_set_state(sk, TCP_CLOSE_WAIT);
4076                 inet_csk(sk)->icsk_ack.pingpong = 1;
4077                 break;
4078
4079         case TCP_CLOSE_WAIT:
4080         case TCP_CLOSING:
4081                 /* Received a retransmission of the FIN, do
4082                  * nothing.
4083                  */
4084                 break;
4085         case TCP_LAST_ACK:
4086                 /* RFC793: Remain in the LAST-ACK state. */
4087                 break;
4088
4089         case TCP_FIN_WAIT1:
4090                 /* This case occurs when a simultaneous close
4091                  * happens, we must ack the received FIN and
4092                  * enter the CLOSING state.
4093                  */
4094                 tcp_send_ack(sk);
4095                 tcp_set_state(sk, TCP_CLOSING);
4096                 break;
4097         case TCP_FIN_WAIT2:
4098                 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4099                 tcp_send_ack(sk);
4100                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4101                 break;
4102         default:
4103                 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4104                  * cases we should never reach this piece of code.
4105                  */
4106                 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4107                        __func__, sk->sk_state);
4108                 break;
4109         }
4110
4111         /* It _is_ possible, that we have something out-of-order _after_ FIN.
4112          * Probably, we should reset in this case. For now drop them.
4113          */
4114         __skb_queue_purge(&tp->out_of_order_queue);
4115         if (tcp_is_sack(tp))
4116                 tcp_sack_reset(&tp->rx_opt);
4117         sk_mem_reclaim(sk);
4118
4119         if (!sock_flag(sk, SOCK_DEAD)) {
4120                 sk->sk_state_change(sk);
4121
4122                 /* Do not send POLL_HUP for half duplex close. */
4123                 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4124                     sk->sk_state == TCP_CLOSE)
4125                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4126                 else
4127                         sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4128         }
4129 }
4130
4131 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4132                                   u32 end_seq)
4133 {
4134         if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4135                 if (before(seq, sp->start_seq))
4136                         sp->start_seq = seq;
4137                 if (after(end_seq, sp->end_seq))
4138                         sp->end_seq = end_seq;
4139                 return 1;
4140         }
4141         return 0;
4142 }
4143
4144 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4145 {
4146         struct tcp_sock *tp = tcp_sk(sk);
4147
4148         if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4149                 int mib_idx;
4150
4151                 if (before(seq, tp->rcv_nxt))
4152                         mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4153                 else
4154                         mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4155
4156                 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4157
4158                 tp->rx_opt.dsack = 1;
4159                 tp->duplicate_sack[0].start_seq = seq;
4160                 tp->duplicate_sack[0].end_seq = end_seq;
4161         }
4162 }
4163
4164 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4165 {
4166         struct tcp_sock *tp = tcp_sk(sk);
4167
4168         if (!tp->rx_opt.dsack)
4169                 tcp_dsack_set(sk, seq, end_seq);
4170         else
4171                 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4172 }
4173
4174 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4175 {
4176         struct tcp_sock *tp = tcp_sk(sk);
4177
4178         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4179             before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4180                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4181                 tcp_enter_quickack_mode(sk);
4182
4183                 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4184                         u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4185
4186                         if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4187                                 end_seq = tp->rcv_nxt;
4188                         tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4189                 }
4190         }
4191
4192         tcp_send_ack(sk);
4193 }
4194
4195 /* These routines update the SACK block as out-of-order packets arrive or
4196  * in-order packets close up the sequence space.
4197  */
4198 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4199 {
4200         int this_sack;
4201         struct tcp_sack_block *sp = &tp->selective_acks[0];
4202         struct tcp_sack_block *swalk = sp + 1;
4203
4204         /* See if the recent change to the first SACK eats into
4205          * or hits the sequence space of other SACK blocks, if so coalesce.
4206          */
4207         for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4208                 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4209                         int i;
4210
4211                         /* Zap SWALK, by moving every further SACK up by one slot.
4212                          * Decrease num_sacks.
4213                          */
4214                         tp->rx_opt.num_sacks--;
4215                         for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4216                                 sp[i] = sp[i + 1];
4217                         continue;
4218                 }
4219                 this_sack++, swalk++;
4220         }
4221 }
4222
4223 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4224 {
4225         struct tcp_sock *tp = tcp_sk(sk);
4226         struct tcp_sack_block *sp = &tp->selective_acks[0];
4227         int cur_sacks = tp->rx_opt.num_sacks;
4228         int this_sack;
4229
4230         if (!cur_sacks)
4231                 goto new_sack;
4232
4233         for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4234                 if (tcp_sack_extend(sp, seq, end_seq)) {
4235                         /* Rotate this_sack to the first one. */
4236                         for (; this_sack > 0; this_sack--, sp--)
4237                                 swap(*sp, *(sp - 1));
4238                         if (cur_sacks > 1)
4239                                 tcp_sack_maybe_coalesce(tp);
4240                         return;
4241                 }
4242         }
4243
4244         /* Could not find an adjacent existing SACK, build a new one,
4245          * put it at the front, and shift everyone else down.  We
4246          * always know there is at least one SACK present already here.
4247          *
4248          * If the sack array is full, forget about the last one.
4249          */
4250         if (this_sack >= TCP_NUM_SACKS) {
4251                 this_sack--;
4252                 tp->rx_opt.num_sacks--;
4253                 sp--;
4254         }
4255         for (; this_sack > 0; this_sack--, sp--)
4256                 *sp = *(sp - 1);
4257
4258 new_sack:
4259         /* Build the new head SACK, and we're done. */
4260         sp->start_seq = seq;
4261         sp->end_seq = end_seq;
4262         tp->rx_opt.num_sacks++;
4263 }
4264
4265 /* RCV.NXT advances, some SACKs should be eaten. */
4266
4267 static void tcp_sack_remove(struct tcp_sock *tp)
4268 {
4269         struct tcp_sack_block *sp = &tp->selective_acks[0];
4270         int num_sacks = tp->rx_opt.num_sacks;
4271         int this_sack;
4272
4273         /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4274         if (skb_queue_empty(&tp->out_of_order_queue)) {
4275                 tp->rx_opt.num_sacks = 0;
4276                 return;
4277         }
4278
4279         for (this_sack = 0; this_sack < num_sacks;) {
4280                 /* Check if the start of the sack is covered by RCV.NXT. */
4281                 if (!before(tp->rcv_nxt, sp->start_seq)) {
4282                         int i;
4283
4284                         /* RCV.NXT must cover all the block! */
4285                         WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4286
4287                         /* Zap this SACK, by moving forward any other SACKS. */
4288                         for (i=this_sack+1; i < num_sacks; i++)
4289                                 tp->selective_acks[i-1] = tp->selective_acks[i];
4290                         num_sacks--;
4291                         continue;
4292                 }
4293                 this_sack++;
4294                 sp++;
4295         }
4296         tp->rx_opt.num_sacks = num_sacks;
4297 }
4298
4299 /* This one checks to see if we can put data from the
4300  * out_of_order queue into the receive_queue.
4301  */
4302 static void tcp_ofo_queue(struct sock *sk)
4303 {
4304         struct tcp_sock *tp = tcp_sk(sk);
4305         __u32 dsack_high = tp->rcv_nxt;
4306         struct sk_buff *skb;
4307
4308         while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4309                 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4310                         break;
4311
4312                 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4313                         __u32 dsack = dsack_high;
4314                         if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4315                                 dsack_high = TCP_SKB_CB(skb)->end_seq;
4316                         tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4317                 }
4318
4319                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4320                         SOCK_DEBUG(sk, "ofo packet was already received\n");
4321                         __skb_unlink(skb, &tp->out_of_order_queue);
4322                         __kfree_skb(skb);
4323                         continue;
4324                 }
4325                 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4326                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4327                            TCP_SKB_CB(skb)->end_seq);
4328
4329                 __skb_unlink(skb, &tp->out_of_order_queue);
4330                 __skb_queue_tail(&sk->sk_receive_queue, skb);
4331                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4332                 if (tcp_hdr(skb)->fin)
4333                         tcp_fin(skb, sk, tcp_hdr(skb));
4334         }
4335 }
4336
4337 static int tcp_prune_ofo_queue(struct sock *sk);
4338 static int tcp_prune_queue(struct sock *sk);
4339
4340 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4341 {
4342         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4343             !sk_rmem_schedule(sk, size)) {
4344
4345                 if (tcp_prune_queue(sk) < 0)
4346                         return -1;
4347
4348                 if (!sk_rmem_schedule(sk, size)) {
4349                         if (!tcp_prune_ofo_queue(sk))
4350                                 return -1;
4351
4352                         if (!sk_rmem_schedule(sk, size))
4353                                 return -1;
4354                 }
4355         }
4356         return 0;
4357 }
4358
4359 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4360 {
4361         struct tcphdr *th = tcp_hdr(skb);
4362         struct tcp_sock *tp = tcp_sk(sk);
4363         int eaten = -1;
4364
4365         if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4366                 goto drop;
4367
4368         skb_dst_drop(skb);
4369         __skb_pull(skb, th->doff * 4);
4370
4371         TCP_ECN_accept_cwr(tp, skb);
4372
4373         tp->rx_opt.dsack = 0;
4374
4375         /*  Queue data for delivery to the user.
4376          *  Packets in sequence go to the receive queue.
4377          *  Out of sequence packets to the out_of_order_queue.
4378          */
4379         if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4380                 if (tcp_receive_window(tp) == 0)
4381                         goto out_of_window;
4382
4383                 /* Ok. In sequence. In window. */
4384                 if (tp->ucopy.task == current &&
4385                     tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4386                     sock_owned_by_user(sk) && !tp->urg_data) {
4387                         int chunk = min_t(unsigned int, skb->len,
4388                                           tp->ucopy.len);
4389
4390                         __set_current_state(TASK_RUNNING);
4391
4392                         local_bh_enable();
4393                         if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4394                                 tp->ucopy.len -= chunk;
4395                                 tp->copied_seq += chunk;
4396                                 eaten = (chunk == skb->len && !th->fin);
4397                                 tcp_rcv_space_adjust(sk);
4398                         }
4399                         local_bh_disable();
4400                 }
4401
4402                 if (eaten <= 0) {
4403 queue_and_out:
4404                         if (eaten < 0 &&
4405                             tcp_try_rmem_schedule(sk, skb->truesize))
4406                                 goto drop;
4407
4408                         skb_set_owner_r(skb, sk);
4409                         __skb_queue_tail(&sk->sk_receive_queue, skb);
4410                 }
4411                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4412                 if (skb->len)
4413                         tcp_event_data_recv(sk, skb);
4414                 if (th->fin)
4415                         tcp_fin(skb, sk, th);
4416
4417                 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4418                         tcp_ofo_queue(sk);
4419
4420                         /* RFC2581. 4.2. SHOULD send immediate ACK, when
4421                          * gap in queue is filled.
4422                          */
4423                         if (skb_queue_empty(&tp->out_of_order_queue))
4424                                 inet_csk(sk)->icsk_ack.pingpong = 0;
4425                 }
4426
4427                 if (tp->rx_opt.num_sacks)
4428                         tcp_sack_remove(tp);
4429
4430                 tcp_fast_path_check(sk);
4431
4432                 if (eaten > 0)
4433                         __kfree_skb(skb);
4434                 else if (!sock_flag(sk, SOCK_DEAD))
4435                         sk->sk_data_ready(sk, 0);
4436                 return;
4437         }
4438
4439         if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4440                 /* A retransmit, 2nd most common case.  Force an immediate ack. */
4441                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4442                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4443
4444 out_of_window:
4445                 tcp_enter_quickack_mode(sk);
4446                 inet_csk_schedule_ack(sk);
4447 drop:
4448                 __kfree_skb(skb);
4449                 return;
4450         }
4451
4452         /* Out of window. F.e. zero window probe. */
4453         if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4454                 goto out_of_window;
4455
4456         tcp_enter_quickack_mode(sk);
4457
4458         if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4459                 /* Partial packet, seq < rcv_next < end_seq */
4460                 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4461                            tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4462                            TCP_SKB_CB(skb)->end_seq);
4463
4464                 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4465
4466                 /* If window is closed, drop tail of packet. But after
4467                  * remembering D-SACK for its head made in previous line.
4468                  */
4469                 if (!tcp_receive_window(tp))
4470                         goto out_of_window;
4471                 goto queue_and_out;
4472         }
4473
4474         TCP_ECN_check_ce(tp, skb);
4475
4476         if (tcp_try_rmem_schedule(sk, skb->truesize))
4477                 goto drop;
4478
4479         /* Disable header prediction. */
4480         tp->pred_flags = 0;
4481         inet_csk_schedule_ack(sk);
4482
4483         SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4484                    tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4485
4486         skb_set_owner_r(skb, sk);
4487
4488         if (!skb_peek(&tp->out_of_order_queue)) {
4489                 /* Initial out of order segment, build 1 SACK. */
4490                 if (tcp_is_sack(tp)) {
4491                         tp->rx_opt.num_sacks = 1;
4492                         tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4493                         tp->selective_acks[0].end_seq =
4494                                                 TCP_SKB_CB(skb)->end_seq;
4495                 }
4496                 __skb_queue_head(&tp->out_of_order_queue, skb);
4497         } else {
4498                 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4499                 u32 seq = TCP_SKB_CB(skb)->seq;
4500                 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4501
4502                 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4503                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4504
4505                         if (!tp->rx_opt.num_sacks ||
4506                             tp->selective_acks[0].end_seq != seq)
4507                                 goto add_sack;
4508
4509                         /* Common case: data arrive in order after hole. */
4510                         tp->selective_acks[0].end_seq = end_seq;
4511                         return;
4512                 }
4513
4514                 /* Find place to insert this segment. */
4515                 while (1) {
4516                         if (!after(TCP_SKB_CB(skb1)->seq, seq))
4517                                 break;
4518                         if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4519                                 skb1 = NULL;
4520                                 break;
4521                         }
4522                         skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4523                 }
4524
4525                 /* Do skb overlap to previous one? */
4526                 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4527                         if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4528                                 /* All the bits are present. Drop. */
4529                                 __kfree_skb(skb);
4530                                 tcp_dsack_set(sk, seq, end_seq);
4531                                 goto add_sack;
4532                         }
4533                         if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4534                                 /* Partial overlap. */
4535                                 tcp_dsack_set(sk, seq,
4536                                               TCP_SKB_CB(skb1)->end_seq);
4537                         } else {
4538                                 if (skb_queue_is_first(&tp->out_of_order_queue,
4539                                                        skb1))
4540                                         skb1 = NULL;
4541                                 else
4542                                         skb1 = skb_queue_prev(
4543                                                 &tp->out_of_order_queue,
4544                                                 skb1);
4545                         }
4546                 }
4547                 if (!skb1)
4548                         __skb_queue_head(&tp->out_of_order_queue, skb);
4549                 else
4550                         __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4551
4552                 /* And clean segments covered by new one as whole. */
4553                 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4554                         skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4555
4556                         if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4557                                 break;
4558                         if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4559                                 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4560                                                  end_seq);
4561                                 break;
4562                         }
4563                         __skb_unlink(skb1, &tp->out_of_order_queue);
4564                         tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4565                                          TCP_SKB_CB(skb1)->end_seq);
4566                         __kfree_skb(skb1);
4567                 }
4568
4569 add_sack:
4570                 if (tcp_is_sack(tp))
4571                         tcp_sack_new_ofo_skb(sk, seq, end_seq);
4572         }
4573 }
4574
4575 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4576                                         struct sk_buff_head *list)
4577 {
4578         struct sk_buff *next = NULL;
4579
4580         if (!skb_queue_is_last(list, skb))
4581                 next = skb_queue_next(list, skb);
4582
4583         __skb_unlink(skb, list);
4584         __kfree_skb(skb);
4585         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4586
4587         return next;
4588 }
4589
4590 /* Collapse contiguous sequence of skbs head..tail with
4591  * sequence numbers start..end.
4592  *
4593  * If tail is NULL, this means until the end of the list.
4594  *
4595  * Segments with FIN/SYN are not collapsed (only because this
4596  * simplifies code)
4597  */
4598 static void
4599 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4600              struct sk_buff *head, struct sk_buff *tail,
4601              u32 start, u32 end)
4602 {
4603         struct sk_buff *skb, *n;
4604         bool end_of_skbs;
4605
4606         /* First, check that queue is collapsible and find
4607          * the point where collapsing can be useful. */
4608         skb = head;
4609 restart:
4610         end_of_skbs = true;
4611         skb_queue_walk_from_safe(list, skb, n) {
4612                 if (skb == tail)
4613                         break;
4614                 /* No new bits? It is possible on ofo queue. */
4615                 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4616                         skb = tcp_collapse_one(sk, skb, list);
4617                         if (!skb)
4618                                 break;
4619                         goto restart;
4620                 }
4621
4622                 /* The first skb to collapse is:
4623                  * - not SYN/FIN and
4624                  * - bloated or contains data before "start" or
4625                  *   overlaps to the next one.
4626                  */
4627                 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4628                     (tcp_win_from_space(skb->truesize) > skb->len ||
4629                      before(TCP_SKB_CB(skb)->seq, start))) {
4630                         end_of_skbs = false;
4631                         break;
4632                 }
4633
4634                 if (!skb_queue_is_last(list, skb)) {
4635                         struct sk_buff *next = skb_queue_next(list, skb);
4636                         if (next != tail &&
4637                             TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4638                                 end_of_skbs = false;
4639                                 break;
4640                         }
4641                 }
4642
4643                 /* Decided to skip this, advance start seq. */
4644                 start = TCP_SKB_CB(skb)->end_seq;
4645         }
4646         if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4647                 return;
4648
4649         while (before(start, end)) {
4650                 struct sk_buff *nskb;
4651                 unsigned int header = skb_headroom(skb);
4652                 int copy = SKB_MAX_ORDER(header, 0);
4653
4654                 /* Too big header? This can happen with IPv6. */
4655                 if (copy < 0)
4656                         return;
4657                 if (end - start < copy)
4658                         copy = end - start;
4659                 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4660                 if (!nskb)
4661                         return;
4662
4663                 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4664                 skb_set_network_header(nskb, (skb_network_header(skb) -
4665                                               skb->head));
4666                 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4667                                                 skb->head));
4668                 skb_reserve(nskb, header);
4669                 memcpy(nskb->head, skb->head, header);
4670                 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4671                 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4672                 __skb_queue_before(list, skb, nskb);
4673                 skb_set_owner_r(nskb, sk);
4674
4675                 /* Copy data, releasing collapsed skbs. */
4676                 while (copy > 0) {
4677                         int offset = start - TCP_SKB_CB(skb)->seq;
4678                         int size = TCP_SKB_CB(skb)->end_seq - start;
4679
4680                         BUG_ON(offset < 0);
4681                         if (size > 0) {
4682                                 size = min(copy, size);
4683                                 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4684                                         BUG();
4685                                 TCP_SKB_CB(nskb)->end_seq += size;
4686                                 copy -= size;
4687                                 start += size;
4688                         }
4689                         if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4690                                 skb = tcp_collapse_one(sk, skb, list);
4691                                 if (!skb ||
4692                                     skb == tail ||
4693                                     tcp_hdr(skb)->syn ||
4694                                     tcp_hdr(skb)->fin)
4695                                         return;
4696                         }
4697                 }
4698         }
4699 }
4700
4701 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4702  * and tcp_collapse() them until all the queue is collapsed.
4703  */
4704 static void tcp_collapse_ofo_queue(struct sock *sk)
4705 {
4706         struct tcp_sock *tp = tcp_sk(sk);
4707         struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4708         struct sk_buff *head;
4709         u32 start, end;
4710
4711         if (skb == NULL)
4712                 return;
4713
4714         start = TCP_SKB_CB(skb)->seq;
4715         end = TCP_SKB_CB(skb)->end_seq;
4716         head = skb;
4717
4718         for (;;) {
4719                 struct sk_buff *next = NULL;
4720
4721                 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4722                         next = skb_queue_next(&tp->out_of_order_queue, skb);
4723                 skb = next;
4724
4725                 /* Segment is terminated when we see gap or when
4726                  * we are at the end of all the queue. */
4727                 if (!skb ||
4728                     after(TCP_SKB_CB(skb)->seq, end) ||
4729                     before(TCP_SKB_CB(skb)->end_seq, start)) {
4730                         tcp_collapse(sk, &tp->out_of_order_queue,
4731                                      head, skb, start, end);
4732                         head = skb;
4733                         if (!skb)
4734                                 break;
4735                         /* Start new segment */
4736                         start = TCP_SKB_CB(skb)->seq;
4737                         end = TCP_SKB_CB(skb)->end_seq;
4738                 } else {
4739                         if (before(TCP_SKB_CB(skb)->seq, start))
4740                                 start = TCP_SKB_CB(skb)->seq;
4741                         if (after(TCP_SKB_CB(skb)->end_seq, end))
4742                                 end = TCP_SKB_CB(skb)->end_seq;
4743                 }
4744         }
4745 }
4746
4747 /*
4748  * Purge the out-of-order queue.
4749  * Return true if queue was pruned.
4750  */
4751 static int tcp_prune_ofo_queue(struct sock *sk)
4752 {
4753         struct tcp_sock *tp = tcp_sk(sk);
4754         int res = 0;
4755
4756         if (!skb_queue_empty(&tp->out_of_order_queue)) {
4757                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4758                 __skb_queue_purge(&tp->out_of_order_queue);
4759
4760                 /* Reset SACK state.  A conforming SACK implementation will
4761                  * do the same at a timeout based retransmit.  When a connection
4762                  * is in a sad state like this, we care only about integrity
4763                  * of the connection not performance.
4764                  */
4765                 if (tp->rx_opt.sack_ok)
4766                         tcp_sack_reset(&tp->rx_opt);
4767                 sk_mem_reclaim(sk);
4768                 res = 1;
4769         }
4770         return res;
4771 }
4772
4773 /* Reduce allocated memory if we can, trying to get
4774  * the socket within its memory limits again.
4775  *
4776  * Return less than zero if we should start dropping frames
4777  * until the socket owning process reads some of the data
4778  * to stabilize the situation.
4779  */
4780 static int tcp_prune_queue(struct sock *sk)
4781 {
4782         struct tcp_sock *tp = tcp_sk(sk);
4783
4784         SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4785
4786         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4787
4788         if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4789                 tcp_clamp_window(sk);
4790         else if (tcp_memory_pressure)
4791                 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4792
4793         tcp_collapse_ofo_queue(sk);
4794         if (!skb_queue_empty(&sk->sk_receive_queue))
4795                 tcp_collapse(sk, &sk->sk_receive_queue,
4796                              skb_peek(&sk->sk_receive_queue),
4797                              NULL,
4798                              tp->copied_seq, tp->rcv_nxt);
4799         sk_mem_reclaim(sk);
4800
4801         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802                 return 0;
4803
4804         /* Collapsing did not help, destructive actions follow.
4805          * This must not ever occur. */
4806
4807         tcp_prune_ofo_queue(sk);
4808
4809         if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4810                 return 0;
4811
4812         /* If we are really being abused, tell the caller to silently
4813          * drop receive data on the floor.  It will get retransmitted
4814          * and hopefully then we'll have sufficient space.
4815          */
4816         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4817
4818         /* Massive buffer overcommit. */
4819         tp->pred_flags = 0;
4820         return -1;
4821 }
4822
4823 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4824  * As additional protections, we do not touch cwnd in retransmission phases,
4825  * and if application hit its sndbuf limit recently.
4826  */
4827 void tcp_cwnd_application_limited(struct sock *sk)
4828 {
4829         struct tcp_sock *tp = tcp_sk(sk);
4830
4831         if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4832             sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4833                 /* Limited by application or receiver window. */
4834                 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4835                 u32 win_used = max(tp->snd_cwnd_used, init_win);
4836                 if (win_used < tp->snd_cwnd) {
4837                         tp->snd_ssthresh = tcp_current_ssthresh(sk);
4838                         tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4839                 }
4840                 tp->snd_cwnd_used = 0;
4841         }
4842         tp->snd_cwnd_stamp = tcp_time_stamp;
4843 }
4844
4845 static int tcp_should_expand_sndbuf(struct sock *sk)
4846 {
4847         struct tcp_sock *tp = tcp_sk(sk);
4848
4849         /* If the user specified a specific send buffer setting, do
4850          * not modify it.
4851          */
4852         if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4853                 return 0;
4854
4855         /* If we are under global TCP memory pressure, do not expand.  */
4856         if (tcp_memory_pressure)
4857                 return 0;
4858
4859         /* If we are under soft global TCP memory pressure, do not expand.  */
4860         if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4861                 return 0;
4862
4863         /* If we filled the congestion window, do not expand.  */
4864         if (tp->packets_out >= tp->snd_cwnd)
4865                 return 0;
4866
4867         return 1;
4868 }
4869
4870 /* When incoming ACK allowed to free some skb from write_queue,
4871  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4872  * on the exit from tcp input handler.
4873  *
4874  * PROBLEM: sndbuf expansion does not work well with largesend.
4875  */
4876 static void tcp_new_space(struct sock *sk)
4877 {
4878         struct tcp_sock *tp = tcp_sk(sk);
4879
4880         if (tcp_should_expand_sndbuf(sk)) {
4881                 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4882                         MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4883                 int demanded = max_t(unsigned int, tp->snd_cwnd,
4884                                      tp->reordering + 1);
4885                 sndmem *= 2 * demanded;
4886                 if (sndmem > sk->sk_sndbuf)
4887                         sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4888                 tp->snd_cwnd_stamp = tcp_time_stamp;
4889         }
4890
4891         sk->sk_write_space(sk);
4892 }
4893
4894 static void tcp_check_space(struct sock *sk)
4895 {
4896         if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4897                 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4898                 if (sk->sk_socket &&
4899                     test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4900                         tcp_new_space(sk);
4901         }
4902 }
4903
4904 static inline void tcp_data_snd_check(struct sock *sk)
4905 {
4906         tcp_push_pending_frames(sk);
4907         tcp_check_space(sk);
4908 }
4909
4910 /*
4911  * Check if sending an ack is needed.
4912  */
4913 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4914 {
4915         struct tcp_sock *tp = tcp_sk(sk);
4916
4917             /* More than one full frame received... */
4918         if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4919              /* ... and right edge of window advances far enough.
4920               * (tcp_recvmsg() will send ACK otherwise). Or...
4921               */
4922              __tcp_select_window(sk) >= tp->rcv_wnd) ||
4923             /* We ACK each frame or... */
4924             tcp_in_quickack_mode(sk) ||
4925             /* We have out of order data. */
4926             (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4927                 /* Then ack it now */
4928                 tcp_send_ack(sk);
4929         } else {
4930                 /* Else, send delayed ack. */
4931                 tcp_send_delayed_ack(sk);
4932         }
4933 }
4934
4935 static inline void tcp_ack_snd_check(struct sock *sk)
4936 {
4937         if (!inet_csk_ack_scheduled(sk)) {
4938                 /* We sent a data segment already. */
4939                 return;
4940         }
4941         __tcp_ack_snd_check(sk, 1);
4942 }
4943
4944 /*
4945  *      This routine is only called when we have urgent data
4946  *      signaled. Its the 'slow' part of tcp_urg. It could be
4947  *      moved inline now as tcp_urg is only called from one
4948  *      place. We handle URGent data wrong. We have to - as
4949  *      BSD still doesn't use the correction from RFC961.
4950  *      For 1003.1g we should support a new option TCP_STDURG to permit
4951  *      either form (or just set the sysctl tcp_stdurg).
4952  */
4953
4954 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4955 {
4956         struct tcp_sock *tp = tcp_sk(sk);
4957         u32 ptr = ntohs(th->urg_ptr);
4958
4959         if (ptr && !sysctl_tcp_stdurg)
4960                 ptr--;
4961         ptr += ntohl(th->seq);
4962
4963         /* Ignore urgent data that we've already seen and read. */
4964         if (after(tp->copied_seq, ptr))
4965                 return;
4966
4967         /* Do not replay urg ptr.
4968          *
4969          * NOTE: interesting situation not covered by specs.
4970          * Misbehaving sender may send urg ptr, pointing to segment,
4971          * which we already have in ofo queue. We are not able to fetch
4972          * such data and will stay in TCP_URG_NOTYET until will be eaten
4973          * by recvmsg(). Seems, we are not obliged to handle such wicked
4974          * situations. But it is worth to think about possibility of some
4975          * DoSes using some hypothetical application level deadlock.
4976          */
4977         if (before(ptr, tp->rcv_nxt))
4978                 return;
4979
4980         /* Do we already have a newer (or duplicate) urgent pointer? */
4981         if (tp->urg_data && !after(ptr, tp->urg_seq))
4982                 return;
4983
4984         /* Tell the world about our new urgent pointer. */
4985         sk_send_sigurg(sk);
4986
4987         /* We may be adding urgent data when the last byte read was
4988          * urgent. To do this requires some care. We cannot just ignore
4989          * tp->copied_seq since we would read the last urgent byte again
4990          * as data, nor can we alter copied_seq until this data arrives
4991          * or we break the semantics of SIOCATMARK (and thus sockatmark())
4992          *
4993          * NOTE. Double Dutch. Rendering to plain English: author of comment
4994          * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
4995          * and expect that both A and B disappear from stream. This is _wrong_.
4996          * Though this happens in BSD with high probability, this is occasional.
4997          * Any application relying on this is buggy. Note also, that fix "works"
4998          * only in this artificial test. Insert some normal data between A and B and we will
4999          * decline of BSD again. Verdict: it is better to remove to trap
5000          * buggy users.
5001          */
5002         if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5003             !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5004                 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5005                 tp->copied_seq++;
5006                 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5007                         __skb_unlink(skb, &sk->sk_receive_queue);
5008                         __kfree_skb(skb);
5009                 }
5010         }
5011
5012         tp->urg_data = TCP_URG_NOTYET;
5013         tp->urg_seq = ptr;
5014
5015         /* Disable header prediction. */
5016         tp->pred_flags = 0;
5017 }
5018
5019 /* This is the 'fast' part of urgent handling. */
5020 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5021 {
5022         struct tcp_sock *tp = tcp_sk(sk);
5023
5024         /* Check if we get a new urgent pointer - normally not. */
5025         if (th->urg)
5026                 tcp_check_urg(sk, th);
5027
5028         /* Do we wait for any urgent data? - normally not... */
5029         if (tp->urg_data == TCP_URG_NOTYET) {
5030                 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5031                           th->syn;
5032
5033                 /* Is the urgent pointer pointing into this packet? */
5034                 if (ptr < skb->len) {
5035                         u8 tmp;
5036                         if (skb_copy_bits(skb, ptr, &tmp, 1))
5037                                 BUG();
5038                         tp->urg_data = TCP_URG_VALID | tmp;
5039                         if (!sock_flag(sk, SOCK_DEAD))
5040                                 sk->sk_data_ready(sk, 0);
5041                 }
5042         }
5043 }
5044
5045 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5046 {
5047         struct tcp_sock *tp = tcp_sk(sk);
5048         int chunk = skb->len - hlen;
5049         int err;
5050
5051         local_bh_enable();
5052         if (skb_csum_unnecessary(skb))
5053                 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5054         else
5055                 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5056                                                        tp->ucopy.iov);
5057
5058         if (!err) {
5059                 tp->ucopy.len -= chunk;
5060                 tp->copied_seq += chunk;
5061                 tcp_rcv_space_adjust(sk);
5062         }
5063
5064         local_bh_disable();
5065         return err;
5066 }
5067
5068 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5069                                             struct sk_buff *skb)
5070 {
5071         __sum16 result;
5072
5073         if (sock_owned_by_user(sk)) {
5074                 local_bh_enable();
5075                 result = __tcp_checksum_complete(skb);
5076                 local_bh_disable();
5077         } else {
5078                 result = __tcp_checksum_complete(skb);
5079         }
5080         return result;
5081 }
5082
5083 static inline int tcp_checksum_complete_user(struct sock *sk,
5084                                              struct sk_buff *skb)
5085 {
5086         return !skb_csum_unnecessary(skb) &&
5087                __tcp_checksum_complete_user(sk, skb);
5088 }
5089
5090 #ifdef CONFIG_NET_DMA
5091 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5092                                   int hlen)
5093 {
5094         struct tcp_sock *tp = tcp_sk(sk);
5095         int chunk = skb->len - hlen;
5096         int dma_cookie;
5097         int copied_early = 0;
5098
5099         if (tp->ucopy.wakeup)
5100                 return 0;
5101
5102         if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5103                 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5104
5105         if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5106
5107                 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5108                                                          skb, hlen,
5109                                                          tp->ucopy.iov, chunk,
5110                                                          tp->ucopy.pinned_list);
5111
5112                 if (dma_cookie < 0)
5113                         goto out;
5114
5115                 tp->ucopy.dma_cookie = dma_cookie;
5116                 copied_early = 1;
5117
5118                 tp->ucopy.len -= chunk;
5119                 tp->copied_seq += chunk;
5120                 tcp_rcv_space_adjust(sk);
5121
5122                 if ((tp->ucopy.len == 0) ||
5123                     (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5124                     (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5125                         tp->ucopy.wakeup = 1;
5126                         sk->sk_data_ready(sk, 0);
5127                 }
5128         } else if (chunk > 0) {
5129                 tp->ucopy.wakeup = 1;
5130                 sk->sk_data_ready(sk, 0);
5131         }
5132 out:
5133         return copied_early;
5134 }
5135 #endif /* CONFIG_NET_DMA */
5136
5137 /* Does PAWS and seqno based validation of an incoming segment, flags will
5138  * play significant role here.
5139  */
5140 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5141                               struct tcphdr *th, int syn_inerr)
5142 {
5143         u8 *hash_location;
5144         struct tcp_sock *tp = tcp_sk(sk);
5145
5146         /* RFC1323: H1. Apply PAWS check first. */
5147         if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5148             tp->rx_opt.saw_tstamp &&
5149             tcp_paws_discard(sk, skb)) {
5150                 if (!th->rst) {
5151                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5152                         tcp_send_dupack(sk, skb);
5153                         goto discard;
5154                 }
5155                 /* Reset is accepted even if it did not pass PAWS. */
5156         }
5157
5158         /* Step 1: check sequence number */
5159         if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5160                 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5161                  * (RST) segments are validated by checking their SEQ-fields."
5162                  * And page 69: "If an incoming segment is not acceptable,
5163                  * an acknowledgment should be sent in reply (unless the RST
5164                  * bit is set, if so drop the segment and return)".
5165                  */
5166                 if (!th->rst)
5167                         tcp_send_dupack(sk, skb);
5168                 goto discard;
5169         }
5170
5171         /* Step 2: check RST bit */
5172         if (th->rst) {
5173                 tcp_reset(sk);
5174                 goto discard;
5175         }
5176
5177         /* ts_recent update must be made after we are sure that the packet
5178          * is in window.
5179          */
5180         tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5181
5182         /* step 3: check security and precedence [ignored] */
5183
5184         /* step 4: Check for a SYN in window. */
5185         if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5186                 if (syn_inerr)
5187                         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5188                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5189                 tcp_reset(sk);
5190                 return -1;
5191         }
5192
5193         return 1;
5194
5195 discard:
5196         __kfree_skb(skb);
5197         return 0;
5198 }
5199
5200 /*
5201  *      TCP receive function for the ESTABLISHED state.
5202  *
5203  *      It is split into a fast path and a slow path. The fast path is
5204  *      disabled when:
5205  *      - A zero window was announced from us - zero window probing
5206  *        is only handled properly in the slow path.
5207  *      - Out of order segments arrived.
5208  *      - Urgent data is expected.
5209  *      - There is no buffer space left
5210  *      - Unexpected TCP flags/window values/header lengths are received
5211  *        (detected by checking the TCP header against pred_flags)
5212  *      - Data is sent in both directions. Fast path only supports pure senders
5213  *        or pure receivers (this means either the sequence number or the ack
5214  *        value must stay constant)
5215  *      - Unexpected TCP option.
5216  *
5217  *      When these conditions are not satisfied it drops into a standard
5218  *      receive procedure patterned after RFC793 to handle all cases.
5219  *      The first three cases are guaranteed by proper pred_flags setting,
5220  *      the rest is checked inline. Fast processing is turned on in
5221  *      tcp_data_queue when everything is OK.
5222  */
5223 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5224                         struct tcphdr *th, unsigned len)
5225 {
5226         struct tcp_sock *tp = tcp_sk(sk);
5227         int res;
5228
5229         /*
5230          *      Header prediction.
5231          *      The code loosely follows the one in the famous
5232          *      "30 instruction TCP receive" Van Jacobson mail.
5233          *
5234          *      Van's trick is to deposit buffers into socket queue
5235          *      on a device interrupt, to call tcp_recv function
5236          *      on the receive process context and checksum and copy
5237          *      the buffer to user space. smart...
5238          *
5239          *      Our current scheme is not silly either but we take the
5240          *      extra cost of the net_bh soft interrupt processing...
5241          *      We do checksum and copy also but from device to kernel.
5242          */
5243
5244         tp->rx_opt.saw_tstamp = 0;
5245
5246         /*      pred_flags is 0xS?10 << 16 + snd_wnd
5247          *      if header_prediction is to be made
5248          *      'S' will always be tp->tcp_header_len >> 2
5249          *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5250          *  turn it off (when there are holes in the receive
5251          *       space for instance)
5252          *      PSH flag is ignored.
5253          */
5254
5255         if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5256             TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5257             !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5258                 int tcp_header_len = tp->tcp_header_len;
5259
5260                 /* Timestamp header prediction: tcp_header_len
5261                  * is automatically equal to th->doff*4 due to pred_flags
5262                  * match.
5263                  */
5264
5265                 /* Check timestamp */
5266                 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5267                         /* No? Slow path! */
5268                         if (!tcp_parse_aligned_timestamp(tp, th))
5269                                 goto slow_path;
5270
5271                         /* If PAWS failed, check it more carefully in slow path */
5272                         if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5273                                 goto slow_path;
5274
5275                         /* DO NOT update ts_recent here, if checksum fails
5276                          * and timestamp was corrupted part, it will result
5277                          * in a hung connection since we will drop all
5278                          * future packets due to the PAWS test.
5279                          */
5280                 }
5281
5282                 if (len <= tcp_header_len) {
5283                         /* Bulk data transfer: sender */
5284                         if (len == tcp_header_len) {
5285                                 /* Predicted packet is in window by definition.
5286                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5287                                  * Hence, check seq<=rcv_wup reduces to:
5288                                  */
5289                                 if (tcp_header_len ==
5290                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5291                                     tp->rcv_nxt == tp->rcv_wup)
5292                                         tcp_store_ts_recent(tp);
5293
5294                                 /* We know that such packets are checksummed
5295                                  * on entry.
5296                                  */
5297                                 tcp_ack(sk, skb, 0);
5298                                 __kfree_skb(skb);
5299                                 tcp_data_snd_check(sk);
5300                                 return 0;
5301                         } else { /* Header too small */
5302                                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5303                                 goto discard;
5304                         }
5305                 } else {
5306                         int eaten = 0;
5307                         int copied_early = 0;
5308
5309                         if (tp->copied_seq == tp->rcv_nxt &&
5310                             len - tcp_header_len <= tp->ucopy.len) {
5311 #ifdef CONFIG_NET_DMA
5312                                 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5313                                         copied_early = 1;
5314                                         eaten = 1;
5315                                 }
5316 #endif
5317                                 if (tp->ucopy.task == current &&
5318                                     sock_owned_by_user(sk) && !copied_early) {
5319                                         __set_current_state(TASK_RUNNING);
5320
5321                                         if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5322                                                 eaten = 1;
5323                                 }
5324                                 if (eaten) {
5325                                         /* Predicted packet is in window by definition.
5326                                          * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5327                                          * Hence, check seq<=rcv_wup reduces to:
5328                                          */
5329                                         if (tcp_header_len ==
5330                                             (sizeof(struct tcphdr) +
5331                                              TCPOLEN_TSTAMP_ALIGNED) &&
5332                                             tp->rcv_nxt == tp->rcv_wup)
5333                                                 tcp_store_ts_recent(tp);
5334
5335                                         tcp_rcv_rtt_measure_ts(sk, skb);
5336
5337                                         __skb_pull(skb, tcp_header_len);
5338                                         tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5339                                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5340                                 }
5341                                 if (copied_early)
5342                                         tcp_cleanup_rbuf(sk, skb->len);
5343                         }
5344                         if (!eaten) {
5345                                 if (tcp_checksum_complete_user(sk, skb))
5346                                         goto csum_error;
5347
5348                                 /* Predicted packet is in window by definition.
5349                                  * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5350                                  * Hence, check seq<=rcv_wup reduces to:
5351                                  */
5352                                 if (tcp_header_len ==
5353                                     (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5354                                     tp->rcv_nxt == tp->rcv_wup)
5355                                         tcp_store_ts_recent(tp);
5356
5357                                 tcp_rcv_rtt_measure_ts(sk, skb);
5358
5359                                 if ((int)skb->truesize > sk->sk_forward_alloc)
5360                                         goto step5;
5361
5362                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5363
5364                                 /* Bulk data transfer: receiver */
5365                                 __skb_pull(skb, tcp_header_len);
5366                                 __skb_queue_tail(&sk->sk_receive_queue, skb);
5367                                 skb_set_owner_r(skb, sk);
5368                                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5369                         }
5370
5371                         tcp_event_data_recv(sk, skb);
5372
5373                         if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5374                                 /* Well, only one small jumplet in fast path... */
5375                                 tcp_ack(sk, skb, FLAG_DATA);
5376                                 tcp_data_snd_check(sk);
5377                                 if (!inet_csk_ack_scheduled(sk))
5378                                         goto no_ack;
5379                         }
5380
5381                         if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5382                                 __tcp_ack_snd_check(sk, 0);
5383 no_ack:
5384 #ifdef CONFIG_NET_DMA
5385                         if (copied_early)
5386                                 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5387                         else
5388 #endif
5389                         if (eaten)
5390                                 __kfree_skb(skb);
5391                         else
5392                                 sk->sk_data_ready(sk, 0);
5393                         return 0;
5394                 }
5395         }
5396
5397 slow_path:
5398         if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5399                 goto csum_error;
5400
5401         /*
5402          *      Standard slow path.
5403          */
5404
5405         res = tcp_validate_incoming(sk, skb, th, 1);
5406         if (res <= 0)
5407                 return -res;
5408
5409 step5:
5410         if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5411                 goto discard;
5412
5413         tcp_rcv_rtt_measure_ts(sk, skb);
5414
5415         /* Process urgent data. */
5416         tcp_urg(sk, skb, th);
5417
5418         /* step 7: process the segment text */
5419         tcp_data_queue(sk, skb);
5420
5421         tcp_data_snd_check(sk);
5422         tcp_ack_snd_check(sk);
5423         return 0;
5424
5425 csum_error:
5426         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5427
5428 discard:
5429         __kfree_skb(skb);
5430         return 0;
5431 }
5432 EXPORT_SYMBOL(tcp_rcv_established);
5433
5434 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5435                                          struct tcphdr *th, unsigned len)
5436 {
5437         u8 *hash_location;
5438         struct inet_connection_sock *icsk = inet_csk(sk);
5439         struct tcp_sock *tp = tcp_sk(sk);
5440         struct tcp_cookie_values *cvp = tp->cookie_values;
5441         int saved_clamp = tp->rx_opt.mss_clamp;
5442
5443         tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5444
5445         if (th->ack) {
5446                 /* rfc793:
5447                  * "If the state is SYN-SENT then
5448                  *    first check the ACK bit
5449                  *      If the ACK bit is set
5450                  *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5451                  *        a reset (unless the RST bit is set, if so drop
5452                  *        the segment and return)"
5453                  *
5454                  *  We do not send data with SYN, so that RFC-correct
5455                  *  test reduces to:
5456                  */
5457                 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5458                         goto reset_and_undo;
5459
5460                 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5461                     !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5462                              tcp_time_stamp)) {
5463                         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5464                         goto reset_and_undo;
5465                 }
5466
5467                 /* Now ACK is acceptable.
5468                  *
5469                  * "If the RST bit is set
5470                  *    If the ACK was acceptable then signal the user "error:
5471                  *    connection reset", drop the segment, enter CLOSED state,
5472                  *    delete TCB, and return."
5473                  */
5474
5475                 if (th->rst) {
5476                         tcp_reset(sk);
5477                         goto discard;
5478                 }
5479
5480                 /* rfc793:
5481                  *   "fifth, if neither of the SYN or RST bits is set then
5482                  *    drop the segment and return."
5483                  *
5484                  *    See note below!
5485                  *                                        --ANK(990513)
5486                  */
5487                 if (!th->syn)
5488                         goto discard_and_undo;
5489
5490                 /* rfc793:
5491                  *   "If the SYN bit is on ...
5492                  *    are acceptable then ...
5493                  *    (our SYN has been ACKed), change the connection
5494                  *    state to ESTABLISHED..."
5495                  */
5496
5497                 TCP_ECN_rcv_synack(tp, th);
5498
5499                 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5500                 tcp_ack(sk, skb, FLAG_SLOWPATH);
5501
5502                 /* Ok.. it's good. Set up sequence numbers and
5503                  * move to established.
5504                  */
5505                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5506                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507
5508                 /* RFC1323: The window in SYN & SYN/ACK segments is
5509                  * never scaled.
5510                  */
5511                 tp->snd_wnd = ntohs(th->window);
5512                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5513
5514                 if (!tp->rx_opt.wscale_ok) {
5515                         tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5516                         tp->window_clamp = min(tp->window_clamp, 65535U);
5517                 }
5518
5519                 if (tp->rx_opt.saw_tstamp) {
5520                         tp->rx_opt.tstamp_ok       = 1;
5521                         tp->tcp_header_len =
5522                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5523                         tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5524                         tcp_store_ts_recent(tp);
5525                 } else {
5526                         tp->tcp_header_len = sizeof(struct tcphdr);
5527                 }
5528
5529                 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5530                         tcp_enable_fack(tp);
5531
5532                 tcp_mtup_init(sk);
5533                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5534                 tcp_initialize_rcv_mss(sk);
5535
5536                 /* Remember, tcp_poll() does not lock socket!
5537                  * Change state from SYN-SENT only after copied_seq
5538                  * is initialized. */
5539                 tp->copied_seq = tp->rcv_nxt;
5540
5541                 if (cvp != NULL &&
5542                     cvp->cookie_pair_size > 0 &&
5543                     tp->rx_opt.cookie_plus > 0) {
5544                         int cookie_size = tp->rx_opt.cookie_plus
5545                                         - TCPOLEN_COOKIE_BASE;
5546                         int cookie_pair_size = cookie_size
5547                                              + cvp->cookie_desired;
5548
5549                         /* A cookie extension option was sent and returned.
5550                          * Note that each incoming SYNACK replaces the
5551                          * Responder cookie.  The initial exchange is most
5552                          * fragile, as protection against spoofing relies
5553                          * entirely upon the sequence and timestamp (above).
5554                          * This replacement strategy allows the correct pair to
5555                          * pass through, while any others will be filtered via
5556                          * Responder verification later.
5557                          */
5558                         if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5559                                 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5560                                        hash_location, cookie_size);
5561                                 cvp->cookie_pair_size = cookie_pair_size;
5562                         }
5563                 }
5564
5565                 smp_mb();
5566                 tcp_set_state(sk, TCP_ESTABLISHED);
5567
5568                 security_inet_conn_established(sk, skb);
5569
5570                 /* Make sure socket is routed, for correct metrics.  */
5571                 icsk->icsk_af_ops->rebuild_header(sk);
5572
5573                 tcp_init_metrics(sk);
5574
5575                 tcp_init_congestion_control(sk);
5576
5577                 /* Prevent spurious tcp_cwnd_restart() on first data
5578                  * packet.
5579                  */
5580                 tp->lsndtime = tcp_time_stamp;
5581
5582                 tcp_init_buffer_space(sk);
5583
5584                 if (sock_flag(sk, SOCK_KEEPOPEN))
5585                         inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5586
5587                 if (!tp->rx_opt.snd_wscale)
5588                         __tcp_fast_path_on(tp, tp->snd_wnd);
5589                 else
5590                         tp->pred_flags = 0;
5591
5592                 if (!sock_flag(sk, SOCK_DEAD)) {
5593                         sk->sk_state_change(sk);
5594                         sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5595                 }
5596
5597                 if (sk->sk_write_pending ||
5598                     icsk->icsk_accept_queue.rskq_defer_accept ||
5599                     icsk->icsk_ack.pingpong) {
5600                         /* Save one ACK. Data will be ready after
5601                          * several ticks, if write_pending is set.
5602                          *
5603                          * It may be deleted, but with this feature tcpdumps
5604                          * look so _wonderfully_ clever, that I was not able
5605                          * to stand against the temptation 8)     --ANK
5606                          */
5607                         inet_csk_schedule_ack(sk);
5608                         icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5609                         icsk->icsk_ack.ato       = TCP_ATO_MIN;
5610                         tcp_incr_quickack(sk);
5611                         tcp_enter_quickack_mode(sk);
5612                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5613                                                   TCP_DELACK_MAX, TCP_RTO_MAX);
5614
5615 discard:
5616                         __kfree_skb(skb);
5617                         return 0;
5618                 } else {
5619                         tcp_send_ack(sk);
5620                 }
5621                 return -1;
5622         }
5623
5624         /* No ACK in the segment */
5625
5626         if (th->rst) {
5627                 /* rfc793:
5628                  * "If the RST bit is set
5629                  *
5630                  *      Otherwise (no ACK) drop the segment and return."
5631                  */
5632
5633                 goto discard_and_undo;
5634         }
5635
5636         /* PAWS check. */
5637         if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5638             tcp_paws_reject(&tp->rx_opt, 0))
5639                 goto discard_and_undo;
5640
5641         if (th->syn) {
5642                 /* We see SYN without ACK. It is attempt of
5643                  * simultaneous connect with crossed SYNs.
5644                  * Particularly, it can be connect to self.
5645                  */
5646                 tcp_set_state(sk, TCP_SYN_RECV);
5647
5648                 if (tp->rx_opt.saw_tstamp) {
5649                         tp->rx_opt.tstamp_ok = 1;
5650                         tcp_store_ts_recent(tp);
5651                         tp->tcp_header_len =
5652                                 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5653                 } else {
5654                         tp->tcp_header_len = sizeof(struct tcphdr);
5655                 }
5656
5657                 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5658                 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5659
5660                 /* RFC1323: The window in SYN & SYN/ACK segments is
5661                  * never scaled.
5662                  */
5663                 tp->snd_wnd    = ntohs(th->window);
5664                 tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5665                 tp->max_window = tp->snd_wnd;
5666
5667                 TCP_ECN_rcv_syn(tp, th);
5668
5669                 tcp_mtup_init(sk);
5670                 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5671                 tcp_initialize_rcv_mss(sk);
5672
5673                 tcp_send_synack(sk);
5674 #if 0
5675                 /* Note, we could accept data and URG from this segment.
5676                  * There are no obstacles to make this.
5677                  *
5678                  * However, if we ignore data in ACKless segments sometimes,
5679                  * we have no reasons to accept it sometimes.
5680                  * Also, seems the code doing it in step6 of tcp_rcv_state_process
5681                  * is not flawless. So, discard packet for sanity.
5682                  * Uncomment this return to process the data.
5683                  */
5684                 return -1;
5685 #else
5686                 goto discard;
5687 #endif
5688         }
5689         /* "fifth, if neither of the SYN or RST bits is set then
5690          * drop the segment and return."
5691          */
5692
5693 discard_and_undo:
5694         tcp_clear_options(&tp->rx_opt);
5695         tp->rx_opt.mss_clamp = saved_clamp;
5696         goto discard;
5697
5698 reset_and_undo:
5699         tcp_clear_options(&tp->rx_opt);
5700         tp->rx_opt.mss_clamp = saved_clamp;
5701         return 1;
5702 }
5703
5704 /*
5705  *      This function implements the receiving procedure of RFC 793 for
5706  *      all states except ESTABLISHED and TIME_WAIT.
5707  *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5708  *      address independent.
5709  */
5710
5711 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5712                           struct tcphdr *th, unsigned len)
5713 {
5714         struct tcp_sock *tp = tcp_sk(sk);
5715         struct inet_connection_sock *icsk = inet_csk(sk);
5716         int queued = 0;
5717         int res;
5718
5719         tp->rx_opt.saw_tstamp = 0;
5720
5721         switch (sk->sk_state) {
5722         case TCP_CLOSE:
5723                 goto discard;
5724
5725         case TCP_LISTEN:
5726                 if (th->ack)
5727                         return 1;
5728
5729                 if (th->rst)
5730                         goto discard;
5731
5732                 if (th->syn) {
5733                         if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5734                                 return 1;
5735
5736                         /* Now we have several options: In theory there is
5737                          * nothing else in the frame. KA9Q has an option to
5738                          * send data with the syn, BSD accepts data with the
5739                          * syn up to the [to be] advertised window and
5740                          * Solaris 2.1 gives you a protocol error. For now
5741                          * we just ignore it, that fits the spec precisely
5742                          * and avoids incompatibilities. It would be nice in
5743                          * future to drop through and process the data.
5744                          *
5745                          * Now that TTCP is starting to be used we ought to
5746                          * queue this data.
5747                          * But, this leaves one open to an easy denial of
5748                          * service attack, and SYN cookies can't defend
5749                          * against this problem. So, we drop the data
5750                          * in the interest of security over speed unless
5751                          * it's still in use.
5752                          */
5753                         kfree_skb(skb);
5754                         return 0;
5755                 }
5756                 goto discard;
5757
5758         case TCP_SYN_SENT:
5759                 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5760                 if (queued >= 0)
5761                         return queued;
5762
5763                 /* Do step6 onward by hand. */
5764                 tcp_urg(sk, skb, th);
5765                 __kfree_skb(skb);
5766                 tcp_data_snd_check(sk);
5767                 return 0;
5768         }
5769
5770         res = tcp_validate_incoming(sk, skb, th, 0);
5771         if (res <= 0)
5772                 return -res;
5773
5774         /* step 5: check the ACK field */
5775         if (th->ack) {
5776                 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5777
5778                 switch (sk->sk_state) {
5779                 case TCP_SYN_RECV:
5780                         if (acceptable) {
5781                                 tp->copied_seq = tp->rcv_nxt;
5782                                 smp_mb();
5783                                 tcp_set_state(sk, TCP_ESTABLISHED);
5784                                 sk->sk_state_change(sk);
5785
5786                                 /* Note, that this wakeup is only for marginal
5787                                  * crossed SYN case. Passively open sockets
5788                                  * are not waked up, because sk->sk_sleep ==
5789                                  * NULL and sk->sk_socket == NULL.
5790                                  */
5791                                 if (sk->sk_socket)
5792                                         sk_wake_async(sk,
5793                                                       SOCK_WAKE_IO, POLL_OUT);
5794
5795                                 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5796                                 tp->snd_wnd = ntohs(th->window) <<
5797                                               tp->rx_opt.snd_wscale;
5798                                 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5799
5800                                 /* tcp_ack considers this ACK as duplicate
5801                                  * and does not calculate rtt.
5802                                  * Force it here.
5803                                  */
5804                                 tcp_ack_update_rtt(sk, 0, 0);
5805
5806                                 if (tp->rx_opt.tstamp_ok)
5807                                         tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5808
5809                                 /* Make sure socket is routed, for
5810                                  * correct metrics.
5811                                  */
5812                                 icsk->icsk_af_ops->rebuild_header(sk);
5813
5814                                 tcp_init_metrics(sk);
5815
5816                                 tcp_init_congestion_control(sk);
5817
5818                                 /* Prevent spurious tcp_cwnd_restart() on
5819                                  * first data packet.
5820                                  */
5821                                 tp->lsndtime = tcp_time_stamp;
5822
5823                                 tcp_mtup_init(sk);
5824                                 tcp_initialize_rcv_mss(sk);
5825                                 tcp_init_buffer_space(sk);
5826                                 tcp_fast_path_on(tp);
5827                         } else {
5828                                 return 1;
5829                         }
5830                         break;
5831
5832                 case TCP_FIN_WAIT1:
5833                         if (tp->snd_una == tp->write_seq) {
5834                                 tcp_set_state(sk, TCP_FIN_WAIT2);
5835                                 sk->sk_shutdown |= SEND_SHUTDOWN;
5836                                 dst_confirm(__sk_dst_get(sk));
5837
5838                                 if (!sock_flag(sk, SOCK_DEAD))
5839                                         /* Wake up lingering close() */
5840                                         sk->sk_state_change(sk);
5841                                 else {
5842                                         int tmo;
5843
5844                                         if (tp->linger2 < 0 ||
5845                                             (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5846                                              after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5847                                                 tcp_done(sk);
5848                                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5849                                                 return 1;
5850                                         }
5851
5852                                         tmo = tcp_fin_time(sk);
5853                                         if (tmo > TCP_TIMEWAIT_LEN) {
5854                                                 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5855                                         } else if (th->fin || sock_owned_by_user(sk)) {
5856                                                 /* Bad case. We could lose such FIN otherwise.
5857                                                  * It is not a big problem, but it looks confusing
5858                                                  * and not so rare event. We still can lose it now,
5859                                                  * if it spins in bh_lock_sock(), but it is really
5860                                                  * marginal case.
5861                                                  */
5862                                                 inet_csk_reset_keepalive_timer(sk, tmo);
5863                                         } else {
5864                                                 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5865                                                 goto discard;
5866                                         }
5867                                 }
5868                         }
5869                         break;
5870
5871                 case TCP_CLOSING:
5872                         if (tp->snd_una == tp->write_seq) {
5873                                 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5874                                 goto discard;
5875                         }
5876                         break;
5877
5878                 case TCP_LAST_ACK:
5879                         if (tp->snd_una == tp->write_seq) {
5880                                 tcp_update_metrics(sk);
5881                                 tcp_done(sk);
5882                                 goto discard;
5883                         }
5884                         break;
5885                 }
5886         } else
5887                 goto discard;
5888
5889         /* step 6: check the URG bit */
5890         tcp_urg(sk, skb, th);
5891
5892         /* step 7: process the segment text */
5893         switch (sk->sk_state) {
5894         case TCP_CLOSE_WAIT:
5895         case TCP_CLOSING:
5896         case TCP_LAST_ACK:
5897                 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5898                         break;
5899         case TCP_FIN_WAIT1:
5900         case TCP_FIN_WAIT2:
5901                 /* RFC 793 says to queue data in these states,
5902                  * RFC 1122 says we MUST send a reset.
5903                  * BSD 4.4 also does reset.
5904                  */
5905                 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5906                         if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5907                             after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5908                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5909                                 tcp_reset(sk);
5910                                 return 1;
5911                         }
5912                 }
5913                 /* Fall through */
5914         case TCP_ESTABLISHED:
5915                 tcp_data_queue(sk, skb);
5916                 queued = 1;
5917                 break;
5918         }
5919
5920         /* tcp_data could move socket to TIME-WAIT */
5921         if (sk->sk_state != TCP_CLOSE) {
5922                 tcp_data_snd_check(sk);
5923                 tcp_ack_snd_check(sk);
5924         }
5925
5926         if (!queued) {
5927 discard:
5928                 __kfree_skb(skb);
5929         }
5930         return 0;
5931 }
5932 EXPORT_SYMBOL(tcp_rcv_state_process);