]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/gfs2/aops.c
GFS2: Use nobh_writepage
[net-next-2.6.git] / fs / gfs2 / aops.c
1 /*
2  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3  * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23
24 #include "gfs2.h"
25 #include "incore.h"
26 #include "bmap.h"
27 #include "glock.h"
28 #include "inode.h"
29 #include "log.h"
30 #include "meta_io.h"
31 #include "quota.h"
32 #include "trans.h"
33 #include "rgrp.h"
34 #include "super.h"
35 #include "util.h"
36 #include "glops.h"
37
38
39 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
40                                    unsigned int from, unsigned int to)
41 {
42         struct buffer_head *head = page_buffers(page);
43         unsigned int bsize = head->b_size;
44         struct buffer_head *bh;
45         unsigned int start, end;
46
47         for (bh = head, start = 0; bh != head || !start;
48              bh = bh->b_this_page, start = end) {
49                 end = start + bsize;
50                 if (end <= from || start >= to)
51                         continue;
52                 if (gfs2_is_jdata(ip))
53                         set_buffer_uptodate(bh);
54                 gfs2_trans_add_bh(ip->i_gl, bh, 0);
55         }
56 }
57
58 /**
59  * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
60  * @inode: The inode
61  * @lblock: The block number to look up
62  * @bh_result: The buffer head to return the result in
63  * @create: Non-zero if we may add block to the file
64  *
65  * Returns: errno
66  */
67
68 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
69                                   struct buffer_head *bh_result, int create)
70 {
71         int error;
72
73         error = gfs2_block_map(inode, lblock, bh_result, 0);
74         if (error)
75                 return error;
76         if (!buffer_mapped(bh_result))
77                 return -EIO;
78         return 0;
79 }
80
81 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
82                                  struct buffer_head *bh_result, int create)
83 {
84         return gfs2_block_map(inode, lblock, bh_result, 0);
85 }
86
87 /**
88  * gfs2_writepage_common - Common bits of writepage
89  * @page: The page to be written
90  * @wbc: The writeback control
91  *
92  * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93  */
94
95 static int gfs2_writepage_common(struct page *page,
96                                  struct writeback_control *wbc)
97 {
98         struct inode *inode = page->mapping->host;
99         struct gfs2_inode *ip = GFS2_I(inode);
100         struct gfs2_sbd *sdp = GFS2_SB(inode);
101         loff_t i_size = i_size_read(inode);
102         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
103         unsigned offset;
104
105         if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106                 goto out;
107         if (current->journal_info)
108                 goto redirty;
109         /* Is the page fully outside i_size? (truncate in progress) */
110         offset = i_size & (PAGE_CACHE_SIZE-1);
111         if (page->index > end_index || (page->index == end_index && !offset)) {
112                 page->mapping->a_ops->invalidatepage(page, 0);
113                 goto out;
114         }
115         return 1;
116 redirty:
117         redirty_page_for_writepage(wbc, page);
118 out:
119         unlock_page(page);
120         return 0;
121 }
122
123 /**
124  * gfs2_writeback_writepage - Write page for writeback mappings
125  * @page: The page
126  * @wbc: The writeback control
127  *
128  */
129
130 static int gfs2_writeback_writepage(struct page *page,
131                                     struct writeback_control *wbc)
132 {
133         int ret;
134
135         ret = gfs2_writepage_common(page, wbc);
136         if (ret <= 0)
137                 return ret;
138
139         return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
140 }
141
142 /**
143  * gfs2_ordered_writepage - Write page for ordered data files
144  * @page: The page to write
145  * @wbc: The writeback control
146  *
147  */
148
149 static int gfs2_ordered_writepage(struct page *page,
150                                   struct writeback_control *wbc)
151 {
152         struct inode *inode = page->mapping->host;
153         struct gfs2_inode *ip = GFS2_I(inode);
154         int ret;
155
156         ret = gfs2_writepage_common(page, wbc);
157         if (ret <= 0)
158                 return ret;
159
160         if (!page_has_buffers(page)) {
161                 create_empty_buffers(page, inode->i_sb->s_blocksize,
162                                      (1 << BH_Dirty)|(1 << BH_Uptodate));
163         }
164         gfs2_page_add_databufs(ip, page, 0, inode->i_sb->s_blocksize-1);
165         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
166 }
167
168 /**
169  * __gfs2_jdata_writepage - The core of jdata writepage
170  * @page: The page to write
171  * @wbc: The writeback control
172  *
173  * This is shared between writepage and writepages and implements the
174  * core of the writepage operation. If a transaction is required then
175  * PageChecked will have been set and the transaction will have
176  * already been started before this is called.
177  */
178
179 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180 {
181         struct inode *inode = page->mapping->host;
182         struct gfs2_inode *ip = GFS2_I(inode);
183         struct gfs2_sbd *sdp = GFS2_SB(inode);
184
185         if (PageChecked(page)) {
186                 ClearPageChecked(page);
187                 if (!page_has_buffers(page)) {
188                         create_empty_buffers(page, inode->i_sb->s_blocksize,
189                                              (1 << BH_Dirty)|(1 << BH_Uptodate));
190                 }
191                 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
192         }
193         return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
194 }
195
196 /**
197  * gfs2_jdata_writepage - Write complete page
198  * @page: Page to write
199  *
200  * Returns: errno
201  *
202  */
203
204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206         struct inode *inode = page->mapping->host;
207         struct gfs2_sbd *sdp = GFS2_SB(inode);
208         int ret;
209         int done_trans = 0;
210
211         if (PageChecked(page)) {
212                 if (wbc->sync_mode != WB_SYNC_ALL)
213                         goto out_ignore;
214                 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
215                 if (ret)
216                         goto out_ignore;
217                 done_trans = 1;
218         }
219         ret = gfs2_writepage_common(page, wbc);
220         if (ret > 0)
221                 ret = __gfs2_jdata_writepage(page, wbc);
222         if (done_trans)
223                 gfs2_trans_end(sdp);
224         return ret;
225
226 out_ignore:
227         redirty_page_for_writepage(wbc, page);
228         unlock_page(page);
229         return 0;
230 }
231
232 /**
233  * gfs2_writeback_writepages - Write a bunch of dirty pages back to disk
234  * @mapping: The mapping to write
235  * @wbc: Write-back control
236  *
237  * For the data=writeback case we can already ignore buffer heads
238  * and write whole extents at once. This is a big reduction in the
239  * number of I/O requests we send and the bmap calls we make in this case.
240  */
241 static int gfs2_writeback_writepages(struct address_space *mapping,
242                                      struct writeback_control *wbc)
243 {
244         return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
245 }
246
247 /**
248  * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
249  * @mapping: The mapping
250  * @wbc: The writeback control
251  * @writepage: The writepage function to call for each page
252  * @pvec: The vector of pages
253  * @nr_pages: The number of pages to write
254  *
255  * Returns: non-zero if loop should terminate, zero otherwise
256  */
257
258 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
259                                     struct writeback_control *wbc,
260                                     struct pagevec *pvec,
261                                     int nr_pages, pgoff_t end)
262 {
263         struct inode *inode = mapping->host;
264         struct gfs2_sbd *sdp = GFS2_SB(inode);
265         loff_t i_size = i_size_read(inode);
266         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
267         unsigned offset = i_size & (PAGE_CACHE_SIZE-1);
268         unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
269         int i;
270         int ret;
271
272         ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
273         if (ret < 0)
274                 return ret;
275
276         for(i = 0; i < nr_pages; i++) {
277                 struct page *page = pvec->pages[i];
278
279                 lock_page(page);
280
281                 if (unlikely(page->mapping != mapping)) {
282                         unlock_page(page);
283                         continue;
284                 }
285
286                 if (!wbc->range_cyclic && page->index > end) {
287                         ret = 1;
288                         unlock_page(page);
289                         continue;
290                 }
291
292                 if (wbc->sync_mode != WB_SYNC_NONE)
293                         wait_on_page_writeback(page);
294
295                 if (PageWriteback(page) ||
296                     !clear_page_dirty_for_io(page)) {
297                         unlock_page(page);
298                         continue;
299                 }
300
301                 /* Is the page fully outside i_size? (truncate in progress) */
302                 if (page->index > end_index || (page->index == end_index && !offset)) {
303                         page->mapping->a_ops->invalidatepage(page, 0);
304                         unlock_page(page);
305                         continue;
306                 }
307
308                 ret = __gfs2_jdata_writepage(page, wbc);
309
310                 if (ret || (--(wbc->nr_to_write) <= 0))
311                         ret = 1;
312         }
313         gfs2_trans_end(sdp);
314         return ret;
315 }
316
317 /**
318  * gfs2_write_cache_jdata - Like write_cache_pages but different
319  * @mapping: The mapping to write
320  * @wbc: The writeback control
321  * @writepage: The writepage function to call
322  * @data: The data to pass to writepage
323  *
324  * The reason that we use our own function here is that we need to
325  * start transactions before we grab page locks. This allows us
326  * to get the ordering right.
327  */
328
329 static int gfs2_write_cache_jdata(struct address_space *mapping,
330                                   struct writeback_control *wbc)
331 {
332         int ret = 0;
333         int done = 0;
334         struct pagevec pvec;
335         int nr_pages;
336         pgoff_t index;
337         pgoff_t end;
338         int scanned = 0;
339         int range_whole = 0;
340
341         pagevec_init(&pvec, 0);
342         if (wbc->range_cyclic) {
343                 index = mapping->writeback_index; /* Start from prev offset */
344                 end = -1;
345         } else {
346                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
347                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
348                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
349                         range_whole = 1;
350                 scanned = 1;
351         }
352
353 retry:
354          while (!done && (index <= end) &&
355                 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356                                                PAGECACHE_TAG_DIRTY,
357                                                min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
358                 scanned = 1;
359                 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end);
360                 if (ret)
361                         done = 1;
362                 if (ret > 0)
363                         ret = 0;
364
365                 pagevec_release(&pvec);
366                 cond_resched();
367         }
368
369         if (!scanned && !done) {
370                 /*
371                  * We hit the last page and there is more work to be done: wrap
372                  * back to the start of the file
373                  */
374                 scanned = 1;
375                 index = 0;
376                 goto retry;
377         }
378
379         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
380                 mapping->writeback_index = index;
381         return ret;
382 }
383
384
385 /**
386  * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
387  * @mapping: The mapping to write
388  * @wbc: The writeback control
389  * 
390  */
391
392 static int gfs2_jdata_writepages(struct address_space *mapping,
393                                  struct writeback_control *wbc)
394 {
395         struct gfs2_inode *ip = GFS2_I(mapping->host);
396         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
397         int ret;
398
399         ret = gfs2_write_cache_jdata(mapping, wbc);
400         if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
401                 gfs2_log_flush(sdp, ip->i_gl);
402                 ret = gfs2_write_cache_jdata(mapping, wbc);
403         }
404         return ret;
405 }
406
407 /**
408  * stuffed_readpage - Fill in a Linux page with stuffed file data
409  * @ip: the inode
410  * @page: the page
411  *
412  * Returns: errno
413  */
414
415 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
416 {
417         struct buffer_head *dibh;
418         u64 dsize = i_size_read(&ip->i_inode);
419         void *kaddr;
420         int error;
421
422         /*
423          * Due to the order of unstuffing files and ->fault(), we can be
424          * asked for a zero page in the case of a stuffed file being extended,
425          * so we need to supply one here. It doesn't happen often.
426          */
427         if (unlikely(page->index)) {
428                 zero_user(page, 0, PAGE_CACHE_SIZE);
429                 SetPageUptodate(page);
430                 return 0;
431         }
432
433         error = gfs2_meta_inode_buffer(ip, &dibh);
434         if (error)
435                 return error;
436
437         kaddr = kmap_atomic(page, KM_USER0);
438         if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
439                 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
440         memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
441         memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
442         kunmap_atomic(kaddr, KM_USER0);
443         flush_dcache_page(page);
444         brelse(dibh);
445         SetPageUptodate(page);
446
447         return 0;
448 }
449
450
451 /**
452  * __gfs2_readpage - readpage
453  * @file: The file to read a page for
454  * @page: The page to read
455  *
456  * This is the core of gfs2's readpage. Its used by the internal file
457  * reading code as in that case we already hold the glock. Also its
458  * called by gfs2_readpage() once the required lock has been granted.
459  *
460  */
461
462 static int __gfs2_readpage(void *file, struct page *page)
463 {
464         struct gfs2_inode *ip = GFS2_I(page->mapping->host);
465         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
466         int error;
467
468         if (gfs2_is_stuffed(ip)) {
469                 error = stuffed_readpage(ip, page);
470                 unlock_page(page);
471         } else {
472                 error = mpage_readpage(page, gfs2_block_map);
473         }
474
475         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
476                 return -EIO;
477
478         return error;
479 }
480
481 /**
482  * gfs2_readpage - read a page of a file
483  * @file: The file to read
484  * @page: The page of the file
485  *
486  * This deals with the locking required. We have to unlock and
487  * relock the page in order to get the locking in the right
488  * order.
489  */
490
491 static int gfs2_readpage(struct file *file, struct page *page)
492 {
493         struct address_space *mapping = page->mapping;
494         struct gfs2_inode *ip = GFS2_I(mapping->host);
495         struct gfs2_holder gh;
496         int error;
497
498         unlock_page(page);
499         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
500         error = gfs2_glock_nq(&gh);
501         if (unlikely(error))
502                 goto out;
503         error = AOP_TRUNCATED_PAGE;
504         lock_page(page);
505         if (page->mapping == mapping && !PageUptodate(page))
506                 error = __gfs2_readpage(file, page);
507         else
508                 unlock_page(page);
509         gfs2_glock_dq(&gh);
510 out:
511         gfs2_holder_uninit(&gh);
512         if (error && error != AOP_TRUNCATED_PAGE)
513                 lock_page(page);
514         return error;
515 }
516
517 /**
518  * gfs2_internal_read - read an internal file
519  * @ip: The gfs2 inode
520  * @ra_state: The readahead state (or NULL for no readahead)
521  * @buf: The buffer to fill
522  * @pos: The file position
523  * @size: The amount to read
524  *
525  */
526
527 int gfs2_internal_read(struct gfs2_inode *ip, struct file_ra_state *ra_state,
528                        char *buf, loff_t *pos, unsigned size)
529 {
530         struct address_space *mapping = ip->i_inode.i_mapping;
531         unsigned long index = *pos / PAGE_CACHE_SIZE;
532         unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
533         unsigned copied = 0;
534         unsigned amt;
535         struct page *page;
536         void *p;
537
538         do {
539                 amt = size - copied;
540                 if (offset + size > PAGE_CACHE_SIZE)
541                         amt = PAGE_CACHE_SIZE - offset;
542                 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
543                 if (IS_ERR(page))
544                         return PTR_ERR(page);
545                 p = kmap_atomic(page, KM_USER0);
546                 memcpy(buf + copied, p + offset, amt);
547                 kunmap_atomic(p, KM_USER0);
548                 mark_page_accessed(page);
549                 page_cache_release(page);
550                 copied += amt;
551                 index++;
552                 offset = 0;
553         } while(copied < size);
554         (*pos) += size;
555         return size;
556 }
557
558 /**
559  * gfs2_readpages - Read a bunch of pages at once
560  *
561  * Some notes:
562  * 1. This is only for readahead, so we can simply ignore any things
563  *    which are slightly inconvenient (such as locking conflicts between
564  *    the page lock and the glock) and return having done no I/O. Its
565  *    obviously not something we'd want to do on too regular a basis.
566  *    Any I/O we ignore at this time will be done via readpage later.
567  * 2. We don't handle stuffed files here we let readpage do the honours.
568  * 3. mpage_readpages() does most of the heavy lifting in the common case.
569  * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
570  */
571
572 static int gfs2_readpages(struct file *file, struct address_space *mapping,
573                           struct list_head *pages, unsigned nr_pages)
574 {
575         struct inode *inode = mapping->host;
576         struct gfs2_inode *ip = GFS2_I(inode);
577         struct gfs2_sbd *sdp = GFS2_SB(inode);
578         struct gfs2_holder gh;
579         int ret;
580
581         gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
582         ret = gfs2_glock_nq(&gh);
583         if (unlikely(ret))
584                 goto out_uninit;
585         if (!gfs2_is_stuffed(ip))
586                 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
587         gfs2_glock_dq(&gh);
588 out_uninit:
589         gfs2_holder_uninit(&gh);
590         if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
591                 ret = -EIO;
592         return ret;
593 }
594
595 /**
596  * gfs2_write_begin - Begin to write to a file
597  * @file: The file to write to
598  * @mapping: The mapping in which to write
599  * @pos: The file offset at which to start writing
600  * @len: Length of the write
601  * @flags: Various flags
602  * @pagep: Pointer to return the page
603  * @fsdata: Pointer to return fs data (unused by GFS2)
604  *
605  * Returns: errno
606  */
607
608 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
609                             loff_t pos, unsigned len, unsigned flags,
610                             struct page **pagep, void **fsdata)
611 {
612         struct gfs2_inode *ip = GFS2_I(mapping->host);
613         struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
614         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
615         unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
616         int alloc_required;
617         int error = 0;
618         struct gfs2_alloc *al;
619         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
620         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
621         unsigned to = from + len;
622         struct page *page;
623
624         gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
625         error = gfs2_glock_nq(&ip->i_gh);
626         if (unlikely(error))
627                 goto out_uninit;
628         if (&ip->i_inode == sdp->sd_rindex) {
629                 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
630                                            GL_NOCACHE, &m_ip->i_gh);
631                 if (unlikely(error)) {
632                         gfs2_glock_dq(&ip->i_gh);
633                         goto out_uninit;
634                 }
635         }
636
637         error = gfs2_write_alloc_required(ip, pos, len, &alloc_required);
638         if (error)
639                 goto out_unlock;
640
641         if (alloc_required || gfs2_is_jdata(ip))
642                 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
643
644         if (alloc_required) {
645                 al = gfs2_alloc_get(ip);
646                 if (!al) {
647                         error = -ENOMEM;
648                         goto out_unlock;
649                 }
650
651                 error = gfs2_quota_lock_check(ip);
652                 if (error)
653                         goto out_alloc_put;
654
655                 al->al_requested = data_blocks + ind_blocks;
656                 error = gfs2_inplace_reserve(ip);
657                 if (error)
658                         goto out_qunlock;
659         }
660
661         rblocks = RES_DINODE + ind_blocks;
662         if (gfs2_is_jdata(ip))
663                 rblocks += data_blocks ? data_blocks : 1;
664         if (ind_blocks || data_blocks)
665                 rblocks += RES_STATFS + RES_QUOTA;
666         if (&ip->i_inode == sdp->sd_rindex)
667                 rblocks += 2 * RES_STATFS;
668
669         error = gfs2_trans_begin(sdp, rblocks,
670                                  PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
671         if (error)
672                 goto out_trans_fail;
673
674         error = -ENOMEM;
675         flags |= AOP_FLAG_NOFS;
676         page = grab_cache_page_write_begin(mapping, index, flags);
677         *pagep = page;
678         if (unlikely(!page))
679                 goto out_endtrans;
680
681         if (gfs2_is_stuffed(ip)) {
682                 error = 0;
683                 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
684                         error = gfs2_unstuff_dinode(ip, page);
685                         if (error == 0)
686                                 goto prepare_write;
687                 } else if (!PageUptodate(page)) {
688                         error = stuffed_readpage(ip, page);
689                 }
690                 goto out;
691         }
692
693 prepare_write:
694         error = block_prepare_write(page, from, to, gfs2_block_map);
695 out:
696         if (error == 0)
697                 return 0;
698
699         page_cache_release(page);
700
701         /*
702          * XXX(hch): the call below should probably be replaced with
703          * a call to the gfs2-specific truncate blocks helper to actually
704          * release disk blocks..
705          */
706         if (pos + len > ip->i_inode.i_size)
707                 simple_setsize(&ip->i_inode, ip->i_inode.i_size);
708 out_endtrans:
709         gfs2_trans_end(sdp);
710 out_trans_fail:
711         if (alloc_required) {
712                 gfs2_inplace_release(ip);
713 out_qunlock:
714                 gfs2_quota_unlock(ip);
715 out_alloc_put:
716                 gfs2_alloc_put(ip);
717         }
718 out_unlock:
719         if (&ip->i_inode == sdp->sd_rindex) {
720                 gfs2_glock_dq(&m_ip->i_gh);
721                 gfs2_holder_uninit(&m_ip->i_gh);
722         }
723         gfs2_glock_dq(&ip->i_gh);
724 out_uninit:
725         gfs2_holder_uninit(&ip->i_gh);
726         return error;
727 }
728
729 /**
730  * adjust_fs_space - Adjusts the free space available due to gfs2_grow
731  * @inode: the rindex inode
732  */
733 static void adjust_fs_space(struct inode *inode)
734 {
735         struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
736         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
737         struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
738         struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
739         struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
740         struct buffer_head *m_bh, *l_bh;
741         u64 fs_total, new_free;
742
743         /* Total up the file system space, according to the latest rindex. */
744         fs_total = gfs2_ri_total(sdp);
745         if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
746                 return;
747
748         spin_lock(&sdp->sd_statfs_spin);
749         gfs2_statfs_change_in(m_sc, m_bh->b_data +
750                               sizeof(struct gfs2_dinode));
751         if (fs_total > (m_sc->sc_total + l_sc->sc_total))
752                 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
753         else
754                 new_free = 0;
755         spin_unlock(&sdp->sd_statfs_spin);
756         fs_warn(sdp, "File system extended by %llu blocks.\n",
757                 (unsigned long long)new_free);
758         gfs2_statfs_change(sdp, new_free, new_free, 0);
759
760         if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
761                 goto out;
762         update_statfs(sdp, m_bh, l_bh);
763         brelse(l_bh);
764 out:
765         brelse(m_bh);
766 }
767
768 /**
769  * gfs2_stuffed_write_end - Write end for stuffed files
770  * @inode: The inode
771  * @dibh: The buffer_head containing the on-disk inode
772  * @pos: The file position
773  * @len: The length of the write
774  * @copied: How much was actually copied by the VFS
775  * @page: The page
776  *
777  * This copies the data from the page into the inode block after
778  * the inode data structure itself.
779  *
780  * Returns: errno
781  */
782 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
783                                   loff_t pos, unsigned len, unsigned copied,
784                                   struct page *page)
785 {
786         struct gfs2_inode *ip = GFS2_I(inode);
787         struct gfs2_sbd *sdp = GFS2_SB(inode);
788         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
789         u64 to = pos + copied;
790         void *kaddr;
791         unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
792         struct gfs2_dinode *di = (struct gfs2_dinode *)dibh->b_data;
793
794         BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
795         kaddr = kmap_atomic(page, KM_USER0);
796         memcpy(buf + pos, kaddr + pos, copied);
797         memset(kaddr + pos + copied, 0, len - copied);
798         flush_dcache_page(page);
799         kunmap_atomic(kaddr, KM_USER0);
800
801         if (!PageUptodate(page))
802                 SetPageUptodate(page);
803         unlock_page(page);
804         page_cache_release(page);
805
806         if (copied) {
807                 if (inode->i_size < to) {
808                         i_size_write(inode, to);
809                         ip->i_disksize = inode->i_size;
810                 }
811                 gfs2_dinode_out(ip, di);
812                 mark_inode_dirty(inode);
813         }
814
815         if (inode == sdp->sd_rindex) {
816                 adjust_fs_space(inode);
817                 ip->i_gh.gh_flags |= GL_NOCACHE;
818         }
819
820         brelse(dibh);
821         gfs2_trans_end(sdp);
822         if (inode == sdp->sd_rindex) {
823                 gfs2_glock_dq(&m_ip->i_gh);
824                 gfs2_holder_uninit(&m_ip->i_gh);
825         }
826         gfs2_glock_dq(&ip->i_gh);
827         gfs2_holder_uninit(&ip->i_gh);
828         return copied;
829 }
830
831 /**
832  * gfs2_write_end
833  * @file: The file to write to
834  * @mapping: The address space to write to
835  * @pos: The file position
836  * @len: The length of the data
837  * @copied:
838  * @page: The page that has been written
839  * @fsdata: The fsdata (unused in GFS2)
840  *
841  * The main write_end function for GFS2. We have a separate one for
842  * stuffed files as they are slightly different, otherwise we just
843  * put our locking around the VFS provided functions.
844  *
845  * Returns: errno
846  */
847
848 static int gfs2_write_end(struct file *file, struct address_space *mapping,
849                           loff_t pos, unsigned len, unsigned copied,
850                           struct page *page, void *fsdata)
851 {
852         struct inode *inode = page->mapping->host;
853         struct gfs2_inode *ip = GFS2_I(inode);
854         struct gfs2_sbd *sdp = GFS2_SB(inode);
855         struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
856         struct buffer_head *dibh;
857         struct gfs2_alloc *al = ip->i_alloc;
858         unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
859         unsigned int to = from + len;
860         int ret;
861
862         BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
863
864         ret = gfs2_meta_inode_buffer(ip, &dibh);
865         if (unlikely(ret)) {
866                 unlock_page(page);
867                 page_cache_release(page);
868                 goto failed;
869         }
870
871         gfs2_trans_add_bh(ip->i_gl, dibh, 1);
872
873         if (gfs2_is_stuffed(ip))
874                 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
875
876         if (!gfs2_is_writeback(ip))
877                 gfs2_page_add_databufs(ip, page, from, to);
878
879         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
880         if (ret > 0) {
881                 if (inode->i_size > ip->i_disksize)
882                         ip->i_disksize = inode->i_size;
883                 gfs2_dinode_out(ip, dibh->b_data);
884                 mark_inode_dirty(inode);
885         }
886
887         if (inode == sdp->sd_rindex) {
888                 adjust_fs_space(inode);
889                 ip->i_gh.gh_flags |= GL_NOCACHE;
890         }
891
892         brelse(dibh);
893         gfs2_trans_end(sdp);
894 failed:
895         if (al) {
896                 gfs2_inplace_release(ip);
897                 gfs2_quota_unlock(ip);
898                 gfs2_alloc_put(ip);
899         }
900         if (inode == sdp->sd_rindex) {
901                 gfs2_glock_dq(&m_ip->i_gh);
902                 gfs2_holder_uninit(&m_ip->i_gh);
903         }
904         gfs2_glock_dq(&ip->i_gh);
905         gfs2_holder_uninit(&ip->i_gh);
906         return ret;
907 }
908
909 /**
910  * gfs2_set_page_dirty - Page dirtying function
911  * @page: The page to dirty
912  *
913  * Returns: 1 if it dirtyed the page, or 0 otherwise
914  */
915  
916 static int gfs2_set_page_dirty(struct page *page)
917 {
918         SetPageChecked(page);
919         return __set_page_dirty_buffers(page);
920 }
921
922 /**
923  * gfs2_bmap - Block map function
924  * @mapping: Address space info
925  * @lblock: The block to map
926  *
927  * Returns: The disk address for the block or 0 on hole or error
928  */
929
930 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
931 {
932         struct gfs2_inode *ip = GFS2_I(mapping->host);
933         struct gfs2_holder i_gh;
934         sector_t dblock = 0;
935         int error;
936
937         error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
938         if (error)
939                 return 0;
940
941         if (!gfs2_is_stuffed(ip))
942                 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
943
944         gfs2_glock_dq_uninit(&i_gh);
945
946         return dblock;
947 }
948
949 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
950 {
951         struct gfs2_bufdata *bd;
952
953         lock_buffer(bh);
954         gfs2_log_lock(sdp);
955         clear_buffer_dirty(bh);
956         bd = bh->b_private;
957         if (bd) {
958                 if (!list_empty(&bd->bd_le.le_list) && !buffer_pinned(bh))
959                         list_del_init(&bd->bd_le.le_list);
960                 else
961                         gfs2_remove_from_journal(bh, current->journal_info, 0);
962         }
963         bh->b_bdev = NULL;
964         clear_buffer_mapped(bh);
965         clear_buffer_req(bh);
966         clear_buffer_new(bh);
967         gfs2_log_unlock(sdp);
968         unlock_buffer(bh);
969 }
970
971 static void gfs2_invalidatepage(struct page *page, unsigned long offset)
972 {
973         struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
974         struct buffer_head *bh, *head;
975         unsigned long pos = 0;
976
977         BUG_ON(!PageLocked(page));
978         if (offset == 0)
979                 ClearPageChecked(page);
980         if (!page_has_buffers(page))
981                 goto out;
982
983         bh = head = page_buffers(page);
984         do {
985                 if (offset <= pos)
986                         gfs2_discard(sdp, bh);
987                 pos += bh->b_size;
988                 bh = bh->b_this_page;
989         } while (bh != head);
990 out:
991         if (offset == 0)
992                 try_to_release_page(page, 0);
993 }
994
995 /**
996  * gfs2_ok_for_dio - check that dio is valid on this file
997  * @ip: The inode
998  * @rw: READ or WRITE
999  * @offset: The offset at which we are reading or writing
1000  *
1001  * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1002  *          1 (to accept the i/o request)
1003  */
1004 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1005 {
1006         /*
1007          * Should we return an error here? I can't see that O_DIRECT for
1008          * a stuffed file makes any sense. For now we'll silently fall
1009          * back to buffered I/O
1010          */
1011         if (gfs2_is_stuffed(ip))
1012                 return 0;
1013
1014         if (offset >= i_size_read(&ip->i_inode))
1015                 return 0;
1016         return 1;
1017 }
1018
1019
1020
1021 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1022                               const struct iovec *iov, loff_t offset,
1023                               unsigned long nr_segs)
1024 {
1025         struct file *file = iocb->ki_filp;
1026         struct inode *inode = file->f_mapping->host;
1027         struct gfs2_inode *ip = GFS2_I(inode);
1028         struct gfs2_holder gh;
1029         int rv;
1030
1031         /*
1032          * Deferred lock, even if its a write, since we do no allocation
1033          * on this path. All we need change is atime, and this lock mode
1034          * ensures that other nodes have flushed their buffered read caches
1035          * (i.e. their page cache entries for this inode). We do not,
1036          * unfortunately have the option of only flushing a range like
1037          * the VFS does.
1038          */
1039         gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1040         rv = gfs2_glock_nq(&gh);
1041         if (rv)
1042                 return rv;
1043         rv = gfs2_ok_for_dio(ip, rw, offset);
1044         if (rv != 1)
1045                 goto out; /* dio not valid, fall back to buffered i/o */
1046
1047         rv = blockdev_direct_IO_no_locking(rw, iocb, inode, inode->i_sb->s_bdev,
1048                                            iov, offset, nr_segs,
1049                                            gfs2_get_block_direct, NULL);
1050 out:
1051         gfs2_glock_dq_m(1, &gh);
1052         gfs2_holder_uninit(&gh);
1053         return rv;
1054 }
1055
1056 /**
1057  * gfs2_releasepage - free the metadata associated with a page
1058  * @page: the page that's being released
1059  * @gfp_mask: passed from Linux VFS, ignored by us
1060  *
1061  * Call try_to_free_buffers() if the buffers in this page can be
1062  * released.
1063  *
1064  * Returns: 0
1065  */
1066
1067 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1068 {
1069         struct address_space *mapping = page->mapping;
1070         struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1071         struct buffer_head *bh, *head;
1072         struct gfs2_bufdata *bd;
1073
1074         if (!page_has_buffers(page))
1075                 return 0;
1076
1077         gfs2_log_lock(sdp);
1078         head = bh = page_buffers(page);
1079         do {
1080                 if (atomic_read(&bh->b_count))
1081                         goto cannot_release;
1082                 bd = bh->b_private;
1083                 if (bd && bd->bd_ail)
1084                         goto cannot_release;
1085                 gfs2_assert_warn(sdp, !buffer_pinned(bh));
1086                 gfs2_assert_warn(sdp, !buffer_dirty(bh));
1087                 bh = bh->b_this_page;
1088         } while(bh != head);
1089         gfs2_log_unlock(sdp);
1090
1091         head = bh = page_buffers(page);
1092         do {
1093                 gfs2_log_lock(sdp);
1094                 bd = bh->b_private;
1095                 if (bd) {
1096                         gfs2_assert_warn(sdp, bd->bd_bh == bh);
1097                         gfs2_assert_warn(sdp, list_empty(&bd->bd_list_tr));
1098                         if (!list_empty(&bd->bd_le.le_list)) {
1099                                 if (!buffer_pinned(bh))
1100                                         list_del_init(&bd->bd_le.le_list);
1101                                 else
1102                                         bd = NULL;
1103                         }
1104                         if (bd)
1105                                 bd->bd_bh = NULL;
1106                         bh->b_private = NULL;
1107                 }
1108                 gfs2_log_unlock(sdp);
1109                 if (bd)
1110                         kmem_cache_free(gfs2_bufdata_cachep, bd);
1111
1112                 bh = bh->b_this_page;
1113         } while (bh != head);
1114
1115         return try_to_free_buffers(page);
1116 cannot_release:
1117         gfs2_log_unlock(sdp);
1118         return 0;
1119 }
1120
1121 static const struct address_space_operations gfs2_writeback_aops = {
1122         .writepage = gfs2_writeback_writepage,
1123         .writepages = gfs2_writeback_writepages,
1124         .readpage = gfs2_readpage,
1125         .readpages = gfs2_readpages,
1126         .sync_page = block_sync_page,
1127         .write_begin = gfs2_write_begin,
1128         .write_end = gfs2_write_end,
1129         .bmap = gfs2_bmap,
1130         .invalidatepage = gfs2_invalidatepage,
1131         .releasepage = gfs2_releasepage,
1132         .direct_IO = gfs2_direct_IO,
1133         .migratepage = buffer_migrate_page,
1134         .is_partially_uptodate = block_is_partially_uptodate,
1135         .error_remove_page = generic_error_remove_page,
1136 };
1137
1138 static const struct address_space_operations gfs2_ordered_aops = {
1139         .writepage = gfs2_ordered_writepage,
1140         .readpage = gfs2_readpage,
1141         .readpages = gfs2_readpages,
1142         .sync_page = block_sync_page,
1143         .write_begin = gfs2_write_begin,
1144         .write_end = gfs2_write_end,
1145         .set_page_dirty = gfs2_set_page_dirty,
1146         .bmap = gfs2_bmap,
1147         .invalidatepage = gfs2_invalidatepage,
1148         .releasepage = gfs2_releasepage,
1149         .direct_IO = gfs2_direct_IO,
1150         .migratepage = buffer_migrate_page,
1151         .is_partially_uptodate = block_is_partially_uptodate,
1152         .error_remove_page = generic_error_remove_page,
1153 };
1154
1155 static const struct address_space_operations gfs2_jdata_aops = {
1156         .writepage = gfs2_jdata_writepage,
1157         .writepages = gfs2_jdata_writepages,
1158         .readpage = gfs2_readpage,
1159         .readpages = gfs2_readpages,
1160         .sync_page = block_sync_page,
1161         .write_begin = gfs2_write_begin,
1162         .write_end = gfs2_write_end,
1163         .set_page_dirty = gfs2_set_page_dirty,
1164         .bmap = gfs2_bmap,
1165         .invalidatepage = gfs2_invalidatepage,
1166         .releasepage = gfs2_releasepage,
1167         .is_partially_uptodate = block_is_partially_uptodate,
1168         .error_remove_page = generic_error_remove_page,
1169 };
1170
1171 void gfs2_set_aops(struct inode *inode)
1172 {
1173         struct gfs2_inode *ip = GFS2_I(inode);
1174
1175         if (gfs2_is_writeback(ip))
1176                 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1177         else if (gfs2_is_ordered(ip))
1178                 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1179         else if (gfs2_is_jdata(ip))
1180                 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1181         else
1182                 BUG();
1183 }
1184