]> bbs.cooldavid.org Git - net-next-2.6.git/blob - mm/ksm.c
ksm: fix mlockfreed to munlocked
[net-next-2.6.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/swap.h>
34 #include <linux/ksm.h>
35
36 #include <asm/tlbflush.h>
37 #include "internal.h"
38
39 /*
40  * A few notes about the KSM scanning process,
41  * to make it easier to understand the data structures below:
42  *
43  * In order to reduce excessive scanning, KSM sorts the memory pages by their
44  * contents into a data structure that holds pointers to the pages' locations.
45  *
46  * Since the contents of the pages may change at any moment, KSM cannot just
47  * insert the pages into a normal sorted tree and expect it to find anything.
48  * Therefore KSM uses two data structures - the stable and the unstable tree.
49  *
50  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
51  * by their contents.  Because each such page is write-protected, searching on
52  * this tree is fully assured to be working (except when pages are unmapped),
53  * and therefore this tree is called the stable tree.
54  *
55  * In addition to the stable tree, KSM uses a second data structure called the
56  * unstable tree: this tree holds pointers to pages which have been found to
57  * be "unchanged for a period of time".  The unstable tree sorts these pages
58  * by their contents, but since they are not write-protected, KSM cannot rely
59  * upon the unstable tree to work correctly - the unstable tree is liable to
60  * be corrupted as its contents are modified, and so it is called unstable.
61  *
62  * KSM solves this problem by several techniques:
63  *
64  * 1) The unstable tree is flushed every time KSM completes scanning all
65  *    memory areas, and then the tree is rebuilt again from the beginning.
66  * 2) KSM will only insert into the unstable tree, pages whose hash value
67  *    has not changed since the previous scan of all memory areas.
68  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
69  *    colors of the nodes and not on their contents, assuring that even when
70  *    the tree gets "corrupted" it won't get out of balance, so scanning time
71  *    remains the same (also, searching and inserting nodes in an rbtree uses
72  *    the same algorithm, so we have no overhead when we flush and rebuild).
73  * 4) KSM never flushes the stable tree, which means that even if it were to
74  *    take 10 attempts to find a page in the unstable tree, once it is found,
75  *    it is secured in the stable tree.  (When we scan a new page, we first
76  *    compare it against the stable tree, and then against the unstable tree.)
77  */
78
79 /**
80  * struct mm_slot - ksm information per mm that is being scanned
81  * @link: link to the mm_slots hash list
82  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
83  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
84  * @mm: the mm that this information is valid for
85  */
86 struct mm_slot {
87         struct hlist_node link;
88         struct list_head mm_list;
89         struct rmap_item *rmap_list;
90         struct mm_struct *mm;
91 };
92
93 /**
94  * struct ksm_scan - cursor for scanning
95  * @mm_slot: the current mm_slot we are scanning
96  * @address: the next address inside that to be scanned
97  * @rmap_list: link to the next rmap to be scanned in the rmap_list
98  * @seqnr: count of completed full scans (needed when removing unstable node)
99  *
100  * There is only the one ksm_scan instance of this cursor structure.
101  */
102 struct ksm_scan {
103         struct mm_slot *mm_slot;
104         unsigned long address;
105         struct rmap_item **rmap_list;
106         unsigned long seqnr;
107 };
108
109 /**
110  * struct stable_node - node of the stable rbtree
111  * @page: pointer to struct page of the ksm page
112  * @node: rb node of this ksm page in the stable tree
113  * @hlist: hlist head of rmap_items using this ksm page
114  */
115 struct stable_node {
116         struct page *page;
117         struct rb_node node;
118         struct hlist_head hlist;
119 };
120
121 /**
122  * struct rmap_item - reverse mapping item for virtual addresses
123  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
124  * @filler: unused space we're making available in this patch
125  * @mm: the memory structure this rmap_item is pointing into
126  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
127  * @oldchecksum: previous checksum of the page at that virtual address
128  * @node: rb node of this rmap_item in the unstable tree
129  * @head: pointer to stable_node heading this list in the stable tree
130  * @hlist: link into hlist of rmap_items hanging off that stable_node
131  */
132 struct rmap_item {
133         struct rmap_item *rmap_list;
134         unsigned long filler;
135         struct mm_struct *mm;
136         unsigned long address;          /* + low bits used for flags below */
137         unsigned int oldchecksum;       /* when unstable */
138         union {
139                 struct rb_node node;    /* when node of unstable tree */
140                 struct {                /* when listed from stable tree */
141                         struct stable_node *head;
142                         struct hlist_node hlist;
143                 };
144         };
145 };
146
147 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
148 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
149 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
150
151 /* The stable and unstable tree heads */
152 static struct rb_root root_stable_tree = RB_ROOT;
153 static struct rb_root root_unstable_tree = RB_ROOT;
154
155 #define MM_SLOTS_HASH_HEADS 1024
156 static struct hlist_head *mm_slots_hash;
157
158 static struct mm_slot ksm_mm_head = {
159         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
160 };
161 static struct ksm_scan ksm_scan = {
162         .mm_slot = &ksm_mm_head,
163 };
164
165 static struct kmem_cache *rmap_item_cache;
166 static struct kmem_cache *stable_node_cache;
167 static struct kmem_cache *mm_slot_cache;
168
169 /* The number of nodes in the stable tree */
170 static unsigned long ksm_pages_shared;
171
172 /* The number of page slots additionally sharing those nodes */
173 static unsigned long ksm_pages_sharing;
174
175 /* The number of nodes in the unstable tree */
176 static unsigned long ksm_pages_unshared;
177
178 /* The number of rmap_items in use: to calculate pages_volatile */
179 static unsigned long ksm_rmap_items;
180
181 /* Limit on the number of unswappable pages used */
182 static unsigned long ksm_max_kernel_pages;
183
184 /* Number of pages ksmd should scan in one batch */
185 static unsigned int ksm_thread_pages_to_scan = 100;
186
187 /* Milliseconds ksmd should sleep between batches */
188 static unsigned int ksm_thread_sleep_millisecs = 20;
189
190 #define KSM_RUN_STOP    0
191 #define KSM_RUN_MERGE   1
192 #define KSM_RUN_UNMERGE 2
193 static unsigned int ksm_run = KSM_RUN_STOP;
194
195 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196 static DEFINE_MUTEX(ksm_thread_mutex);
197 static DEFINE_SPINLOCK(ksm_mmlist_lock);
198
199 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200                 sizeof(struct __struct), __alignof__(struct __struct),\
201                 (__flags), NULL)
202
203 static int __init ksm_slab_init(void)
204 {
205         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206         if (!rmap_item_cache)
207                 goto out;
208
209         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210         if (!stable_node_cache)
211                 goto out_free1;
212
213         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214         if (!mm_slot_cache)
215                 goto out_free2;
216
217         return 0;
218
219 out_free2:
220         kmem_cache_destroy(stable_node_cache);
221 out_free1:
222         kmem_cache_destroy(rmap_item_cache);
223 out:
224         return -ENOMEM;
225 }
226
227 static void __init ksm_slab_free(void)
228 {
229         kmem_cache_destroy(mm_slot_cache);
230         kmem_cache_destroy(stable_node_cache);
231         kmem_cache_destroy(rmap_item_cache);
232         mm_slot_cache = NULL;
233 }
234
235 static inline struct rmap_item *alloc_rmap_item(void)
236 {
237         struct rmap_item *rmap_item;
238
239         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240         if (rmap_item)
241                 ksm_rmap_items++;
242         return rmap_item;
243 }
244
245 static inline void free_rmap_item(struct rmap_item *rmap_item)
246 {
247         ksm_rmap_items--;
248         rmap_item->mm = NULL;   /* debug safety */
249         kmem_cache_free(rmap_item_cache, rmap_item);
250 }
251
252 static inline struct stable_node *alloc_stable_node(void)
253 {
254         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255 }
256
257 static inline void free_stable_node(struct stable_node *stable_node)
258 {
259         kmem_cache_free(stable_node_cache, stable_node);
260 }
261
262 static inline struct mm_slot *alloc_mm_slot(void)
263 {
264         if (!mm_slot_cache)     /* initialization failed */
265                 return NULL;
266         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267 }
268
269 static inline void free_mm_slot(struct mm_slot *mm_slot)
270 {
271         kmem_cache_free(mm_slot_cache, mm_slot);
272 }
273
274 static int __init mm_slots_hash_init(void)
275 {
276         mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
277                                 GFP_KERNEL);
278         if (!mm_slots_hash)
279                 return -ENOMEM;
280         return 0;
281 }
282
283 static void __init mm_slots_hash_free(void)
284 {
285         kfree(mm_slots_hash);
286 }
287
288 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
289 {
290         struct mm_slot *mm_slot;
291         struct hlist_head *bucket;
292         struct hlist_node *node;
293
294         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
295                                 % MM_SLOTS_HASH_HEADS];
296         hlist_for_each_entry(mm_slot, node, bucket, link) {
297                 if (mm == mm_slot->mm)
298                         return mm_slot;
299         }
300         return NULL;
301 }
302
303 static void insert_to_mm_slots_hash(struct mm_struct *mm,
304                                     struct mm_slot *mm_slot)
305 {
306         struct hlist_head *bucket;
307
308         bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
309                                 % MM_SLOTS_HASH_HEADS];
310         mm_slot->mm = mm;
311         hlist_add_head(&mm_slot->link, bucket);
312 }
313
314 static inline int in_stable_tree(struct rmap_item *rmap_item)
315 {
316         return rmap_item->address & STABLE_FLAG;
317 }
318
319 /*
320  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321  * page tables after it has passed through ksm_exit() - which, if necessary,
322  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
323  * a special flag: they can just back out as soon as mm_users goes to zero.
324  * ksm_test_exit() is used throughout to make this test for exit: in some
325  * places for correctness, in some places just to avoid unnecessary work.
326  */
327 static inline bool ksm_test_exit(struct mm_struct *mm)
328 {
329         return atomic_read(&mm->mm_users) == 0;
330 }
331
332 /*
333  * We use break_ksm to break COW on a ksm page: it's a stripped down
334  *
335  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336  *              put_page(page);
337  *
338  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339  * in case the application has unmapped and remapped mm,addr meanwhile.
340  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
341  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342  */
343 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
344 {
345         struct page *page;
346         int ret = 0;
347
348         do {
349                 cond_resched();
350                 page = follow_page(vma, addr, FOLL_GET);
351                 if (!page)
352                         break;
353                 if (PageKsm(page))
354                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
355                                                         FAULT_FLAG_WRITE);
356                 else
357                         ret = VM_FAULT_WRITE;
358                 put_page(page);
359         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360         /*
361          * We must loop because handle_mm_fault() may back out if there's
362          * any difficulty e.g. if pte accessed bit gets updated concurrently.
363          *
364          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365          * COW has been broken, even if the vma does not permit VM_WRITE;
366          * but note that a concurrent fault might break PageKsm for us.
367          *
368          * VM_FAULT_SIGBUS could occur if we race with truncation of the
369          * backing file, which also invalidates anonymous pages: that's
370          * okay, that truncation will have unmapped the PageKsm for us.
371          *
372          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374          * current task has TIF_MEMDIE set, and will be OOM killed on return
375          * to user; and ksmd, having no mm, would never be chosen for that.
376          *
377          * But if the mm is in a limited mem_cgroup, then the fault may fail
378          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379          * even ksmd can fail in this way - though it's usually breaking ksm
380          * just to undo a merge it made a moment before, so unlikely to oom.
381          *
382          * That's a pity: we might therefore have more kernel pages allocated
383          * than we're counting as nodes in the stable tree; but ksm_do_scan
384          * will retry to break_cow on each pass, so should recover the page
385          * in due course.  The important thing is to not let VM_MERGEABLE
386          * be cleared while any such pages might remain in the area.
387          */
388         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
389 }
390
391 static void break_cow(struct rmap_item *rmap_item)
392 {
393         struct mm_struct *mm = rmap_item->mm;
394         unsigned long addr = rmap_item->address;
395         struct vm_area_struct *vma;
396
397         down_read(&mm->mmap_sem);
398         if (ksm_test_exit(mm))
399                 goto out;
400         vma = find_vma(mm, addr);
401         if (!vma || vma->vm_start > addr)
402                 goto out;
403         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
404                 goto out;
405         break_ksm(vma, addr);
406 out:
407         up_read(&mm->mmap_sem);
408 }
409
410 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
411 {
412         struct mm_struct *mm = rmap_item->mm;
413         unsigned long addr = rmap_item->address;
414         struct vm_area_struct *vma;
415         struct page *page;
416
417         down_read(&mm->mmap_sem);
418         if (ksm_test_exit(mm))
419                 goto out;
420         vma = find_vma(mm, addr);
421         if (!vma || vma->vm_start > addr)
422                 goto out;
423         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
424                 goto out;
425
426         page = follow_page(vma, addr, FOLL_GET);
427         if (!page)
428                 goto out;
429         if (PageAnon(page)) {
430                 flush_anon_page(vma, page, addr);
431                 flush_dcache_page(page);
432         } else {
433                 put_page(page);
434 out:            page = NULL;
435         }
436         up_read(&mm->mmap_sem);
437         return page;
438 }
439
440 /*
441  * Removing rmap_item from stable or unstable tree.
442  * This function will clean the information from the stable/unstable tree.
443  */
444 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
445 {
446         if (rmap_item->address & STABLE_FLAG) {
447                 struct stable_node *stable_node;
448
449                 stable_node = rmap_item->head;
450                 hlist_del(&rmap_item->hlist);
451                 if (stable_node->hlist.first)
452                         ksm_pages_sharing--;
453                 else {
454                         set_page_stable_node(stable_node->page, NULL);
455                         put_page(stable_node->page);
456
457                         rb_erase(&stable_node->node, &root_stable_tree);
458                         free_stable_node(stable_node);
459                         ksm_pages_shared--;
460                 }
461
462                 rmap_item->address &= PAGE_MASK;
463
464         } else if (rmap_item->address & UNSTABLE_FLAG) {
465                 unsigned char age;
466                 /*
467                  * Usually ksmd can and must skip the rb_erase, because
468                  * root_unstable_tree was already reset to RB_ROOT.
469                  * But be careful when an mm is exiting: do the rb_erase
470                  * if this rmap_item was inserted by this scan, rather
471                  * than left over from before.
472                  */
473                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
474                 BUG_ON(age > 1);
475                 if (!age)
476                         rb_erase(&rmap_item->node, &root_unstable_tree);
477
478                 ksm_pages_unshared--;
479                 rmap_item->address &= PAGE_MASK;
480         }
481
482         cond_resched();         /* we're called from many long loops */
483 }
484
485 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
486                                        struct rmap_item **rmap_list)
487 {
488         while (*rmap_list) {
489                 struct rmap_item *rmap_item = *rmap_list;
490                 *rmap_list = rmap_item->rmap_list;
491                 remove_rmap_item_from_tree(rmap_item);
492                 free_rmap_item(rmap_item);
493         }
494 }
495
496 /*
497  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
498  * than check every pte of a given vma, the locking doesn't quite work for
499  * that - an rmap_item is assigned to the stable tree after inserting ksm
500  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
501  * rmap_items from parent to child at fork time (so as not to waste time
502  * if exit comes before the next scan reaches it).
503  *
504  * Similarly, although we'd like to remove rmap_items (so updating counts
505  * and freeing memory) when unmerging an area, it's easier to leave that
506  * to the next pass of ksmd - consider, for example, how ksmd might be
507  * in cmp_and_merge_page on one of the rmap_items we would be removing.
508  */
509 static int unmerge_ksm_pages(struct vm_area_struct *vma,
510                              unsigned long start, unsigned long end)
511 {
512         unsigned long addr;
513         int err = 0;
514
515         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
516                 if (ksm_test_exit(vma->vm_mm))
517                         break;
518                 if (signal_pending(current))
519                         err = -ERESTARTSYS;
520                 else
521                         err = break_ksm(vma, addr);
522         }
523         return err;
524 }
525
526 #ifdef CONFIG_SYSFS
527 /*
528  * Only called through the sysfs control interface:
529  */
530 static int unmerge_and_remove_all_rmap_items(void)
531 {
532         struct mm_slot *mm_slot;
533         struct mm_struct *mm;
534         struct vm_area_struct *vma;
535         int err = 0;
536
537         spin_lock(&ksm_mmlist_lock);
538         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
539                                                 struct mm_slot, mm_list);
540         spin_unlock(&ksm_mmlist_lock);
541
542         for (mm_slot = ksm_scan.mm_slot;
543                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
544                 mm = mm_slot->mm;
545                 down_read(&mm->mmap_sem);
546                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
547                         if (ksm_test_exit(mm))
548                                 break;
549                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
550                                 continue;
551                         err = unmerge_ksm_pages(vma,
552                                                 vma->vm_start, vma->vm_end);
553                         if (err)
554                                 goto error;
555                 }
556
557                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
558
559                 spin_lock(&ksm_mmlist_lock);
560                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
561                                                 struct mm_slot, mm_list);
562                 if (ksm_test_exit(mm)) {
563                         hlist_del(&mm_slot->link);
564                         list_del(&mm_slot->mm_list);
565                         spin_unlock(&ksm_mmlist_lock);
566
567                         free_mm_slot(mm_slot);
568                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
569                         up_read(&mm->mmap_sem);
570                         mmdrop(mm);
571                 } else {
572                         spin_unlock(&ksm_mmlist_lock);
573                         up_read(&mm->mmap_sem);
574                 }
575         }
576
577         ksm_scan.seqnr = 0;
578         return 0;
579
580 error:
581         up_read(&mm->mmap_sem);
582         spin_lock(&ksm_mmlist_lock);
583         ksm_scan.mm_slot = &ksm_mm_head;
584         spin_unlock(&ksm_mmlist_lock);
585         return err;
586 }
587 #endif /* CONFIG_SYSFS */
588
589 static u32 calc_checksum(struct page *page)
590 {
591         u32 checksum;
592         void *addr = kmap_atomic(page, KM_USER0);
593         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
594         kunmap_atomic(addr, KM_USER0);
595         return checksum;
596 }
597
598 static int memcmp_pages(struct page *page1, struct page *page2)
599 {
600         char *addr1, *addr2;
601         int ret;
602
603         addr1 = kmap_atomic(page1, KM_USER0);
604         addr2 = kmap_atomic(page2, KM_USER1);
605         ret = memcmp(addr1, addr2, PAGE_SIZE);
606         kunmap_atomic(addr2, KM_USER1);
607         kunmap_atomic(addr1, KM_USER0);
608         return ret;
609 }
610
611 static inline int pages_identical(struct page *page1, struct page *page2)
612 {
613         return !memcmp_pages(page1, page2);
614 }
615
616 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
617                               pte_t *orig_pte)
618 {
619         struct mm_struct *mm = vma->vm_mm;
620         unsigned long addr;
621         pte_t *ptep;
622         spinlock_t *ptl;
623         int swapped;
624         int err = -EFAULT;
625
626         addr = page_address_in_vma(page, vma);
627         if (addr == -EFAULT)
628                 goto out;
629
630         ptep = page_check_address(page, mm, addr, &ptl, 0);
631         if (!ptep)
632                 goto out;
633
634         if (pte_write(*ptep)) {
635                 pte_t entry;
636
637                 swapped = PageSwapCache(page);
638                 flush_cache_page(vma, addr, page_to_pfn(page));
639                 /*
640                  * Ok this is tricky, when get_user_pages_fast() run it doesnt
641                  * take any lock, therefore the check that we are going to make
642                  * with the pagecount against the mapcount is racey and
643                  * O_DIRECT can happen right after the check.
644                  * So we clear the pte and flush the tlb before the check
645                  * this assure us that no O_DIRECT can happen after the check
646                  * or in the middle of the check.
647                  */
648                 entry = ptep_clear_flush(vma, addr, ptep);
649                 /*
650                  * Check that no O_DIRECT or similar I/O is in progress on the
651                  * page
652                  */
653                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
654                         set_pte_at_notify(mm, addr, ptep, entry);
655                         goto out_unlock;
656                 }
657                 entry = pte_wrprotect(entry);
658                 set_pte_at_notify(mm, addr, ptep, entry);
659         }
660         *orig_pte = *ptep;
661         err = 0;
662
663 out_unlock:
664         pte_unmap_unlock(ptep, ptl);
665 out:
666         return err;
667 }
668
669 /**
670  * replace_page - replace page in vma by new ksm page
671  * @vma:      vma that holds the pte pointing to page
672  * @page:     the page we are replacing by kpage
673  * @kpage:    the ksm page we replace page by
674  * @orig_pte: the original value of the pte
675  *
676  * Returns 0 on success, -EFAULT on failure.
677  */
678 static int replace_page(struct vm_area_struct *vma, struct page *page,
679                         struct page *kpage, pte_t orig_pte)
680 {
681         struct mm_struct *mm = vma->vm_mm;
682         pgd_t *pgd;
683         pud_t *pud;
684         pmd_t *pmd;
685         pte_t *ptep;
686         spinlock_t *ptl;
687         unsigned long addr;
688         int err = -EFAULT;
689
690         addr = page_address_in_vma(page, vma);
691         if (addr == -EFAULT)
692                 goto out;
693
694         pgd = pgd_offset(mm, addr);
695         if (!pgd_present(*pgd))
696                 goto out;
697
698         pud = pud_offset(pgd, addr);
699         if (!pud_present(*pud))
700                 goto out;
701
702         pmd = pmd_offset(pud, addr);
703         if (!pmd_present(*pmd))
704                 goto out;
705
706         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
707         if (!pte_same(*ptep, orig_pte)) {
708                 pte_unmap_unlock(ptep, ptl);
709                 goto out;
710         }
711
712         get_page(kpage);
713         page_add_ksm_rmap(kpage);
714
715         flush_cache_page(vma, addr, pte_pfn(*ptep));
716         ptep_clear_flush(vma, addr, ptep);
717         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
718
719         page_remove_rmap(page);
720         put_page(page);
721
722         pte_unmap_unlock(ptep, ptl);
723         err = 0;
724 out:
725         return err;
726 }
727
728 /*
729  * try_to_merge_one_page - take two pages and merge them into one
730  * @vma: the vma that holds the pte pointing to page
731  * @page: the PageAnon page that we want to replace with kpage
732  * @kpage: the PageKsm page that we want to map instead of page
733  *
734  * This function returns 0 if the pages were merged, -EFAULT otherwise.
735  */
736 static int try_to_merge_one_page(struct vm_area_struct *vma,
737                                  struct page *page, struct page *kpage)
738 {
739         pte_t orig_pte = __pte(0);
740         int err = -EFAULT;
741
742         if (!(vma->vm_flags & VM_MERGEABLE))
743                 goto out;
744         if (!PageAnon(page))
745                 goto out;
746
747         /*
748          * We need the page lock to read a stable PageSwapCache in
749          * write_protect_page().  We use trylock_page() instead of
750          * lock_page() because we don't want to wait here - we
751          * prefer to continue scanning and merging different pages,
752          * then come back to this page when it is unlocked.
753          */
754         if (!trylock_page(page))
755                 goto out;
756         /*
757          * If this anonymous page is mapped only here, its pte may need
758          * to be write-protected.  If it's mapped elsewhere, all of its
759          * ptes are necessarily already write-protected.  But in either
760          * case, we need to lock and check page_count is not raised.
761          */
762         if (write_protect_page(vma, page, &orig_pte) == 0 &&
763             pages_identical(page, kpage))
764                 err = replace_page(vma, page, kpage, orig_pte);
765
766         if ((vma->vm_flags & VM_LOCKED) && !err)
767                 munlock_vma_page(page);
768
769         unlock_page(page);
770 out:
771         return err;
772 }
773
774 /*
775  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
776  * but no new kernel page is allocated: kpage must already be a ksm page.
777  *
778  * This function returns 0 if the pages were merged, -EFAULT otherwise.
779  */
780 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
781                                       struct page *page, struct page *kpage)
782 {
783         struct mm_struct *mm = rmap_item->mm;
784         struct vm_area_struct *vma;
785         int err = -EFAULT;
786
787         if (page == kpage)                      /* ksm page forked */
788                 return 0;
789
790         down_read(&mm->mmap_sem);
791         if (ksm_test_exit(mm))
792                 goto out;
793         vma = find_vma(mm, rmap_item->address);
794         if (!vma || vma->vm_start > rmap_item->address)
795                 goto out;
796
797         err = try_to_merge_one_page(vma, page, kpage);
798 out:
799         up_read(&mm->mmap_sem);
800         return err;
801 }
802
803 /*
804  * try_to_merge_two_pages - take two identical pages and prepare them
805  * to be merged into one page.
806  *
807  * This function returns the kpage if we successfully merged two identical
808  * pages into one ksm page, NULL otherwise.
809  *
810  * Note that this function allocates a new kernel page: if one of the pages
811  * is already a ksm page, try_to_merge_with_ksm_page should be used.
812  */
813 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
814                                            struct page *page,
815                                            struct rmap_item *tree_rmap_item,
816                                            struct page *tree_page)
817 {
818         struct mm_struct *mm = rmap_item->mm;
819         struct vm_area_struct *vma;
820         struct page *kpage;
821         int err = -EFAULT;
822
823         /*
824          * The number of nodes in the stable tree
825          * is the number of kernel pages that we hold.
826          */
827         if (ksm_max_kernel_pages &&
828             ksm_max_kernel_pages <= ksm_pages_shared)
829                 return NULL;
830
831         kpage = alloc_page(GFP_HIGHUSER);
832         if (!kpage)
833                 return NULL;
834
835         down_read(&mm->mmap_sem);
836         if (ksm_test_exit(mm))
837                 goto up;
838         vma = find_vma(mm, rmap_item->address);
839         if (!vma || vma->vm_start > rmap_item->address)
840                 goto up;
841
842         copy_user_highpage(kpage, page, rmap_item->address, vma);
843
844         set_page_stable_node(kpage, NULL);      /* mark it PageKsm */
845
846         err = try_to_merge_one_page(vma, page, kpage);
847 up:
848         up_read(&mm->mmap_sem);
849
850         if (!err) {
851                 err = try_to_merge_with_ksm_page(tree_rmap_item,
852                                                         tree_page, kpage);
853                 /*
854                  * If that fails, we have a ksm page with only one pte
855                  * pointing to it: so break it.
856                  */
857                 if (err)
858                         break_cow(rmap_item);
859         }
860         if (err) {
861                 put_page(kpage);
862                 kpage = NULL;
863         }
864         return kpage;
865 }
866
867 /*
868  * stable_tree_search - search for page inside the stable tree
869  *
870  * This function checks if there is a page inside the stable tree
871  * with identical content to the page that we are scanning right now.
872  *
873  * This function returns the stable tree node of identical content if found,
874  * NULL otherwise.
875  */
876 static struct stable_node *stable_tree_search(struct page *page)
877 {
878         struct rb_node *node = root_stable_tree.rb_node;
879         struct stable_node *stable_node;
880
881         stable_node = page_stable_node(page);
882         if (stable_node) {                      /* ksm page forked */
883                 get_page(page);
884                 return stable_node;
885         }
886
887         while (node) {
888                 int ret;
889
890                 cond_resched();
891                 stable_node = rb_entry(node, struct stable_node, node);
892
893                 ret = memcmp_pages(page, stable_node->page);
894
895                 if (ret < 0)
896                         node = node->rb_left;
897                 else if (ret > 0)
898                         node = node->rb_right;
899                 else {
900                         get_page(stable_node->page);
901                         return stable_node;
902                 }
903         }
904
905         return NULL;
906 }
907
908 /*
909  * stable_tree_insert - insert rmap_item pointing to new ksm page
910  * into the stable tree.
911  *
912  * This function returns the stable tree node just allocated on success,
913  * NULL otherwise.
914  */
915 static struct stable_node *stable_tree_insert(struct page *kpage)
916 {
917         struct rb_node **new = &root_stable_tree.rb_node;
918         struct rb_node *parent = NULL;
919         struct stable_node *stable_node;
920
921         while (*new) {
922                 int ret;
923
924                 cond_resched();
925                 stable_node = rb_entry(*new, struct stable_node, node);
926
927                 ret = memcmp_pages(kpage, stable_node->page);
928
929                 parent = *new;
930                 if (ret < 0)
931                         new = &parent->rb_left;
932                 else if (ret > 0)
933                         new = &parent->rb_right;
934                 else {
935                         /*
936                          * It is not a bug that stable_tree_search() didn't
937                          * find this node: because at that time our page was
938                          * not yet write-protected, so may have changed since.
939                          */
940                         return NULL;
941                 }
942         }
943
944         stable_node = alloc_stable_node();
945         if (!stable_node)
946                 return NULL;
947
948         rb_link_node(&stable_node->node, parent, new);
949         rb_insert_color(&stable_node->node, &root_stable_tree);
950
951         INIT_HLIST_HEAD(&stable_node->hlist);
952
953         get_page(kpage);
954         stable_node->page = kpage;
955         set_page_stable_node(kpage, stable_node);
956
957         return stable_node;
958 }
959
960 /*
961  * unstable_tree_search_insert - search for identical page,
962  * else insert rmap_item into the unstable tree.
963  *
964  * This function searches for a page in the unstable tree identical to the
965  * page currently being scanned; and if no identical page is found in the
966  * tree, we insert rmap_item as a new object into the unstable tree.
967  *
968  * This function returns pointer to rmap_item found to be identical
969  * to the currently scanned page, NULL otherwise.
970  *
971  * This function does both searching and inserting, because they share
972  * the same walking algorithm in an rbtree.
973  */
974 static
975 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
976                                               struct page *page,
977                                               struct page **tree_pagep)
978
979 {
980         struct rb_node **new = &root_unstable_tree.rb_node;
981         struct rb_node *parent = NULL;
982
983         while (*new) {
984                 struct rmap_item *tree_rmap_item;
985                 struct page *tree_page;
986                 int ret;
987
988                 cond_resched();
989                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
990                 tree_page = get_mergeable_page(tree_rmap_item);
991                 if (!tree_page)
992                         return NULL;
993
994                 /*
995                  * Don't substitute a ksm page for a forked page.
996                  */
997                 if (page == tree_page) {
998                         put_page(tree_page);
999                         return NULL;
1000                 }
1001
1002                 ret = memcmp_pages(page, tree_page);
1003
1004                 parent = *new;
1005                 if (ret < 0) {
1006                         put_page(tree_page);
1007                         new = &parent->rb_left;
1008                 } else if (ret > 0) {
1009                         put_page(tree_page);
1010                         new = &parent->rb_right;
1011                 } else {
1012                         *tree_pagep = tree_page;
1013                         return tree_rmap_item;
1014                 }
1015         }
1016
1017         rmap_item->address |= UNSTABLE_FLAG;
1018         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1019         rb_link_node(&rmap_item->node, parent, new);
1020         rb_insert_color(&rmap_item->node, &root_unstable_tree);
1021
1022         ksm_pages_unshared++;
1023         return NULL;
1024 }
1025
1026 /*
1027  * stable_tree_append - add another rmap_item to the linked list of
1028  * rmap_items hanging off a given node of the stable tree, all sharing
1029  * the same ksm page.
1030  */
1031 static void stable_tree_append(struct rmap_item *rmap_item,
1032                                struct stable_node *stable_node)
1033 {
1034         rmap_item->head = stable_node;
1035         rmap_item->address |= STABLE_FLAG;
1036         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1037
1038         if (rmap_item->hlist.next)
1039                 ksm_pages_sharing++;
1040         else
1041                 ksm_pages_shared++;
1042 }
1043
1044 /*
1045  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1046  * if not, compare checksum to previous and if it's the same, see if page can
1047  * be inserted into the unstable tree, or merged with a page already there and
1048  * both transferred to the stable tree.
1049  *
1050  * @page: the page that we are searching identical page to.
1051  * @rmap_item: the reverse mapping into the virtual address of this page
1052  */
1053 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1054 {
1055         struct rmap_item *tree_rmap_item;
1056         struct page *tree_page = NULL;
1057         struct stable_node *stable_node;
1058         struct page *kpage;
1059         unsigned int checksum;
1060         int err;
1061
1062         remove_rmap_item_from_tree(rmap_item);
1063
1064         /* We first start with searching the page inside the stable tree */
1065         stable_node = stable_tree_search(page);
1066         if (stable_node) {
1067                 kpage = stable_node->page;
1068                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1069                 if (!err) {
1070                         /*
1071                          * The page was successfully merged:
1072                          * add its rmap_item to the stable tree.
1073                          */
1074                         stable_tree_append(rmap_item, stable_node);
1075                 }
1076                 put_page(kpage);
1077                 return;
1078         }
1079
1080         /*
1081          * A ksm page might have got here by fork, but its other
1082          * references have already been removed from the stable tree.
1083          * Or it might be left over from a break_ksm which failed
1084          * when the mem_cgroup had reached its limit: try again now.
1085          */
1086         if (PageKsm(page))
1087                 break_cow(rmap_item);
1088
1089         /*
1090          * In case the hash value of the page was changed from the last time we
1091          * have calculated it, this page to be changed frequely, therefore we
1092          * don't want to insert it to the unstable tree, and we don't want to
1093          * waste our time to search if there is something identical to it there.
1094          */
1095         checksum = calc_checksum(page);
1096         if (rmap_item->oldchecksum != checksum) {
1097                 rmap_item->oldchecksum = checksum;
1098                 return;
1099         }
1100
1101         tree_rmap_item =
1102                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1103         if (tree_rmap_item) {
1104                 kpage = try_to_merge_two_pages(rmap_item, page,
1105                                                 tree_rmap_item, tree_page);
1106                 put_page(tree_page);
1107                 /*
1108                  * As soon as we merge this page, we want to remove the
1109                  * rmap_item of the page we have merged with from the unstable
1110                  * tree, and insert it instead as new node in the stable tree.
1111                  */
1112                 if (kpage) {
1113                         remove_rmap_item_from_tree(tree_rmap_item);
1114
1115                         stable_node = stable_tree_insert(kpage);
1116                         if (stable_node) {
1117                                 stable_tree_append(tree_rmap_item, stable_node);
1118                                 stable_tree_append(rmap_item, stable_node);
1119                         }
1120                         put_page(kpage);
1121
1122                         /*
1123                          * If we fail to insert the page into the stable tree,
1124                          * we will have 2 virtual addresses that are pointing
1125                          * to a ksm page left outside the stable tree,
1126                          * in which case we need to break_cow on both.
1127                          */
1128                         if (!stable_node) {
1129                                 break_cow(tree_rmap_item);
1130                                 break_cow(rmap_item);
1131                         }
1132                 }
1133         }
1134 }
1135
1136 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1137                                             struct rmap_item **rmap_list,
1138                                             unsigned long addr)
1139 {
1140         struct rmap_item *rmap_item;
1141
1142         while (*rmap_list) {
1143                 rmap_item = *rmap_list;
1144                 if ((rmap_item->address & PAGE_MASK) == addr)
1145                         return rmap_item;
1146                 if (rmap_item->address > addr)
1147                         break;
1148                 *rmap_list = rmap_item->rmap_list;
1149                 remove_rmap_item_from_tree(rmap_item);
1150                 free_rmap_item(rmap_item);
1151         }
1152
1153         rmap_item = alloc_rmap_item();
1154         if (rmap_item) {
1155                 /* It has already been zeroed */
1156                 rmap_item->mm = mm_slot->mm;
1157                 rmap_item->address = addr;
1158                 rmap_item->rmap_list = *rmap_list;
1159                 *rmap_list = rmap_item;
1160         }
1161         return rmap_item;
1162 }
1163
1164 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1165 {
1166         struct mm_struct *mm;
1167         struct mm_slot *slot;
1168         struct vm_area_struct *vma;
1169         struct rmap_item *rmap_item;
1170
1171         if (list_empty(&ksm_mm_head.mm_list))
1172                 return NULL;
1173
1174         slot = ksm_scan.mm_slot;
1175         if (slot == &ksm_mm_head) {
1176                 root_unstable_tree = RB_ROOT;
1177
1178                 spin_lock(&ksm_mmlist_lock);
1179                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1180                 ksm_scan.mm_slot = slot;
1181                 spin_unlock(&ksm_mmlist_lock);
1182 next_mm:
1183                 ksm_scan.address = 0;
1184                 ksm_scan.rmap_list = &slot->rmap_list;
1185         }
1186
1187         mm = slot->mm;
1188         down_read(&mm->mmap_sem);
1189         if (ksm_test_exit(mm))
1190                 vma = NULL;
1191         else
1192                 vma = find_vma(mm, ksm_scan.address);
1193
1194         for (; vma; vma = vma->vm_next) {
1195                 if (!(vma->vm_flags & VM_MERGEABLE))
1196                         continue;
1197                 if (ksm_scan.address < vma->vm_start)
1198                         ksm_scan.address = vma->vm_start;
1199                 if (!vma->anon_vma)
1200                         ksm_scan.address = vma->vm_end;
1201
1202                 while (ksm_scan.address < vma->vm_end) {
1203                         if (ksm_test_exit(mm))
1204                                 break;
1205                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1206                         if (*page && PageAnon(*page)) {
1207                                 flush_anon_page(vma, *page, ksm_scan.address);
1208                                 flush_dcache_page(*page);
1209                                 rmap_item = get_next_rmap_item(slot,
1210                                         ksm_scan.rmap_list, ksm_scan.address);
1211                                 if (rmap_item) {
1212                                         ksm_scan.rmap_list =
1213                                                         &rmap_item->rmap_list;
1214                                         ksm_scan.address += PAGE_SIZE;
1215                                 } else
1216                                         put_page(*page);
1217                                 up_read(&mm->mmap_sem);
1218                                 return rmap_item;
1219                         }
1220                         if (*page)
1221                                 put_page(*page);
1222                         ksm_scan.address += PAGE_SIZE;
1223                         cond_resched();
1224                 }
1225         }
1226
1227         if (ksm_test_exit(mm)) {
1228                 ksm_scan.address = 0;
1229                 ksm_scan.rmap_list = &slot->rmap_list;
1230         }
1231         /*
1232          * Nuke all the rmap_items that are above this current rmap:
1233          * because there were no VM_MERGEABLE vmas with such addresses.
1234          */
1235         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1236
1237         spin_lock(&ksm_mmlist_lock);
1238         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1239                                                 struct mm_slot, mm_list);
1240         if (ksm_scan.address == 0) {
1241                 /*
1242                  * We've completed a full scan of all vmas, holding mmap_sem
1243                  * throughout, and found no VM_MERGEABLE: so do the same as
1244                  * __ksm_exit does to remove this mm from all our lists now.
1245                  * This applies either when cleaning up after __ksm_exit
1246                  * (but beware: we can reach here even before __ksm_exit),
1247                  * or when all VM_MERGEABLE areas have been unmapped (and
1248                  * mmap_sem then protects against race with MADV_MERGEABLE).
1249                  */
1250                 hlist_del(&slot->link);
1251                 list_del(&slot->mm_list);
1252                 spin_unlock(&ksm_mmlist_lock);
1253
1254                 free_mm_slot(slot);
1255                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1256                 up_read(&mm->mmap_sem);
1257                 mmdrop(mm);
1258         } else {
1259                 spin_unlock(&ksm_mmlist_lock);
1260                 up_read(&mm->mmap_sem);
1261         }
1262
1263         /* Repeat until we've completed scanning the whole list */
1264         slot = ksm_scan.mm_slot;
1265         if (slot != &ksm_mm_head)
1266                 goto next_mm;
1267
1268         ksm_scan.seqnr++;
1269         return NULL;
1270 }
1271
1272 /**
1273  * ksm_do_scan  - the ksm scanner main worker function.
1274  * @scan_npages - number of pages we want to scan before we return.
1275  */
1276 static void ksm_do_scan(unsigned int scan_npages)
1277 {
1278         struct rmap_item *rmap_item;
1279         struct page *page;
1280
1281         while (scan_npages--) {
1282                 cond_resched();
1283                 rmap_item = scan_get_next_rmap_item(&page);
1284                 if (!rmap_item)
1285                         return;
1286                 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1287                         cmp_and_merge_page(page, rmap_item);
1288                 else if (page_mapcount(page) == 1) {
1289                         /*
1290                          * Replace now-unshared ksm page by ordinary page.
1291                          */
1292                         break_cow(rmap_item);
1293                         remove_rmap_item_from_tree(rmap_item);
1294                         rmap_item->oldchecksum = calc_checksum(page);
1295                 }
1296                 put_page(page);
1297         }
1298 }
1299
1300 static int ksmd_should_run(void)
1301 {
1302         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1303 }
1304
1305 static int ksm_scan_thread(void *nothing)
1306 {
1307         set_user_nice(current, 5);
1308
1309         while (!kthread_should_stop()) {
1310                 mutex_lock(&ksm_thread_mutex);
1311                 if (ksmd_should_run())
1312                         ksm_do_scan(ksm_thread_pages_to_scan);
1313                 mutex_unlock(&ksm_thread_mutex);
1314
1315                 if (ksmd_should_run()) {
1316                         schedule_timeout_interruptible(
1317                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1318                 } else {
1319                         wait_event_interruptible(ksm_thread_wait,
1320                                 ksmd_should_run() || kthread_should_stop());
1321                 }
1322         }
1323         return 0;
1324 }
1325
1326 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1327                 unsigned long end, int advice, unsigned long *vm_flags)
1328 {
1329         struct mm_struct *mm = vma->vm_mm;
1330         int err;
1331
1332         switch (advice) {
1333         case MADV_MERGEABLE:
1334                 /*
1335                  * Be somewhat over-protective for now!
1336                  */
1337                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1338                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1339                                  VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1340                                  VM_MIXEDMAP  | VM_SAO))
1341                         return 0;               /* just ignore the advice */
1342
1343                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1344                         err = __ksm_enter(mm);
1345                         if (err)
1346                                 return err;
1347                 }
1348
1349                 *vm_flags |= VM_MERGEABLE;
1350                 break;
1351
1352         case MADV_UNMERGEABLE:
1353                 if (!(*vm_flags & VM_MERGEABLE))
1354                         return 0;               /* just ignore the advice */
1355
1356                 if (vma->anon_vma) {
1357                         err = unmerge_ksm_pages(vma, start, end);
1358                         if (err)
1359                                 return err;
1360                 }
1361
1362                 *vm_flags &= ~VM_MERGEABLE;
1363                 break;
1364         }
1365
1366         return 0;
1367 }
1368
1369 int __ksm_enter(struct mm_struct *mm)
1370 {
1371         struct mm_slot *mm_slot;
1372         int needs_wakeup;
1373
1374         mm_slot = alloc_mm_slot();
1375         if (!mm_slot)
1376                 return -ENOMEM;
1377
1378         /* Check ksm_run too?  Would need tighter locking */
1379         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1380
1381         spin_lock(&ksm_mmlist_lock);
1382         insert_to_mm_slots_hash(mm, mm_slot);
1383         /*
1384          * Insert just behind the scanning cursor, to let the area settle
1385          * down a little; when fork is followed by immediate exec, we don't
1386          * want ksmd to waste time setting up and tearing down an rmap_list.
1387          */
1388         list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1389         spin_unlock(&ksm_mmlist_lock);
1390
1391         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1392         atomic_inc(&mm->mm_count);
1393
1394         if (needs_wakeup)
1395                 wake_up_interruptible(&ksm_thread_wait);
1396
1397         return 0;
1398 }
1399
1400 void __ksm_exit(struct mm_struct *mm)
1401 {
1402         struct mm_slot *mm_slot;
1403         int easy_to_free = 0;
1404
1405         /*
1406          * This process is exiting: if it's straightforward (as is the
1407          * case when ksmd was never running), free mm_slot immediately.
1408          * But if it's at the cursor or has rmap_items linked to it, use
1409          * mmap_sem to synchronize with any break_cows before pagetables
1410          * are freed, and leave the mm_slot on the list for ksmd to free.
1411          * Beware: ksm may already have noticed it exiting and freed the slot.
1412          */
1413
1414         spin_lock(&ksm_mmlist_lock);
1415         mm_slot = get_mm_slot(mm);
1416         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1417                 if (!mm_slot->rmap_list) {
1418                         hlist_del(&mm_slot->link);
1419                         list_del(&mm_slot->mm_list);
1420                         easy_to_free = 1;
1421                 } else {
1422                         list_move(&mm_slot->mm_list,
1423                                   &ksm_scan.mm_slot->mm_list);
1424                 }
1425         }
1426         spin_unlock(&ksm_mmlist_lock);
1427
1428         if (easy_to_free) {
1429                 free_mm_slot(mm_slot);
1430                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1431                 mmdrop(mm);
1432         } else if (mm_slot) {
1433                 down_write(&mm->mmap_sem);
1434                 up_write(&mm->mmap_sem);
1435         }
1436 }
1437
1438 #ifdef CONFIG_SYSFS
1439 /*
1440  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1441  */
1442
1443 #define KSM_ATTR_RO(_name) \
1444         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1445 #define KSM_ATTR(_name) \
1446         static struct kobj_attribute _name##_attr = \
1447                 __ATTR(_name, 0644, _name##_show, _name##_store)
1448
1449 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1450                                     struct kobj_attribute *attr, char *buf)
1451 {
1452         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1453 }
1454
1455 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1456                                      struct kobj_attribute *attr,
1457                                      const char *buf, size_t count)
1458 {
1459         unsigned long msecs;
1460         int err;
1461
1462         err = strict_strtoul(buf, 10, &msecs);
1463         if (err || msecs > UINT_MAX)
1464                 return -EINVAL;
1465
1466         ksm_thread_sleep_millisecs = msecs;
1467
1468         return count;
1469 }
1470 KSM_ATTR(sleep_millisecs);
1471
1472 static ssize_t pages_to_scan_show(struct kobject *kobj,
1473                                   struct kobj_attribute *attr, char *buf)
1474 {
1475         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1476 }
1477
1478 static ssize_t pages_to_scan_store(struct kobject *kobj,
1479                                    struct kobj_attribute *attr,
1480                                    const char *buf, size_t count)
1481 {
1482         int err;
1483         unsigned long nr_pages;
1484
1485         err = strict_strtoul(buf, 10, &nr_pages);
1486         if (err || nr_pages > UINT_MAX)
1487                 return -EINVAL;
1488
1489         ksm_thread_pages_to_scan = nr_pages;
1490
1491         return count;
1492 }
1493 KSM_ATTR(pages_to_scan);
1494
1495 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1496                         char *buf)
1497 {
1498         return sprintf(buf, "%u\n", ksm_run);
1499 }
1500
1501 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1502                          const char *buf, size_t count)
1503 {
1504         int err;
1505         unsigned long flags;
1506
1507         err = strict_strtoul(buf, 10, &flags);
1508         if (err || flags > UINT_MAX)
1509                 return -EINVAL;
1510         if (flags > KSM_RUN_UNMERGE)
1511                 return -EINVAL;
1512
1513         /*
1514          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1515          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1516          * breaking COW to free the unswappable pages_shared (but leaves
1517          * mm_slots on the list for when ksmd may be set running again).
1518          */
1519
1520         mutex_lock(&ksm_thread_mutex);
1521         if (ksm_run != flags) {
1522                 ksm_run = flags;
1523                 if (flags & KSM_RUN_UNMERGE) {
1524                         current->flags |= PF_OOM_ORIGIN;
1525                         err = unmerge_and_remove_all_rmap_items();
1526                         current->flags &= ~PF_OOM_ORIGIN;
1527                         if (err) {
1528                                 ksm_run = KSM_RUN_STOP;
1529                                 count = err;
1530                         }
1531                 }
1532         }
1533         mutex_unlock(&ksm_thread_mutex);
1534
1535         if (flags & KSM_RUN_MERGE)
1536                 wake_up_interruptible(&ksm_thread_wait);
1537
1538         return count;
1539 }
1540 KSM_ATTR(run);
1541
1542 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1543                                       struct kobj_attribute *attr,
1544                                       const char *buf, size_t count)
1545 {
1546         int err;
1547         unsigned long nr_pages;
1548
1549         err = strict_strtoul(buf, 10, &nr_pages);
1550         if (err)
1551                 return -EINVAL;
1552
1553         ksm_max_kernel_pages = nr_pages;
1554
1555         return count;
1556 }
1557
1558 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1559                                      struct kobj_attribute *attr, char *buf)
1560 {
1561         return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1562 }
1563 KSM_ATTR(max_kernel_pages);
1564
1565 static ssize_t pages_shared_show(struct kobject *kobj,
1566                                  struct kobj_attribute *attr, char *buf)
1567 {
1568         return sprintf(buf, "%lu\n", ksm_pages_shared);
1569 }
1570 KSM_ATTR_RO(pages_shared);
1571
1572 static ssize_t pages_sharing_show(struct kobject *kobj,
1573                                   struct kobj_attribute *attr, char *buf)
1574 {
1575         return sprintf(buf, "%lu\n", ksm_pages_sharing);
1576 }
1577 KSM_ATTR_RO(pages_sharing);
1578
1579 static ssize_t pages_unshared_show(struct kobject *kobj,
1580                                    struct kobj_attribute *attr, char *buf)
1581 {
1582         return sprintf(buf, "%lu\n", ksm_pages_unshared);
1583 }
1584 KSM_ATTR_RO(pages_unshared);
1585
1586 static ssize_t pages_volatile_show(struct kobject *kobj,
1587                                    struct kobj_attribute *attr, char *buf)
1588 {
1589         long ksm_pages_volatile;
1590
1591         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1592                                 - ksm_pages_sharing - ksm_pages_unshared;
1593         /*
1594          * It was not worth any locking to calculate that statistic,
1595          * but it might therefore sometimes be negative: conceal that.
1596          */
1597         if (ksm_pages_volatile < 0)
1598                 ksm_pages_volatile = 0;
1599         return sprintf(buf, "%ld\n", ksm_pages_volatile);
1600 }
1601 KSM_ATTR_RO(pages_volatile);
1602
1603 static ssize_t full_scans_show(struct kobject *kobj,
1604                                struct kobj_attribute *attr, char *buf)
1605 {
1606         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1607 }
1608 KSM_ATTR_RO(full_scans);
1609
1610 static struct attribute *ksm_attrs[] = {
1611         &sleep_millisecs_attr.attr,
1612         &pages_to_scan_attr.attr,
1613         &run_attr.attr,
1614         &max_kernel_pages_attr.attr,
1615         &pages_shared_attr.attr,
1616         &pages_sharing_attr.attr,
1617         &pages_unshared_attr.attr,
1618         &pages_volatile_attr.attr,
1619         &full_scans_attr.attr,
1620         NULL,
1621 };
1622
1623 static struct attribute_group ksm_attr_group = {
1624         .attrs = ksm_attrs,
1625         .name = "ksm",
1626 };
1627 #endif /* CONFIG_SYSFS */
1628
1629 static int __init ksm_init(void)
1630 {
1631         struct task_struct *ksm_thread;
1632         int err;
1633
1634         ksm_max_kernel_pages = totalram_pages / 4;
1635
1636         err = ksm_slab_init();
1637         if (err)
1638                 goto out;
1639
1640         err = mm_slots_hash_init();
1641         if (err)
1642                 goto out_free1;
1643
1644         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1645         if (IS_ERR(ksm_thread)) {
1646                 printk(KERN_ERR "ksm: creating kthread failed\n");
1647                 err = PTR_ERR(ksm_thread);
1648                 goto out_free2;
1649         }
1650
1651 #ifdef CONFIG_SYSFS
1652         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1653         if (err) {
1654                 printk(KERN_ERR "ksm: register sysfs failed\n");
1655                 kthread_stop(ksm_thread);
1656                 goto out_free2;
1657         }
1658 #else
1659         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
1660
1661 #endif /* CONFIG_SYSFS */
1662
1663         return 0;
1664
1665 out_free2:
1666         mm_slots_hash_free();
1667 out_free1:
1668         ksm_slab_free();
1669 out:
1670         return err;
1671 }
1672 module_init(ksm_init)