]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/nfs/write.c
NFSv4: Ensure that we track the NFSv4 lock state in read/write requests.
[net-next-2.6.git] / fs / nfs / write.c
1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31
32 #define NFSDBG_FACILITY         NFSDBG_PAGECACHE
33
34 #define MIN_POOL_WRITE          (32)
35 #define MIN_POOL_COMMIT         (4)
36
37 /*
38  * Local function declarations
39  */
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41                                   struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
46
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
50
51 struct nfs_write_data *nfs_commitdata_alloc(void)
52 {
53         struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
54
55         if (p) {
56                 memset(p, 0, sizeof(*p));
57                 INIT_LIST_HEAD(&p->pages);
58                 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
59         }
60         return p;
61 }
62
63 void nfs_commit_free(struct nfs_write_data *p)
64 {
65         if (p && (p->pagevec != &p->page_array[0]))
66                 kfree(p->pagevec);
67         mempool_free(p, nfs_commit_mempool);
68 }
69
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
71 {
72         struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
73
74         if (p) {
75                 memset(p, 0, sizeof(*p));
76                 INIT_LIST_HEAD(&p->pages);
77                 p->npages = pagecount;
78                 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79                 if (pagecount <= ARRAY_SIZE(p->page_array))
80                         p->pagevec = p->page_array;
81                 else {
82                         p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83                         if (!p->pagevec) {
84                                 mempool_free(p, nfs_wdata_mempool);
85                                 p = NULL;
86                         }
87                 }
88         }
89         return p;
90 }
91
92 void nfs_writedata_free(struct nfs_write_data *p)
93 {
94         if (p && (p->pagevec != &p->page_array[0]))
95                 kfree(p->pagevec);
96         mempool_free(p, nfs_wdata_mempool);
97 }
98
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
100 {
101         put_nfs_open_context(wdata->args.context);
102         nfs_writedata_free(wdata);
103 }
104
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
106 {
107         ctx->error = error;
108         smp_wmb();
109         set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
110 }
111
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
113 {
114         struct nfs_page *req = NULL;
115
116         if (PagePrivate(page)) {
117                 req = (struct nfs_page *)page_private(page);
118                 if (req != NULL)
119                         kref_get(&req->wb_kref);
120         }
121         return req;
122 }
123
124 static struct nfs_page *nfs_page_find_request(struct page *page)
125 {
126         struct inode *inode = page->mapping->host;
127         struct nfs_page *req = NULL;
128
129         spin_lock(&inode->i_lock);
130         req = nfs_page_find_request_locked(page);
131         spin_unlock(&inode->i_lock);
132         return req;
133 }
134
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
137 {
138         struct inode *inode = page->mapping->host;
139         loff_t end, i_size;
140         pgoff_t end_index;
141
142         spin_lock(&inode->i_lock);
143         i_size = i_size_read(inode);
144         end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145         if (i_size > 0 && page->index < end_index)
146                 goto out;
147         end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148         if (i_size >= end)
149                 goto out;
150         i_size_write(inode, end);
151         nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153         spin_unlock(&inode->i_lock);
154 }
155
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
158 {
159         SetPageError(page);
160         nfs_zap_mapping(page->mapping->host, page->mapping);
161 }
162
163 /* We can set the PG_uptodate flag if we see that a write request
164  * covers the full page.
165  */
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
167 {
168         if (PageUptodate(page))
169                 return;
170         if (base != 0)
171                 return;
172         if (count != nfs_page_length(page))
173                 return;
174         SetPageUptodate(page);
175 }
176
177 static int wb_priority(struct writeback_control *wbc)
178 {
179         if (wbc->for_reclaim)
180                 return FLUSH_HIGHPRI | FLUSH_STABLE;
181         if (wbc->for_kupdate || wbc->for_background)
182                 return FLUSH_LOWPRI;
183         return 0;
184 }
185
186 /*
187  * NFS congestion control
188  */
189
190 int nfs_congestion_kb;
191
192 #define NFS_CONGESTION_ON_THRESH        (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH       \
194         (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
195
196 static int nfs_set_page_writeback(struct page *page)
197 {
198         int ret = test_set_page_writeback(page);
199
200         if (!ret) {
201                 struct inode *inode = page->mapping->host;
202                 struct nfs_server *nfss = NFS_SERVER(inode);
203
204                 page_cache_get(page);
205                 if (atomic_long_inc_return(&nfss->writeback) >
206                                 NFS_CONGESTION_ON_THRESH) {
207                         set_bdi_congested(&nfss->backing_dev_info,
208                                                 BLK_RW_ASYNC);
209                 }
210         }
211         return ret;
212 }
213
214 static void nfs_end_page_writeback(struct page *page)
215 {
216         struct inode *inode = page->mapping->host;
217         struct nfs_server *nfss = NFS_SERVER(inode);
218
219         end_page_writeback(page);
220         page_cache_release(page);
221         if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
222                 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 }
224
225 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
226 {
227         struct inode *inode = page->mapping->host;
228         struct nfs_page *req;
229         int ret;
230
231         spin_lock(&inode->i_lock);
232         for (;;) {
233                 req = nfs_page_find_request_locked(page);
234                 if (req == NULL)
235                         break;
236                 if (nfs_set_page_tag_locked(req))
237                         break;
238                 /* Note: If we hold the page lock, as is the case in nfs_writepage,
239                  *       then the call to nfs_set_page_tag_locked() will always
240                  *       succeed provided that someone hasn't already marked the
241                  *       request as dirty (in which case we don't care).
242                  */
243                 spin_unlock(&inode->i_lock);
244                 ret = nfs_wait_on_request(req);
245                 nfs_release_request(req);
246                 if (ret != 0)
247                         return ERR_PTR(ret);
248                 spin_lock(&inode->i_lock);
249         }
250         spin_unlock(&inode->i_lock);
251         return req;
252 }
253
254 /*
255  * Find an associated nfs write request, and prepare to flush it out
256  * May return an error if the user signalled nfs_wait_on_request().
257  */
258 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
259                                 struct page *page)
260 {
261         struct nfs_page *req;
262         int ret = 0;
263
264         req = nfs_find_and_lock_request(page);
265         if (!req)
266                 goto out;
267         ret = PTR_ERR(req);
268         if (IS_ERR(req))
269                 goto out;
270
271         ret = nfs_set_page_writeback(page);
272         BUG_ON(ret != 0);
273         BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
274
275         if (!nfs_pageio_add_request(pgio, req)) {
276                 nfs_redirty_request(req);
277                 ret = pgio->pg_error;
278         }
279 out:
280         return ret;
281 }
282
283 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
284 {
285         struct inode *inode = page->mapping->host;
286
287         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
288         nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
289
290         nfs_pageio_cond_complete(pgio, page->index);
291         return nfs_page_async_flush(pgio, page);
292 }
293
294 /*
295  * Write an mmapped page to the server.
296  */
297 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
298 {
299         struct nfs_pageio_descriptor pgio;
300         int err;
301
302         nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
303         err = nfs_do_writepage(page, wbc, &pgio);
304         nfs_pageio_complete(&pgio);
305         if (err < 0)
306                 return err;
307         if (pgio.pg_error < 0)
308                 return pgio.pg_error;
309         return 0;
310 }
311
312 int nfs_writepage(struct page *page, struct writeback_control *wbc)
313 {
314         int ret;
315
316         ret = nfs_writepage_locked(page, wbc);
317         unlock_page(page);
318         return ret;
319 }
320
321 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
322 {
323         int ret;
324
325         ret = nfs_do_writepage(page, wbc, data);
326         unlock_page(page);
327         return ret;
328 }
329
330 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
331 {
332         struct inode *inode = mapping->host;
333         unsigned long *bitlock = &NFS_I(inode)->flags;
334         struct nfs_pageio_descriptor pgio;
335         int err;
336
337         /* Stop dirtying of new pages while we sync */
338         err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
339                         nfs_wait_bit_killable, TASK_KILLABLE);
340         if (err)
341                 goto out_err;
342
343         nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
344
345         nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
346         err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
347         nfs_pageio_complete(&pgio);
348
349         clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
350         smp_mb__after_clear_bit();
351         wake_up_bit(bitlock, NFS_INO_FLUSHING);
352
353         if (err < 0)
354                 goto out_err;
355         err = pgio.pg_error;
356         if (err < 0)
357                 goto out_err;
358         return 0;
359 out_err:
360         return err;
361 }
362
363 /*
364  * Insert a write request into an inode
365  */
366 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
367 {
368         struct nfs_inode *nfsi = NFS_I(inode);
369         int error;
370
371         error = radix_tree_preload(GFP_NOFS);
372         if (error != 0)
373                 goto out;
374
375         /* Lock the request! */
376         nfs_lock_request_dontget(req);
377
378         spin_lock(&inode->i_lock);
379         error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
380         BUG_ON(error);
381         if (!nfsi->npages) {
382                 igrab(inode);
383                 if (nfs_have_delegation(inode, FMODE_WRITE))
384                         nfsi->change_attr++;
385         }
386         SetPagePrivate(req->wb_page);
387         set_page_private(req->wb_page, (unsigned long)req);
388         nfsi->npages++;
389         kref_get(&req->wb_kref);
390         radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
391                                 NFS_PAGE_TAG_LOCKED);
392         spin_unlock(&inode->i_lock);
393         radix_tree_preload_end();
394 out:
395         return error;
396 }
397
398 /*
399  * Remove a write request from an inode
400  */
401 static void nfs_inode_remove_request(struct nfs_page *req)
402 {
403         struct inode *inode = req->wb_context->path.dentry->d_inode;
404         struct nfs_inode *nfsi = NFS_I(inode);
405
406         BUG_ON (!NFS_WBACK_BUSY(req));
407
408         spin_lock(&inode->i_lock);
409         set_page_private(req->wb_page, 0);
410         ClearPagePrivate(req->wb_page);
411         radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
412         nfsi->npages--;
413         if (!nfsi->npages) {
414                 spin_unlock(&inode->i_lock);
415                 iput(inode);
416         } else
417                 spin_unlock(&inode->i_lock);
418         nfs_clear_request(req);
419         nfs_release_request(req);
420 }
421
422 static void
423 nfs_mark_request_dirty(struct nfs_page *req)
424 {
425         __set_page_dirty_nobuffers(req->wb_page);
426         __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
427 }
428
429 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
430 /*
431  * Add a request to the inode's commit list.
432  */
433 static void
434 nfs_mark_request_commit(struct nfs_page *req)
435 {
436         struct inode *inode = req->wb_context->path.dentry->d_inode;
437         struct nfs_inode *nfsi = NFS_I(inode);
438
439         spin_lock(&inode->i_lock);
440         set_bit(PG_CLEAN, &(req)->wb_flags);
441         radix_tree_tag_set(&nfsi->nfs_page_tree,
442                         req->wb_index,
443                         NFS_PAGE_TAG_COMMIT);
444         nfsi->ncommit++;
445         spin_unlock(&inode->i_lock);
446         inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
447         inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
448         __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
449 }
450
451 static int
452 nfs_clear_request_commit(struct nfs_page *req)
453 {
454         struct page *page = req->wb_page;
455
456         if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
457                 dec_zone_page_state(page, NR_UNSTABLE_NFS);
458                 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
459                 return 1;
460         }
461         return 0;
462 }
463
464 static inline
465 int nfs_write_need_commit(struct nfs_write_data *data)
466 {
467         return data->verf.committed != NFS_FILE_SYNC;
468 }
469
470 static inline
471 int nfs_reschedule_unstable_write(struct nfs_page *req)
472 {
473         if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
474                 nfs_mark_request_commit(req);
475                 return 1;
476         }
477         if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
478                 nfs_mark_request_dirty(req);
479                 return 1;
480         }
481         return 0;
482 }
483 #else
484 static inline void
485 nfs_mark_request_commit(struct nfs_page *req)
486 {
487 }
488
489 static inline int
490 nfs_clear_request_commit(struct nfs_page *req)
491 {
492         return 0;
493 }
494
495 static inline
496 int nfs_write_need_commit(struct nfs_write_data *data)
497 {
498         return 0;
499 }
500
501 static inline
502 int nfs_reschedule_unstable_write(struct nfs_page *req)
503 {
504         return 0;
505 }
506 #endif
507
508 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
509 static int
510 nfs_need_commit(struct nfs_inode *nfsi)
511 {
512         return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
513 }
514
515 /*
516  * nfs_scan_commit - Scan an inode for commit requests
517  * @inode: NFS inode to scan
518  * @dst: destination list
519  * @idx_start: lower bound of page->index to scan.
520  * @npages: idx_start + npages sets the upper bound to scan.
521  *
522  * Moves requests from the inode's 'commit' request list.
523  * The requests are *not* checked to ensure that they form a contiguous set.
524  */
525 static int
526 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
527 {
528         struct nfs_inode *nfsi = NFS_I(inode);
529         int ret;
530
531         if (!nfs_need_commit(nfsi))
532                 return 0;
533
534         ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
535         if (ret > 0)
536                 nfsi->ncommit -= ret;
537         if (nfs_need_commit(NFS_I(inode)))
538                 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
539         return ret;
540 }
541 #else
542 static inline int nfs_need_commit(struct nfs_inode *nfsi)
543 {
544         return 0;
545 }
546
547 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
548 {
549         return 0;
550 }
551 #endif
552
553 /*
554  * Search for an existing write request, and attempt to update
555  * it to reflect a new dirty region on a given page.
556  *
557  * If the attempt fails, then the existing request is flushed out
558  * to disk.
559  */
560 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
561                 struct page *page,
562                 unsigned int offset,
563                 unsigned int bytes)
564 {
565         struct nfs_page *req;
566         unsigned int rqend;
567         unsigned int end;
568         int error;
569
570         if (!PagePrivate(page))
571                 return NULL;
572
573         end = offset + bytes;
574         spin_lock(&inode->i_lock);
575
576         for (;;) {
577                 req = nfs_page_find_request_locked(page);
578                 if (req == NULL)
579                         goto out_unlock;
580
581                 rqend = req->wb_offset + req->wb_bytes;
582                 /*
583                  * Tell the caller to flush out the request if
584                  * the offsets are non-contiguous.
585                  * Note: nfs_flush_incompatible() will already
586                  * have flushed out requests having wrong owners.
587                  */
588                 if (offset > rqend
589                     || end < req->wb_offset)
590                         goto out_flushme;
591
592                 if (nfs_set_page_tag_locked(req))
593                         break;
594
595                 /* The request is locked, so wait and then retry */
596                 spin_unlock(&inode->i_lock);
597                 error = nfs_wait_on_request(req);
598                 nfs_release_request(req);
599                 if (error != 0)
600                         goto out_err;
601                 spin_lock(&inode->i_lock);
602         }
603
604         if (nfs_clear_request_commit(req) &&
605                         radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
606                                 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
607                 NFS_I(inode)->ncommit--;
608
609         /* Okay, the request matches. Update the region */
610         if (offset < req->wb_offset) {
611                 req->wb_offset = offset;
612                 req->wb_pgbase = offset;
613         }
614         if (end > rqend)
615                 req->wb_bytes = end - req->wb_offset;
616         else
617                 req->wb_bytes = rqend - req->wb_offset;
618 out_unlock:
619         spin_unlock(&inode->i_lock);
620         return req;
621 out_flushme:
622         spin_unlock(&inode->i_lock);
623         nfs_release_request(req);
624         error = nfs_wb_page(inode, page);
625 out_err:
626         return ERR_PTR(error);
627 }
628
629 /*
630  * Try to update an existing write request, or create one if there is none.
631  *
632  * Note: Should always be called with the Page Lock held to prevent races
633  * if we have to add a new request. Also assumes that the caller has
634  * already called nfs_flush_incompatible() if necessary.
635  */
636 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
637                 struct page *page, unsigned int offset, unsigned int bytes)
638 {
639         struct inode *inode = page->mapping->host;
640         struct nfs_page *req;
641         int error;
642
643         req = nfs_try_to_update_request(inode, page, offset, bytes);
644         if (req != NULL)
645                 goto out;
646         req = nfs_create_request(ctx, inode, page, offset, bytes);
647         if (IS_ERR(req))
648                 goto out;
649         error = nfs_inode_add_request(inode, req);
650         if (error != 0) {
651                 nfs_release_request(req);
652                 req = ERR_PTR(error);
653         }
654 out:
655         return req;
656 }
657
658 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
659                 unsigned int offset, unsigned int count)
660 {
661         struct nfs_page *req;
662
663         req = nfs_setup_write_request(ctx, page, offset, count);
664         if (IS_ERR(req))
665                 return PTR_ERR(req);
666         nfs_mark_request_dirty(req);
667         /* Update file length */
668         nfs_grow_file(page, offset, count);
669         nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
670         nfs_mark_request_dirty(req);
671         nfs_clear_page_tag_locked(req);
672         return 0;
673 }
674
675 int nfs_flush_incompatible(struct file *file, struct page *page)
676 {
677         struct nfs_open_context *ctx = nfs_file_open_context(file);
678         struct nfs_page *req;
679         int do_flush, status;
680         /*
681          * Look for a request corresponding to this page. If there
682          * is one, and it belongs to another file, we flush it out
683          * before we try to copy anything into the page. Do this
684          * due to the lack of an ACCESS-type call in NFSv2.
685          * Also do the same if we find a request from an existing
686          * dropped page.
687          */
688         do {
689                 req = nfs_page_find_request(page);
690                 if (req == NULL)
691                         return 0;
692                 do_flush = req->wb_page != page || req->wb_context != ctx ||
693                         req->wb_lock_context->lockowner != current->files ||
694                         req->wb_lock_context->pid != current->tgid;
695                 nfs_release_request(req);
696                 if (!do_flush)
697                         return 0;
698                 status = nfs_wb_page(page->mapping->host, page);
699         } while (status == 0);
700         return status;
701 }
702
703 /*
704  * If the page cache is marked as unsafe or invalid, then we can't rely on
705  * the PageUptodate() flag. In this case, we will need to turn off
706  * write optimisations that depend on the page contents being correct.
707  */
708 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
709 {
710         return PageUptodate(page) &&
711                 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
712 }
713
714 /*
715  * Update and possibly write a cached page of an NFS file.
716  *
717  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
718  * things with a page scheduled for an RPC call (e.g. invalidate it).
719  */
720 int nfs_updatepage(struct file *file, struct page *page,
721                 unsigned int offset, unsigned int count)
722 {
723         struct nfs_open_context *ctx = nfs_file_open_context(file);
724         struct inode    *inode = page->mapping->host;
725         int             status = 0;
726
727         nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
728
729         dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
730                 file->f_path.dentry->d_parent->d_name.name,
731                 file->f_path.dentry->d_name.name, count,
732                 (long long)(page_offset(page) + offset));
733
734         /* If we're not using byte range locks, and we know the page
735          * is up to date, it may be more efficient to extend the write
736          * to cover the entire page in order to avoid fragmentation
737          * inefficiencies.
738          */
739         if (nfs_write_pageuptodate(page, inode) &&
740                         inode->i_flock == NULL &&
741                         !(file->f_flags & O_DSYNC)) {
742                 count = max(count + offset, nfs_page_length(page));
743                 offset = 0;
744         }
745
746         status = nfs_writepage_setup(ctx, page, offset, count);
747         if (status < 0)
748                 nfs_set_pageerror(page);
749
750         dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
751                         status, (long long)i_size_read(inode));
752         return status;
753 }
754
755 static void nfs_writepage_release(struct nfs_page *req)
756 {
757         struct page *page = req->wb_page;
758
759         if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req))
760                 nfs_inode_remove_request(req);
761         nfs_clear_page_tag_locked(req);
762         nfs_end_page_writeback(page);
763 }
764
765 static int flush_task_priority(int how)
766 {
767         switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
768                 case FLUSH_HIGHPRI:
769                         return RPC_PRIORITY_HIGH;
770                 case FLUSH_LOWPRI:
771                         return RPC_PRIORITY_LOW;
772         }
773         return RPC_PRIORITY_NORMAL;
774 }
775
776 /*
777  * Set up the argument/result storage required for the RPC call.
778  */
779 static int nfs_write_rpcsetup(struct nfs_page *req,
780                 struct nfs_write_data *data,
781                 const struct rpc_call_ops *call_ops,
782                 unsigned int count, unsigned int offset,
783                 int how)
784 {
785         struct inode *inode = req->wb_context->path.dentry->d_inode;
786         int priority = flush_task_priority(how);
787         struct rpc_task *task;
788         struct rpc_message msg = {
789                 .rpc_argp = &data->args,
790                 .rpc_resp = &data->res,
791                 .rpc_cred = req->wb_context->cred,
792         };
793         struct rpc_task_setup task_setup_data = {
794                 .rpc_client = NFS_CLIENT(inode),
795                 .task = &data->task,
796                 .rpc_message = &msg,
797                 .callback_ops = call_ops,
798                 .callback_data = data,
799                 .workqueue = nfsiod_workqueue,
800                 .flags = RPC_TASK_ASYNC,
801                 .priority = priority,
802         };
803         int ret = 0;
804
805         /* Set up the RPC argument and reply structs
806          * NB: take care not to mess about with data->commit et al. */
807
808         data->req = req;
809         data->inode = inode = req->wb_context->path.dentry->d_inode;
810         data->cred = msg.rpc_cred;
811
812         data->args.fh     = NFS_FH(inode);
813         data->args.offset = req_offset(req) + offset;
814         data->args.pgbase = req->wb_pgbase + offset;
815         data->args.pages  = data->pagevec;
816         data->args.count  = count;
817         data->args.context = get_nfs_open_context(req->wb_context);
818         data->args.lock_context = req->wb_lock_context;
819         data->args.stable  = NFS_UNSTABLE;
820         if (how & FLUSH_STABLE) {
821                 data->args.stable = NFS_DATA_SYNC;
822                 if (!nfs_need_commit(NFS_I(inode)))
823                         data->args.stable = NFS_FILE_SYNC;
824         }
825
826         data->res.fattr   = &data->fattr;
827         data->res.count   = count;
828         data->res.verf    = &data->verf;
829         nfs_fattr_init(&data->fattr);
830
831         /* Set up the initial task struct.  */
832         NFS_PROTO(inode)->write_setup(data, &msg);
833
834         dprintk("NFS: %5u initiated write call "
835                 "(req %s/%lld, %u bytes @ offset %llu)\n",
836                 data->task.tk_pid,
837                 inode->i_sb->s_id,
838                 (long long)NFS_FILEID(inode),
839                 count,
840                 (unsigned long long)data->args.offset);
841
842         task = rpc_run_task(&task_setup_data);
843         if (IS_ERR(task)) {
844                 ret = PTR_ERR(task);
845                 goto out;
846         }
847         if (how & FLUSH_SYNC) {
848                 ret = rpc_wait_for_completion_task(task);
849                 if (ret == 0)
850                         ret = task->tk_status;
851         }
852         rpc_put_task(task);
853 out:
854         return ret;
855 }
856
857 /* If a nfs_flush_* function fails, it should remove reqs from @head and
858  * call this on each, which will prepare them to be retried on next
859  * writeback using standard nfs.
860  */
861 static void nfs_redirty_request(struct nfs_page *req)
862 {
863         struct page *page = req->wb_page;
864
865         nfs_mark_request_dirty(req);
866         nfs_clear_page_tag_locked(req);
867         nfs_end_page_writeback(page);
868 }
869
870 /*
871  * Generate multiple small requests to write out a single
872  * contiguous dirty area on one page.
873  */
874 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
875 {
876         struct nfs_page *req = nfs_list_entry(head->next);
877         struct page *page = req->wb_page;
878         struct nfs_write_data *data;
879         size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
880         unsigned int offset;
881         int requests = 0;
882         int ret = 0;
883         LIST_HEAD(list);
884
885         nfs_list_remove_request(req);
886
887         nbytes = count;
888         do {
889                 size_t len = min(nbytes, wsize);
890
891                 data = nfs_writedata_alloc(1);
892                 if (!data)
893                         goto out_bad;
894                 list_add(&data->pages, &list);
895                 requests++;
896                 nbytes -= len;
897         } while (nbytes != 0);
898         atomic_set(&req->wb_complete, requests);
899
900         ClearPageError(page);
901         offset = 0;
902         nbytes = count;
903         do {
904                 int ret2;
905
906                 data = list_entry(list.next, struct nfs_write_data, pages);
907                 list_del_init(&data->pages);
908
909                 data->pagevec[0] = page;
910
911                 if (nbytes < wsize)
912                         wsize = nbytes;
913                 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
914                                    wsize, offset, how);
915                 if (ret == 0)
916                         ret = ret2;
917                 offset += wsize;
918                 nbytes -= wsize;
919         } while (nbytes != 0);
920
921         return ret;
922
923 out_bad:
924         while (!list_empty(&list)) {
925                 data = list_entry(list.next, struct nfs_write_data, pages);
926                 list_del(&data->pages);
927                 nfs_writedata_release(data);
928         }
929         nfs_redirty_request(req);
930         return -ENOMEM;
931 }
932
933 /*
934  * Create an RPC task for the given write request and kick it.
935  * The page must have been locked by the caller.
936  *
937  * It may happen that the page we're passed is not marked dirty.
938  * This is the case if nfs_updatepage detects a conflicting request
939  * that has been written but not committed.
940  */
941 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
942 {
943         struct nfs_page         *req;
944         struct page             **pages;
945         struct nfs_write_data   *data;
946
947         data = nfs_writedata_alloc(npages);
948         if (!data)
949                 goto out_bad;
950
951         pages = data->pagevec;
952         while (!list_empty(head)) {
953                 req = nfs_list_entry(head->next);
954                 nfs_list_remove_request(req);
955                 nfs_list_add_request(req, &data->pages);
956                 ClearPageError(req->wb_page);
957                 *pages++ = req->wb_page;
958         }
959         req = nfs_list_entry(data->pages.next);
960
961         /* Set up the argument struct */
962         return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
963  out_bad:
964         while (!list_empty(head)) {
965                 req = nfs_list_entry(head->next);
966                 nfs_list_remove_request(req);
967                 nfs_redirty_request(req);
968         }
969         return -ENOMEM;
970 }
971
972 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
973                                   struct inode *inode, int ioflags)
974 {
975         size_t wsize = NFS_SERVER(inode)->wsize;
976
977         if (wsize < PAGE_CACHE_SIZE)
978                 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
979         else
980                 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
981 }
982
983 /*
984  * Handle a write reply that flushed part of a page.
985  */
986 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
987 {
988         struct nfs_write_data   *data = calldata;
989
990         dprintk("NFS: %5u write(%s/%lld %d@%lld)",
991                 task->tk_pid,
992                 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
993                 (long long)
994                   NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
995                 data->req->wb_bytes, (long long)req_offset(data->req));
996
997         nfs_writeback_done(task, data);
998 }
999
1000 static void nfs_writeback_release_partial(void *calldata)
1001 {
1002         struct nfs_write_data   *data = calldata;
1003         struct nfs_page         *req = data->req;
1004         struct page             *page = req->wb_page;
1005         int status = data->task.tk_status;
1006
1007         if (status < 0) {
1008                 nfs_set_pageerror(page);
1009                 nfs_context_set_write_error(req->wb_context, status);
1010                 dprintk(", error = %d\n", status);
1011                 goto out;
1012         }
1013
1014         if (nfs_write_need_commit(data)) {
1015                 struct inode *inode = page->mapping->host;
1016
1017                 spin_lock(&inode->i_lock);
1018                 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1019                         /* Do nothing we need to resend the writes */
1020                 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1021                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1022                         dprintk(" defer commit\n");
1023                 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1024                         set_bit(PG_NEED_RESCHED, &req->wb_flags);
1025                         clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1026                         dprintk(" server reboot detected\n");
1027                 }
1028                 spin_unlock(&inode->i_lock);
1029         } else
1030                 dprintk(" OK\n");
1031
1032 out:
1033         if (atomic_dec_and_test(&req->wb_complete))
1034                 nfs_writepage_release(req);
1035         nfs_writedata_release(calldata);
1036 }
1037
1038 #if defined(CONFIG_NFS_V4_1)
1039 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1040 {
1041         struct nfs_write_data *data = calldata;
1042
1043         if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1044                                 &data->args.seq_args,
1045                                 &data->res.seq_res, 1, task))
1046                 return;
1047         rpc_call_start(task);
1048 }
1049 #endif /* CONFIG_NFS_V4_1 */
1050
1051 static const struct rpc_call_ops nfs_write_partial_ops = {
1052 #if defined(CONFIG_NFS_V4_1)
1053         .rpc_call_prepare = nfs_write_prepare,
1054 #endif /* CONFIG_NFS_V4_1 */
1055         .rpc_call_done = nfs_writeback_done_partial,
1056         .rpc_release = nfs_writeback_release_partial,
1057 };
1058
1059 /*
1060  * Handle a write reply that flushes a whole page.
1061  *
1062  * FIXME: There is an inherent race with invalidate_inode_pages and
1063  *        writebacks since the page->count is kept > 1 for as long
1064  *        as the page has a write request pending.
1065  */
1066 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1067 {
1068         struct nfs_write_data   *data = calldata;
1069
1070         nfs_writeback_done(task, data);
1071 }
1072
1073 static void nfs_writeback_release_full(void *calldata)
1074 {
1075         struct nfs_write_data   *data = calldata;
1076         int status = data->task.tk_status;
1077
1078         /* Update attributes as result of writeback. */
1079         while (!list_empty(&data->pages)) {
1080                 struct nfs_page *req = nfs_list_entry(data->pages.next);
1081                 struct page *page = req->wb_page;
1082
1083                 nfs_list_remove_request(req);
1084
1085                 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1086                         data->task.tk_pid,
1087                         req->wb_context->path.dentry->d_inode->i_sb->s_id,
1088                         (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1089                         req->wb_bytes,
1090                         (long long)req_offset(req));
1091
1092                 if (status < 0) {
1093                         nfs_set_pageerror(page);
1094                         nfs_context_set_write_error(req->wb_context, status);
1095                         dprintk(", error = %d\n", status);
1096                         goto remove_request;
1097                 }
1098
1099                 if (nfs_write_need_commit(data)) {
1100                         memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1101                         nfs_mark_request_commit(req);
1102                         dprintk(" marked for commit\n");
1103                         goto next;
1104                 }
1105                 dprintk(" OK\n");
1106 remove_request:
1107                 nfs_inode_remove_request(req);
1108         next:
1109                 nfs_clear_page_tag_locked(req);
1110                 nfs_end_page_writeback(page);
1111         }
1112         nfs_writedata_release(calldata);
1113 }
1114
1115 static const struct rpc_call_ops nfs_write_full_ops = {
1116 #if defined(CONFIG_NFS_V4_1)
1117         .rpc_call_prepare = nfs_write_prepare,
1118 #endif /* CONFIG_NFS_V4_1 */
1119         .rpc_call_done = nfs_writeback_done_full,
1120         .rpc_release = nfs_writeback_release_full,
1121 };
1122
1123
1124 /*
1125  * This function is called when the WRITE call is complete.
1126  */
1127 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1128 {
1129         struct nfs_writeargs    *argp = &data->args;
1130         struct nfs_writeres     *resp = &data->res;
1131         struct nfs_server       *server = NFS_SERVER(data->inode);
1132         int status;
1133
1134         dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1135                 task->tk_pid, task->tk_status);
1136
1137         /*
1138          * ->write_done will attempt to use post-op attributes to detect
1139          * conflicting writes by other clients.  A strict interpretation
1140          * of close-to-open would allow us to continue caching even if
1141          * another writer had changed the file, but some applications
1142          * depend on tighter cache coherency when writing.
1143          */
1144         status = NFS_PROTO(data->inode)->write_done(task, data);
1145         if (status != 0)
1146                 return status;
1147         nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1148
1149 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1150         if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1151                 /* We tried a write call, but the server did not
1152                  * commit data to stable storage even though we
1153                  * requested it.
1154                  * Note: There is a known bug in Tru64 < 5.0 in which
1155                  *       the server reports NFS_DATA_SYNC, but performs
1156                  *       NFS_FILE_SYNC. We therefore implement this checking
1157                  *       as a dprintk() in order to avoid filling syslog.
1158                  */
1159                 static unsigned long    complain;
1160
1161                 if (time_before(complain, jiffies)) {
1162                         dprintk("NFS:       faulty NFS server %s:"
1163                                 " (committed = %d) != (stable = %d)\n",
1164                                 server->nfs_client->cl_hostname,
1165                                 resp->verf->committed, argp->stable);
1166                         complain = jiffies + 300 * HZ;
1167                 }
1168         }
1169 #endif
1170         /* Is this a short write? */
1171         if (task->tk_status >= 0 && resp->count < argp->count) {
1172                 static unsigned long    complain;
1173
1174                 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1175
1176                 /* Has the server at least made some progress? */
1177                 if (resp->count != 0) {
1178                         /* Was this an NFSv2 write or an NFSv3 stable write? */
1179                         if (resp->verf->committed != NFS_UNSTABLE) {
1180                                 /* Resend from where the server left off */
1181                                 argp->offset += resp->count;
1182                                 argp->pgbase += resp->count;
1183                                 argp->count -= resp->count;
1184                         } else {
1185                                 /* Resend as a stable write in order to avoid
1186                                  * headaches in the case of a server crash.
1187                                  */
1188                                 argp->stable = NFS_FILE_SYNC;
1189                         }
1190                         nfs_restart_rpc(task, server->nfs_client);
1191                         return -EAGAIN;
1192                 }
1193                 if (time_before(complain, jiffies)) {
1194                         printk(KERN_WARNING
1195                                "NFS: Server wrote zero bytes, expected %u.\n",
1196                                         argp->count);
1197                         complain = jiffies + 300 * HZ;
1198                 }
1199                 /* Can't do anything about it except throw an error. */
1200                 task->tk_status = -EIO;
1201         }
1202         return 0;
1203 }
1204
1205
1206 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1207 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1208 {
1209         if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1210                 return 1;
1211         if (may_wait && !out_of_line_wait_on_bit_lock(&nfsi->flags,
1212                                 NFS_INO_COMMIT, nfs_wait_bit_killable,
1213                                 TASK_KILLABLE))
1214                 return 1;
1215         return 0;
1216 }
1217
1218 static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1219 {
1220         clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1221         smp_mb__after_clear_bit();
1222         wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1223 }
1224
1225
1226 static void nfs_commitdata_release(void *data)
1227 {
1228         struct nfs_write_data *wdata = data;
1229
1230         put_nfs_open_context(wdata->args.context);
1231         nfs_commit_free(wdata);
1232 }
1233
1234 /*
1235  * Set up the argument/result storage required for the RPC call.
1236  */
1237 static int nfs_commit_rpcsetup(struct list_head *head,
1238                 struct nfs_write_data *data,
1239                 int how)
1240 {
1241         struct nfs_page *first = nfs_list_entry(head->next);
1242         struct inode *inode = first->wb_context->path.dentry->d_inode;
1243         int priority = flush_task_priority(how);
1244         struct rpc_task *task;
1245         struct rpc_message msg = {
1246                 .rpc_argp = &data->args,
1247                 .rpc_resp = &data->res,
1248                 .rpc_cred = first->wb_context->cred,
1249         };
1250         struct rpc_task_setup task_setup_data = {
1251                 .task = &data->task,
1252                 .rpc_client = NFS_CLIENT(inode),
1253                 .rpc_message = &msg,
1254                 .callback_ops = &nfs_commit_ops,
1255                 .callback_data = data,
1256                 .workqueue = nfsiod_workqueue,
1257                 .flags = RPC_TASK_ASYNC,
1258                 .priority = priority,
1259         };
1260
1261         /* Set up the RPC argument and reply structs
1262          * NB: take care not to mess about with data->commit et al. */
1263
1264         list_splice_init(head, &data->pages);
1265
1266         data->inode       = inode;
1267         data->cred        = msg.rpc_cred;
1268
1269         data->args.fh     = NFS_FH(data->inode);
1270         /* Note: we always request a commit of the entire inode */
1271         data->args.offset = 0;
1272         data->args.count  = 0;
1273         data->args.context = get_nfs_open_context(first->wb_context);
1274         data->res.count   = 0;
1275         data->res.fattr   = &data->fattr;
1276         data->res.verf    = &data->verf;
1277         nfs_fattr_init(&data->fattr);
1278
1279         /* Set up the initial task struct.  */
1280         NFS_PROTO(inode)->commit_setup(data, &msg);
1281
1282         dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1283
1284         task = rpc_run_task(&task_setup_data);
1285         if (IS_ERR(task))
1286                 return PTR_ERR(task);
1287         rpc_put_task(task);
1288         return 0;
1289 }
1290
1291 /*
1292  * Commit dirty pages
1293  */
1294 static int
1295 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1296 {
1297         struct nfs_write_data   *data;
1298         struct nfs_page         *req;
1299
1300         data = nfs_commitdata_alloc();
1301
1302         if (!data)
1303                 goto out_bad;
1304
1305         /* Set up the argument struct */
1306         return nfs_commit_rpcsetup(head, data, how);
1307  out_bad:
1308         while (!list_empty(head)) {
1309                 req = nfs_list_entry(head->next);
1310                 nfs_list_remove_request(req);
1311                 nfs_mark_request_commit(req);
1312                 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1313                 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1314                                 BDI_RECLAIMABLE);
1315                 nfs_clear_page_tag_locked(req);
1316         }
1317         nfs_commit_clear_lock(NFS_I(inode));
1318         return -ENOMEM;
1319 }
1320
1321 /*
1322  * COMMIT call returned
1323  */
1324 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1325 {
1326         struct nfs_write_data   *data = calldata;
1327
1328         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1329                                 task->tk_pid, task->tk_status);
1330
1331         /* Call the NFS version-specific code */
1332         if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1333                 return;
1334 }
1335
1336 static void nfs_commit_release(void *calldata)
1337 {
1338         struct nfs_write_data   *data = calldata;
1339         struct nfs_page         *req;
1340         int status = data->task.tk_status;
1341
1342         while (!list_empty(&data->pages)) {
1343                 req = nfs_list_entry(data->pages.next);
1344                 nfs_list_remove_request(req);
1345                 nfs_clear_request_commit(req);
1346
1347                 dprintk("NFS:       commit (%s/%lld %d@%lld)",
1348                         req->wb_context->path.dentry->d_inode->i_sb->s_id,
1349                         (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1350                         req->wb_bytes,
1351                         (long long)req_offset(req));
1352                 if (status < 0) {
1353                         nfs_context_set_write_error(req->wb_context, status);
1354                         nfs_inode_remove_request(req);
1355                         dprintk(", error = %d\n", status);
1356                         goto next;
1357                 }
1358
1359                 /* Okay, COMMIT succeeded, apparently. Check the verifier
1360                  * returned by the server against all stored verfs. */
1361                 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1362                         /* We have a match */
1363                         nfs_inode_remove_request(req);
1364                         dprintk(" OK\n");
1365                         goto next;
1366                 }
1367                 /* We have a mismatch. Write the page again */
1368                 dprintk(" mismatch\n");
1369                 nfs_mark_request_dirty(req);
1370         next:
1371                 nfs_clear_page_tag_locked(req);
1372         }
1373         nfs_commit_clear_lock(NFS_I(data->inode));
1374         nfs_commitdata_release(calldata);
1375 }
1376
1377 static const struct rpc_call_ops nfs_commit_ops = {
1378 #if defined(CONFIG_NFS_V4_1)
1379         .rpc_call_prepare = nfs_write_prepare,
1380 #endif /* CONFIG_NFS_V4_1 */
1381         .rpc_call_done = nfs_commit_done,
1382         .rpc_release = nfs_commit_release,
1383 };
1384
1385 static int nfs_commit_inode(struct inode *inode, int how)
1386 {
1387         LIST_HEAD(head);
1388         int may_wait = how & FLUSH_SYNC;
1389         int res = 0;
1390
1391         if (!nfs_commit_set_lock(NFS_I(inode), may_wait))
1392                 goto out_mark_dirty;
1393         spin_lock(&inode->i_lock);
1394         res = nfs_scan_commit(inode, &head, 0, 0);
1395         spin_unlock(&inode->i_lock);
1396         if (res) {
1397                 int error = nfs_commit_list(inode, &head, how);
1398                 if (error < 0)
1399                         return error;
1400                 if (may_wait)
1401                         wait_on_bit(&NFS_I(inode)->flags, NFS_INO_COMMIT,
1402                                         nfs_wait_bit_killable,
1403                                         TASK_KILLABLE);
1404                 else
1405                         goto out_mark_dirty;
1406         } else
1407                 nfs_commit_clear_lock(NFS_I(inode));
1408         return res;
1409         /* Note: If we exit without ensuring that the commit is complete,
1410          * we must mark the inode as dirty. Otherwise, future calls to
1411          * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1412          * that the data is on the disk.
1413          */
1414 out_mark_dirty:
1415         __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1416         return res;
1417 }
1418
1419 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1420 {
1421         struct nfs_inode *nfsi = NFS_I(inode);
1422         int flags = FLUSH_SYNC;
1423         int ret = 0;
1424
1425         /* Don't commit yet if this is a non-blocking flush and there are
1426          * lots of outstanding writes for this mapping.
1427          */
1428         if (wbc->sync_mode == WB_SYNC_NONE &&
1429             nfsi->ncommit <= (nfsi->npages >> 1))
1430                 goto out_mark_dirty;
1431
1432         if (wbc->nonblocking || wbc->for_background)
1433                 flags = 0;
1434         ret = nfs_commit_inode(inode, flags);
1435         if (ret >= 0) {
1436                 if (wbc->sync_mode == WB_SYNC_NONE) {
1437                         if (ret < wbc->nr_to_write)
1438                                 wbc->nr_to_write -= ret;
1439                         else
1440                                 wbc->nr_to_write = 0;
1441                 }
1442                 return 0;
1443         }
1444 out_mark_dirty:
1445         __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1446         return ret;
1447 }
1448 #else
1449 static int nfs_commit_inode(struct inode *inode, int how)
1450 {
1451         return 0;
1452 }
1453
1454 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1455 {
1456         return 0;
1457 }
1458 #endif
1459
1460 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1461 {
1462         return nfs_commit_unstable_pages(inode, wbc);
1463 }
1464
1465 /*
1466  * flush the inode to disk.
1467  */
1468 int nfs_wb_all(struct inode *inode)
1469 {
1470         struct writeback_control wbc = {
1471                 .sync_mode = WB_SYNC_ALL,
1472                 .nr_to_write = LONG_MAX,
1473                 .range_start = 0,
1474                 .range_end = LLONG_MAX,
1475         };
1476
1477         return sync_inode(inode, &wbc);
1478 }
1479
1480 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1481 {
1482         struct nfs_page *req;
1483         int ret = 0;
1484
1485         BUG_ON(!PageLocked(page));
1486         for (;;) {
1487                 wait_on_page_writeback(page);
1488                 req = nfs_page_find_request(page);
1489                 if (req == NULL)
1490                         break;
1491                 if (nfs_lock_request_dontget(req)) {
1492                         nfs_inode_remove_request(req);
1493                         /*
1494                          * In case nfs_inode_remove_request has marked the
1495                          * page as being dirty
1496                          */
1497                         cancel_dirty_page(page, PAGE_CACHE_SIZE);
1498                         nfs_unlock_request(req);
1499                         break;
1500                 }
1501                 ret = nfs_wait_on_request(req);
1502                 nfs_release_request(req);
1503                 if (ret < 0)
1504                         break;
1505         }
1506         return ret;
1507 }
1508
1509 /*
1510  * Write back all requests on one page - we do this before reading it.
1511  */
1512 int nfs_wb_page(struct inode *inode, struct page *page)
1513 {
1514         loff_t range_start = page_offset(page);
1515         loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1516         struct writeback_control wbc = {
1517                 .sync_mode = WB_SYNC_ALL,
1518                 .nr_to_write = 0,
1519                 .range_start = range_start,
1520                 .range_end = range_end,
1521         };
1522         int ret;
1523
1524         for (;;) {
1525                 wait_on_page_writeback(page);
1526                 if (clear_page_dirty_for_io(page)) {
1527                         ret = nfs_writepage_locked(page, &wbc);
1528                         if (ret < 0)
1529                                 goto out_error;
1530                         continue;
1531                 }
1532                 if (!PagePrivate(page))
1533                         break;
1534                 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1535                 if (ret < 0)
1536                         goto out_error;
1537         }
1538         return 0;
1539 out_error:
1540         return ret;
1541 }
1542
1543 #ifdef CONFIG_MIGRATION
1544 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1545                 struct page *page)
1546 {
1547         struct nfs_page *req;
1548         int ret;
1549
1550         nfs_fscache_release_page(page, GFP_KERNEL);
1551
1552         req = nfs_find_and_lock_request(page);
1553         ret = PTR_ERR(req);
1554         if (IS_ERR(req))
1555                 goto out;
1556
1557         ret = migrate_page(mapping, newpage, page);
1558         if (!req)
1559                 goto out;
1560         if (ret)
1561                 goto out_unlock;
1562         page_cache_get(newpage);
1563         spin_lock(&mapping->host->i_lock);
1564         req->wb_page = newpage;
1565         SetPagePrivate(newpage);
1566         set_page_private(newpage, (unsigned long)req);
1567         ClearPagePrivate(page);
1568         set_page_private(page, 0);
1569         spin_unlock(&mapping->host->i_lock);
1570         page_cache_release(page);
1571 out_unlock:
1572         nfs_clear_page_tag_locked(req);
1573 out:
1574         return ret;
1575 }
1576 #endif
1577
1578 int __init nfs_init_writepagecache(void)
1579 {
1580         nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1581                                              sizeof(struct nfs_write_data),
1582                                              0, SLAB_HWCACHE_ALIGN,
1583                                              NULL);
1584         if (nfs_wdata_cachep == NULL)
1585                 return -ENOMEM;
1586
1587         nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1588                                                      nfs_wdata_cachep);
1589         if (nfs_wdata_mempool == NULL)
1590                 return -ENOMEM;
1591
1592         nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1593                                                       nfs_wdata_cachep);
1594         if (nfs_commit_mempool == NULL)
1595                 return -ENOMEM;
1596
1597         /*
1598          * NFS congestion size, scale with available memory.
1599          *
1600          *  64MB:    8192k
1601          * 128MB:   11585k
1602          * 256MB:   16384k
1603          * 512MB:   23170k
1604          *   1GB:   32768k
1605          *   2GB:   46340k
1606          *   4GB:   65536k
1607          *   8GB:   92681k
1608          *  16GB:  131072k
1609          *
1610          * This allows larger machines to have larger/more transfers.
1611          * Limit the default to 256M
1612          */
1613         nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1614         if (nfs_congestion_kb > 256*1024)
1615                 nfs_congestion_kb = 256*1024;
1616
1617         return 0;
1618 }
1619
1620 void nfs_destroy_writepagecache(void)
1621 {
1622         mempool_destroy(nfs_commit_mempool);
1623         mempool_destroy(nfs_wdata_mempool);
1624         kmem_cache_destroy(nfs_wdata_cachep);
1625 }
1626