]> bbs.cooldavid.org Git - net-next-2.6.git/blob - kernel/perf_event.c
perf: Fix exit() vs PERF_FORMAT_GROUP
[net-next-2.6.git] / kernel / perf_event.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  �  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/sysfs.h>
20 #include <linux/dcache.h>
21 #include <linux/percpu.h>
22 #include <linux/ptrace.h>
23 #include <linux/vmstat.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hardirq.h>
26 #include <linux/rculist.h>
27 #include <linux/uaccess.h>
28 #include <linux/syscalls.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/perf_event.h>
32 #include <linux/ftrace_event.h>
33 #include <linux/hw_breakpoint.h>
34
35 #include <asm/irq_regs.h>
36
37 /*
38  * Each CPU has a list of per CPU events:
39  */
40 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41
42 int perf_max_events __read_mostly = 1;
43 static int perf_reserved_percpu __read_mostly;
44 static int perf_overcommit __read_mostly = 1;
45
46 static atomic_t nr_events __read_mostly;
47 static atomic_t nr_mmap_events __read_mostly;
48 static atomic_t nr_comm_events __read_mostly;
49 static atomic_t nr_task_events __read_mostly;
50
51 /*
52  * perf event paranoia level:
53  *  -1 - not paranoid at all
54  *   0 - disallow raw tracepoint access for unpriv
55  *   1 - disallow cpu events for unpriv
56  *   2 - disallow kernel profiling for unpriv
57  */
58 int sysctl_perf_event_paranoid __read_mostly = 1;
59
60 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61
62 /*
63  * max perf event sample rate
64  */
65 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66
67 static atomic64_t perf_event_id;
68
69 /*
70  * Lock for (sysadmin-configurable) event reservations:
71  */
72 static DEFINE_SPINLOCK(perf_resource_lock);
73
74 /*
75  * Architecture provided APIs - weak aliases:
76  */
77 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78 {
79         return NULL;
80 }
81
82 void __weak hw_perf_disable(void)               { barrier(); }
83 void __weak hw_perf_enable(void)                { barrier(); }
84
85 int __weak
86 hw_perf_group_sched_in(struct perf_event *group_leader,
87                struct perf_cpu_context *cpuctx,
88                struct perf_event_context *ctx)
89 {
90         return 0;
91 }
92
93 void __weak perf_event_print_debug(void)        { }
94
95 static DEFINE_PER_CPU(int, perf_disable_count);
96
97 void perf_disable(void)
98 {
99         if (!__get_cpu_var(perf_disable_count)++)
100                 hw_perf_disable();
101 }
102
103 void perf_enable(void)
104 {
105         if (!--__get_cpu_var(perf_disable_count))
106                 hw_perf_enable();
107 }
108
109 static void get_ctx(struct perf_event_context *ctx)
110 {
111         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
112 }
113
114 static void free_ctx(struct rcu_head *head)
115 {
116         struct perf_event_context *ctx;
117
118         ctx = container_of(head, struct perf_event_context, rcu_head);
119         kfree(ctx);
120 }
121
122 static void put_ctx(struct perf_event_context *ctx)
123 {
124         if (atomic_dec_and_test(&ctx->refcount)) {
125                 if (ctx->parent_ctx)
126                         put_ctx(ctx->parent_ctx);
127                 if (ctx->task)
128                         put_task_struct(ctx->task);
129                 call_rcu(&ctx->rcu_head, free_ctx);
130         }
131 }
132
133 static void unclone_ctx(struct perf_event_context *ctx)
134 {
135         if (ctx->parent_ctx) {
136                 put_ctx(ctx->parent_ctx);
137                 ctx->parent_ctx = NULL;
138         }
139 }
140
141 /*
142  * If we inherit events we want to return the parent event id
143  * to userspace.
144  */
145 static u64 primary_event_id(struct perf_event *event)
146 {
147         u64 id = event->id;
148
149         if (event->parent)
150                 id = event->parent->id;
151
152         return id;
153 }
154
155 /*
156  * Get the perf_event_context for a task and lock it.
157  * This has to cope with with the fact that until it is locked,
158  * the context could get moved to another task.
159  */
160 static struct perf_event_context *
161 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162 {
163         struct perf_event_context *ctx;
164
165         rcu_read_lock();
166  retry:
167         ctx = rcu_dereference(task->perf_event_ctxp);
168         if (ctx) {
169                 /*
170                  * If this context is a clone of another, it might
171                  * get swapped for another underneath us by
172                  * perf_event_task_sched_out, though the
173                  * rcu_read_lock() protects us from any context
174                  * getting freed.  Lock the context and check if it
175                  * got swapped before we could get the lock, and retry
176                  * if so.  If we locked the right context, then it
177                  * can't get swapped on us any more.
178                  */
179                 raw_spin_lock_irqsave(&ctx->lock, *flags);
180                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
181                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
182                         goto retry;
183                 }
184
185                 if (!atomic_inc_not_zero(&ctx->refcount)) {
186                         raw_spin_unlock_irqrestore(&ctx->lock, *flags);
187                         ctx = NULL;
188                 }
189         }
190         rcu_read_unlock();
191         return ctx;
192 }
193
194 /*
195  * Get the context for a task and increment its pin_count so it
196  * can't get swapped to another task.  This also increments its
197  * reference count so that the context can't get freed.
198  */
199 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200 {
201         struct perf_event_context *ctx;
202         unsigned long flags;
203
204         ctx = perf_lock_task_context(task, &flags);
205         if (ctx) {
206                 ++ctx->pin_count;
207                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208         }
209         return ctx;
210 }
211
212 static void perf_unpin_context(struct perf_event_context *ctx)
213 {
214         unsigned long flags;
215
216         raw_spin_lock_irqsave(&ctx->lock, flags);
217         --ctx->pin_count;
218         raw_spin_unlock_irqrestore(&ctx->lock, flags);
219         put_ctx(ctx);
220 }
221
222 static inline u64 perf_clock(void)
223 {
224         return cpu_clock(raw_smp_processor_id());
225 }
226
227 /*
228  * Update the record of the current time in a context.
229  */
230 static void update_context_time(struct perf_event_context *ctx)
231 {
232         u64 now = perf_clock();
233
234         ctx->time += now - ctx->timestamp;
235         ctx->timestamp = now;
236 }
237
238 /*
239  * Update the total_time_enabled and total_time_running fields for a event.
240  */
241 static void update_event_times(struct perf_event *event)
242 {
243         struct perf_event_context *ctx = event->ctx;
244         u64 run_end;
245
246         if (event->state < PERF_EVENT_STATE_INACTIVE ||
247             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
248                 return;
249
250         if (ctx->is_active)
251                 run_end = ctx->time;
252         else
253                 run_end = event->tstamp_stopped;
254
255         event->total_time_enabled = run_end - event->tstamp_enabled;
256
257         if (event->state == PERF_EVENT_STATE_INACTIVE)
258                 run_end = event->tstamp_stopped;
259         else
260                 run_end = ctx->time;
261
262         event->total_time_running = run_end - event->tstamp_running;
263 }
264
265 static struct list_head *
266 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267 {
268         if (event->attr.pinned)
269                 return &ctx->pinned_groups;
270         else
271                 return &ctx->flexible_groups;
272 }
273
274 /*
275  * Add a event from the lists for its context.
276  * Must be called with ctx->mutex and ctx->lock held.
277  */
278 static void
279 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280 {
281         struct perf_event *group_leader = event->group_leader;
282
283         /*
284          * Depending on whether it is a standalone or sibling event,
285          * add it straight to the context's event list, or to the group
286          * leader's sibling list:
287          */
288         if (group_leader == event) {
289                 struct list_head *list;
290
291                 if (is_software_event(event))
292                         event->group_flags |= PERF_GROUP_SOFTWARE;
293
294                 list = ctx_group_list(event, ctx);
295                 list_add_tail(&event->group_entry, list);
296         } else {
297                 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
298                     !is_software_event(event))
299                         group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300
301                 list_add_tail(&event->group_entry, &group_leader->sibling_list);
302                 group_leader->nr_siblings++;
303         }
304
305         list_add_rcu(&event->event_entry, &ctx->event_list);
306         ctx->nr_events++;
307         if (event->attr.inherit_stat)
308                 ctx->nr_stat++;
309 }
310
311 /*
312  * Remove a event from the lists for its context.
313  * Must be called with ctx->mutex and ctx->lock held.
314  */
315 static void
316 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317 {
318         struct perf_event *sibling, *tmp;
319
320         if (list_empty(&event->group_entry))
321                 return;
322         ctx->nr_events--;
323         if (event->attr.inherit_stat)
324                 ctx->nr_stat--;
325
326         list_del_init(&event->group_entry);
327         list_del_rcu(&event->event_entry);
328
329         if (event->group_leader != event)
330                 event->group_leader->nr_siblings--;
331
332         update_event_times(event);
333
334         /*
335          * If event was in error state, then keep it
336          * that way, otherwise bogus counts will be
337          * returned on read(). The only way to get out
338          * of error state is by explicit re-enabling
339          * of the event
340          */
341         if (event->state > PERF_EVENT_STATE_OFF)
342                 event->state = PERF_EVENT_STATE_OFF;
343
344         if (event->state > PERF_EVENT_STATE_FREE)
345                 return;
346
347         /*
348          * If this was a group event with sibling events then
349          * upgrade the siblings to singleton events by adding them
350          * to the context list directly:
351          */
352         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
353                 struct list_head *list;
354
355                 list = ctx_group_list(event, ctx);
356                 list_move_tail(&sibling->group_entry, list);
357                 sibling->group_leader = sibling;
358
359                 /* Inherit group flags from the previous leader */
360                 sibling->group_flags = event->group_flags;
361         }
362 }
363
364 static void
365 event_sched_out(struct perf_event *event,
366                   struct perf_cpu_context *cpuctx,
367                   struct perf_event_context *ctx)
368 {
369         if (event->state != PERF_EVENT_STATE_ACTIVE)
370                 return;
371
372         event->state = PERF_EVENT_STATE_INACTIVE;
373         if (event->pending_disable) {
374                 event->pending_disable = 0;
375                 event->state = PERF_EVENT_STATE_OFF;
376         }
377         event->tstamp_stopped = ctx->time;
378         event->pmu->disable(event);
379         event->oncpu = -1;
380
381         if (!is_software_event(event))
382                 cpuctx->active_oncpu--;
383         ctx->nr_active--;
384         if (event->attr.exclusive || !cpuctx->active_oncpu)
385                 cpuctx->exclusive = 0;
386 }
387
388 static void
389 group_sched_out(struct perf_event *group_event,
390                 struct perf_cpu_context *cpuctx,
391                 struct perf_event_context *ctx)
392 {
393         struct perf_event *event;
394
395         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396                 return;
397
398         event_sched_out(group_event, cpuctx, ctx);
399
400         /*
401          * Schedule out siblings (if any):
402          */
403         list_for_each_entry(event, &group_event->sibling_list, group_entry)
404                 event_sched_out(event, cpuctx, ctx);
405
406         if (group_event->attr.exclusive)
407                 cpuctx->exclusive = 0;
408 }
409
410 /*
411  * Cross CPU call to remove a performance event
412  *
413  * We disable the event on the hardware level first. After that we
414  * remove it from the context list.
415  */
416 static void __perf_event_remove_from_context(void *info)
417 {
418         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419         struct perf_event *event = info;
420         struct perf_event_context *ctx = event->ctx;
421
422         /*
423          * If this is a task context, we need to check whether it is
424          * the current task context of this cpu. If not it has been
425          * scheduled out before the smp call arrived.
426          */
427         if (ctx->task && cpuctx->task_ctx != ctx)
428                 return;
429
430         raw_spin_lock(&ctx->lock);
431         /*
432          * Protect the list operation against NMI by disabling the
433          * events on a global level.
434          */
435         perf_disable();
436
437         event_sched_out(event, cpuctx, ctx);
438
439         list_del_event(event, ctx);
440
441         if (!ctx->task) {
442                 /*
443                  * Allow more per task events with respect to the
444                  * reservation:
445                  */
446                 cpuctx->max_pertask =
447                         min(perf_max_events - ctx->nr_events,
448                             perf_max_events - perf_reserved_percpu);
449         }
450
451         perf_enable();
452         raw_spin_unlock(&ctx->lock);
453 }
454
455
456 /*
457  * Remove the event from a task's (or a CPU's) list of events.
458  *
459  * Must be called with ctx->mutex held.
460  *
461  * CPU events are removed with a smp call. For task events we only
462  * call when the task is on a CPU.
463  *
464  * If event->ctx is a cloned context, callers must make sure that
465  * every task struct that event->ctx->task could possibly point to
466  * remains valid.  This is OK when called from perf_release since
467  * that only calls us on the top-level context, which can't be a clone.
468  * When called from perf_event_exit_task, it's OK because the
469  * context has been detached from its task.
470  */
471 static void perf_event_remove_from_context(struct perf_event *event)
472 {
473         struct perf_event_context *ctx = event->ctx;
474         struct task_struct *task = ctx->task;
475
476         if (!task) {
477                 /*
478                  * Per cpu events are removed via an smp call and
479                  * the removal is always successful.
480                  */
481                 smp_call_function_single(event->cpu,
482                                          __perf_event_remove_from_context,
483                                          event, 1);
484                 return;
485         }
486
487 retry:
488         task_oncpu_function_call(task, __perf_event_remove_from_context,
489                                  event);
490
491         raw_spin_lock_irq(&ctx->lock);
492         /*
493          * If the context is active we need to retry the smp call.
494          */
495         if (ctx->nr_active && !list_empty(&event->group_entry)) {
496                 raw_spin_unlock_irq(&ctx->lock);
497                 goto retry;
498         }
499
500         /*
501          * The lock prevents that this context is scheduled in so we
502          * can remove the event safely, if the call above did not
503          * succeed.
504          */
505         if (!list_empty(&event->group_entry))
506                 list_del_event(event, ctx);
507         raw_spin_unlock_irq(&ctx->lock);
508 }
509
510 /*
511  * Update total_time_enabled and total_time_running for all events in a group.
512  */
513 static void update_group_times(struct perf_event *leader)
514 {
515         struct perf_event *event;
516
517         update_event_times(leader);
518         list_for_each_entry(event, &leader->sibling_list, group_entry)
519                 update_event_times(event);
520 }
521
522 /*
523  * Cross CPU call to disable a performance event
524  */
525 static void __perf_event_disable(void *info)
526 {
527         struct perf_event *event = info;
528         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529         struct perf_event_context *ctx = event->ctx;
530
531         /*
532          * If this is a per-task event, need to check whether this
533          * event's task is the current task on this cpu.
534          */
535         if (ctx->task && cpuctx->task_ctx != ctx)
536                 return;
537
538         raw_spin_lock(&ctx->lock);
539
540         /*
541          * If the event is on, turn it off.
542          * If it is in error state, leave it in error state.
543          */
544         if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545                 update_context_time(ctx);
546                 update_group_times(event);
547                 if (event == event->group_leader)
548                         group_sched_out(event, cpuctx, ctx);
549                 else
550                         event_sched_out(event, cpuctx, ctx);
551                 event->state = PERF_EVENT_STATE_OFF;
552         }
553
554         raw_spin_unlock(&ctx->lock);
555 }
556
557 /*
558  * Disable a event.
559  *
560  * If event->ctx is a cloned context, callers must make sure that
561  * every task struct that event->ctx->task could possibly point to
562  * remains valid.  This condition is satisifed when called through
563  * perf_event_for_each_child or perf_event_for_each because they
564  * hold the top-level event's child_mutex, so any descendant that
565  * goes to exit will block in sync_child_event.
566  * When called from perf_pending_event it's OK because event->ctx
567  * is the current context on this CPU and preemption is disabled,
568  * hence we can't get into perf_event_task_sched_out for this context.
569  */
570 void perf_event_disable(struct perf_event *event)
571 {
572         struct perf_event_context *ctx = event->ctx;
573         struct task_struct *task = ctx->task;
574
575         if (!task) {
576                 /*
577                  * Disable the event on the cpu that it's on
578                  */
579                 smp_call_function_single(event->cpu, __perf_event_disable,
580                                          event, 1);
581                 return;
582         }
583
584  retry:
585         task_oncpu_function_call(task, __perf_event_disable, event);
586
587         raw_spin_lock_irq(&ctx->lock);
588         /*
589          * If the event is still active, we need to retry the cross-call.
590          */
591         if (event->state == PERF_EVENT_STATE_ACTIVE) {
592                 raw_spin_unlock_irq(&ctx->lock);
593                 goto retry;
594         }
595
596         /*
597          * Since we have the lock this context can't be scheduled
598          * in, so we can change the state safely.
599          */
600         if (event->state == PERF_EVENT_STATE_INACTIVE) {
601                 update_group_times(event);
602                 event->state = PERF_EVENT_STATE_OFF;
603         }
604
605         raw_spin_unlock_irq(&ctx->lock);
606 }
607
608 static int
609 event_sched_in(struct perf_event *event,
610                  struct perf_cpu_context *cpuctx,
611                  struct perf_event_context *ctx)
612 {
613         if (event->state <= PERF_EVENT_STATE_OFF)
614                 return 0;
615
616         event->state = PERF_EVENT_STATE_ACTIVE;
617         event->oncpu = smp_processor_id();
618         /*
619          * The new state must be visible before we turn it on in the hardware:
620          */
621         smp_wmb();
622
623         if (event->pmu->enable(event)) {
624                 event->state = PERF_EVENT_STATE_INACTIVE;
625                 event->oncpu = -1;
626                 return -EAGAIN;
627         }
628
629         event->tstamp_running += ctx->time - event->tstamp_stopped;
630
631         if (!is_software_event(event))
632                 cpuctx->active_oncpu++;
633         ctx->nr_active++;
634
635         if (event->attr.exclusive)
636                 cpuctx->exclusive = 1;
637
638         return 0;
639 }
640
641 static int
642 group_sched_in(struct perf_event *group_event,
643                struct perf_cpu_context *cpuctx,
644                struct perf_event_context *ctx)
645 {
646         struct perf_event *event, *partial_group;
647         int ret;
648
649         if (group_event->state == PERF_EVENT_STATE_OFF)
650                 return 0;
651
652         ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
653         if (ret)
654                 return ret < 0 ? ret : 0;
655
656         if (event_sched_in(group_event, cpuctx, ctx))
657                 return -EAGAIN;
658
659         /*
660          * Schedule in siblings as one group (if any):
661          */
662         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663                 if (event_sched_in(event, cpuctx, ctx)) {
664                         partial_group = event;
665                         goto group_error;
666                 }
667         }
668
669         return 0;
670
671 group_error:
672         /*
673          * Groups can be scheduled in as one unit only, so undo any
674          * partial group before returning:
675          */
676         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
677                 if (event == partial_group)
678                         break;
679                 event_sched_out(event, cpuctx, ctx);
680         }
681         event_sched_out(group_event, cpuctx, ctx);
682
683         return -EAGAIN;
684 }
685
686 /*
687  * Work out whether we can put this event group on the CPU now.
688  */
689 static int group_can_go_on(struct perf_event *event,
690                            struct perf_cpu_context *cpuctx,
691                            int can_add_hw)
692 {
693         /*
694          * Groups consisting entirely of software events can always go on.
695          */
696         if (event->group_flags & PERF_GROUP_SOFTWARE)
697                 return 1;
698         /*
699          * If an exclusive group is already on, no other hardware
700          * events can go on.
701          */
702         if (cpuctx->exclusive)
703                 return 0;
704         /*
705          * If this group is exclusive and there are already
706          * events on the CPU, it can't go on.
707          */
708         if (event->attr.exclusive && cpuctx->active_oncpu)
709                 return 0;
710         /*
711          * Otherwise, try to add it if all previous groups were able
712          * to go on.
713          */
714         return can_add_hw;
715 }
716
717 static void add_event_to_ctx(struct perf_event *event,
718                                struct perf_event_context *ctx)
719 {
720         list_add_event(event, ctx);
721         event->tstamp_enabled = ctx->time;
722         event->tstamp_running = ctx->time;
723         event->tstamp_stopped = ctx->time;
724 }
725
726 /*
727  * Cross CPU call to install and enable a performance event
728  *
729  * Must be called with ctx->mutex held
730  */
731 static void __perf_install_in_context(void *info)
732 {
733         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
734         struct perf_event *event = info;
735         struct perf_event_context *ctx = event->ctx;
736         struct perf_event *leader = event->group_leader;
737         int err;
738
739         /*
740          * If this is a task context, we need to check whether it is
741          * the current task context of this cpu. If not it has been
742          * scheduled out before the smp call arrived.
743          * Or possibly this is the right context but it isn't
744          * on this cpu because it had no events.
745          */
746         if (ctx->task && cpuctx->task_ctx != ctx) {
747                 if (cpuctx->task_ctx || ctx->task != current)
748                         return;
749                 cpuctx->task_ctx = ctx;
750         }
751
752         raw_spin_lock(&ctx->lock);
753         ctx->is_active = 1;
754         update_context_time(ctx);
755
756         /*
757          * Protect the list operation against NMI by disabling the
758          * events on a global level. NOP for non NMI based events.
759          */
760         perf_disable();
761
762         add_event_to_ctx(event, ctx);
763
764         if (event->cpu != -1 && event->cpu != smp_processor_id())
765                 goto unlock;
766
767         /*
768          * Don't put the event on if it is disabled or if
769          * it is in a group and the group isn't on.
770          */
771         if (event->state != PERF_EVENT_STATE_INACTIVE ||
772             (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
773                 goto unlock;
774
775         /*
776          * An exclusive event can't go on if there are already active
777          * hardware events, and no hardware event can go on if there
778          * is already an exclusive event on.
779          */
780         if (!group_can_go_on(event, cpuctx, 1))
781                 err = -EEXIST;
782         else
783                 err = event_sched_in(event, cpuctx, ctx);
784
785         if (err) {
786                 /*
787                  * This event couldn't go on.  If it is in a group
788                  * then we have to pull the whole group off.
789                  * If the event group is pinned then put it in error state.
790                  */
791                 if (leader != event)
792                         group_sched_out(leader, cpuctx, ctx);
793                 if (leader->attr.pinned) {
794                         update_group_times(leader);
795                         leader->state = PERF_EVENT_STATE_ERROR;
796                 }
797         }
798
799         if (!err && !ctx->task && cpuctx->max_pertask)
800                 cpuctx->max_pertask--;
801
802  unlock:
803         perf_enable();
804
805         raw_spin_unlock(&ctx->lock);
806 }
807
808 /*
809  * Attach a performance event to a context
810  *
811  * First we add the event to the list with the hardware enable bit
812  * in event->hw_config cleared.
813  *
814  * If the event is attached to a task which is on a CPU we use a smp
815  * call to enable it in the task context. The task might have been
816  * scheduled away, but we check this in the smp call again.
817  *
818  * Must be called with ctx->mutex held.
819  */
820 static void
821 perf_install_in_context(struct perf_event_context *ctx,
822                         struct perf_event *event,
823                         int cpu)
824 {
825         struct task_struct *task = ctx->task;
826
827         if (!task) {
828                 /*
829                  * Per cpu events are installed via an smp call and
830                  * the install is always successful.
831                  */
832                 smp_call_function_single(cpu, __perf_install_in_context,
833                                          event, 1);
834                 return;
835         }
836
837 retry:
838         task_oncpu_function_call(task, __perf_install_in_context,
839                                  event);
840
841         raw_spin_lock_irq(&ctx->lock);
842         /*
843          * we need to retry the smp call.
844          */
845         if (ctx->is_active && list_empty(&event->group_entry)) {
846                 raw_spin_unlock_irq(&ctx->lock);
847                 goto retry;
848         }
849
850         /*
851          * The lock prevents that this context is scheduled in so we
852          * can add the event safely, if it the call above did not
853          * succeed.
854          */
855         if (list_empty(&event->group_entry))
856                 add_event_to_ctx(event, ctx);
857         raw_spin_unlock_irq(&ctx->lock);
858 }
859
860 /*
861  * Put a event into inactive state and update time fields.
862  * Enabling the leader of a group effectively enables all
863  * the group members that aren't explicitly disabled, so we
864  * have to update their ->tstamp_enabled also.
865  * Note: this works for group members as well as group leaders
866  * since the non-leader members' sibling_lists will be empty.
867  */
868 static void __perf_event_mark_enabled(struct perf_event *event,
869                                         struct perf_event_context *ctx)
870 {
871         struct perf_event *sub;
872
873         event->state = PERF_EVENT_STATE_INACTIVE;
874         event->tstamp_enabled = ctx->time - event->total_time_enabled;
875         list_for_each_entry(sub, &event->sibling_list, group_entry)
876                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
877                         sub->tstamp_enabled =
878                                 ctx->time - sub->total_time_enabled;
879 }
880
881 /*
882  * Cross CPU call to enable a performance event
883  */
884 static void __perf_event_enable(void *info)
885 {
886         struct perf_event *event = info;
887         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
888         struct perf_event_context *ctx = event->ctx;
889         struct perf_event *leader = event->group_leader;
890         int err;
891
892         /*
893          * If this is a per-task event, need to check whether this
894          * event's task is the current task on this cpu.
895          */
896         if (ctx->task && cpuctx->task_ctx != ctx) {
897                 if (cpuctx->task_ctx || ctx->task != current)
898                         return;
899                 cpuctx->task_ctx = ctx;
900         }
901
902         raw_spin_lock(&ctx->lock);
903         ctx->is_active = 1;
904         update_context_time(ctx);
905
906         if (event->state >= PERF_EVENT_STATE_INACTIVE)
907                 goto unlock;
908         __perf_event_mark_enabled(event, ctx);
909
910         if (event->cpu != -1 && event->cpu != smp_processor_id())
911                 goto unlock;
912
913         /*
914          * If the event is in a group and isn't the group leader,
915          * then don't put it on unless the group is on.
916          */
917         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
918                 goto unlock;
919
920         if (!group_can_go_on(event, cpuctx, 1)) {
921                 err = -EEXIST;
922         } else {
923                 perf_disable();
924                 if (event == leader)
925                         err = group_sched_in(event, cpuctx, ctx);
926                 else
927                         err = event_sched_in(event, cpuctx, ctx);
928                 perf_enable();
929         }
930
931         if (err) {
932                 /*
933                  * If this event can't go on and it's part of a
934                  * group, then the whole group has to come off.
935                  */
936                 if (leader != event)
937                         group_sched_out(leader, cpuctx, ctx);
938                 if (leader->attr.pinned) {
939                         update_group_times(leader);
940                         leader->state = PERF_EVENT_STATE_ERROR;
941                 }
942         }
943
944  unlock:
945         raw_spin_unlock(&ctx->lock);
946 }
947
948 /*
949  * Enable a event.
950  *
951  * If event->ctx is a cloned context, callers must make sure that
952  * every task struct that event->ctx->task could possibly point to
953  * remains valid.  This condition is satisfied when called through
954  * perf_event_for_each_child or perf_event_for_each as described
955  * for perf_event_disable.
956  */
957 void perf_event_enable(struct perf_event *event)
958 {
959         struct perf_event_context *ctx = event->ctx;
960         struct task_struct *task = ctx->task;
961
962         if (!task) {
963                 /*
964                  * Enable the event on the cpu that it's on
965                  */
966                 smp_call_function_single(event->cpu, __perf_event_enable,
967                                          event, 1);
968                 return;
969         }
970
971         raw_spin_lock_irq(&ctx->lock);
972         if (event->state >= PERF_EVENT_STATE_INACTIVE)
973                 goto out;
974
975         /*
976          * If the event is in error state, clear that first.
977          * That way, if we see the event in error state below, we
978          * know that it has gone back into error state, as distinct
979          * from the task having been scheduled away before the
980          * cross-call arrived.
981          */
982         if (event->state == PERF_EVENT_STATE_ERROR)
983                 event->state = PERF_EVENT_STATE_OFF;
984
985  retry:
986         raw_spin_unlock_irq(&ctx->lock);
987         task_oncpu_function_call(task, __perf_event_enable, event);
988
989         raw_spin_lock_irq(&ctx->lock);
990
991         /*
992          * If the context is active and the event is still off,
993          * we need to retry the cross-call.
994          */
995         if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
996                 goto retry;
997
998         /*
999          * Since we have the lock this context can't be scheduled
1000          * in, so we can change the state safely.
1001          */
1002         if (event->state == PERF_EVENT_STATE_OFF)
1003                 __perf_event_mark_enabled(event, ctx);
1004
1005  out:
1006         raw_spin_unlock_irq(&ctx->lock);
1007 }
1008
1009 static int perf_event_refresh(struct perf_event *event, int refresh)
1010 {
1011         /*
1012          * not supported on inherited events
1013          */
1014         if (event->attr.inherit)
1015                 return -EINVAL;
1016
1017         atomic_add(refresh, &event->event_limit);
1018         perf_event_enable(event);
1019
1020         return 0;
1021 }
1022
1023 enum event_type_t {
1024         EVENT_FLEXIBLE = 0x1,
1025         EVENT_PINNED = 0x2,
1026         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1027 };
1028
1029 static void ctx_sched_out(struct perf_event_context *ctx,
1030                           struct perf_cpu_context *cpuctx,
1031                           enum event_type_t event_type)
1032 {
1033         struct perf_event *event;
1034
1035         raw_spin_lock(&ctx->lock);
1036         ctx->is_active = 0;
1037         if (likely(!ctx->nr_events))
1038                 goto out;
1039         update_context_time(ctx);
1040
1041         perf_disable();
1042         if (!ctx->nr_active)
1043                 goto out_enable;
1044
1045         if (event_type & EVENT_PINNED)
1046                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1047                         group_sched_out(event, cpuctx, ctx);
1048
1049         if (event_type & EVENT_FLEXIBLE)
1050                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1051                         group_sched_out(event, cpuctx, ctx);
1052
1053  out_enable:
1054         perf_enable();
1055  out:
1056         raw_spin_unlock(&ctx->lock);
1057 }
1058
1059 /*
1060  * Test whether two contexts are equivalent, i.e. whether they
1061  * have both been cloned from the same version of the same context
1062  * and they both have the same number of enabled events.
1063  * If the number of enabled events is the same, then the set
1064  * of enabled events should be the same, because these are both
1065  * inherited contexts, therefore we can't access individual events
1066  * in them directly with an fd; we can only enable/disable all
1067  * events via prctl, or enable/disable all events in a family
1068  * via ioctl, which will have the same effect on both contexts.
1069  */
1070 static int context_equiv(struct perf_event_context *ctx1,
1071                          struct perf_event_context *ctx2)
1072 {
1073         return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1074                 && ctx1->parent_gen == ctx2->parent_gen
1075                 && !ctx1->pin_count && !ctx2->pin_count;
1076 }
1077
1078 static void __perf_event_sync_stat(struct perf_event *event,
1079                                      struct perf_event *next_event)
1080 {
1081         u64 value;
1082
1083         if (!event->attr.inherit_stat)
1084                 return;
1085
1086         /*
1087          * Update the event value, we cannot use perf_event_read()
1088          * because we're in the middle of a context switch and have IRQs
1089          * disabled, which upsets smp_call_function_single(), however
1090          * we know the event must be on the current CPU, therefore we
1091          * don't need to use it.
1092          */
1093         switch (event->state) {
1094         case PERF_EVENT_STATE_ACTIVE:
1095                 event->pmu->read(event);
1096                 /* fall-through */
1097
1098         case PERF_EVENT_STATE_INACTIVE:
1099                 update_event_times(event);
1100                 break;
1101
1102         default:
1103                 break;
1104         }
1105
1106         /*
1107          * In order to keep per-task stats reliable we need to flip the event
1108          * values when we flip the contexts.
1109          */
1110         value = atomic64_read(&next_event->count);
1111         value = atomic64_xchg(&event->count, value);
1112         atomic64_set(&next_event->count, value);
1113
1114         swap(event->total_time_enabled, next_event->total_time_enabled);
1115         swap(event->total_time_running, next_event->total_time_running);
1116
1117         /*
1118          * Since we swizzled the values, update the user visible data too.
1119          */
1120         perf_event_update_userpage(event);
1121         perf_event_update_userpage(next_event);
1122 }
1123
1124 #define list_next_entry(pos, member) \
1125         list_entry(pos->member.next, typeof(*pos), member)
1126
1127 static void perf_event_sync_stat(struct perf_event_context *ctx,
1128                                    struct perf_event_context *next_ctx)
1129 {
1130         struct perf_event *event, *next_event;
1131
1132         if (!ctx->nr_stat)
1133                 return;
1134
1135         update_context_time(ctx);
1136
1137         event = list_first_entry(&ctx->event_list,
1138                                    struct perf_event, event_entry);
1139
1140         next_event = list_first_entry(&next_ctx->event_list,
1141                                         struct perf_event, event_entry);
1142
1143         while (&event->event_entry != &ctx->event_list &&
1144                &next_event->event_entry != &next_ctx->event_list) {
1145
1146                 __perf_event_sync_stat(event, next_event);
1147
1148                 event = list_next_entry(event, event_entry);
1149                 next_event = list_next_entry(next_event, event_entry);
1150         }
1151 }
1152
1153 /*
1154  * Called from scheduler to remove the events of the current task,
1155  * with interrupts disabled.
1156  *
1157  * We stop each event and update the event value in event->count.
1158  *
1159  * This does not protect us against NMI, but disable()
1160  * sets the disabled bit in the control field of event _before_
1161  * accessing the event control register. If a NMI hits, then it will
1162  * not restart the event.
1163  */
1164 void perf_event_task_sched_out(struct task_struct *task,
1165                                  struct task_struct *next)
1166 {
1167         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1168         struct perf_event_context *ctx = task->perf_event_ctxp;
1169         struct perf_event_context *next_ctx;
1170         struct perf_event_context *parent;
1171         int do_switch = 1;
1172
1173         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1174
1175         if (likely(!ctx || !cpuctx->task_ctx))
1176                 return;
1177
1178         rcu_read_lock();
1179         parent = rcu_dereference(ctx->parent_ctx);
1180         next_ctx = next->perf_event_ctxp;
1181         if (parent && next_ctx &&
1182             rcu_dereference(next_ctx->parent_ctx) == parent) {
1183                 /*
1184                  * Looks like the two contexts are clones, so we might be
1185                  * able to optimize the context switch.  We lock both
1186                  * contexts and check that they are clones under the
1187                  * lock (including re-checking that neither has been
1188                  * uncloned in the meantime).  It doesn't matter which
1189                  * order we take the locks because no other cpu could
1190                  * be trying to lock both of these tasks.
1191                  */
1192                 raw_spin_lock(&ctx->lock);
1193                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1194                 if (context_equiv(ctx, next_ctx)) {
1195                         /*
1196                          * XXX do we need a memory barrier of sorts
1197                          * wrt to rcu_dereference() of perf_event_ctxp
1198                          */
1199                         task->perf_event_ctxp = next_ctx;
1200                         next->perf_event_ctxp = ctx;
1201                         ctx->task = next;
1202                         next_ctx->task = task;
1203                         do_switch = 0;
1204
1205                         perf_event_sync_stat(ctx, next_ctx);
1206                 }
1207                 raw_spin_unlock(&next_ctx->lock);
1208                 raw_spin_unlock(&ctx->lock);
1209         }
1210         rcu_read_unlock();
1211
1212         if (do_switch) {
1213                 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1214                 cpuctx->task_ctx = NULL;
1215         }
1216 }
1217
1218 static void task_ctx_sched_out(struct perf_event_context *ctx,
1219                                enum event_type_t event_type)
1220 {
1221         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1222
1223         if (!cpuctx->task_ctx)
1224                 return;
1225
1226         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1227                 return;
1228
1229         ctx_sched_out(ctx, cpuctx, event_type);
1230         cpuctx->task_ctx = NULL;
1231 }
1232
1233 /*
1234  * Called with IRQs disabled
1235  */
1236 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1237 {
1238         task_ctx_sched_out(ctx, EVENT_ALL);
1239 }
1240
1241 /*
1242  * Called with IRQs disabled
1243  */
1244 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1245                               enum event_type_t event_type)
1246 {
1247         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1248 }
1249
1250 static void
1251 ctx_pinned_sched_in(struct perf_event_context *ctx,
1252                     struct perf_cpu_context *cpuctx)
1253 {
1254         struct perf_event *event;
1255
1256         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1257                 if (event->state <= PERF_EVENT_STATE_OFF)
1258                         continue;
1259                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1260                         continue;
1261
1262                 if (group_can_go_on(event, cpuctx, 1))
1263                         group_sched_in(event, cpuctx, ctx);
1264
1265                 /*
1266                  * If this pinned group hasn't been scheduled,
1267                  * put it in error state.
1268                  */
1269                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1270                         update_group_times(event);
1271                         event->state = PERF_EVENT_STATE_ERROR;
1272                 }
1273         }
1274 }
1275
1276 static void
1277 ctx_flexible_sched_in(struct perf_event_context *ctx,
1278                       struct perf_cpu_context *cpuctx)
1279 {
1280         struct perf_event *event;
1281         int can_add_hw = 1;
1282
1283         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1284                 /* Ignore events in OFF or ERROR state */
1285                 if (event->state <= PERF_EVENT_STATE_OFF)
1286                         continue;
1287                 /*
1288                  * Listen to the 'cpu' scheduling filter constraint
1289                  * of events:
1290                  */
1291                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1292                         continue;
1293
1294                 if (group_can_go_on(event, cpuctx, can_add_hw))
1295                         if (group_sched_in(event, cpuctx, ctx))
1296                                 can_add_hw = 0;
1297         }
1298 }
1299
1300 static void
1301 ctx_sched_in(struct perf_event_context *ctx,
1302              struct perf_cpu_context *cpuctx,
1303              enum event_type_t event_type)
1304 {
1305         raw_spin_lock(&ctx->lock);
1306         ctx->is_active = 1;
1307         if (likely(!ctx->nr_events))
1308                 goto out;
1309
1310         ctx->timestamp = perf_clock();
1311
1312         perf_disable();
1313
1314         /*
1315          * First go through the list and put on any pinned groups
1316          * in order to give them the best chance of going on.
1317          */
1318         if (event_type & EVENT_PINNED)
1319                 ctx_pinned_sched_in(ctx, cpuctx);
1320
1321         /* Then walk through the lower prio flexible groups */
1322         if (event_type & EVENT_FLEXIBLE)
1323                 ctx_flexible_sched_in(ctx, cpuctx);
1324
1325         perf_enable();
1326  out:
1327         raw_spin_unlock(&ctx->lock);
1328 }
1329
1330 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1331                              enum event_type_t event_type)
1332 {
1333         struct perf_event_context *ctx = &cpuctx->ctx;
1334
1335         ctx_sched_in(ctx, cpuctx, event_type);
1336 }
1337
1338 static void task_ctx_sched_in(struct task_struct *task,
1339                               enum event_type_t event_type)
1340 {
1341         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1342         struct perf_event_context *ctx = task->perf_event_ctxp;
1343
1344         if (likely(!ctx))
1345                 return;
1346         if (cpuctx->task_ctx == ctx)
1347                 return;
1348         ctx_sched_in(ctx, cpuctx, event_type);
1349         cpuctx->task_ctx = ctx;
1350 }
1351 /*
1352  * Called from scheduler to add the events of the current task
1353  * with interrupts disabled.
1354  *
1355  * We restore the event value and then enable it.
1356  *
1357  * This does not protect us against NMI, but enable()
1358  * sets the enabled bit in the control field of event _before_
1359  * accessing the event control register. If a NMI hits, then it will
1360  * keep the event running.
1361  */
1362 void perf_event_task_sched_in(struct task_struct *task)
1363 {
1364         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1365         struct perf_event_context *ctx = task->perf_event_ctxp;
1366
1367         if (likely(!ctx))
1368                 return;
1369
1370         if (cpuctx->task_ctx == ctx)
1371                 return;
1372
1373         /*
1374          * We want to keep the following priority order:
1375          * cpu pinned (that don't need to move), task pinned,
1376          * cpu flexible, task flexible.
1377          */
1378         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1379
1380         ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1381         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1382         ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1383
1384         cpuctx->task_ctx = ctx;
1385 }
1386
1387 #define MAX_INTERRUPTS (~0ULL)
1388
1389 static void perf_log_throttle(struct perf_event *event, int enable);
1390
1391 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1392 {
1393         u64 frequency = event->attr.sample_freq;
1394         u64 sec = NSEC_PER_SEC;
1395         u64 divisor, dividend;
1396
1397         int count_fls, nsec_fls, frequency_fls, sec_fls;
1398
1399         count_fls = fls64(count);
1400         nsec_fls = fls64(nsec);
1401         frequency_fls = fls64(frequency);
1402         sec_fls = 30;
1403
1404         /*
1405          * We got @count in @nsec, with a target of sample_freq HZ
1406          * the target period becomes:
1407          *
1408          *             @count * 10^9
1409          * period = -------------------
1410          *          @nsec * sample_freq
1411          *
1412          */
1413
1414         /*
1415          * Reduce accuracy by one bit such that @a and @b converge
1416          * to a similar magnitude.
1417          */
1418 #define REDUCE_FLS(a, b)                \
1419 do {                                    \
1420         if (a##_fls > b##_fls) {        \
1421                 a >>= 1;                \
1422                 a##_fls--;              \
1423         } else {                        \
1424                 b >>= 1;                \
1425                 b##_fls--;              \
1426         }                               \
1427 } while (0)
1428
1429         /*
1430          * Reduce accuracy until either term fits in a u64, then proceed with
1431          * the other, so that finally we can do a u64/u64 division.
1432          */
1433         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1434                 REDUCE_FLS(nsec, frequency);
1435                 REDUCE_FLS(sec, count);
1436         }
1437
1438         if (count_fls + sec_fls > 64) {
1439                 divisor = nsec * frequency;
1440
1441                 while (count_fls + sec_fls > 64) {
1442                         REDUCE_FLS(count, sec);
1443                         divisor >>= 1;
1444                 }
1445
1446                 dividend = count * sec;
1447         } else {
1448                 dividend = count * sec;
1449
1450                 while (nsec_fls + frequency_fls > 64) {
1451                         REDUCE_FLS(nsec, frequency);
1452                         dividend >>= 1;
1453                 }
1454
1455                 divisor = nsec * frequency;
1456         }
1457
1458         return div64_u64(dividend, divisor);
1459 }
1460
1461 static void perf_event_stop(struct perf_event *event)
1462 {
1463         if (!event->pmu->stop)
1464                 return event->pmu->disable(event);
1465
1466         return event->pmu->stop(event);
1467 }
1468
1469 static int perf_event_start(struct perf_event *event)
1470 {
1471         if (!event->pmu->start)
1472                 return event->pmu->enable(event);
1473
1474         return event->pmu->start(event);
1475 }
1476
1477 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1478 {
1479         struct hw_perf_event *hwc = &event->hw;
1480         u64 period, sample_period;
1481         s64 delta;
1482
1483         period = perf_calculate_period(event, nsec, count);
1484
1485         delta = (s64)(period - hwc->sample_period);
1486         delta = (delta + 7) / 8; /* low pass filter */
1487
1488         sample_period = hwc->sample_period + delta;
1489
1490         if (!sample_period)
1491                 sample_period = 1;
1492
1493         hwc->sample_period = sample_period;
1494
1495         if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1496                 perf_disable();
1497                 perf_event_stop(event);
1498                 atomic64_set(&hwc->period_left, 0);
1499                 perf_event_start(event);
1500                 perf_enable();
1501         }
1502 }
1503
1504 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1505 {
1506         struct perf_event *event;
1507         struct hw_perf_event *hwc;
1508         u64 interrupts, now;
1509         s64 delta;
1510
1511         raw_spin_lock(&ctx->lock);
1512         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1513                 if (event->state != PERF_EVENT_STATE_ACTIVE)
1514                         continue;
1515
1516                 if (event->cpu != -1 && event->cpu != smp_processor_id())
1517                         continue;
1518
1519                 hwc = &event->hw;
1520
1521                 interrupts = hwc->interrupts;
1522                 hwc->interrupts = 0;
1523
1524                 /*
1525                  * unthrottle events on the tick
1526                  */
1527                 if (interrupts == MAX_INTERRUPTS) {
1528                         perf_log_throttle(event, 1);
1529                         perf_disable();
1530                         event->pmu->unthrottle(event);
1531                         perf_enable();
1532                 }
1533
1534                 if (!event->attr.freq || !event->attr.sample_freq)
1535                         continue;
1536
1537                 perf_disable();
1538                 event->pmu->read(event);
1539                 now = atomic64_read(&event->count);
1540                 delta = now - hwc->freq_count_stamp;
1541                 hwc->freq_count_stamp = now;
1542
1543                 if (delta > 0)
1544                         perf_adjust_period(event, TICK_NSEC, delta);
1545                 perf_enable();
1546         }
1547         raw_spin_unlock(&ctx->lock);
1548 }
1549
1550 /*
1551  * Round-robin a context's events:
1552  */
1553 static void rotate_ctx(struct perf_event_context *ctx)
1554 {
1555         raw_spin_lock(&ctx->lock);
1556
1557         /* Rotate the first entry last of non-pinned groups */
1558         list_rotate_left(&ctx->flexible_groups);
1559
1560         raw_spin_unlock(&ctx->lock);
1561 }
1562
1563 void perf_event_task_tick(struct task_struct *curr)
1564 {
1565         struct perf_cpu_context *cpuctx;
1566         struct perf_event_context *ctx;
1567         int rotate = 0;
1568
1569         if (!atomic_read(&nr_events))
1570                 return;
1571
1572         cpuctx = &__get_cpu_var(perf_cpu_context);
1573         if (cpuctx->ctx.nr_events &&
1574             cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1575                 rotate = 1;
1576
1577         ctx = curr->perf_event_ctxp;
1578         if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1579                 rotate = 1;
1580
1581         perf_ctx_adjust_freq(&cpuctx->ctx);
1582         if (ctx)
1583                 perf_ctx_adjust_freq(ctx);
1584
1585         if (!rotate)
1586                 return;
1587
1588         perf_disable();
1589         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1590         if (ctx)
1591                 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1592
1593         rotate_ctx(&cpuctx->ctx);
1594         if (ctx)
1595                 rotate_ctx(ctx);
1596
1597         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1598         if (ctx)
1599                 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1600         perf_enable();
1601 }
1602
1603 static int event_enable_on_exec(struct perf_event *event,
1604                                 struct perf_event_context *ctx)
1605 {
1606         if (!event->attr.enable_on_exec)
1607                 return 0;
1608
1609         event->attr.enable_on_exec = 0;
1610         if (event->state >= PERF_EVENT_STATE_INACTIVE)
1611                 return 0;
1612
1613         __perf_event_mark_enabled(event, ctx);
1614
1615         return 1;
1616 }
1617
1618 /*
1619  * Enable all of a task's events that have been marked enable-on-exec.
1620  * This expects task == current.
1621  */
1622 static void perf_event_enable_on_exec(struct task_struct *task)
1623 {
1624         struct perf_event_context *ctx;
1625         struct perf_event *event;
1626         unsigned long flags;
1627         int enabled = 0;
1628         int ret;
1629
1630         local_irq_save(flags);
1631         ctx = task->perf_event_ctxp;
1632         if (!ctx || !ctx->nr_events)
1633                 goto out;
1634
1635         __perf_event_task_sched_out(ctx);
1636
1637         raw_spin_lock(&ctx->lock);
1638
1639         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1640                 ret = event_enable_on_exec(event, ctx);
1641                 if (ret)
1642                         enabled = 1;
1643         }
1644
1645         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1646                 ret = event_enable_on_exec(event, ctx);
1647                 if (ret)
1648                         enabled = 1;
1649         }
1650
1651         /*
1652          * Unclone this context if we enabled any event.
1653          */
1654         if (enabled)
1655                 unclone_ctx(ctx);
1656
1657         raw_spin_unlock(&ctx->lock);
1658
1659         perf_event_task_sched_in(task);
1660  out:
1661         local_irq_restore(flags);
1662 }
1663
1664 /*
1665  * Cross CPU call to read the hardware event
1666  */
1667 static void __perf_event_read(void *info)
1668 {
1669         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1670         struct perf_event *event = info;
1671         struct perf_event_context *ctx = event->ctx;
1672
1673         /*
1674          * If this is a task context, we need to check whether it is
1675          * the current task context of this cpu.  If not it has been
1676          * scheduled out before the smp call arrived.  In that case
1677          * event->count would have been updated to a recent sample
1678          * when the event was scheduled out.
1679          */
1680         if (ctx->task && cpuctx->task_ctx != ctx)
1681                 return;
1682
1683         raw_spin_lock(&ctx->lock);
1684         update_context_time(ctx);
1685         update_event_times(event);
1686         raw_spin_unlock(&ctx->lock);
1687
1688         event->pmu->read(event);
1689 }
1690
1691 static u64 perf_event_read(struct perf_event *event)
1692 {
1693         /*
1694          * If event is enabled and currently active on a CPU, update the
1695          * value in the event structure:
1696          */
1697         if (event->state == PERF_EVENT_STATE_ACTIVE) {
1698                 smp_call_function_single(event->oncpu,
1699                                          __perf_event_read, event, 1);
1700         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1701                 struct perf_event_context *ctx = event->ctx;
1702                 unsigned long flags;
1703
1704                 raw_spin_lock_irqsave(&ctx->lock, flags);
1705                 update_context_time(ctx);
1706                 update_event_times(event);
1707                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1708         }
1709
1710         return atomic64_read(&event->count);
1711 }
1712
1713 /*
1714  * Initialize the perf_event context in a task_struct:
1715  */
1716 static void
1717 __perf_event_init_context(struct perf_event_context *ctx,
1718                             struct task_struct *task)
1719 {
1720         raw_spin_lock_init(&ctx->lock);
1721         mutex_init(&ctx->mutex);
1722         INIT_LIST_HEAD(&ctx->pinned_groups);
1723         INIT_LIST_HEAD(&ctx->flexible_groups);
1724         INIT_LIST_HEAD(&ctx->event_list);
1725         atomic_set(&ctx->refcount, 1);
1726         ctx->task = task;
1727 }
1728
1729 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1730 {
1731         struct perf_event_context *ctx;
1732         struct perf_cpu_context *cpuctx;
1733         struct task_struct *task;
1734         unsigned long flags;
1735         int err;
1736
1737         if (pid == -1 && cpu != -1) {
1738                 /* Must be root to operate on a CPU event: */
1739                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1740                         return ERR_PTR(-EACCES);
1741
1742                 if (cpu < 0 || cpu >= nr_cpumask_bits)
1743                         return ERR_PTR(-EINVAL);
1744
1745                 /*
1746                  * We could be clever and allow to attach a event to an
1747                  * offline CPU and activate it when the CPU comes up, but
1748                  * that's for later.
1749                  */
1750                 if (!cpu_online(cpu))
1751                         return ERR_PTR(-ENODEV);
1752
1753                 cpuctx = &per_cpu(perf_cpu_context, cpu);
1754                 ctx = &cpuctx->ctx;
1755                 get_ctx(ctx);
1756
1757                 return ctx;
1758         }
1759
1760         rcu_read_lock();
1761         if (!pid)
1762                 task = current;
1763         else
1764                 task = find_task_by_vpid(pid);
1765         if (task)
1766                 get_task_struct(task);
1767         rcu_read_unlock();
1768
1769         if (!task)
1770                 return ERR_PTR(-ESRCH);
1771
1772         /*
1773          * Can't attach events to a dying task.
1774          */
1775         err = -ESRCH;
1776         if (task->flags & PF_EXITING)
1777                 goto errout;
1778
1779         /* Reuse ptrace permission checks for now. */
1780         err = -EACCES;
1781         if (!ptrace_may_access(task, PTRACE_MODE_READ))
1782                 goto errout;
1783
1784  retry:
1785         ctx = perf_lock_task_context(task, &flags);
1786         if (ctx) {
1787                 unclone_ctx(ctx);
1788                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1789         }
1790
1791         if (!ctx) {
1792                 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1793                 err = -ENOMEM;
1794                 if (!ctx)
1795                         goto errout;
1796                 __perf_event_init_context(ctx, task);
1797                 get_ctx(ctx);
1798                 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1799                         /*
1800                          * We raced with some other task; use
1801                          * the context they set.
1802                          */
1803                         kfree(ctx);
1804                         goto retry;
1805                 }
1806                 get_task_struct(task);
1807         }
1808
1809         put_task_struct(task);
1810         return ctx;
1811
1812  errout:
1813         put_task_struct(task);
1814         return ERR_PTR(err);
1815 }
1816
1817 static void perf_event_free_filter(struct perf_event *event);
1818
1819 static void free_event_rcu(struct rcu_head *head)
1820 {
1821         struct perf_event *event;
1822
1823         event = container_of(head, struct perf_event, rcu_head);
1824         if (event->ns)
1825                 put_pid_ns(event->ns);
1826         perf_event_free_filter(event);
1827         kfree(event);
1828 }
1829
1830 static void perf_pending_sync(struct perf_event *event);
1831
1832 static void free_event(struct perf_event *event)
1833 {
1834         perf_pending_sync(event);
1835
1836         if (!event->parent) {
1837                 atomic_dec(&nr_events);
1838                 if (event->attr.mmap)
1839                         atomic_dec(&nr_mmap_events);
1840                 if (event->attr.comm)
1841                         atomic_dec(&nr_comm_events);
1842                 if (event->attr.task)
1843                         atomic_dec(&nr_task_events);
1844         }
1845
1846         if (event->output) {
1847                 fput(event->output->filp);
1848                 event->output = NULL;
1849         }
1850
1851         if (event->destroy)
1852                 event->destroy(event);
1853
1854         put_ctx(event->ctx);
1855         call_rcu(&event->rcu_head, free_event_rcu);
1856 }
1857
1858 int perf_event_release_kernel(struct perf_event *event)
1859 {
1860         struct perf_event_context *ctx = event->ctx;
1861
1862         event->state = PERF_EVENT_STATE_FREE;
1863
1864         WARN_ON_ONCE(ctx->parent_ctx);
1865         mutex_lock(&ctx->mutex);
1866         perf_event_remove_from_context(event);
1867         mutex_unlock(&ctx->mutex);
1868
1869         mutex_lock(&event->owner->perf_event_mutex);
1870         list_del_init(&event->owner_entry);
1871         mutex_unlock(&event->owner->perf_event_mutex);
1872         put_task_struct(event->owner);
1873
1874         free_event(event);
1875
1876         return 0;
1877 }
1878 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1879
1880 /*
1881  * Called when the last reference to the file is gone.
1882  */
1883 static int perf_release(struct inode *inode, struct file *file)
1884 {
1885         struct perf_event *event = file->private_data;
1886
1887         file->private_data = NULL;
1888
1889         return perf_event_release_kernel(event);
1890 }
1891
1892 static int perf_event_read_size(struct perf_event *event)
1893 {
1894         int entry = sizeof(u64); /* value */
1895         int size = 0;
1896         int nr = 1;
1897
1898         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1899                 size += sizeof(u64);
1900
1901         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1902                 size += sizeof(u64);
1903
1904         if (event->attr.read_format & PERF_FORMAT_ID)
1905                 entry += sizeof(u64);
1906
1907         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1908                 nr += event->group_leader->nr_siblings;
1909                 size += sizeof(u64);
1910         }
1911
1912         size += entry * nr;
1913
1914         return size;
1915 }
1916
1917 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1918 {
1919         struct perf_event *child;
1920         u64 total = 0;
1921
1922         *enabled = 0;
1923         *running = 0;
1924
1925         mutex_lock(&event->child_mutex);
1926         total += perf_event_read(event);
1927         *enabled += event->total_time_enabled +
1928                         atomic64_read(&event->child_total_time_enabled);
1929         *running += event->total_time_running +
1930                         atomic64_read(&event->child_total_time_running);
1931
1932         list_for_each_entry(child, &event->child_list, child_list) {
1933                 total += perf_event_read(child);
1934                 *enabled += child->total_time_enabled;
1935                 *running += child->total_time_running;
1936         }
1937         mutex_unlock(&event->child_mutex);
1938
1939         return total;
1940 }
1941 EXPORT_SYMBOL_GPL(perf_event_read_value);
1942
1943 static int perf_event_read_group(struct perf_event *event,
1944                                    u64 read_format, char __user *buf)
1945 {
1946         struct perf_event *leader = event->group_leader, *sub;
1947         int n = 0, size = 0, ret = -EFAULT;
1948         struct perf_event_context *ctx = leader->ctx;
1949         u64 values[5];
1950         u64 count, enabled, running;
1951
1952         mutex_lock(&ctx->mutex);
1953         count = perf_event_read_value(leader, &enabled, &running);
1954
1955         values[n++] = 1 + leader->nr_siblings;
1956         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1957                 values[n++] = enabled;
1958         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1959                 values[n++] = running;
1960         values[n++] = count;
1961         if (read_format & PERF_FORMAT_ID)
1962                 values[n++] = primary_event_id(leader);
1963
1964         size = n * sizeof(u64);
1965
1966         if (copy_to_user(buf, values, size))
1967                 goto unlock;
1968
1969         ret = size;
1970
1971         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1972                 n = 0;
1973
1974                 values[n++] = perf_event_read_value(sub, &enabled, &running);
1975                 if (read_format & PERF_FORMAT_ID)
1976                         values[n++] = primary_event_id(sub);
1977
1978                 size = n * sizeof(u64);
1979
1980                 if (copy_to_user(buf + ret, values, size)) {
1981                         ret = -EFAULT;
1982                         goto unlock;
1983                 }
1984
1985                 ret += size;
1986         }
1987 unlock:
1988         mutex_unlock(&ctx->mutex);
1989
1990         return ret;
1991 }
1992
1993 static int perf_event_read_one(struct perf_event *event,
1994                                  u64 read_format, char __user *buf)
1995 {
1996         u64 enabled, running;
1997         u64 values[4];
1998         int n = 0;
1999
2000         values[n++] = perf_event_read_value(event, &enabled, &running);
2001         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2002                 values[n++] = enabled;
2003         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2004                 values[n++] = running;
2005         if (read_format & PERF_FORMAT_ID)
2006                 values[n++] = primary_event_id(event);
2007
2008         if (copy_to_user(buf, values, n * sizeof(u64)))
2009                 return -EFAULT;
2010
2011         return n * sizeof(u64);
2012 }
2013
2014 /*
2015  * Read the performance event - simple non blocking version for now
2016  */
2017 static ssize_t
2018 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2019 {
2020         u64 read_format = event->attr.read_format;
2021         int ret;
2022
2023         /*
2024          * Return end-of-file for a read on a event that is in
2025          * error state (i.e. because it was pinned but it couldn't be
2026          * scheduled on to the CPU at some point).
2027          */
2028         if (event->state == PERF_EVENT_STATE_ERROR)
2029                 return 0;
2030
2031         if (count < perf_event_read_size(event))
2032                 return -ENOSPC;
2033
2034         WARN_ON_ONCE(event->ctx->parent_ctx);
2035         if (read_format & PERF_FORMAT_GROUP)
2036                 ret = perf_event_read_group(event, read_format, buf);
2037         else
2038                 ret = perf_event_read_one(event, read_format, buf);
2039
2040         return ret;
2041 }
2042
2043 static ssize_t
2044 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2045 {
2046         struct perf_event *event = file->private_data;
2047
2048         return perf_read_hw(event, buf, count);
2049 }
2050
2051 static unsigned int perf_poll(struct file *file, poll_table *wait)
2052 {
2053         struct perf_event *event = file->private_data;
2054         struct perf_mmap_data *data;
2055         unsigned int events = POLL_HUP;
2056
2057         rcu_read_lock();
2058         data = rcu_dereference(event->data);
2059         if (data)
2060                 events = atomic_xchg(&data->poll, 0);
2061         rcu_read_unlock();
2062
2063         poll_wait(file, &event->waitq, wait);
2064
2065         return events;
2066 }
2067
2068 static void perf_event_reset(struct perf_event *event)
2069 {
2070         (void)perf_event_read(event);
2071         atomic64_set(&event->count, 0);
2072         perf_event_update_userpage(event);
2073 }
2074
2075 /*
2076  * Holding the top-level event's child_mutex means that any
2077  * descendant process that has inherited this event will block
2078  * in sync_child_event if it goes to exit, thus satisfying the
2079  * task existence requirements of perf_event_enable/disable.
2080  */
2081 static void perf_event_for_each_child(struct perf_event *event,
2082                                         void (*func)(struct perf_event *))
2083 {
2084         struct perf_event *child;
2085
2086         WARN_ON_ONCE(event->ctx->parent_ctx);
2087         mutex_lock(&event->child_mutex);
2088         func(event);
2089         list_for_each_entry(child, &event->child_list, child_list)
2090                 func(child);
2091         mutex_unlock(&event->child_mutex);
2092 }
2093
2094 static void perf_event_for_each(struct perf_event *event,
2095                                   void (*func)(struct perf_event *))
2096 {
2097         struct perf_event_context *ctx = event->ctx;
2098         struct perf_event *sibling;
2099
2100         WARN_ON_ONCE(ctx->parent_ctx);
2101         mutex_lock(&ctx->mutex);
2102         event = event->group_leader;
2103
2104         perf_event_for_each_child(event, func);
2105         func(event);
2106         list_for_each_entry(sibling, &event->sibling_list, group_entry)
2107                 perf_event_for_each_child(event, func);
2108         mutex_unlock(&ctx->mutex);
2109 }
2110
2111 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2112 {
2113         struct perf_event_context *ctx = event->ctx;
2114         unsigned long size;
2115         int ret = 0;
2116         u64 value;
2117
2118         if (!event->attr.sample_period)
2119                 return -EINVAL;
2120
2121         size = copy_from_user(&value, arg, sizeof(value));
2122         if (size != sizeof(value))
2123                 return -EFAULT;
2124
2125         if (!value)
2126                 return -EINVAL;
2127
2128         raw_spin_lock_irq(&ctx->lock);
2129         if (event->attr.freq) {
2130                 if (value > sysctl_perf_event_sample_rate) {
2131                         ret = -EINVAL;
2132                         goto unlock;
2133                 }
2134
2135                 event->attr.sample_freq = value;
2136         } else {
2137                 event->attr.sample_period = value;
2138                 event->hw.sample_period = value;
2139         }
2140 unlock:
2141         raw_spin_unlock_irq(&ctx->lock);
2142
2143         return ret;
2144 }
2145
2146 static int perf_event_set_output(struct perf_event *event, int output_fd);
2147 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2148
2149 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2150 {
2151         struct perf_event *event = file->private_data;
2152         void (*func)(struct perf_event *);
2153         u32 flags = arg;
2154
2155         switch (cmd) {
2156         case PERF_EVENT_IOC_ENABLE:
2157                 func = perf_event_enable;
2158                 break;
2159         case PERF_EVENT_IOC_DISABLE:
2160                 func = perf_event_disable;
2161                 break;
2162         case PERF_EVENT_IOC_RESET:
2163                 func = perf_event_reset;
2164                 break;
2165
2166         case PERF_EVENT_IOC_REFRESH:
2167                 return perf_event_refresh(event, arg);
2168
2169         case PERF_EVENT_IOC_PERIOD:
2170                 return perf_event_period(event, (u64 __user *)arg);
2171
2172         case PERF_EVENT_IOC_SET_OUTPUT:
2173                 return perf_event_set_output(event, arg);
2174
2175         case PERF_EVENT_IOC_SET_FILTER:
2176                 return perf_event_set_filter(event, (void __user *)arg);
2177
2178         default:
2179                 return -ENOTTY;
2180         }
2181
2182         if (flags & PERF_IOC_FLAG_GROUP)
2183                 perf_event_for_each(event, func);
2184         else
2185                 perf_event_for_each_child(event, func);
2186
2187         return 0;
2188 }
2189
2190 int perf_event_task_enable(void)
2191 {
2192         struct perf_event *event;
2193
2194         mutex_lock(&current->perf_event_mutex);
2195         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2196                 perf_event_for_each_child(event, perf_event_enable);
2197         mutex_unlock(&current->perf_event_mutex);
2198
2199         return 0;
2200 }
2201
2202 int perf_event_task_disable(void)
2203 {
2204         struct perf_event *event;
2205
2206         mutex_lock(&current->perf_event_mutex);
2207         list_for_each_entry(event, &current->perf_event_list, owner_entry)
2208                 perf_event_for_each_child(event, perf_event_disable);
2209         mutex_unlock(&current->perf_event_mutex);
2210
2211         return 0;
2212 }
2213
2214 #ifndef PERF_EVENT_INDEX_OFFSET
2215 # define PERF_EVENT_INDEX_OFFSET 0
2216 #endif
2217
2218 static int perf_event_index(struct perf_event *event)
2219 {
2220         if (event->state != PERF_EVENT_STATE_ACTIVE)
2221                 return 0;
2222
2223         return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2224 }
2225
2226 /*
2227  * Callers need to ensure there can be no nesting of this function, otherwise
2228  * the seqlock logic goes bad. We can not serialize this because the arch
2229  * code calls this from NMI context.
2230  */
2231 void perf_event_update_userpage(struct perf_event *event)
2232 {
2233         struct perf_event_mmap_page *userpg;
2234         struct perf_mmap_data *data;
2235
2236         rcu_read_lock();
2237         data = rcu_dereference(event->data);
2238         if (!data)
2239                 goto unlock;
2240
2241         userpg = data->user_page;
2242
2243         /*
2244          * Disable preemption so as to not let the corresponding user-space
2245          * spin too long if we get preempted.
2246          */
2247         preempt_disable();
2248         ++userpg->lock;
2249         barrier();
2250         userpg->index = perf_event_index(event);
2251         userpg->offset = atomic64_read(&event->count);
2252         if (event->state == PERF_EVENT_STATE_ACTIVE)
2253                 userpg->offset -= atomic64_read(&event->hw.prev_count);
2254
2255         userpg->time_enabled = event->total_time_enabled +
2256                         atomic64_read(&event->child_total_time_enabled);
2257
2258         userpg->time_running = event->total_time_running +
2259                         atomic64_read(&event->child_total_time_running);
2260
2261         barrier();
2262         ++userpg->lock;
2263         preempt_enable();
2264 unlock:
2265         rcu_read_unlock();
2266 }
2267
2268 static unsigned long perf_data_size(struct perf_mmap_data *data)
2269 {
2270         return data->nr_pages << (PAGE_SHIFT + data->data_order);
2271 }
2272
2273 #ifndef CONFIG_PERF_USE_VMALLOC
2274
2275 /*
2276  * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2277  */
2278
2279 static struct page *
2280 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2281 {
2282         if (pgoff > data->nr_pages)
2283                 return NULL;
2284
2285         if (pgoff == 0)
2286                 return virt_to_page(data->user_page);
2287
2288         return virt_to_page(data->data_pages[pgoff - 1]);
2289 }
2290
2291 static struct perf_mmap_data *
2292 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2293 {
2294         struct perf_mmap_data *data;
2295         unsigned long size;
2296         int i;
2297
2298         WARN_ON(atomic_read(&event->mmap_count));
2299
2300         size = sizeof(struct perf_mmap_data);
2301         size += nr_pages * sizeof(void *);
2302
2303         data = kzalloc(size, GFP_KERNEL);
2304         if (!data)
2305                 goto fail;
2306
2307         data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2308         if (!data->user_page)
2309                 goto fail_user_page;
2310
2311         for (i = 0; i < nr_pages; i++) {
2312                 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2313                 if (!data->data_pages[i])
2314                         goto fail_data_pages;
2315         }
2316
2317         data->data_order = 0;
2318         data->nr_pages = nr_pages;
2319
2320         return data;
2321
2322 fail_data_pages:
2323         for (i--; i >= 0; i--)
2324                 free_page((unsigned long)data->data_pages[i]);
2325
2326         free_page((unsigned long)data->user_page);
2327
2328 fail_user_page:
2329         kfree(data);
2330
2331 fail:
2332         return NULL;
2333 }
2334
2335 static void perf_mmap_free_page(unsigned long addr)
2336 {
2337         struct page *page = virt_to_page((void *)addr);
2338
2339         page->mapping = NULL;
2340         __free_page(page);
2341 }
2342
2343 static void perf_mmap_data_free(struct perf_mmap_data *data)
2344 {
2345         int i;
2346
2347         perf_mmap_free_page((unsigned long)data->user_page);
2348         for (i = 0; i < data->nr_pages; i++)
2349                 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2350         kfree(data);
2351 }
2352
2353 #else
2354
2355 /*
2356  * Back perf_mmap() with vmalloc memory.
2357  *
2358  * Required for architectures that have d-cache aliasing issues.
2359  */
2360
2361 static struct page *
2362 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2363 {
2364         if (pgoff > (1UL << data->data_order))
2365                 return NULL;
2366
2367         return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2368 }
2369
2370 static void perf_mmap_unmark_page(void *addr)
2371 {
2372         struct page *page = vmalloc_to_page(addr);
2373
2374         page->mapping = NULL;
2375 }
2376
2377 static void perf_mmap_data_free_work(struct work_struct *work)
2378 {
2379         struct perf_mmap_data *data;
2380         void *base;
2381         int i, nr;
2382
2383         data = container_of(work, struct perf_mmap_data, work);
2384         nr = 1 << data->data_order;
2385
2386         base = data->user_page;
2387         for (i = 0; i < nr + 1; i++)
2388                 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2389
2390         vfree(base);
2391         kfree(data);
2392 }
2393
2394 static void perf_mmap_data_free(struct perf_mmap_data *data)
2395 {
2396         schedule_work(&data->work);
2397 }
2398
2399 static struct perf_mmap_data *
2400 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2401 {
2402         struct perf_mmap_data *data;
2403         unsigned long size;
2404         void *all_buf;
2405
2406         WARN_ON(atomic_read(&event->mmap_count));
2407
2408         size = sizeof(struct perf_mmap_data);
2409         size += sizeof(void *);
2410
2411         data = kzalloc(size, GFP_KERNEL);
2412         if (!data)
2413                 goto fail;
2414
2415         INIT_WORK(&data->work, perf_mmap_data_free_work);
2416
2417         all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2418         if (!all_buf)
2419                 goto fail_all_buf;
2420
2421         data->user_page = all_buf;
2422         data->data_pages[0] = all_buf + PAGE_SIZE;
2423         data->data_order = ilog2(nr_pages);
2424         data->nr_pages = 1;
2425
2426         return data;
2427
2428 fail_all_buf:
2429         kfree(data);
2430
2431 fail:
2432         return NULL;
2433 }
2434
2435 #endif
2436
2437 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2438 {
2439         struct perf_event *event = vma->vm_file->private_data;
2440         struct perf_mmap_data *data;
2441         int ret = VM_FAULT_SIGBUS;
2442
2443         if (vmf->flags & FAULT_FLAG_MKWRITE) {
2444                 if (vmf->pgoff == 0)
2445                         ret = 0;
2446                 return ret;
2447         }
2448
2449         rcu_read_lock();
2450         data = rcu_dereference(event->data);
2451         if (!data)
2452                 goto unlock;
2453
2454         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2455                 goto unlock;
2456
2457         vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2458         if (!vmf->page)
2459                 goto unlock;
2460
2461         get_page(vmf->page);
2462         vmf->page->mapping = vma->vm_file->f_mapping;
2463         vmf->page->index   = vmf->pgoff;
2464
2465         ret = 0;
2466 unlock:
2467         rcu_read_unlock();
2468
2469         return ret;
2470 }
2471
2472 static void
2473 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2474 {
2475         long max_size = perf_data_size(data);
2476
2477         atomic_set(&data->lock, -1);
2478
2479         if (event->attr.watermark) {
2480                 data->watermark = min_t(long, max_size,
2481                                         event->attr.wakeup_watermark);
2482         }
2483
2484         if (!data->watermark)
2485                 data->watermark = max_size / 2;
2486
2487
2488         rcu_assign_pointer(event->data, data);
2489 }
2490
2491 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2492 {
2493         struct perf_mmap_data *data;
2494
2495         data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2496         perf_mmap_data_free(data);
2497 }
2498
2499 static void perf_mmap_data_release(struct perf_event *event)
2500 {
2501         struct perf_mmap_data *data = event->data;
2502
2503         WARN_ON(atomic_read(&event->mmap_count));
2504
2505         rcu_assign_pointer(event->data, NULL);
2506         call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2507 }
2508
2509 static void perf_mmap_open(struct vm_area_struct *vma)
2510 {
2511         struct perf_event *event = vma->vm_file->private_data;
2512
2513         atomic_inc(&event->mmap_count);
2514 }
2515
2516 static void perf_mmap_close(struct vm_area_struct *vma)
2517 {
2518         struct perf_event *event = vma->vm_file->private_data;
2519
2520         WARN_ON_ONCE(event->ctx->parent_ctx);
2521         if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2522                 unsigned long size = perf_data_size(event->data);
2523                 struct user_struct *user = current_user();
2524
2525                 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2526                 vma->vm_mm->locked_vm -= event->data->nr_locked;
2527                 perf_mmap_data_release(event);
2528                 mutex_unlock(&event->mmap_mutex);
2529         }
2530 }
2531
2532 static const struct vm_operations_struct perf_mmap_vmops = {
2533         .open           = perf_mmap_open,
2534         .close          = perf_mmap_close,
2535         .fault          = perf_mmap_fault,
2536         .page_mkwrite   = perf_mmap_fault,
2537 };
2538
2539 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2540 {
2541         struct perf_event *event = file->private_data;
2542         unsigned long user_locked, user_lock_limit;
2543         struct user_struct *user = current_user();
2544         unsigned long locked, lock_limit;
2545         struct perf_mmap_data *data;
2546         unsigned long vma_size;
2547         unsigned long nr_pages;
2548         long user_extra, extra;
2549         int ret = 0;
2550
2551         if (!(vma->vm_flags & VM_SHARED))
2552                 return -EINVAL;
2553
2554         vma_size = vma->vm_end - vma->vm_start;
2555         nr_pages = (vma_size / PAGE_SIZE) - 1;
2556
2557         /*
2558          * If we have data pages ensure they're a power-of-two number, so we
2559          * can do bitmasks instead of modulo.
2560          */
2561         if (nr_pages != 0 && !is_power_of_2(nr_pages))
2562                 return -EINVAL;
2563
2564         if (vma_size != PAGE_SIZE * (1 + nr_pages))
2565                 return -EINVAL;
2566
2567         if (vma->vm_pgoff != 0)
2568                 return -EINVAL;
2569
2570         WARN_ON_ONCE(event->ctx->parent_ctx);
2571         mutex_lock(&event->mmap_mutex);
2572         if (event->output) {
2573                 ret = -EINVAL;
2574                 goto unlock;
2575         }
2576
2577         if (atomic_inc_not_zero(&event->mmap_count)) {
2578                 if (nr_pages != event->data->nr_pages)
2579                         ret = -EINVAL;
2580                 goto unlock;
2581         }
2582
2583         user_extra = nr_pages + 1;
2584         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2585
2586         /*
2587          * Increase the limit linearly with more CPUs:
2588          */
2589         user_lock_limit *= num_online_cpus();
2590
2591         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2592
2593         extra = 0;
2594         if (user_locked > user_lock_limit)
2595                 extra = user_locked - user_lock_limit;
2596
2597         lock_limit = rlimit(RLIMIT_MEMLOCK);
2598         lock_limit >>= PAGE_SHIFT;
2599         locked = vma->vm_mm->locked_vm + extra;
2600
2601         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2602                 !capable(CAP_IPC_LOCK)) {
2603                 ret = -EPERM;
2604                 goto unlock;
2605         }
2606
2607         WARN_ON(event->data);
2608
2609         data = perf_mmap_data_alloc(event, nr_pages);
2610         ret = -ENOMEM;
2611         if (!data)
2612                 goto unlock;
2613
2614         ret = 0;
2615         perf_mmap_data_init(event, data);
2616
2617         atomic_set(&event->mmap_count, 1);
2618         atomic_long_add(user_extra, &user->locked_vm);
2619         vma->vm_mm->locked_vm += extra;
2620         event->data->nr_locked = extra;
2621         if (vma->vm_flags & VM_WRITE)
2622                 event->data->writable = 1;
2623
2624 unlock:
2625         mutex_unlock(&event->mmap_mutex);
2626
2627         vma->vm_flags |= VM_RESERVED;
2628         vma->vm_ops = &perf_mmap_vmops;
2629
2630         return ret;
2631 }
2632
2633 static int perf_fasync(int fd, struct file *filp, int on)
2634 {
2635         struct inode *inode = filp->f_path.dentry->d_inode;
2636         struct perf_event *event = filp->private_data;
2637         int retval;
2638
2639         mutex_lock(&inode->i_mutex);
2640         retval = fasync_helper(fd, filp, on, &event->fasync);
2641         mutex_unlock(&inode->i_mutex);
2642
2643         if (retval < 0)
2644                 return retval;
2645
2646         return 0;
2647 }
2648
2649 static const struct file_operations perf_fops = {
2650         .release                = perf_release,
2651         .read                   = perf_read,
2652         .poll                   = perf_poll,
2653         .unlocked_ioctl         = perf_ioctl,
2654         .compat_ioctl           = perf_ioctl,
2655         .mmap                   = perf_mmap,
2656         .fasync                 = perf_fasync,
2657 };
2658
2659 /*
2660  * Perf event wakeup
2661  *
2662  * If there's data, ensure we set the poll() state and publish everything
2663  * to user-space before waking everybody up.
2664  */
2665
2666 void perf_event_wakeup(struct perf_event *event)
2667 {
2668         wake_up_all(&event->waitq);
2669
2670         if (event->pending_kill) {
2671                 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2672                 event->pending_kill = 0;
2673         }
2674 }
2675
2676 /*
2677  * Pending wakeups
2678  *
2679  * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2680  *
2681  * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2682  * single linked list and use cmpxchg() to add entries lockless.
2683  */
2684
2685 static void perf_pending_event(struct perf_pending_entry *entry)
2686 {
2687         struct perf_event *event = container_of(entry,
2688                         struct perf_event, pending);
2689
2690         if (event->pending_disable) {
2691                 event->pending_disable = 0;
2692                 __perf_event_disable(event);
2693         }
2694
2695         if (event->pending_wakeup) {
2696                 event->pending_wakeup = 0;
2697                 perf_event_wakeup(event);
2698         }
2699 }
2700
2701 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2702
2703 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2704         PENDING_TAIL,
2705 };
2706
2707 static void perf_pending_queue(struct perf_pending_entry *entry,
2708                                void (*func)(struct perf_pending_entry *))
2709 {
2710         struct perf_pending_entry **head;
2711
2712         if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2713                 return;
2714
2715         entry->func = func;
2716
2717         head = &get_cpu_var(perf_pending_head);
2718
2719         do {
2720                 entry->next = *head;
2721         } while (cmpxchg(head, entry->next, entry) != entry->next);
2722
2723         set_perf_event_pending();
2724
2725         put_cpu_var(perf_pending_head);
2726 }
2727
2728 static int __perf_pending_run(void)
2729 {
2730         struct perf_pending_entry *list;
2731         int nr = 0;
2732
2733         list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2734         while (list != PENDING_TAIL) {
2735                 void (*func)(struct perf_pending_entry *);
2736                 struct perf_pending_entry *entry = list;
2737
2738                 list = list->next;
2739
2740                 func = entry->func;
2741                 entry->next = NULL;
2742                 /*
2743                  * Ensure we observe the unqueue before we issue the wakeup,
2744                  * so that we won't be waiting forever.
2745                  * -- see perf_not_pending().
2746                  */
2747                 smp_wmb();
2748
2749                 func(entry);
2750                 nr++;
2751         }
2752
2753         return nr;
2754 }
2755
2756 static inline int perf_not_pending(struct perf_event *event)
2757 {
2758         /*
2759          * If we flush on whatever cpu we run, there is a chance we don't
2760          * need to wait.
2761          */
2762         get_cpu();
2763         __perf_pending_run();
2764         put_cpu();
2765
2766         /*
2767          * Ensure we see the proper queue state before going to sleep
2768          * so that we do not miss the wakeup. -- see perf_pending_handle()
2769          */
2770         smp_rmb();
2771         return event->pending.next == NULL;
2772 }
2773
2774 static void perf_pending_sync(struct perf_event *event)
2775 {
2776         wait_event(event->waitq, perf_not_pending(event));
2777 }
2778
2779 void perf_event_do_pending(void)
2780 {
2781         __perf_pending_run();
2782 }
2783
2784 /*
2785  * Callchain support -- arch specific
2786  */
2787
2788 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2789 {
2790         return NULL;
2791 }
2792
2793 __weak
2794 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2795 {
2796 }
2797
2798
2799 /*
2800  * Output
2801  */
2802 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2803                               unsigned long offset, unsigned long head)
2804 {
2805         unsigned long mask;
2806
2807         if (!data->writable)
2808                 return true;
2809
2810         mask = perf_data_size(data) - 1;
2811
2812         offset = (offset - tail) & mask;
2813         head   = (head   - tail) & mask;
2814
2815         if ((int)(head - offset) < 0)
2816                 return false;
2817
2818         return true;
2819 }
2820
2821 static void perf_output_wakeup(struct perf_output_handle *handle)
2822 {
2823         atomic_set(&handle->data->poll, POLL_IN);
2824
2825         if (handle->nmi) {
2826                 handle->event->pending_wakeup = 1;
2827                 perf_pending_queue(&handle->event->pending,
2828                                    perf_pending_event);
2829         } else
2830                 perf_event_wakeup(handle->event);
2831 }
2832
2833 /*
2834  * Curious locking construct.
2835  *
2836  * We need to ensure a later event_id doesn't publish a head when a former
2837  * event_id isn't done writing. However since we need to deal with NMIs we
2838  * cannot fully serialize things.
2839  *
2840  * What we do is serialize between CPUs so we only have to deal with NMI
2841  * nesting on a single CPU.
2842  *
2843  * We only publish the head (and generate a wakeup) when the outer-most
2844  * event_id completes.
2845  */
2846 static void perf_output_lock(struct perf_output_handle *handle)
2847 {
2848         struct perf_mmap_data *data = handle->data;
2849         int cur, cpu = get_cpu();
2850
2851         handle->locked = 0;
2852
2853         for (;;) {
2854                 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2855                 if (cur == -1) {
2856                         handle->locked = 1;
2857                         break;
2858                 }
2859                 if (cur == cpu)
2860                         break;
2861
2862                 cpu_relax();
2863         }
2864 }
2865
2866 static void perf_output_unlock(struct perf_output_handle *handle)
2867 {
2868         struct perf_mmap_data *data = handle->data;
2869         unsigned long head;
2870         int cpu;
2871
2872         data->done_head = data->head;
2873
2874         if (!handle->locked)
2875                 goto out;
2876
2877 again:
2878         /*
2879          * The xchg implies a full barrier that ensures all writes are done
2880          * before we publish the new head, matched by a rmb() in userspace when
2881          * reading this position.
2882          */
2883         while ((head = atomic_long_xchg(&data->done_head, 0)))
2884                 data->user_page->data_head = head;
2885
2886         /*
2887          * NMI can happen here, which means we can miss a done_head update.
2888          */
2889
2890         cpu = atomic_xchg(&data->lock, -1);
2891         WARN_ON_ONCE(cpu != smp_processor_id());
2892
2893         /*
2894          * Therefore we have to validate we did not indeed do so.
2895          */
2896         if (unlikely(atomic_long_read(&data->done_head))) {
2897                 /*
2898                  * Since we had it locked, we can lock it again.
2899                  */
2900                 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2901                         cpu_relax();
2902
2903                 goto again;
2904         }
2905
2906         if (atomic_xchg(&data->wakeup, 0))
2907                 perf_output_wakeup(handle);
2908 out:
2909         put_cpu();
2910 }
2911
2912 void perf_output_copy(struct perf_output_handle *handle,
2913                       const void *buf, unsigned int len)
2914 {
2915         unsigned int pages_mask;
2916         unsigned long offset;
2917         unsigned int size;
2918         void **pages;
2919
2920         offset          = handle->offset;
2921         pages_mask      = handle->data->nr_pages - 1;
2922         pages           = handle->data->data_pages;
2923
2924         do {
2925                 unsigned long page_offset;
2926                 unsigned long page_size;
2927                 int nr;
2928
2929                 nr          = (offset >> PAGE_SHIFT) & pages_mask;
2930                 page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
2931                 page_offset = offset & (page_size - 1);
2932                 size        = min_t(unsigned int, page_size - page_offset, len);
2933
2934                 memcpy(pages[nr] + page_offset, buf, size);
2935
2936                 len         -= size;
2937                 buf         += size;
2938                 offset      += size;
2939         } while (len);
2940
2941         handle->offset = offset;
2942
2943         /*
2944          * Check we didn't copy past our reservation window, taking the
2945          * possible unsigned int wrap into account.
2946          */
2947         WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2948 }
2949
2950 int perf_output_begin(struct perf_output_handle *handle,
2951                       struct perf_event *event, unsigned int size,
2952                       int nmi, int sample)
2953 {
2954         struct perf_event *output_event;
2955         struct perf_mmap_data *data;
2956         unsigned long tail, offset, head;
2957         int have_lost;
2958         struct {
2959                 struct perf_event_header header;
2960                 u64                      id;
2961                 u64                      lost;
2962         } lost_event;
2963
2964         rcu_read_lock();
2965         /*
2966          * For inherited events we send all the output towards the parent.
2967          */
2968         if (event->parent)
2969                 event = event->parent;
2970
2971         output_event = rcu_dereference(event->output);
2972         if (output_event)
2973                 event = output_event;
2974
2975         data = rcu_dereference(event->data);
2976         if (!data)
2977                 goto out;
2978
2979         handle->data    = data;
2980         handle->event   = event;
2981         handle->nmi     = nmi;
2982         handle->sample  = sample;
2983
2984         if (!data->nr_pages)
2985                 goto fail;
2986
2987         have_lost = atomic_read(&data->lost);
2988         if (have_lost)
2989                 size += sizeof(lost_event);
2990
2991         perf_output_lock(handle);
2992
2993         do {
2994                 /*
2995                  * Userspace could choose to issue a mb() before updating the
2996                  * tail pointer. So that all reads will be completed before the
2997                  * write is issued.
2998                  */
2999                 tail = ACCESS_ONCE(data->user_page->data_tail);
3000                 smp_rmb();
3001                 offset = head = atomic_long_read(&data->head);
3002                 head += size;
3003                 if (unlikely(!perf_output_space(data, tail, offset, head)))
3004                         goto fail;
3005         } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3006
3007         handle->offset  = offset;
3008         handle->head    = head;
3009
3010         if (head - tail > data->watermark)
3011                 atomic_set(&data->wakeup, 1);
3012
3013         if (have_lost) {
3014                 lost_event.header.type = PERF_RECORD_LOST;
3015                 lost_event.header.misc = 0;
3016                 lost_event.header.size = sizeof(lost_event);
3017                 lost_event.id          = event->id;
3018                 lost_event.lost        = atomic_xchg(&data->lost, 0);
3019
3020                 perf_output_put(handle, lost_event);
3021         }
3022
3023         return 0;
3024
3025 fail:
3026         atomic_inc(&data->lost);
3027         perf_output_unlock(handle);
3028 out:
3029         rcu_read_unlock();
3030
3031         return -ENOSPC;
3032 }
3033
3034 void perf_output_end(struct perf_output_handle *handle)
3035 {
3036         struct perf_event *event = handle->event;
3037         struct perf_mmap_data *data = handle->data;
3038
3039         int wakeup_events = event->attr.wakeup_events;
3040
3041         if (handle->sample && wakeup_events) {
3042                 int events = atomic_inc_return(&data->events);
3043                 if (events >= wakeup_events) {
3044                         atomic_sub(wakeup_events, &data->events);
3045                         atomic_set(&data->wakeup, 1);
3046                 }
3047         }
3048
3049         perf_output_unlock(handle);
3050         rcu_read_unlock();
3051 }
3052
3053 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3054 {
3055         /*
3056          * only top level events have the pid namespace they were created in
3057          */
3058         if (event->parent)
3059                 event = event->parent;
3060
3061         return task_tgid_nr_ns(p, event->ns);
3062 }
3063
3064 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3065 {
3066         /*
3067          * only top level events have the pid namespace they were created in
3068          */
3069         if (event->parent)
3070                 event = event->parent;
3071
3072         return task_pid_nr_ns(p, event->ns);
3073 }
3074
3075 static void perf_output_read_one(struct perf_output_handle *handle,
3076                                  struct perf_event *event)
3077 {
3078         u64 read_format = event->attr.read_format;
3079         u64 values[4];
3080         int n = 0;
3081
3082         values[n++] = atomic64_read(&event->count);
3083         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3084                 values[n++] = event->total_time_enabled +
3085                         atomic64_read(&event->child_total_time_enabled);
3086         }
3087         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3088                 values[n++] = event->total_time_running +
3089                         atomic64_read(&event->child_total_time_running);
3090         }
3091         if (read_format & PERF_FORMAT_ID)
3092                 values[n++] = primary_event_id(event);
3093
3094         perf_output_copy(handle, values, n * sizeof(u64));
3095 }
3096
3097 /*
3098  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3099  */
3100 static void perf_output_read_group(struct perf_output_handle *handle,
3101                             struct perf_event *event)
3102 {
3103         struct perf_event *leader = event->group_leader, *sub;
3104         u64 read_format = event->attr.read_format;
3105         u64 values[5];
3106         int n = 0;
3107
3108         values[n++] = 1 + leader->nr_siblings;
3109
3110         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3111                 values[n++] = leader->total_time_enabled;
3112
3113         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3114                 values[n++] = leader->total_time_running;
3115
3116         if (leader != event)
3117                 leader->pmu->read(leader);
3118
3119         values[n++] = atomic64_read(&leader->count);
3120         if (read_format & PERF_FORMAT_ID)
3121                 values[n++] = primary_event_id(leader);
3122
3123         perf_output_copy(handle, values, n * sizeof(u64));
3124
3125         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3126                 n = 0;
3127
3128                 if (sub != event)
3129                         sub->pmu->read(sub);
3130
3131                 values[n++] = atomic64_read(&sub->count);
3132                 if (read_format & PERF_FORMAT_ID)
3133                         values[n++] = primary_event_id(sub);
3134
3135                 perf_output_copy(handle, values, n * sizeof(u64));
3136         }
3137 }
3138
3139 static void perf_output_read(struct perf_output_handle *handle,
3140                              struct perf_event *event)
3141 {
3142         if (event->attr.read_format & PERF_FORMAT_GROUP)
3143                 perf_output_read_group(handle, event);
3144         else
3145                 perf_output_read_one(handle, event);
3146 }
3147
3148 void perf_output_sample(struct perf_output_handle *handle,
3149                         struct perf_event_header *header,
3150                         struct perf_sample_data *data,
3151                         struct perf_event *event)
3152 {
3153         u64 sample_type = data->type;
3154
3155         perf_output_put(handle, *header);
3156
3157         if (sample_type & PERF_SAMPLE_IP)
3158                 perf_output_put(handle, data->ip);
3159
3160         if (sample_type & PERF_SAMPLE_TID)
3161                 perf_output_put(handle, data->tid_entry);
3162
3163         if (sample_type & PERF_SAMPLE_TIME)
3164                 perf_output_put(handle, data->time);
3165
3166         if (sample_type & PERF_SAMPLE_ADDR)
3167                 perf_output_put(handle, data->addr);
3168
3169         if (sample_type & PERF_SAMPLE_ID)
3170                 perf_output_put(handle, data->id);
3171
3172         if (sample_type & PERF_SAMPLE_STREAM_ID)
3173                 perf_output_put(handle, data->stream_id);
3174
3175         if (sample_type & PERF_SAMPLE_CPU)
3176                 perf_output_put(handle, data->cpu_entry);
3177
3178         if (sample_type & PERF_SAMPLE_PERIOD)
3179                 perf_output_put(handle, data->period);
3180
3181         if (sample_type & PERF_SAMPLE_READ)
3182                 perf_output_read(handle, event);
3183
3184         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3185                 if (data->callchain) {
3186                         int size = 1;
3187
3188                         if (data->callchain)
3189                                 size += data->callchain->nr;
3190
3191                         size *= sizeof(u64);
3192
3193                         perf_output_copy(handle, data->callchain, size);
3194                 } else {
3195                         u64 nr = 0;
3196                         perf_output_put(handle, nr);
3197                 }
3198         }
3199
3200         if (sample_type & PERF_SAMPLE_RAW) {
3201                 if (data->raw) {
3202                         perf_output_put(handle, data->raw->size);
3203                         perf_output_copy(handle, data->raw->data,
3204                                          data->raw->size);
3205                 } else {
3206                         struct {
3207                                 u32     size;
3208                                 u32     data;
3209                         } raw = {
3210                                 .size = sizeof(u32),
3211                                 .data = 0,
3212                         };
3213                         perf_output_put(handle, raw);
3214                 }
3215         }
3216 }
3217
3218 void perf_prepare_sample(struct perf_event_header *header,
3219                          struct perf_sample_data *data,
3220                          struct perf_event *event,
3221                          struct pt_regs *regs)
3222 {
3223         u64 sample_type = event->attr.sample_type;
3224
3225         data->type = sample_type;
3226
3227         header->type = PERF_RECORD_SAMPLE;
3228         header->size = sizeof(*header);
3229
3230         header->misc = 0;
3231         header->misc |= perf_misc_flags(regs);
3232
3233         if (sample_type & PERF_SAMPLE_IP) {
3234                 data->ip = perf_instruction_pointer(regs);
3235
3236                 header->size += sizeof(data->ip);
3237         }
3238
3239         if (sample_type & PERF_SAMPLE_TID) {
3240                 /* namespace issues */
3241                 data->tid_entry.pid = perf_event_pid(event, current);
3242                 data->tid_entry.tid = perf_event_tid(event, current);
3243
3244                 header->size += sizeof(data->tid_entry);
3245         }
3246
3247         if (sample_type & PERF_SAMPLE_TIME) {
3248                 data->time = perf_clock();
3249
3250                 header->size += sizeof(data->time);
3251         }
3252
3253         if (sample_type & PERF_SAMPLE_ADDR)
3254                 header->size += sizeof(data->addr);
3255
3256         if (sample_type & PERF_SAMPLE_ID) {
3257                 data->id = primary_event_id(event);
3258
3259                 header->size += sizeof(data->id);
3260         }
3261
3262         if (sample_type & PERF_SAMPLE_STREAM_ID) {
3263                 data->stream_id = event->id;
3264
3265                 header->size += sizeof(data->stream_id);
3266         }
3267
3268         if (sample_type & PERF_SAMPLE_CPU) {
3269                 data->cpu_entry.cpu             = raw_smp_processor_id();
3270                 data->cpu_entry.reserved        = 0;
3271
3272                 header->size += sizeof(data->cpu_entry);
3273         }
3274
3275         if (sample_type & PERF_SAMPLE_PERIOD)
3276                 header->size += sizeof(data->period);
3277
3278         if (sample_type & PERF_SAMPLE_READ)
3279                 header->size += perf_event_read_size(event);
3280
3281         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3282                 int size = 1;
3283
3284                 data->callchain = perf_callchain(regs);
3285
3286                 if (data->callchain)
3287                         size += data->callchain->nr;
3288
3289                 header->size += size * sizeof(u64);
3290         }
3291
3292         if (sample_type & PERF_SAMPLE_RAW) {
3293                 int size = sizeof(u32);
3294
3295                 if (data->raw)
3296                         size += data->raw->size;
3297                 else
3298                         size += sizeof(u32);
3299
3300                 WARN_ON_ONCE(size & (sizeof(u64)-1));
3301                 header->size += size;
3302         }
3303 }
3304
3305 static void perf_event_output(struct perf_event *event, int nmi,
3306                                 struct perf_sample_data *data,
3307                                 struct pt_regs *regs)
3308 {
3309         struct perf_output_handle handle;
3310         struct perf_event_header header;
3311
3312         perf_prepare_sample(&header, data, event, regs);
3313
3314         if (perf_output_begin(&handle, event, header.size, nmi, 1))
3315                 return;
3316
3317         perf_output_sample(&handle, &header, data, event);
3318
3319         perf_output_end(&handle);
3320 }
3321
3322 /*
3323  * read event_id
3324  */
3325
3326 struct perf_read_event {
3327         struct perf_event_header        header;
3328
3329         u32                             pid;
3330         u32                             tid;
3331 };
3332
3333 static void
3334 perf_event_read_event(struct perf_event *event,
3335                         struct task_struct *task)
3336 {
3337         struct perf_output_handle handle;
3338         struct perf_read_event read_event = {
3339                 .header = {
3340                         .type = PERF_RECORD_READ,
3341                         .misc = 0,
3342                         .size = sizeof(read_event) + perf_event_read_size(event),
3343                 },
3344                 .pid = perf_event_pid(event, task),
3345                 .tid = perf_event_tid(event, task),
3346         };
3347         int ret;
3348
3349         ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3350         if (ret)
3351                 return;
3352
3353         perf_output_put(&handle, read_event);
3354         perf_output_read(&handle, event);
3355
3356         perf_output_end(&handle);
3357 }
3358
3359 /*
3360  * task tracking -- fork/exit
3361  *
3362  * enabled by: attr.comm | attr.mmap | attr.task
3363  */
3364
3365 struct perf_task_event {
3366         struct task_struct              *task;
3367         struct perf_event_context       *task_ctx;
3368
3369         struct {
3370                 struct perf_event_header        header;
3371
3372                 u32                             pid;
3373                 u32                             ppid;
3374                 u32                             tid;
3375                 u32                             ptid;
3376                 u64                             time;
3377         } event_id;
3378 };
3379
3380 static void perf_event_task_output(struct perf_event *event,
3381                                      struct perf_task_event *task_event)
3382 {
3383         struct perf_output_handle handle;
3384         struct task_struct *task = task_event->task;
3385         unsigned long flags;
3386         int size, ret;
3387
3388         /*
3389          * If this CPU attempts to acquire an rq lock held by a CPU spinning
3390          * in perf_output_lock() from interrupt context, it's game over.
3391          */
3392         local_irq_save(flags);
3393
3394         size  = task_event->event_id.header.size;
3395         ret = perf_output_begin(&handle, event, size, 0, 0);
3396
3397         if (ret) {
3398                 local_irq_restore(flags);
3399                 return;
3400         }
3401
3402         task_event->event_id.pid = perf_event_pid(event, task);
3403         task_event->event_id.ppid = perf_event_pid(event, current);
3404
3405         task_event->event_id.tid = perf_event_tid(event, task);
3406         task_event->event_id.ptid = perf_event_tid(event, current);
3407
3408         perf_output_put(&handle, task_event->event_id);
3409
3410         perf_output_end(&handle);
3411         local_irq_restore(flags);
3412 }
3413
3414 static int perf_event_task_match(struct perf_event *event)
3415 {
3416         if (event->state < PERF_EVENT_STATE_INACTIVE)
3417                 return 0;
3418
3419         if (event->cpu != -1 && event->cpu != smp_processor_id())
3420                 return 0;
3421
3422         if (event->attr.comm || event->attr.mmap || event->attr.task)
3423                 return 1;
3424
3425         return 0;
3426 }
3427
3428 static void perf_event_task_ctx(struct perf_event_context *ctx,
3429                                   struct perf_task_event *task_event)
3430 {
3431         struct perf_event *event;
3432
3433         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3434                 if (perf_event_task_match(event))
3435                         perf_event_task_output(event, task_event);
3436         }
3437 }
3438
3439 static void perf_event_task_event(struct perf_task_event *task_event)
3440 {
3441         struct perf_cpu_context *cpuctx;
3442         struct perf_event_context *ctx = task_event->task_ctx;
3443
3444         rcu_read_lock();
3445         cpuctx = &get_cpu_var(perf_cpu_context);
3446         perf_event_task_ctx(&cpuctx->ctx, task_event);
3447         if (!ctx)
3448                 ctx = rcu_dereference(current->perf_event_ctxp);
3449         if (ctx)
3450                 perf_event_task_ctx(ctx, task_event);
3451         put_cpu_var(perf_cpu_context);
3452         rcu_read_unlock();
3453 }
3454
3455 static void perf_event_task(struct task_struct *task,
3456                               struct perf_event_context *task_ctx,
3457                               int new)
3458 {
3459         struct perf_task_event task_event;
3460
3461         if (!atomic_read(&nr_comm_events) &&
3462             !atomic_read(&nr_mmap_events) &&
3463             !atomic_read(&nr_task_events))
3464                 return;
3465
3466         task_event = (struct perf_task_event){
3467                 .task     = task,
3468                 .task_ctx = task_ctx,
3469                 .event_id    = {
3470                         .header = {
3471                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3472                                 .misc = 0,
3473                                 .size = sizeof(task_event.event_id),
3474                         },
3475                         /* .pid  */
3476                         /* .ppid */
3477                         /* .tid  */
3478                         /* .ptid */
3479                         .time = perf_clock(),
3480                 },
3481         };
3482
3483         perf_event_task_event(&task_event);
3484 }
3485
3486 void perf_event_fork(struct task_struct *task)
3487 {
3488         perf_event_task(task, NULL, 1);
3489 }
3490
3491 /*
3492  * comm tracking
3493  */
3494
3495 struct perf_comm_event {
3496         struct task_struct      *task;
3497         char                    *comm;
3498         int                     comm_size;
3499
3500         struct {
3501                 struct perf_event_header        header;
3502
3503                 u32                             pid;
3504                 u32                             tid;
3505         } event_id;
3506 };
3507
3508 static void perf_event_comm_output(struct perf_event *event,
3509                                      struct perf_comm_event *comm_event)
3510 {
3511         struct perf_output_handle handle;
3512         int size = comm_event->event_id.header.size;
3513         int ret = perf_output_begin(&handle, event, size, 0, 0);
3514
3515         if (ret)
3516                 return;
3517
3518         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3519         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3520
3521         perf_output_put(&handle, comm_event->event_id);
3522         perf_output_copy(&handle, comm_event->comm,
3523                                    comm_event->comm_size);
3524         perf_output_end(&handle);
3525 }
3526
3527 static int perf_event_comm_match(struct perf_event *event)
3528 {
3529         if (event->state < PERF_EVENT_STATE_INACTIVE)
3530                 return 0;
3531
3532         if (event->cpu != -1 && event->cpu != smp_processor_id())
3533                 return 0;
3534
3535         if (event->attr.comm)
3536                 return 1;
3537
3538         return 0;
3539 }
3540
3541 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3542                                   struct perf_comm_event *comm_event)
3543 {
3544         struct perf_event *event;
3545
3546         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3547                 if (perf_event_comm_match(event))
3548                         perf_event_comm_output(event, comm_event);
3549         }
3550 }
3551
3552 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555         struct perf_event_context *ctx;
3556         unsigned int size;
3557         char comm[TASK_COMM_LEN];
3558
3559         memset(comm, 0, sizeof(comm));
3560         strlcpy(comm, comm_event->task->comm, sizeof(comm));
3561         size = ALIGN(strlen(comm)+1, sizeof(u64));
3562
3563         comm_event->comm = comm;
3564         comm_event->comm_size = size;
3565
3566         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3567
3568         rcu_read_lock();
3569         cpuctx = &get_cpu_var(perf_cpu_context);
3570         perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3571         ctx = rcu_dereference(current->perf_event_ctxp);
3572         if (ctx)
3573                 perf_event_comm_ctx(ctx, comm_event);
3574         put_cpu_var(perf_cpu_context);
3575         rcu_read_unlock();
3576 }
3577
3578 void perf_event_comm(struct task_struct *task)
3579 {
3580         struct perf_comm_event comm_event;
3581
3582         if (task->perf_event_ctxp)
3583                 perf_event_enable_on_exec(task);
3584
3585         if (!atomic_read(&nr_comm_events))
3586                 return;
3587
3588         comm_event = (struct perf_comm_event){
3589                 .task   = task,
3590                 /* .comm      */
3591                 /* .comm_size */
3592                 .event_id  = {
3593                         .header = {
3594                                 .type = PERF_RECORD_COMM,
3595                                 .misc = 0,
3596                                 /* .size */
3597                         },
3598                         /* .pid */
3599                         /* .tid */
3600                 },
3601         };
3602
3603         perf_event_comm_event(&comm_event);
3604 }
3605
3606 /*
3607  * mmap tracking
3608  */
3609
3610 struct perf_mmap_event {
3611         struct vm_area_struct   *vma;
3612
3613         const char              *file_name;
3614         int                     file_size;
3615
3616         struct {
3617                 struct perf_event_header        header;
3618
3619                 u32                             pid;
3620                 u32                             tid;
3621                 u64                             start;
3622                 u64                             len;
3623                 u64                             pgoff;
3624         } event_id;
3625 };
3626
3627 static void perf_event_mmap_output(struct perf_event *event,
3628                                      struct perf_mmap_event *mmap_event)
3629 {
3630         struct perf_output_handle handle;
3631         int size = mmap_event->event_id.header.size;
3632         int ret = perf_output_begin(&handle, event, size, 0, 0);
3633
3634         if (ret)
3635                 return;
3636
3637         mmap_event->event_id.pid = perf_event_pid(event, current);
3638         mmap_event->event_id.tid = perf_event_tid(event, current);
3639
3640         perf_output_put(&handle, mmap_event->event_id);
3641         perf_output_copy(&handle, mmap_event->file_name,
3642                                    mmap_event->file_size);
3643         perf_output_end(&handle);
3644 }
3645
3646 static int perf_event_mmap_match(struct perf_event *event,
3647                                    struct perf_mmap_event *mmap_event)
3648 {
3649         if (event->state < PERF_EVENT_STATE_INACTIVE)
3650                 return 0;
3651
3652         if (event->cpu != -1 && event->cpu != smp_processor_id())
3653                 return 0;
3654
3655         if (event->attr.mmap)
3656                 return 1;
3657
3658         return 0;
3659 }
3660
3661 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3662                                   struct perf_mmap_event *mmap_event)
3663 {
3664         struct perf_event *event;
3665
3666         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3667                 if (perf_event_mmap_match(event, mmap_event))
3668                         perf_event_mmap_output(event, mmap_event);
3669         }
3670 }
3671
3672 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3673 {
3674         struct perf_cpu_context *cpuctx;
3675         struct perf_event_context *ctx;
3676         struct vm_area_struct *vma = mmap_event->vma;
3677         struct file *file = vma->vm_file;
3678         unsigned int size;
3679         char tmp[16];
3680         char *buf = NULL;
3681         const char *name;
3682
3683         memset(tmp, 0, sizeof(tmp));
3684
3685         if (file) {
3686                 /*
3687                  * d_path works from the end of the buffer backwards, so we
3688                  * need to add enough zero bytes after the string to handle
3689                  * the 64bit alignment we do later.
3690                  */
3691                 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3692                 if (!buf) {
3693                         name = strncpy(tmp, "//enomem", sizeof(tmp));
3694                         goto got_name;
3695                 }
3696                 name = d_path(&file->f_path, buf, PATH_MAX);
3697                 if (IS_ERR(name)) {
3698                         name = strncpy(tmp, "//toolong", sizeof(tmp));
3699                         goto got_name;
3700                 }
3701         } else {
3702                 if (arch_vma_name(mmap_event->vma)) {
3703                         name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3704                                        sizeof(tmp));
3705                         goto got_name;
3706                 }
3707
3708                 if (!vma->vm_mm) {
3709                         name = strncpy(tmp, "[vdso]", sizeof(tmp));
3710                         goto got_name;
3711                 }
3712
3713                 name = strncpy(tmp, "//anon", sizeof(tmp));
3714                 goto got_name;
3715         }
3716
3717 got_name:
3718         size = ALIGN(strlen(name)+1, sizeof(u64));
3719
3720         mmap_event->file_name = name;
3721         mmap_event->file_size = size;
3722
3723         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3724
3725         rcu_read_lock();
3726         cpuctx = &get_cpu_var(perf_cpu_context);
3727         perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3728         ctx = rcu_dereference(current->perf_event_ctxp);
3729         if (ctx)
3730                 perf_event_mmap_ctx(ctx, mmap_event);
3731         put_cpu_var(perf_cpu_context);
3732         rcu_read_unlock();
3733
3734         kfree(buf);
3735 }
3736
3737 void __perf_event_mmap(struct vm_area_struct *vma)
3738 {
3739         struct perf_mmap_event mmap_event;
3740
3741         if (!atomic_read(&nr_mmap_events))
3742                 return;
3743
3744         mmap_event = (struct perf_mmap_event){
3745                 .vma    = vma,
3746                 /* .file_name */
3747                 /* .file_size */
3748                 .event_id  = {
3749                         .header = {
3750                                 .type = PERF_RECORD_MMAP,
3751                                 .misc = 0,
3752                                 /* .size */
3753                         },
3754                         /* .pid */
3755                         /* .tid */
3756                         .start  = vma->vm_start,
3757                         .len    = vma->vm_end - vma->vm_start,
3758                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3759                 },
3760         };
3761
3762         perf_event_mmap_event(&mmap_event);
3763 }
3764
3765 /*
3766  * IRQ throttle logging
3767  */
3768
3769 static void perf_log_throttle(struct perf_event *event, int enable)
3770 {
3771         struct perf_output_handle handle;
3772         int ret;
3773
3774         struct {
3775                 struct perf_event_header        header;
3776                 u64                             time;
3777                 u64                             id;
3778                 u64                             stream_id;
3779         } throttle_event = {
3780                 .header = {
3781                         .type = PERF_RECORD_THROTTLE,
3782                         .misc = 0,
3783                         .size = sizeof(throttle_event),
3784                 },
3785                 .time           = perf_clock(),
3786                 .id             = primary_event_id(event),
3787                 .stream_id      = event->id,
3788         };
3789
3790         if (enable)
3791                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3792
3793         ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3794         if (ret)
3795                 return;
3796
3797         perf_output_put(&handle, throttle_event);
3798         perf_output_end(&handle);
3799 }
3800
3801 /*
3802  * Generic event overflow handling, sampling.
3803  */
3804
3805 static int __perf_event_overflow(struct perf_event *event, int nmi,
3806                                    int throttle, struct perf_sample_data *data,
3807                                    struct pt_regs *regs)
3808 {
3809         int events = atomic_read(&event->event_limit);
3810         struct hw_perf_event *hwc = &event->hw;
3811         int ret = 0;
3812
3813         throttle = (throttle && event->pmu->unthrottle != NULL);
3814
3815         if (!throttle) {
3816                 hwc->interrupts++;
3817         } else {
3818                 if (hwc->interrupts != MAX_INTERRUPTS) {
3819                         hwc->interrupts++;
3820                         if (HZ * hwc->interrupts >
3821                                         (u64)sysctl_perf_event_sample_rate) {
3822                                 hwc->interrupts = MAX_INTERRUPTS;
3823                                 perf_log_throttle(event, 0);
3824                                 ret = 1;
3825                         }
3826                 } else {
3827                         /*
3828                          * Keep re-disabling events even though on the previous
3829                          * pass we disabled it - just in case we raced with a
3830                          * sched-in and the event got enabled again:
3831                          */
3832                         ret = 1;
3833                 }
3834         }
3835
3836         if (event->attr.freq) {
3837                 u64 now = perf_clock();
3838                 s64 delta = now - hwc->freq_time_stamp;
3839
3840                 hwc->freq_time_stamp = now;
3841
3842                 if (delta > 0 && delta < 2*TICK_NSEC)
3843                         perf_adjust_period(event, delta, hwc->last_period);
3844         }
3845
3846         /*
3847          * XXX event_limit might not quite work as expected on inherited
3848          * events
3849          */
3850
3851         event->pending_kill = POLL_IN;
3852         if (events && atomic_dec_and_test(&event->event_limit)) {
3853                 ret = 1;
3854                 event->pending_kill = POLL_HUP;
3855                 if (nmi) {
3856                         event->pending_disable = 1;
3857                         perf_pending_queue(&event->pending,
3858                                            perf_pending_event);
3859                 } else
3860                         perf_event_disable(event);
3861         }
3862
3863         if (event->overflow_handler)
3864                 event->overflow_handler(event, nmi, data, regs);
3865         else
3866                 perf_event_output(event, nmi, data, regs);
3867
3868         return ret;
3869 }
3870
3871 int perf_event_overflow(struct perf_event *event, int nmi,
3872                           struct perf_sample_data *data,
3873                           struct pt_regs *regs)
3874 {
3875         return __perf_event_overflow(event, nmi, 1, data, regs);
3876 }
3877
3878 /*
3879  * Generic software event infrastructure
3880  */
3881
3882 /*
3883  * We directly increment event->count and keep a second value in
3884  * event->hw.period_left to count intervals. This period event
3885  * is kept in the range [-sample_period, 0] so that we can use the
3886  * sign as trigger.
3887  */
3888
3889 static u64 perf_swevent_set_period(struct perf_event *event)
3890 {
3891         struct hw_perf_event *hwc = &event->hw;
3892         u64 period = hwc->last_period;
3893         u64 nr, offset;
3894         s64 old, val;
3895
3896         hwc->last_period = hwc->sample_period;
3897
3898 again:
3899         old = val = atomic64_read(&hwc->period_left);
3900         if (val < 0)
3901                 return 0;
3902
3903         nr = div64_u64(period + val, period);
3904         offset = nr * period;
3905         val -= offset;
3906         if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3907                 goto again;
3908
3909         return nr;
3910 }
3911
3912 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3913                                     int nmi, struct perf_sample_data *data,
3914                                     struct pt_regs *regs)
3915 {
3916         struct hw_perf_event *hwc = &event->hw;
3917         int throttle = 0;
3918
3919         data->period = event->hw.last_period;
3920         if (!overflow)
3921                 overflow = perf_swevent_set_period(event);
3922
3923         if (hwc->interrupts == MAX_INTERRUPTS)
3924                 return;
3925
3926         for (; overflow; overflow--) {
3927                 if (__perf_event_overflow(event, nmi, throttle,
3928                                             data, regs)) {
3929                         /*
3930                          * We inhibit the overflow from happening when
3931                          * hwc->interrupts == MAX_INTERRUPTS.
3932                          */
3933                         break;
3934                 }
3935                 throttle = 1;
3936         }
3937 }
3938
3939 static void perf_swevent_unthrottle(struct perf_event *event)
3940 {
3941         /*
3942          * Nothing to do, we already reset hwc->interrupts.
3943          */
3944 }
3945
3946 static void perf_swevent_add(struct perf_event *event, u64 nr,
3947                                int nmi, struct perf_sample_data *data,
3948                                struct pt_regs *regs)
3949 {
3950         struct hw_perf_event *hwc = &event->hw;
3951
3952         atomic64_add(nr, &event->count);
3953
3954         if (!regs)
3955                 return;
3956
3957         if (!hwc->sample_period)
3958                 return;
3959
3960         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3961                 return perf_swevent_overflow(event, 1, nmi, data, regs);
3962
3963         if (atomic64_add_negative(nr, &hwc->period_left))
3964                 return;
3965
3966         perf_swevent_overflow(event, 0, nmi, data, regs);
3967 }
3968
3969 static int perf_swevent_is_counting(struct perf_event *event)
3970 {
3971         /*
3972          * The event is active, we're good!
3973          */
3974         if (event->state == PERF_EVENT_STATE_ACTIVE)
3975                 return 1;
3976
3977         /*
3978          * The event is off/error, not counting.
3979          */
3980         if (event->state != PERF_EVENT_STATE_INACTIVE)
3981                 return 0;
3982
3983         /*
3984          * The event is inactive, if the context is active
3985          * we're part of a group that didn't make it on the 'pmu',
3986          * not counting.
3987          */
3988         if (event->ctx->is_active)
3989                 return 0;
3990
3991         /*
3992          * We're inactive and the context is too, this means the
3993          * task is scheduled out, we're counting events that happen
3994          * to us, like migration events.
3995          */
3996         return 1;
3997 }
3998
3999 static int perf_tp_event_match(struct perf_event *event,
4000                                 struct perf_sample_data *data);
4001
4002 static int perf_exclude_event(struct perf_event *event,
4003                               struct pt_regs *regs)
4004 {
4005         if (regs) {
4006                 if (event->attr.exclude_user && user_mode(regs))
4007                         return 1;
4008
4009                 if (event->attr.exclude_kernel && !user_mode(regs))
4010                         return 1;
4011         }
4012
4013         return 0;
4014 }
4015
4016 static int perf_swevent_match(struct perf_event *event,
4017                                 enum perf_type_id type,
4018                                 u32 event_id,
4019                                 struct perf_sample_data *data,
4020                                 struct pt_regs *regs)
4021 {
4022         if (event->cpu != -1 && event->cpu != smp_processor_id())
4023                 return 0;
4024
4025         if (!perf_swevent_is_counting(event))
4026                 return 0;
4027
4028         if (event->attr.type != type)
4029                 return 0;
4030
4031         if (event->attr.config != event_id)
4032                 return 0;
4033
4034         if (perf_exclude_event(event, regs))
4035                 return 0;
4036
4037         if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4038             !perf_tp_event_match(event, data))
4039                 return 0;
4040
4041         return 1;
4042 }
4043
4044 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4045                                      enum perf_type_id type,
4046                                      u32 event_id, u64 nr, int nmi,
4047                                      struct perf_sample_data *data,
4048                                      struct pt_regs *regs)
4049 {
4050         struct perf_event *event;
4051
4052         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4053                 if (perf_swevent_match(event, type, event_id, data, regs))
4054                         perf_swevent_add(event, nr, nmi, data, regs);
4055         }
4056 }
4057
4058 int perf_swevent_get_recursion_context(void)
4059 {
4060         struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4061         int rctx;
4062
4063         if (in_nmi())
4064                 rctx = 3;
4065         else if (in_irq())
4066                 rctx = 2;
4067         else if (in_softirq())
4068                 rctx = 1;
4069         else
4070                 rctx = 0;
4071
4072         if (cpuctx->recursion[rctx]) {
4073                 put_cpu_var(perf_cpu_context);
4074                 return -1;
4075         }
4076
4077         cpuctx->recursion[rctx]++;
4078         barrier();
4079
4080         return rctx;
4081 }
4082 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4083
4084 void perf_swevent_put_recursion_context(int rctx)
4085 {
4086         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4087         barrier();
4088         cpuctx->recursion[rctx]--;
4089         put_cpu_var(perf_cpu_context);
4090 }
4091 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4092
4093 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4094                                     u64 nr, int nmi,
4095                                     struct perf_sample_data *data,
4096                                     struct pt_regs *regs)
4097 {
4098         struct perf_cpu_context *cpuctx;
4099         struct perf_event_context *ctx;
4100
4101         cpuctx = &__get_cpu_var(perf_cpu_context);
4102         rcu_read_lock();
4103         perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4104                                  nr, nmi, data, regs);
4105         /*
4106          * doesn't really matter which of the child contexts the
4107          * events ends up in.
4108          */
4109         ctx = rcu_dereference(current->perf_event_ctxp);
4110         if (ctx)
4111                 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4112         rcu_read_unlock();
4113 }
4114
4115 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4116                             struct pt_regs *regs, u64 addr)
4117 {
4118         struct perf_sample_data data;
4119         int rctx;
4120
4121         rctx = perf_swevent_get_recursion_context();
4122         if (rctx < 0)
4123                 return;
4124
4125         perf_sample_data_init(&data, addr);
4126
4127         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4128
4129         perf_swevent_put_recursion_context(rctx);
4130 }
4131
4132 static void perf_swevent_read(struct perf_event *event)
4133 {
4134 }
4135
4136 static int perf_swevent_enable(struct perf_event *event)
4137 {
4138         struct hw_perf_event *hwc = &event->hw;
4139
4140         if (hwc->sample_period) {
4141                 hwc->last_period = hwc->sample_period;
4142                 perf_swevent_set_period(event);
4143         }
4144         return 0;
4145 }
4146
4147 static void perf_swevent_disable(struct perf_event *event)
4148 {
4149 }
4150
4151 static const struct pmu perf_ops_generic = {
4152         .enable         = perf_swevent_enable,
4153         .disable        = perf_swevent_disable,
4154         .read           = perf_swevent_read,
4155         .unthrottle     = perf_swevent_unthrottle,
4156 };
4157
4158 /*
4159  * hrtimer based swevent callback
4160  */
4161
4162 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4163 {
4164         enum hrtimer_restart ret = HRTIMER_RESTART;
4165         struct perf_sample_data data;
4166         struct pt_regs *regs;
4167         struct perf_event *event;
4168         u64 period;
4169
4170         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4171         event->pmu->read(event);
4172
4173         perf_sample_data_init(&data, 0);
4174         data.period = event->hw.last_period;
4175         regs = get_irq_regs();
4176         /*
4177          * In case we exclude kernel IPs or are somehow not in interrupt
4178          * context, provide the next best thing, the user IP.
4179          */
4180         if ((event->attr.exclude_kernel || !regs) &&
4181                         !event->attr.exclude_user)
4182                 regs = task_pt_regs(current);
4183
4184         if (regs) {
4185                 if (!(event->attr.exclude_idle && current->pid == 0))
4186                         if (perf_event_overflow(event, 0, &data, regs))
4187                                 ret = HRTIMER_NORESTART;
4188         }
4189
4190         period = max_t(u64, 10000, event->hw.sample_period);
4191         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4192
4193         return ret;
4194 }
4195
4196 static void perf_swevent_start_hrtimer(struct perf_event *event)
4197 {
4198         struct hw_perf_event *hwc = &event->hw;
4199
4200         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4201         hwc->hrtimer.function = perf_swevent_hrtimer;
4202         if (hwc->sample_period) {
4203                 u64 period;
4204
4205                 if (hwc->remaining) {
4206                         if (hwc->remaining < 0)
4207                                 period = 10000;
4208                         else
4209                                 period = hwc->remaining;
4210                         hwc->remaining = 0;
4211                 } else {
4212                         period = max_t(u64, 10000, hwc->sample_period);
4213                 }
4214                 __hrtimer_start_range_ns(&hwc->hrtimer,
4215                                 ns_to_ktime(period), 0,
4216                                 HRTIMER_MODE_REL, 0);
4217         }
4218 }
4219
4220 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4221 {
4222         struct hw_perf_event *hwc = &event->hw;
4223
4224         if (hwc->sample_period) {
4225                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4226                 hwc->remaining = ktime_to_ns(remaining);
4227
4228                 hrtimer_cancel(&hwc->hrtimer);
4229         }
4230 }
4231
4232 /*
4233  * Software event: cpu wall time clock
4234  */
4235
4236 static void cpu_clock_perf_event_update(struct perf_event *event)
4237 {
4238         int cpu = raw_smp_processor_id();
4239         s64 prev;
4240         u64 now;
4241
4242         now = cpu_clock(cpu);
4243         prev = atomic64_xchg(&event->hw.prev_count, now);
4244         atomic64_add(now - prev, &event->count);
4245 }
4246
4247 static int cpu_clock_perf_event_enable(struct perf_event *event)
4248 {
4249         struct hw_perf_event *hwc = &event->hw;
4250         int cpu = raw_smp_processor_id();
4251
4252         atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4253         perf_swevent_start_hrtimer(event);
4254
4255         return 0;
4256 }
4257
4258 static void cpu_clock_perf_event_disable(struct perf_event *event)
4259 {
4260         perf_swevent_cancel_hrtimer(event);
4261         cpu_clock_perf_event_update(event);
4262 }
4263
4264 static void cpu_clock_perf_event_read(struct perf_event *event)
4265 {
4266         cpu_clock_perf_event_update(event);
4267 }
4268
4269 static const struct pmu perf_ops_cpu_clock = {
4270         .enable         = cpu_clock_perf_event_enable,
4271         .disable        = cpu_clock_perf_event_disable,
4272         .read           = cpu_clock_perf_event_read,
4273 };
4274
4275 /*
4276  * Software event: task time clock
4277  */
4278
4279 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4280 {
4281         u64 prev;
4282         s64 delta;
4283
4284         prev = atomic64_xchg(&event->hw.prev_count, now);
4285         delta = now - prev;
4286         atomic64_add(delta, &event->count);
4287 }
4288
4289 static int task_clock_perf_event_enable(struct perf_event *event)
4290 {
4291         struct hw_perf_event *hwc = &event->hw;
4292         u64 now;
4293
4294         now = event->ctx->time;
4295
4296         atomic64_set(&hwc->prev_count, now);
4297
4298         perf_swevent_start_hrtimer(event);
4299
4300         return 0;
4301 }
4302
4303 static void task_clock_perf_event_disable(struct perf_event *event)
4304 {
4305         perf_swevent_cancel_hrtimer(event);
4306         task_clock_perf_event_update(event, event->ctx->time);
4307
4308 }
4309
4310 static void task_clock_perf_event_read(struct perf_event *event)
4311 {
4312         u64 time;
4313
4314         if (!in_nmi()) {
4315                 update_context_time(event->ctx);
4316                 time = event->ctx->time;
4317         } else {
4318                 u64 now = perf_clock();
4319                 u64 delta = now - event->ctx->timestamp;
4320                 time = event->ctx->time + delta;
4321         }
4322
4323         task_clock_perf_event_update(event, time);
4324 }
4325
4326 static const struct pmu perf_ops_task_clock = {
4327         .enable         = task_clock_perf_event_enable,
4328         .disable        = task_clock_perf_event_disable,
4329         .read           = task_clock_perf_event_read,
4330 };
4331
4332 #ifdef CONFIG_EVENT_TRACING
4333
4334 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4335                    int entry_size, struct pt_regs *regs)
4336 {
4337         struct perf_sample_data data;
4338         struct perf_raw_record raw = {
4339                 .size = entry_size,
4340                 .data = record,
4341         };
4342
4343         perf_sample_data_init(&data, addr);
4344         data.raw = &raw;
4345
4346         /* Trace events already protected against recursion */
4347         do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4348                          &data, regs);
4349 }
4350 EXPORT_SYMBOL_GPL(perf_tp_event);
4351
4352 static int perf_tp_event_match(struct perf_event *event,
4353                                 struct perf_sample_data *data)
4354 {
4355         void *record = data->raw->data;
4356
4357         if (likely(!event->filter) || filter_match_preds(event->filter, record))
4358                 return 1;
4359         return 0;
4360 }
4361
4362 static void tp_perf_event_destroy(struct perf_event *event)
4363 {
4364         perf_trace_disable(event->attr.config);
4365 }
4366
4367 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4368 {
4369         /*
4370          * Raw tracepoint data is a severe data leak, only allow root to
4371          * have these.
4372          */
4373         if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4374                         perf_paranoid_tracepoint_raw() &&
4375                         !capable(CAP_SYS_ADMIN))
4376                 return ERR_PTR(-EPERM);
4377
4378         if (perf_trace_enable(event->attr.config))
4379                 return NULL;
4380
4381         event->destroy = tp_perf_event_destroy;
4382
4383         return &perf_ops_generic;
4384 }
4385
4386 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4387 {
4388         char *filter_str;
4389         int ret;
4390
4391         if (event->attr.type != PERF_TYPE_TRACEPOINT)
4392                 return -EINVAL;
4393
4394         filter_str = strndup_user(arg, PAGE_SIZE);
4395         if (IS_ERR(filter_str))
4396                 return PTR_ERR(filter_str);
4397
4398         ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4399
4400         kfree(filter_str);
4401         return ret;
4402 }
4403
4404 static void perf_event_free_filter(struct perf_event *event)
4405 {
4406         ftrace_profile_free_filter(event);
4407 }
4408
4409 #else
4410
4411 static int perf_tp_event_match(struct perf_event *event,
4412                                 struct perf_sample_data *data)
4413 {
4414         return 1;
4415 }
4416
4417 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4418 {
4419         return NULL;
4420 }
4421
4422 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4423 {
4424         return -ENOENT;
4425 }
4426
4427 static void perf_event_free_filter(struct perf_event *event)
4428 {
4429 }
4430
4431 #endif /* CONFIG_EVENT_TRACING */
4432
4433 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4434 static void bp_perf_event_destroy(struct perf_event *event)
4435 {
4436         release_bp_slot(event);
4437 }
4438
4439 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4440 {
4441         int err;
4442
4443         err = register_perf_hw_breakpoint(bp);
4444         if (err)
4445                 return ERR_PTR(err);
4446
4447         bp->destroy = bp_perf_event_destroy;
4448
4449         return &perf_ops_bp;
4450 }
4451
4452 void perf_bp_event(struct perf_event *bp, void *data)
4453 {
4454         struct perf_sample_data sample;
4455         struct pt_regs *regs = data;
4456
4457         perf_sample_data_init(&sample, bp->attr.bp_addr);
4458
4459         if (!perf_exclude_event(bp, regs))
4460                 perf_swevent_add(bp, 1, 1, &sample, regs);
4461 }
4462 #else
4463 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4464 {
4465         return NULL;
4466 }
4467
4468 void perf_bp_event(struct perf_event *bp, void *regs)
4469 {
4470 }
4471 #endif
4472
4473 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4474
4475 static void sw_perf_event_destroy(struct perf_event *event)
4476 {
4477         u64 event_id = event->attr.config;
4478
4479         WARN_ON(event->parent);
4480
4481         atomic_dec(&perf_swevent_enabled[event_id]);
4482 }
4483
4484 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4485 {
4486         const struct pmu *pmu = NULL;
4487         u64 event_id = event->attr.config;
4488
4489         /*
4490          * Software events (currently) can't in general distinguish
4491          * between user, kernel and hypervisor events.
4492          * However, context switches and cpu migrations are considered
4493          * to be kernel events, and page faults are never hypervisor
4494          * events.
4495          */
4496         switch (event_id) {
4497         case PERF_COUNT_SW_CPU_CLOCK:
4498                 pmu = &perf_ops_cpu_clock;
4499
4500                 break;
4501         case PERF_COUNT_SW_TASK_CLOCK:
4502                 /*
4503                  * If the user instantiates this as a per-cpu event,
4504                  * use the cpu_clock event instead.
4505                  */
4506                 if (event->ctx->task)
4507                         pmu = &perf_ops_task_clock;
4508                 else
4509                         pmu = &perf_ops_cpu_clock;
4510
4511                 break;
4512         case PERF_COUNT_SW_PAGE_FAULTS:
4513         case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4514         case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4515         case PERF_COUNT_SW_CONTEXT_SWITCHES:
4516         case PERF_COUNT_SW_CPU_MIGRATIONS:
4517         case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4518         case PERF_COUNT_SW_EMULATION_FAULTS:
4519                 if (!event->parent) {
4520                         atomic_inc(&perf_swevent_enabled[event_id]);
4521                         event->destroy = sw_perf_event_destroy;
4522                 }
4523                 pmu = &perf_ops_generic;
4524                 break;
4525         }
4526
4527         return pmu;
4528 }
4529
4530 /*
4531  * Allocate and initialize a event structure
4532  */
4533 static struct perf_event *
4534 perf_event_alloc(struct perf_event_attr *attr,
4535                    int cpu,
4536                    struct perf_event_context *ctx,
4537                    struct perf_event *group_leader,
4538                    struct perf_event *parent_event,
4539                    perf_overflow_handler_t overflow_handler,
4540                    gfp_t gfpflags)
4541 {
4542         const struct pmu *pmu;
4543         struct perf_event *event;
4544         struct hw_perf_event *hwc;
4545         long err;
4546
4547         event = kzalloc(sizeof(*event), gfpflags);
4548         if (!event)
4549                 return ERR_PTR(-ENOMEM);
4550
4551         /*
4552          * Single events are their own group leaders, with an
4553          * empty sibling list:
4554          */
4555         if (!group_leader)
4556                 group_leader = event;
4557
4558         mutex_init(&event->child_mutex);
4559         INIT_LIST_HEAD(&event->child_list);
4560
4561         INIT_LIST_HEAD(&event->group_entry);
4562         INIT_LIST_HEAD(&event->event_entry);
4563         INIT_LIST_HEAD(&event->sibling_list);
4564         init_waitqueue_head(&event->waitq);
4565
4566         mutex_init(&event->mmap_mutex);
4567
4568         event->cpu              = cpu;
4569         event->attr             = *attr;
4570         event->group_leader     = group_leader;
4571         event->pmu              = NULL;
4572         event->ctx              = ctx;
4573         event->oncpu            = -1;
4574
4575         event->parent           = parent_event;
4576
4577         event->ns               = get_pid_ns(current->nsproxy->pid_ns);
4578         event->id               = atomic64_inc_return(&perf_event_id);
4579
4580         event->state            = PERF_EVENT_STATE_INACTIVE;
4581
4582         if (!overflow_handler && parent_event)
4583                 overflow_handler = parent_event->overflow_handler;
4584         
4585         event->overflow_handler = overflow_handler;
4586
4587         if (attr->disabled)
4588                 event->state = PERF_EVENT_STATE_OFF;
4589
4590         pmu = NULL;
4591
4592         hwc = &event->hw;
4593         hwc->sample_period = attr->sample_period;
4594         if (attr->freq && attr->sample_freq)
4595                 hwc->sample_period = 1;
4596         hwc->last_period = hwc->sample_period;
4597
4598         atomic64_set(&hwc->period_left, hwc->sample_period);
4599
4600         /*
4601          * we currently do not support PERF_FORMAT_GROUP on inherited events
4602          */
4603         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4604                 goto done;
4605
4606         switch (attr->type) {
4607         case PERF_TYPE_RAW:
4608         case PERF_TYPE_HARDWARE:
4609         case PERF_TYPE_HW_CACHE:
4610                 pmu = hw_perf_event_init(event);
4611                 break;
4612
4613         case PERF_TYPE_SOFTWARE:
4614                 pmu = sw_perf_event_init(event);
4615                 break;
4616
4617         case PERF_TYPE_TRACEPOINT:
4618                 pmu = tp_perf_event_init(event);
4619                 break;
4620
4621         case PERF_TYPE_BREAKPOINT:
4622                 pmu = bp_perf_event_init(event);
4623                 break;
4624
4625
4626         default:
4627                 break;
4628         }
4629 done:
4630         err = 0;
4631         if (!pmu)
4632                 err = -EINVAL;
4633         else if (IS_ERR(pmu))
4634                 err = PTR_ERR(pmu);
4635
4636         if (err) {
4637                 if (event->ns)
4638                         put_pid_ns(event->ns);
4639                 kfree(event);
4640                 return ERR_PTR(err);
4641         }
4642
4643         event->pmu = pmu;
4644
4645         if (!event->parent) {
4646                 atomic_inc(&nr_events);
4647                 if (event->attr.mmap)
4648                         atomic_inc(&nr_mmap_events);
4649                 if (event->attr.comm)
4650                         atomic_inc(&nr_comm_events);
4651                 if (event->attr.task)
4652                         atomic_inc(&nr_task_events);
4653         }
4654
4655         return event;
4656 }
4657
4658 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4659                           struct perf_event_attr *attr)
4660 {
4661         u32 size;
4662         int ret;
4663
4664         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4665                 return -EFAULT;
4666
4667         /*
4668          * zero the full structure, so that a short copy will be nice.
4669          */
4670         memset(attr, 0, sizeof(*attr));
4671
4672         ret = get_user(size, &uattr->size);
4673         if (ret)
4674                 return ret;
4675
4676         if (size > PAGE_SIZE)   /* silly large */
4677                 goto err_size;
4678
4679         if (!size)              /* abi compat */
4680                 size = PERF_ATTR_SIZE_VER0;
4681
4682         if (size < PERF_ATTR_SIZE_VER0)
4683                 goto err_size;
4684
4685         /*
4686          * If we're handed a bigger struct than we know of,
4687          * ensure all the unknown bits are 0 - i.e. new
4688          * user-space does not rely on any kernel feature
4689          * extensions we dont know about yet.
4690          */
4691         if (size > sizeof(*attr)) {
4692                 unsigned char __user *addr;
4693                 unsigned char __user *end;
4694                 unsigned char val;
4695
4696                 addr = (void __user *)uattr + sizeof(*attr);
4697                 end  = (void __user *)uattr + size;
4698
4699                 for (; addr < end; addr++) {
4700                         ret = get_user(val, addr);
4701                         if (ret)
4702                                 return ret;
4703                         if (val)
4704                                 goto err_size;
4705                 }
4706                 size = sizeof(*attr);
4707         }
4708
4709         ret = copy_from_user(attr, uattr, size);
4710         if (ret)
4711                 return -EFAULT;
4712
4713         /*
4714          * If the type exists, the corresponding creation will verify
4715          * the attr->config.
4716          */
4717         if (attr->type >= PERF_TYPE_MAX)
4718                 return -EINVAL;
4719
4720         if (attr->__reserved_1)
4721                 return -EINVAL;
4722
4723         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4724                 return -EINVAL;
4725
4726         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4727                 return -EINVAL;
4728
4729 out:
4730         return ret;
4731
4732 err_size:
4733         put_user(sizeof(*attr), &uattr->size);
4734         ret = -E2BIG;
4735         goto out;
4736 }
4737
4738 static int perf_event_set_output(struct perf_event *event, int output_fd)
4739 {
4740         struct perf_event *output_event = NULL;
4741         struct file *output_file = NULL;
4742         struct perf_event *old_output;
4743         int fput_needed = 0;
4744         int ret = -EINVAL;
4745
4746         if (!output_fd)
4747                 goto set;
4748
4749         output_file = fget_light(output_fd, &fput_needed);
4750         if (!output_file)
4751                 return -EBADF;
4752
4753         if (output_file->f_op != &perf_fops)
4754                 goto out;
4755
4756         output_event = output_file->private_data;
4757
4758         /* Don't chain output fds */
4759         if (output_event->output)
4760                 goto out;
4761
4762         /* Don't set an output fd when we already have an output channel */
4763         if (event->data)
4764                 goto out;
4765
4766         atomic_long_inc(&output_file->f_count);
4767
4768 set:
4769         mutex_lock(&event->mmap_mutex);
4770         old_output = event->output;
4771         rcu_assign_pointer(event->output, output_event);
4772         mutex_unlock(&event->mmap_mutex);
4773
4774         if (old_output) {
4775                 /*
4776                  * we need to make sure no existing perf_output_*()
4777                  * is still referencing this event.
4778                  */
4779                 synchronize_rcu();
4780                 fput(old_output->filp);
4781         }
4782
4783         ret = 0;
4784 out:
4785         fput_light(output_file, fput_needed);
4786         return ret;
4787 }
4788
4789 /**
4790  * sys_perf_event_open - open a performance event, associate it to a task/cpu
4791  *
4792  * @attr_uptr:  event_id type attributes for monitoring/sampling
4793  * @pid:                target pid
4794  * @cpu:                target cpu
4795  * @group_fd:           group leader event fd
4796  */
4797 SYSCALL_DEFINE5(perf_event_open,
4798                 struct perf_event_attr __user *, attr_uptr,
4799                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4800 {
4801         struct perf_event *event, *group_leader;
4802         struct perf_event_attr attr;
4803         struct perf_event_context *ctx;
4804         struct file *event_file = NULL;
4805         struct file *group_file = NULL;
4806         int fput_needed = 0;
4807         int fput_needed2 = 0;
4808         int err;
4809
4810         /* for future expandability... */
4811         if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4812                 return -EINVAL;
4813
4814         err = perf_copy_attr(attr_uptr, &attr);
4815         if (err)
4816                 return err;
4817
4818         if (!attr.exclude_kernel) {
4819                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4820                         return -EACCES;
4821         }
4822
4823         if (attr.freq) {
4824                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4825                         return -EINVAL;
4826         }
4827
4828         /*
4829          * Get the target context (task or percpu):
4830          */
4831         ctx = find_get_context(pid, cpu);
4832         if (IS_ERR(ctx))
4833                 return PTR_ERR(ctx);
4834
4835         /*
4836          * Look up the group leader (we will attach this event to it):
4837          */
4838         group_leader = NULL;
4839         if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4840                 err = -EINVAL;
4841                 group_file = fget_light(group_fd, &fput_needed);
4842                 if (!group_file)
4843                         goto err_put_context;
4844                 if (group_file->f_op != &perf_fops)
4845                         goto err_put_context;
4846
4847                 group_leader = group_file->private_data;
4848                 /*
4849                  * Do not allow a recursive hierarchy (this new sibling
4850                  * becoming part of another group-sibling):
4851                  */
4852                 if (group_leader->group_leader != group_leader)
4853                         goto err_put_context;
4854                 /*
4855                  * Do not allow to attach to a group in a different
4856                  * task or CPU context:
4857                  */
4858                 if (group_leader->ctx != ctx)
4859                         goto err_put_context;
4860                 /*
4861                  * Only a group leader can be exclusive or pinned
4862                  */
4863                 if (attr.exclusive || attr.pinned)
4864                         goto err_put_context;
4865         }
4866
4867         event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4868                                      NULL, NULL, GFP_KERNEL);
4869         err = PTR_ERR(event);
4870         if (IS_ERR(event))
4871                 goto err_put_context;
4872
4873         err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4874         if (err < 0)
4875                 goto err_free_put_context;
4876
4877         event_file = fget_light(err, &fput_needed2);
4878         if (!event_file)
4879                 goto err_free_put_context;
4880
4881         if (flags & PERF_FLAG_FD_OUTPUT) {
4882                 err = perf_event_set_output(event, group_fd);
4883                 if (err)
4884                         goto err_fput_free_put_context;
4885         }
4886
4887         event->filp = event_file;
4888         WARN_ON_ONCE(ctx->parent_ctx);
4889         mutex_lock(&ctx->mutex);
4890         perf_install_in_context(ctx, event, cpu);
4891         ++ctx->generation;
4892         mutex_unlock(&ctx->mutex);
4893
4894         event->owner = current;
4895         get_task_struct(current);
4896         mutex_lock(&current->perf_event_mutex);
4897         list_add_tail(&event->owner_entry, &current->perf_event_list);
4898         mutex_unlock(&current->perf_event_mutex);
4899
4900 err_fput_free_put_context:
4901         fput_light(event_file, fput_needed2);
4902
4903 err_free_put_context:
4904         if (err < 0)
4905                 free_event(event);
4906
4907 err_put_context:
4908         if (err < 0)
4909                 put_ctx(ctx);
4910
4911         fput_light(group_file, fput_needed);
4912
4913         return err;
4914 }
4915
4916 /**
4917  * perf_event_create_kernel_counter
4918  *
4919  * @attr: attributes of the counter to create
4920  * @cpu: cpu in which the counter is bound
4921  * @pid: task to profile
4922  */
4923 struct perf_event *
4924 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4925                                  pid_t pid,
4926                                  perf_overflow_handler_t overflow_handler)
4927 {
4928         struct perf_event *event;
4929         struct perf_event_context *ctx;
4930         int err;
4931
4932         /*
4933          * Get the target context (task or percpu):
4934          */
4935
4936         ctx = find_get_context(pid, cpu);
4937         if (IS_ERR(ctx)) {
4938                 err = PTR_ERR(ctx);
4939                 goto err_exit;
4940         }
4941
4942         event = perf_event_alloc(attr, cpu, ctx, NULL,
4943                                  NULL, overflow_handler, GFP_KERNEL);
4944         if (IS_ERR(event)) {
4945                 err = PTR_ERR(event);
4946                 goto err_put_context;
4947         }
4948
4949         event->filp = NULL;
4950         WARN_ON_ONCE(ctx->parent_ctx);
4951         mutex_lock(&ctx->mutex);
4952         perf_install_in_context(ctx, event, cpu);
4953         ++ctx->generation;
4954         mutex_unlock(&ctx->mutex);
4955
4956         event->owner = current;
4957         get_task_struct(current);
4958         mutex_lock(&current->perf_event_mutex);
4959         list_add_tail(&event->owner_entry, &current->perf_event_list);
4960         mutex_unlock(&current->perf_event_mutex);
4961
4962         return event;
4963
4964  err_put_context:
4965         put_ctx(ctx);
4966  err_exit:
4967         return ERR_PTR(err);
4968 }
4969 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4970
4971 /*
4972  * inherit a event from parent task to child task:
4973  */
4974 static struct perf_event *
4975 inherit_event(struct perf_event *parent_event,
4976               struct task_struct *parent,
4977               struct perf_event_context *parent_ctx,
4978               struct task_struct *child,
4979               struct perf_event *group_leader,
4980               struct perf_event_context *child_ctx)
4981 {
4982         struct perf_event *child_event;
4983
4984         /*
4985          * Instead of creating recursive hierarchies of events,
4986          * we link inherited events back to the original parent,
4987          * which has a filp for sure, which we use as the reference
4988          * count:
4989          */
4990         if (parent_event->parent)
4991                 parent_event = parent_event->parent;
4992
4993         child_event = perf_event_alloc(&parent_event->attr,
4994                                            parent_event->cpu, child_ctx,
4995                                            group_leader, parent_event,
4996                                            NULL, GFP_KERNEL);
4997         if (IS_ERR(child_event))
4998                 return child_event;
4999         get_ctx(child_ctx);
5000
5001         /*
5002          * Make the child state follow the state of the parent event,
5003          * not its attr.disabled bit.  We hold the parent's mutex,
5004          * so we won't race with perf_event_{en, dis}able_family.
5005          */
5006         if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
5007                 child_event->state = PERF_EVENT_STATE_INACTIVE;
5008         else
5009                 child_event->state = PERF_EVENT_STATE_OFF;
5010
5011         if (parent_event->attr.freq) {
5012                 u64 sample_period = parent_event->hw.sample_period;
5013                 struct hw_perf_event *hwc = &child_event->hw;
5014
5015                 hwc->sample_period = sample_period;
5016                 hwc->last_period   = sample_period;
5017
5018                 atomic64_set(&hwc->period_left, sample_period);
5019         }
5020
5021         child_event->overflow_handler = parent_event->overflow_handler;
5022
5023         /*
5024          * Link it up in the child's context:
5025          */
5026         add_event_to_ctx(child_event, child_ctx);
5027
5028         /*
5029          * Get a reference to the parent filp - we will fput it
5030          * when the child event exits. This is safe to do because
5031          * we are in the parent and we know that the filp still
5032          * exists and has a nonzero count:
5033          */
5034         atomic_long_inc(&parent_event->filp->f_count);
5035
5036         /*
5037          * Link this into the parent event's child list
5038          */
5039         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5040         mutex_lock(&parent_event->child_mutex);
5041         list_add_tail(&child_event->child_list, &parent_event->child_list);
5042         mutex_unlock(&parent_event->child_mutex);
5043
5044         return child_event;
5045 }
5046
5047 static int inherit_group(struct perf_event *parent_event,
5048               struct task_struct *parent,
5049               struct perf_event_context *parent_ctx,
5050               struct task_struct *child,
5051               struct perf_event_context *child_ctx)
5052 {
5053         struct perf_event *leader;
5054         struct perf_event *sub;
5055         struct perf_event *child_ctr;
5056
5057         leader = inherit_event(parent_event, parent, parent_ctx,
5058                                  child, NULL, child_ctx);
5059         if (IS_ERR(leader))
5060                 return PTR_ERR(leader);
5061         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5062                 child_ctr = inherit_event(sub, parent, parent_ctx,
5063                                             child, leader, child_ctx);
5064                 if (IS_ERR(child_ctr))
5065                         return PTR_ERR(child_ctr);
5066         }
5067         return 0;
5068 }
5069
5070 static void sync_child_event(struct perf_event *child_event,
5071                                struct task_struct *child)
5072 {
5073         struct perf_event *parent_event = child_event->parent;
5074         u64 child_val;
5075
5076         if (child_event->attr.inherit_stat)
5077                 perf_event_read_event(child_event, child);
5078
5079         child_val = atomic64_read(&child_event->count);
5080
5081         /*
5082          * Add back the child's count to the parent's count:
5083          */
5084         atomic64_add(child_val, &parent_event->count);
5085         atomic64_add(child_event->total_time_enabled,
5086                      &parent_event->child_total_time_enabled);
5087         atomic64_add(child_event->total_time_running,
5088                      &parent_event->child_total_time_running);
5089
5090         /*
5091          * Remove this event from the parent's list
5092          */
5093         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5094         mutex_lock(&parent_event->child_mutex);
5095         list_del_init(&child_event->child_list);
5096         mutex_unlock(&parent_event->child_mutex);
5097
5098         /*
5099          * Release the parent event, if this was the last
5100          * reference to it.
5101          */
5102         fput(parent_event->filp);
5103 }
5104
5105 static void
5106 __perf_event_exit_task(struct perf_event *child_event,
5107                          struct perf_event_context *child_ctx,
5108                          struct task_struct *child)
5109 {
5110         struct perf_event *parent_event;
5111
5112         perf_event_remove_from_context(child_event);
5113
5114         parent_event = child_event->parent;
5115         /*
5116          * It can happen that parent exits first, and has events
5117          * that are still around due to the child reference. These
5118          * events need to be zapped - but otherwise linger.
5119          */
5120         if (parent_event) {
5121                 sync_child_event(child_event, child);
5122                 free_event(child_event);
5123         }
5124 }
5125
5126 /*
5127  * When a child task exits, feed back event values to parent events.
5128  */
5129 void perf_event_exit_task(struct task_struct *child)
5130 {
5131         struct perf_event *child_event, *tmp;
5132         struct perf_event_context *child_ctx;
5133         unsigned long flags;
5134
5135         if (likely(!child->perf_event_ctxp)) {
5136                 perf_event_task(child, NULL, 0);
5137                 return;
5138         }
5139
5140         local_irq_save(flags);
5141         /*
5142          * We can't reschedule here because interrupts are disabled,
5143          * and either child is current or it is a task that can't be
5144          * scheduled, so we are now safe from rescheduling changing
5145          * our context.
5146          */
5147         child_ctx = child->perf_event_ctxp;
5148         __perf_event_task_sched_out(child_ctx);
5149
5150         /*
5151          * Take the context lock here so that if find_get_context is
5152          * reading child->perf_event_ctxp, we wait until it has
5153          * incremented the context's refcount before we do put_ctx below.
5154          */
5155         raw_spin_lock(&child_ctx->lock);
5156         child->perf_event_ctxp = NULL;
5157         /*
5158          * If this context is a clone; unclone it so it can't get
5159          * swapped to another process while we're removing all
5160          * the events from it.
5161          */
5162         unclone_ctx(child_ctx);
5163         update_context_time(child_ctx);
5164         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5165
5166         /*
5167          * Report the task dead after unscheduling the events so that we
5168          * won't get any samples after PERF_RECORD_EXIT. We can however still
5169          * get a few PERF_RECORD_READ events.
5170          */
5171         perf_event_task(child, child_ctx, 0);
5172
5173         /*
5174          * We can recurse on the same lock type through:
5175          *
5176          *   __perf_event_exit_task()
5177          *     sync_child_event()
5178          *       fput(parent_event->filp)
5179          *         perf_release()
5180          *           mutex_lock(&ctx->mutex)
5181          *
5182          * But since its the parent context it won't be the same instance.
5183          */
5184         mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5185
5186 again:
5187         list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5188                                  group_entry)
5189                 __perf_event_exit_task(child_event, child_ctx, child);
5190
5191         list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5192                                  group_entry)
5193                 __perf_event_exit_task(child_event, child_ctx, child);
5194
5195         /*
5196          * If the last event was a group event, it will have appended all
5197          * its siblings to the list, but we obtained 'tmp' before that which
5198          * will still point to the list head terminating the iteration.
5199          */
5200         if (!list_empty(&child_ctx->pinned_groups) ||
5201             !list_empty(&child_ctx->flexible_groups))
5202                 goto again;
5203
5204         mutex_unlock(&child_ctx->mutex);
5205
5206         put_ctx(child_ctx);
5207 }
5208
5209 static void perf_free_event(struct perf_event *event,
5210                             struct perf_event_context *ctx)
5211 {
5212         struct perf_event *parent = event->parent;
5213
5214         if (WARN_ON_ONCE(!parent))
5215                 return;
5216
5217         mutex_lock(&parent->child_mutex);
5218         list_del_init(&event->child_list);
5219         mutex_unlock(&parent->child_mutex);
5220
5221         fput(parent->filp);
5222
5223         list_del_event(event, ctx);
5224         free_event(event);
5225 }
5226
5227 /*
5228  * free an unexposed, unused context as created by inheritance by
5229  * init_task below, used by fork() in case of fail.
5230  */
5231 void perf_event_free_task(struct task_struct *task)
5232 {
5233         struct perf_event_context *ctx = task->perf_event_ctxp;
5234         struct perf_event *event, *tmp;
5235
5236         if (!ctx)
5237                 return;
5238
5239         mutex_lock(&ctx->mutex);
5240 again:
5241         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5242                 perf_free_event(event, ctx);
5243
5244         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5245                                  group_entry)
5246                 perf_free_event(event, ctx);
5247
5248         if (!list_empty(&ctx->pinned_groups) ||
5249             !list_empty(&ctx->flexible_groups))
5250                 goto again;
5251
5252         mutex_unlock(&ctx->mutex);
5253
5254         put_ctx(ctx);
5255 }
5256
5257 static int
5258 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5259                    struct perf_event_context *parent_ctx,
5260                    struct task_struct *child,
5261                    int *inherited_all)
5262 {
5263         int ret;
5264         struct perf_event_context *child_ctx = child->perf_event_ctxp;
5265
5266         if (!event->attr.inherit) {
5267                 *inherited_all = 0;
5268                 return 0;
5269         }
5270
5271         if (!child_ctx) {
5272                 /*
5273                  * This is executed from the parent task context, so
5274                  * inherit events that have been marked for cloning.
5275                  * First allocate and initialize a context for the
5276                  * child.
5277                  */
5278
5279                 child_ctx = kzalloc(sizeof(struct perf_event_context),
5280                                     GFP_KERNEL);
5281                 if (!child_ctx)
5282                         return -ENOMEM;
5283
5284                 __perf_event_init_context(child_ctx, child);
5285                 child->perf_event_ctxp = child_ctx;
5286                 get_task_struct(child);
5287         }
5288
5289         ret = inherit_group(event, parent, parent_ctx,
5290                             child, child_ctx);
5291
5292         if (ret)
5293                 *inherited_all = 0;
5294
5295         return ret;
5296 }
5297
5298
5299 /*
5300  * Initialize the perf_event context in task_struct
5301  */
5302 int perf_event_init_task(struct task_struct *child)
5303 {
5304         struct perf_event_context *child_ctx, *parent_ctx;
5305         struct perf_event_context *cloned_ctx;
5306         struct perf_event *event;
5307         struct task_struct *parent = current;
5308         int inherited_all = 1;
5309         int ret = 0;
5310
5311         child->perf_event_ctxp = NULL;
5312
5313         mutex_init(&child->perf_event_mutex);
5314         INIT_LIST_HEAD(&child->perf_event_list);
5315
5316         if (likely(!parent->perf_event_ctxp))
5317                 return 0;
5318
5319         /*
5320          * If the parent's context is a clone, pin it so it won't get
5321          * swapped under us.
5322          */
5323         parent_ctx = perf_pin_task_context(parent);
5324
5325         /*
5326          * No need to check if parent_ctx != NULL here; since we saw
5327          * it non-NULL earlier, the only reason for it to become NULL
5328          * is if we exit, and since we're currently in the middle of
5329          * a fork we can't be exiting at the same time.
5330          */
5331
5332         /*
5333          * Lock the parent list. No need to lock the child - not PID
5334          * hashed yet and not running, so nobody can access it.
5335          */
5336         mutex_lock(&parent_ctx->mutex);
5337
5338         /*
5339          * We dont have to disable NMIs - we are only looking at
5340          * the list, not manipulating it:
5341          */
5342         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5343                 ret = inherit_task_group(event, parent, parent_ctx, child,
5344                                          &inherited_all);
5345                 if (ret)
5346                         break;
5347         }
5348
5349         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5350                 ret = inherit_task_group(event, parent, parent_ctx, child,
5351                                          &inherited_all);
5352                 if (ret)
5353                         break;
5354         }
5355
5356         child_ctx = child->perf_event_ctxp;
5357
5358         if (child_ctx && inherited_all) {
5359                 /*
5360                  * Mark the child context as a clone of the parent
5361                  * context, or of whatever the parent is a clone of.
5362                  * Note that if the parent is a clone, it could get
5363                  * uncloned at any point, but that doesn't matter
5364                  * because the list of events and the generation
5365                  * count can't have changed since we took the mutex.
5366                  */
5367                 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5368                 if (cloned_ctx) {
5369                         child_ctx->parent_ctx = cloned_ctx;
5370                         child_ctx->parent_gen = parent_ctx->parent_gen;
5371                 } else {
5372                         child_ctx->parent_ctx = parent_ctx;
5373                         child_ctx->parent_gen = parent_ctx->generation;
5374                 }
5375                 get_ctx(child_ctx->parent_ctx);
5376         }
5377
5378         mutex_unlock(&parent_ctx->mutex);
5379
5380         perf_unpin_context(parent_ctx);
5381
5382         return ret;
5383 }
5384
5385 static void __init perf_event_init_all_cpus(void)
5386 {
5387         int cpu;
5388         struct perf_cpu_context *cpuctx;
5389
5390         for_each_possible_cpu(cpu) {
5391                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5392                 __perf_event_init_context(&cpuctx->ctx, NULL);
5393         }
5394 }
5395
5396 static void __cpuinit perf_event_init_cpu(int cpu)
5397 {
5398         struct perf_cpu_context *cpuctx;
5399
5400         cpuctx = &per_cpu(perf_cpu_context, cpu);
5401
5402         spin_lock(&perf_resource_lock);
5403         cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5404         spin_unlock(&perf_resource_lock);
5405 }
5406
5407 #ifdef CONFIG_HOTPLUG_CPU
5408 static void __perf_event_exit_cpu(void *info)
5409 {
5410         struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5411         struct perf_event_context *ctx = &cpuctx->ctx;
5412         struct perf_event *event, *tmp;
5413
5414         list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5415                 __perf_event_remove_from_context(event);
5416         list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5417                 __perf_event_remove_from_context(event);
5418 }
5419 static void perf_event_exit_cpu(int cpu)
5420 {
5421         struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5422         struct perf_event_context *ctx = &cpuctx->ctx;
5423
5424         mutex_lock(&ctx->mutex);
5425         smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5426         mutex_unlock(&ctx->mutex);
5427 }
5428 #else
5429 static inline void perf_event_exit_cpu(int cpu) { }
5430 #endif
5431
5432 static int __cpuinit
5433 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5434 {
5435         unsigned int cpu = (long)hcpu;
5436
5437         switch (action) {
5438
5439         case CPU_UP_PREPARE:
5440         case CPU_UP_PREPARE_FROZEN:
5441                 perf_event_init_cpu(cpu);
5442                 break;
5443
5444         case CPU_DOWN_PREPARE:
5445         case CPU_DOWN_PREPARE_FROZEN:
5446                 perf_event_exit_cpu(cpu);
5447                 break;
5448
5449         default:
5450                 break;
5451         }
5452
5453         return NOTIFY_OK;
5454 }
5455
5456 /*
5457  * This has to have a higher priority than migration_notifier in sched.c.
5458  */
5459 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5460         .notifier_call          = perf_cpu_notify,
5461         .priority               = 20,
5462 };
5463
5464 void __init perf_event_init(void)
5465 {
5466         perf_event_init_all_cpus();
5467         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5468                         (void *)(long)smp_processor_id());
5469         perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5470                         (void *)(long)smp_processor_id());
5471         register_cpu_notifier(&perf_cpu_nb);
5472 }
5473
5474 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5475                                         struct sysdev_class_attribute *attr,
5476                                         char *buf)
5477 {
5478         return sprintf(buf, "%d\n", perf_reserved_percpu);
5479 }
5480
5481 static ssize_t
5482 perf_set_reserve_percpu(struct sysdev_class *class,
5483                         struct sysdev_class_attribute *attr,
5484                         const char *buf,
5485                         size_t count)
5486 {
5487         struct perf_cpu_context *cpuctx;
5488         unsigned long val;
5489         int err, cpu, mpt;
5490
5491         err = strict_strtoul(buf, 10, &val);
5492         if (err)
5493                 return err;
5494         if (val > perf_max_events)
5495                 return -EINVAL;
5496
5497         spin_lock(&perf_resource_lock);
5498         perf_reserved_percpu = val;
5499         for_each_online_cpu(cpu) {
5500                 cpuctx = &per_cpu(perf_cpu_context, cpu);
5501                 raw_spin_lock_irq(&cpuctx->ctx.lock);
5502                 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5503                           perf_max_events - perf_reserved_percpu);
5504                 cpuctx->max_pertask = mpt;
5505                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5506         }
5507         spin_unlock(&perf_resource_lock);
5508
5509         return count;
5510 }
5511
5512 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5513                                     struct sysdev_class_attribute *attr,
5514                                     char *buf)
5515 {
5516         return sprintf(buf, "%d\n", perf_overcommit);
5517 }
5518
5519 static ssize_t
5520 perf_set_overcommit(struct sysdev_class *class,
5521                     struct sysdev_class_attribute *attr,
5522                     const char *buf, size_t count)
5523 {
5524         unsigned long val;
5525         int err;
5526
5527         err = strict_strtoul(buf, 10, &val);
5528         if (err)
5529                 return err;
5530         if (val > 1)
5531                 return -EINVAL;
5532
5533         spin_lock(&perf_resource_lock);
5534         perf_overcommit = val;
5535         spin_unlock(&perf_resource_lock);
5536
5537         return count;
5538 }
5539
5540 static SYSDEV_CLASS_ATTR(
5541                                 reserve_percpu,
5542                                 0644,
5543                                 perf_show_reserve_percpu,
5544                                 perf_set_reserve_percpu
5545                         );
5546
5547 static SYSDEV_CLASS_ATTR(
5548                                 overcommit,
5549                                 0644,
5550                                 perf_show_overcommit,
5551                                 perf_set_overcommit
5552                         );
5553
5554 static struct attribute *perfclass_attrs[] = {
5555         &attr_reserve_percpu.attr,
5556         &attr_overcommit.attr,
5557         NULL
5558 };
5559
5560 static struct attribute_group perfclass_attr_group = {
5561         .attrs                  = perfclass_attrs,
5562         .name                   = "perf_events",
5563 };
5564
5565 static int __init perf_event_sysfs_init(void)
5566 {
5567         return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5568                                   &perfclass_attr_group);
5569 }
5570 device_initcall(perf_event_sysfs_init);