]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ext2/inode.c
Take dirtying the inode to callers of ext2_free_blocks()
[net-next-2.6.git] / fs / ext2 / inode.c
1 /*
2  *  linux/fs/ext2/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  Goal-directed block allocation by Stephen Tweedie
16  *      (sct@dcs.ed.ac.uk), 1993, 1998
17  *  Big-endian to little-endian byte-swapping/bitmaps by
18  *        David S. Miller (davem@caip.rutgers.edu), 1995
19  *  64-bit file support on 64-bit platforms by Jakub Jelinek
20  *      (jj@sunsite.ms.mff.cuni.cz)
21  *
22  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
23  */
24
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/module.h>
30 #include <linux/writeback.h>
31 #include <linux/buffer_head.h>
32 #include <linux/mpage.h>
33 #include <linux/fiemap.h>
34 #include <linux/namei.h>
35 #include "ext2.h"
36 #include "acl.h"
37 #include "xip.h"
38
39 MODULE_AUTHOR("Remy Card and others");
40 MODULE_DESCRIPTION("Second Extended Filesystem");
41 MODULE_LICENSE("GPL");
42
43 static int __ext2_write_inode(struct inode *inode, int do_sync);
44
45 /*
46  * Test whether an inode is a fast symlink.
47  */
48 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
49 {
50         int ea_blocks = EXT2_I(inode)->i_file_acl ?
51                 (inode->i_sb->s_blocksize >> 9) : 0;
52
53         return (S_ISLNK(inode->i_mode) &&
54                 inode->i_blocks - ea_blocks == 0);
55 }
56
57 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
58
59 static void ext2_write_failed(struct address_space *mapping, loff_t to)
60 {
61         struct inode *inode = mapping->host;
62
63         if (to > inode->i_size) {
64                 truncate_pagecache(inode, to, inode->i_size);
65                 ext2_truncate_blocks(inode, inode->i_size);
66         }
67 }
68
69 /*
70  * Called at the last iput() if i_nlink is zero.
71  */
72 void ext2_delete_inode (struct inode * inode)
73 {
74         if (!is_bad_inode(inode))
75                 dquot_initialize(inode);
76         truncate_inode_pages(&inode->i_data, 0);
77
78         if (is_bad_inode(inode))
79                 goto no_delete;
80         EXT2_I(inode)->i_dtime  = get_seconds();
81         mark_inode_dirty(inode);
82         __ext2_write_inode(inode, inode_needs_sync(inode));
83
84         inode->i_size = 0;
85         if (inode->i_blocks)
86                 ext2_truncate_blocks(inode, 0);
87         ext2_free_inode (inode);
88
89         return;
90 no_delete:
91         clear_inode(inode);     /* We must guarantee clearing of inode... */
92 }
93
94 typedef struct {
95         __le32  *p;
96         __le32  key;
97         struct buffer_head *bh;
98 } Indirect;
99
100 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
101 {
102         p->key = *(p->p = v);
103         p->bh = bh;
104 }
105
106 static inline int verify_chain(Indirect *from, Indirect *to)
107 {
108         while (from <= to && from->key == *from->p)
109                 from++;
110         return (from > to);
111 }
112
113 /**
114  *      ext2_block_to_path - parse the block number into array of offsets
115  *      @inode: inode in question (we are only interested in its superblock)
116  *      @i_block: block number to be parsed
117  *      @offsets: array to store the offsets in
118  *      @boundary: set this non-zero if the referred-to block is likely to be
119  *             followed (on disk) by an indirect block.
120  *      To store the locations of file's data ext2 uses a data structure common
121  *      for UNIX filesystems - tree of pointers anchored in the inode, with
122  *      data blocks at leaves and indirect blocks in intermediate nodes.
123  *      This function translates the block number into path in that tree -
124  *      return value is the path length and @offsets[n] is the offset of
125  *      pointer to (n+1)th node in the nth one. If @block is out of range
126  *      (negative or too large) warning is printed and zero returned.
127  *
128  *      Note: function doesn't find node addresses, so no IO is needed. All
129  *      we need to know is the capacity of indirect blocks (taken from the
130  *      inode->i_sb).
131  */
132
133 /*
134  * Portability note: the last comparison (check that we fit into triple
135  * indirect block) is spelled differently, because otherwise on an
136  * architecture with 32-bit longs and 8Kb pages we might get into trouble
137  * if our filesystem had 8Kb blocks. We might use long long, but that would
138  * kill us on x86. Oh, well, at least the sign propagation does not matter -
139  * i_block would have to be negative in the very beginning, so we would not
140  * get there at all.
141  */
142
143 static int ext2_block_to_path(struct inode *inode,
144                         long i_block, int offsets[4], int *boundary)
145 {
146         int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
147         int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
148         const long direct_blocks = EXT2_NDIR_BLOCKS,
149                 indirect_blocks = ptrs,
150                 double_blocks = (1 << (ptrs_bits * 2));
151         int n = 0;
152         int final = 0;
153
154         if (i_block < 0) {
155                 ext2_msg(inode->i_sb, KERN_WARNING,
156                         "warning: %s: block < 0", __func__);
157         } else if (i_block < direct_blocks) {
158                 offsets[n++] = i_block;
159                 final = direct_blocks;
160         } else if ( (i_block -= direct_blocks) < indirect_blocks) {
161                 offsets[n++] = EXT2_IND_BLOCK;
162                 offsets[n++] = i_block;
163                 final = ptrs;
164         } else if ((i_block -= indirect_blocks) < double_blocks) {
165                 offsets[n++] = EXT2_DIND_BLOCK;
166                 offsets[n++] = i_block >> ptrs_bits;
167                 offsets[n++] = i_block & (ptrs - 1);
168                 final = ptrs;
169         } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
170                 offsets[n++] = EXT2_TIND_BLOCK;
171                 offsets[n++] = i_block >> (ptrs_bits * 2);
172                 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
173                 offsets[n++] = i_block & (ptrs - 1);
174                 final = ptrs;
175         } else {
176                 ext2_msg(inode->i_sb, KERN_WARNING,
177                         "warning: %s: block is too big", __func__);
178         }
179         if (boundary)
180                 *boundary = final - 1 - (i_block & (ptrs - 1));
181
182         return n;
183 }
184
185 /**
186  *      ext2_get_branch - read the chain of indirect blocks leading to data
187  *      @inode: inode in question
188  *      @depth: depth of the chain (1 - direct pointer, etc.)
189  *      @offsets: offsets of pointers in inode/indirect blocks
190  *      @chain: place to store the result
191  *      @err: here we store the error value
192  *
193  *      Function fills the array of triples <key, p, bh> and returns %NULL
194  *      if everything went OK or the pointer to the last filled triple
195  *      (incomplete one) otherwise. Upon the return chain[i].key contains
196  *      the number of (i+1)-th block in the chain (as it is stored in memory,
197  *      i.e. little-endian 32-bit), chain[i].p contains the address of that
198  *      number (it points into struct inode for i==0 and into the bh->b_data
199  *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
200  *      block for i>0 and NULL for i==0. In other words, it holds the block
201  *      numbers of the chain, addresses they were taken from (and where we can
202  *      verify that chain did not change) and buffer_heads hosting these
203  *      numbers.
204  *
205  *      Function stops when it stumbles upon zero pointer (absent block)
206  *              (pointer to last triple returned, *@err == 0)
207  *      or when it gets an IO error reading an indirect block
208  *              (ditto, *@err == -EIO)
209  *      or when it notices that chain had been changed while it was reading
210  *              (ditto, *@err == -EAGAIN)
211  *      or when it reads all @depth-1 indirect blocks successfully and finds
212  *      the whole chain, all way to the data (returns %NULL, *err == 0).
213  */
214 static Indirect *ext2_get_branch(struct inode *inode,
215                                  int depth,
216                                  int *offsets,
217                                  Indirect chain[4],
218                                  int *err)
219 {
220         struct super_block *sb = inode->i_sb;
221         Indirect *p = chain;
222         struct buffer_head *bh;
223
224         *err = 0;
225         /* i_data is not going away, no lock needed */
226         add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
227         if (!p->key)
228                 goto no_block;
229         while (--depth) {
230                 bh = sb_bread(sb, le32_to_cpu(p->key));
231                 if (!bh)
232                         goto failure;
233                 read_lock(&EXT2_I(inode)->i_meta_lock);
234                 if (!verify_chain(chain, p))
235                         goto changed;
236                 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
237                 read_unlock(&EXT2_I(inode)->i_meta_lock);
238                 if (!p->key)
239                         goto no_block;
240         }
241         return NULL;
242
243 changed:
244         read_unlock(&EXT2_I(inode)->i_meta_lock);
245         brelse(bh);
246         *err = -EAGAIN;
247         goto no_block;
248 failure:
249         *err = -EIO;
250 no_block:
251         return p;
252 }
253
254 /**
255  *      ext2_find_near - find a place for allocation with sufficient locality
256  *      @inode: owner
257  *      @ind: descriptor of indirect block.
258  *
259  *      This function returns the preferred place for block allocation.
260  *      It is used when heuristic for sequential allocation fails.
261  *      Rules are:
262  *        + if there is a block to the left of our position - allocate near it.
263  *        + if pointer will live in indirect block - allocate near that block.
264  *        + if pointer will live in inode - allocate in the same cylinder group.
265  *
266  * In the latter case we colour the starting block by the callers PID to
267  * prevent it from clashing with concurrent allocations for a different inode
268  * in the same block group.   The PID is used here so that functionally related
269  * files will be close-by on-disk.
270  *
271  *      Caller must make sure that @ind is valid and will stay that way.
272  */
273
274 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
275 {
276         struct ext2_inode_info *ei = EXT2_I(inode);
277         __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
278         __le32 *p;
279         ext2_fsblk_t bg_start;
280         ext2_fsblk_t colour;
281
282         /* Try to find previous block */
283         for (p = ind->p - 1; p >= start; p--)
284                 if (*p)
285                         return le32_to_cpu(*p);
286
287         /* No such thing, so let's try location of indirect block */
288         if (ind->bh)
289                 return ind->bh->b_blocknr;
290
291         /*
292          * It is going to be refered from inode itself? OK, just put it into
293          * the same cylinder group then.
294          */
295         bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
296         colour = (current->pid % 16) *
297                         (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
298         return bg_start + colour;
299 }
300
301 /**
302  *      ext2_find_goal - find a preferred place for allocation.
303  *      @inode: owner
304  *      @block:  block we want
305  *      @partial: pointer to the last triple within a chain
306  *
307  *      Returns preferred place for a block (the goal).
308  */
309
310 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
311                                           Indirect *partial)
312 {
313         struct ext2_block_alloc_info *block_i;
314
315         block_i = EXT2_I(inode)->i_block_alloc_info;
316
317         /*
318          * try the heuristic for sequential allocation,
319          * failing that at least try to get decent locality.
320          */
321         if (block_i && (block == block_i->last_alloc_logical_block + 1)
322                 && (block_i->last_alloc_physical_block != 0)) {
323                 return block_i->last_alloc_physical_block + 1;
324         }
325
326         return ext2_find_near(inode, partial);
327 }
328
329 /**
330  *      ext2_blks_to_allocate: Look up the block map and count the number
331  *      of direct blocks need to be allocated for the given branch.
332  *
333  *      @branch: chain of indirect blocks
334  *      @k: number of blocks need for indirect blocks
335  *      @blks: number of data blocks to be mapped.
336  *      @blocks_to_boundary:  the offset in the indirect block
337  *
338  *      return the total number of blocks to be allocate, including the
339  *      direct and indirect blocks.
340  */
341 static int
342 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
343                 int blocks_to_boundary)
344 {
345         unsigned long count = 0;
346
347         /*
348          * Simple case, [t,d]Indirect block(s) has not allocated yet
349          * then it's clear blocks on that path have not allocated
350          */
351         if (k > 0) {
352                 /* right now don't hanel cross boundary allocation */
353                 if (blks < blocks_to_boundary + 1)
354                         count += blks;
355                 else
356                         count += blocks_to_boundary + 1;
357                 return count;
358         }
359
360         count++;
361         while (count < blks && count <= blocks_to_boundary
362                 && le32_to_cpu(*(branch[0].p + count)) == 0) {
363                 count++;
364         }
365         return count;
366 }
367
368 /**
369  *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
370  *      @indirect_blks: the number of blocks need to allocate for indirect
371  *                      blocks
372  *
373  *      @new_blocks: on return it will store the new block numbers for
374  *      the indirect blocks(if needed) and the first direct block,
375  *      @blks:  on return it will store the total number of allocated
376  *              direct blocks
377  */
378 static int ext2_alloc_blocks(struct inode *inode,
379                         ext2_fsblk_t goal, int indirect_blks, int blks,
380                         ext2_fsblk_t new_blocks[4], int *err)
381 {
382         int target, i;
383         unsigned long count = 0;
384         int index = 0;
385         ext2_fsblk_t current_block = 0;
386         int ret = 0;
387
388         /*
389          * Here we try to allocate the requested multiple blocks at once,
390          * on a best-effort basis.
391          * To build a branch, we should allocate blocks for
392          * the indirect blocks(if not allocated yet), and at least
393          * the first direct block of this branch.  That's the
394          * minimum number of blocks need to allocate(required)
395          */
396         target = blks + indirect_blks;
397
398         while (1) {
399                 count = target;
400                 /* allocating blocks for indirect blocks and direct blocks */
401                 current_block = ext2_new_blocks(inode,goal,&count,err);
402                 if (*err)
403                         goto failed_out;
404
405                 target -= count;
406                 /* allocate blocks for indirect blocks */
407                 while (index < indirect_blks && count) {
408                         new_blocks[index++] = current_block++;
409                         count--;
410                 }
411
412                 if (count > 0)
413                         break;
414         }
415
416         /* save the new block number for the first direct block */
417         new_blocks[index] = current_block;
418
419         /* total number of blocks allocated for direct blocks */
420         ret = count;
421         *err = 0;
422         return ret;
423 failed_out:
424         for (i = 0; i <index; i++)
425                 ext2_free_blocks(inode, new_blocks[i], 1);
426         if (index)
427                 mark_inode_dirty(inode);
428         return ret;
429 }
430
431 /**
432  *      ext2_alloc_branch - allocate and set up a chain of blocks.
433  *      @inode: owner
434  *      @num: depth of the chain (number of blocks to allocate)
435  *      @offsets: offsets (in the blocks) to store the pointers to next.
436  *      @branch: place to store the chain in.
437  *
438  *      This function allocates @num blocks, zeroes out all but the last one,
439  *      links them into chain and (if we are synchronous) writes them to disk.
440  *      In other words, it prepares a branch that can be spliced onto the
441  *      inode. It stores the information about that chain in the branch[], in
442  *      the same format as ext2_get_branch() would do. We are calling it after
443  *      we had read the existing part of chain and partial points to the last
444  *      triple of that (one with zero ->key). Upon the exit we have the same
445  *      picture as after the successful ext2_get_block(), excpet that in one
446  *      place chain is disconnected - *branch->p is still zero (we did not
447  *      set the last link), but branch->key contains the number that should
448  *      be placed into *branch->p to fill that gap.
449  *
450  *      If allocation fails we free all blocks we've allocated (and forget
451  *      their buffer_heads) and return the error value the from failed
452  *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
453  *      as described above and return 0.
454  */
455
456 static int ext2_alloc_branch(struct inode *inode,
457                         int indirect_blks, int *blks, ext2_fsblk_t goal,
458                         int *offsets, Indirect *branch)
459 {
460         int blocksize = inode->i_sb->s_blocksize;
461         int i, n = 0;
462         int err = 0;
463         struct buffer_head *bh;
464         int num;
465         ext2_fsblk_t new_blocks[4];
466         ext2_fsblk_t current_block;
467
468         num = ext2_alloc_blocks(inode, goal, indirect_blks,
469                                 *blks, new_blocks, &err);
470         if (err)
471                 return err;
472
473         branch[0].key = cpu_to_le32(new_blocks[0]);
474         /*
475          * metadata blocks and data blocks are allocated.
476          */
477         for (n = 1; n <= indirect_blks;  n++) {
478                 /*
479                  * Get buffer_head for parent block, zero it out
480                  * and set the pointer to new one, then send
481                  * parent to disk.
482                  */
483                 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
484                 branch[n].bh = bh;
485                 lock_buffer(bh);
486                 memset(bh->b_data, 0, blocksize);
487                 branch[n].p = (__le32 *) bh->b_data + offsets[n];
488                 branch[n].key = cpu_to_le32(new_blocks[n]);
489                 *branch[n].p = branch[n].key;
490                 if ( n == indirect_blks) {
491                         current_block = new_blocks[n];
492                         /*
493                          * End of chain, update the last new metablock of
494                          * the chain to point to the new allocated
495                          * data blocks numbers
496                          */
497                         for (i=1; i < num; i++)
498                                 *(branch[n].p + i) = cpu_to_le32(++current_block);
499                 }
500                 set_buffer_uptodate(bh);
501                 unlock_buffer(bh);
502                 mark_buffer_dirty_inode(bh, inode);
503                 /* We used to sync bh here if IS_SYNC(inode).
504                  * But we now rely upon generic_write_sync()
505                  * and b_inode_buffers.  But not for directories.
506                  */
507                 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
508                         sync_dirty_buffer(bh);
509         }
510         *blks = num;
511         return err;
512 }
513
514 /**
515  * ext2_splice_branch - splice the allocated branch onto inode.
516  * @inode: owner
517  * @block: (logical) number of block we are adding
518  * @where: location of missing link
519  * @num:   number of indirect blocks we are adding
520  * @blks:  number of direct blocks we are adding
521  *
522  * This function fills the missing link and does all housekeeping needed in
523  * inode (->i_blocks, etc.). In case of success we end up with the full
524  * chain to new block and return 0.
525  */
526 static void ext2_splice_branch(struct inode *inode,
527                         long block, Indirect *where, int num, int blks)
528 {
529         int i;
530         struct ext2_block_alloc_info *block_i;
531         ext2_fsblk_t current_block;
532
533         block_i = EXT2_I(inode)->i_block_alloc_info;
534
535         /* XXX LOCKING probably should have i_meta_lock ?*/
536         /* That's it */
537
538         *where->p = where->key;
539
540         /*
541          * Update the host buffer_head or inode to point to more just allocated
542          * direct blocks blocks
543          */
544         if (num == 0 && blks > 1) {
545                 current_block = le32_to_cpu(where->key) + 1;
546                 for (i = 1; i < blks; i++)
547                         *(where->p + i ) = cpu_to_le32(current_block++);
548         }
549
550         /*
551          * update the most recently allocated logical & physical block
552          * in i_block_alloc_info, to assist find the proper goal block for next
553          * allocation
554          */
555         if (block_i) {
556                 block_i->last_alloc_logical_block = block + blks - 1;
557                 block_i->last_alloc_physical_block =
558                                 le32_to_cpu(where[num].key) + blks - 1;
559         }
560
561         /* We are done with atomic stuff, now do the rest of housekeeping */
562
563         /* had we spliced it onto indirect block? */
564         if (where->bh)
565                 mark_buffer_dirty_inode(where->bh, inode);
566
567         inode->i_ctime = CURRENT_TIME_SEC;
568         mark_inode_dirty(inode);
569 }
570
571 /*
572  * Allocation strategy is simple: if we have to allocate something, we will
573  * have to go the whole way to leaf. So let's do it before attaching anything
574  * to tree, set linkage between the newborn blocks, write them if sync is
575  * required, recheck the path, free and repeat if check fails, otherwise
576  * set the last missing link (that will protect us from any truncate-generated
577  * removals - all blocks on the path are immune now) and possibly force the
578  * write on the parent block.
579  * That has a nice additional property: no special recovery from the failed
580  * allocations is needed - we simply release blocks and do not touch anything
581  * reachable from inode.
582  *
583  * `handle' can be NULL if create == 0.
584  *
585  * return > 0, # of blocks mapped or allocated.
586  * return = 0, if plain lookup failed.
587  * return < 0, error case.
588  */
589 static int ext2_get_blocks(struct inode *inode,
590                            sector_t iblock, unsigned long maxblocks,
591                            struct buffer_head *bh_result,
592                            int create)
593 {
594         int err = -EIO;
595         int offsets[4];
596         Indirect chain[4];
597         Indirect *partial;
598         ext2_fsblk_t goal;
599         int indirect_blks;
600         int blocks_to_boundary = 0;
601         int depth;
602         struct ext2_inode_info *ei = EXT2_I(inode);
603         int count = 0;
604         ext2_fsblk_t first_block = 0;
605
606         depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
607
608         if (depth == 0)
609                 return (err);
610
611         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
612         /* Simplest case - block found, no allocation needed */
613         if (!partial) {
614                 first_block = le32_to_cpu(chain[depth - 1].key);
615                 clear_buffer_new(bh_result); /* What's this do? */
616                 count++;
617                 /*map more blocks*/
618                 while (count < maxblocks && count <= blocks_to_boundary) {
619                         ext2_fsblk_t blk;
620
621                         if (!verify_chain(chain, chain + depth - 1)) {
622                                 /*
623                                  * Indirect block might be removed by
624                                  * truncate while we were reading it.
625                                  * Handling of that case: forget what we've
626                                  * got now, go to reread.
627                                  */
628                                 err = -EAGAIN;
629                                 count = 0;
630                                 break;
631                         }
632                         blk = le32_to_cpu(*(chain[depth-1].p + count));
633                         if (blk == first_block + count)
634                                 count++;
635                         else
636                                 break;
637                 }
638                 if (err != -EAGAIN)
639                         goto got_it;
640         }
641
642         /* Next simple case - plain lookup or failed read of indirect block */
643         if (!create || err == -EIO)
644                 goto cleanup;
645
646         mutex_lock(&ei->truncate_mutex);
647         /*
648          * If the indirect block is missing while we are reading
649          * the chain(ext3_get_branch() returns -EAGAIN err), or
650          * if the chain has been changed after we grab the semaphore,
651          * (either because another process truncated this branch, or
652          * another get_block allocated this branch) re-grab the chain to see if
653          * the request block has been allocated or not.
654          *
655          * Since we already block the truncate/other get_block
656          * at this point, we will have the current copy of the chain when we
657          * splice the branch into the tree.
658          */
659         if (err == -EAGAIN || !verify_chain(chain, partial)) {
660                 while (partial > chain) {
661                         brelse(partial->bh);
662                         partial--;
663                 }
664                 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
665                 if (!partial) {
666                         count++;
667                         mutex_unlock(&ei->truncate_mutex);
668                         if (err)
669                                 goto cleanup;
670                         clear_buffer_new(bh_result);
671                         goto got_it;
672                 }
673         }
674
675         /*
676          * Okay, we need to do block allocation.  Lazily initialize the block
677          * allocation info here if necessary
678         */
679         if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
680                 ext2_init_block_alloc_info(inode);
681
682         goal = ext2_find_goal(inode, iblock, partial);
683
684         /* the number of blocks need to allocate for [d,t]indirect blocks */
685         indirect_blks = (chain + depth) - partial - 1;
686         /*
687          * Next look up the indirect map to count the totoal number of
688          * direct blocks to allocate for this branch.
689          */
690         count = ext2_blks_to_allocate(partial, indirect_blks,
691                                         maxblocks, blocks_to_boundary);
692         /*
693          * XXX ???? Block out ext2_truncate while we alter the tree
694          */
695         err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
696                                 offsets + (partial - chain), partial);
697
698         if (err) {
699                 mutex_unlock(&ei->truncate_mutex);
700                 goto cleanup;
701         }
702
703         if (ext2_use_xip(inode->i_sb)) {
704                 /*
705                  * we need to clear the block
706                  */
707                 err = ext2_clear_xip_target (inode,
708                         le32_to_cpu(chain[depth-1].key));
709                 if (err) {
710                         mutex_unlock(&ei->truncate_mutex);
711                         goto cleanup;
712                 }
713         }
714
715         ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
716         mutex_unlock(&ei->truncate_mutex);
717         set_buffer_new(bh_result);
718 got_it:
719         map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
720         if (count > blocks_to_boundary)
721                 set_buffer_boundary(bh_result);
722         err = count;
723         /* Clean up and exit */
724         partial = chain + depth - 1;    /* the whole chain */
725 cleanup:
726         while (partial > chain) {
727                 brelse(partial->bh);
728                 partial--;
729         }
730         return err;
731 }
732
733 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
734 {
735         unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
736         int ret = ext2_get_blocks(inode, iblock, max_blocks,
737                               bh_result, create);
738         if (ret > 0) {
739                 bh_result->b_size = (ret << inode->i_blkbits);
740                 ret = 0;
741         }
742         return ret;
743
744 }
745
746 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
747                 u64 start, u64 len)
748 {
749         return generic_block_fiemap(inode, fieinfo, start, len,
750                                     ext2_get_block);
751 }
752
753 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
754 {
755         return block_write_full_page(page, ext2_get_block, wbc);
756 }
757
758 static int ext2_readpage(struct file *file, struct page *page)
759 {
760         return mpage_readpage(page, ext2_get_block);
761 }
762
763 static int
764 ext2_readpages(struct file *file, struct address_space *mapping,
765                 struct list_head *pages, unsigned nr_pages)
766 {
767         return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
768 }
769
770 static int
771 ext2_write_begin(struct file *file, struct address_space *mapping,
772                 loff_t pos, unsigned len, unsigned flags,
773                 struct page **pagep, void **fsdata)
774 {
775         int ret;
776
777         ret = block_write_begin(mapping, pos, len, flags, pagep,
778                                 ext2_get_block);
779         if (ret < 0)
780                 ext2_write_failed(mapping, pos + len);
781         return ret;
782 }
783
784 static int ext2_write_end(struct file *file, struct address_space *mapping,
785                         loff_t pos, unsigned len, unsigned copied,
786                         struct page *page, void *fsdata)
787 {
788         int ret;
789
790         ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
791         if (ret < len)
792                 ext2_write_failed(mapping, pos + len);
793         return ret;
794 }
795
796 static int
797 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
798                 loff_t pos, unsigned len, unsigned flags,
799                 struct page **pagep, void **fsdata)
800 {
801         int ret;
802
803         ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
804                                ext2_get_block);
805         if (ret < 0)
806                 ext2_write_failed(mapping, pos + len);
807         return ret;
808 }
809
810 static int ext2_nobh_writepage(struct page *page,
811                         struct writeback_control *wbc)
812 {
813         return nobh_writepage(page, ext2_get_block, wbc);
814 }
815
816 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
817 {
818         return generic_block_bmap(mapping,block,ext2_get_block);
819 }
820
821 static ssize_t
822 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
823                         loff_t offset, unsigned long nr_segs)
824 {
825         struct file *file = iocb->ki_filp;
826         struct address_space *mapping = file->f_mapping;
827         struct inode *inode = mapping->host;
828         ssize_t ret;
829
830         ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
831                                 iov, offset, nr_segs, ext2_get_block, NULL);
832         if (ret < 0 && (rw & WRITE))
833                 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
834         return ret;
835 }
836
837 static int
838 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
839 {
840         return mpage_writepages(mapping, wbc, ext2_get_block);
841 }
842
843 const struct address_space_operations ext2_aops = {
844         .readpage               = ext2_readpage,
845         .readpages              = ext2_readpages,
846         .writepage              = ext2_writepage,
847         .sync_page              = block_sync_page,
848         .write_begin            = ext2_write_begin,
849         .write_end              = ext2_write_end,
850         .bmap                   = ext2_bmap,
851         .direct_IO              = ext2_direct_IO,
852         .writepages             = ext2_writepages,
853         .migratepage            = buffer_migrate_page,
854         .is_partially_uptodate  = block_is_partially_uptodate,
855         .error_remove_page      = generic_error_remove_page,
856 };
857
858 const struct address_space_operations ext2_aops_xip = {
859         .bmap                   = ext2_bmap,
860         .get_xip_mem            = ext2_get_xip_mem,
861 };
862
863 const struct address_space_operations ext2_nobh_aops = {
864         .readpage               = ext2_readpage,
865         .readpages              = ext2_readpages,
866         .writepage              = ext2_nobh_writepage,
867         .sync_page              = block_sync_page,
868         .write_begin            = ext2_nobh_write_begin,
869         .write_end              = nobh_write_end,
870         .bmap                   = ext2_bmap,
871         .direct_IO              = ext2_direct_IO,
872         .writepages             = ext2_writepages,
873         .migratepage            = buffer_migrate_page,
874         .error_remove_page      = generic_error_remove_page,
875 };
876
877 /*
878  * Probably it should be a library function... search for first non-zero word
879  * or memcmp with zero_page, whatever is better for particular architecture.
880  * Linus?
881  */
882 static inline int all_zeroes(__le32 *p, __le32 *q)
883 {
884         while (p < q)
885                 if (*p++)
886                         return 0;
887         return 1;
888 }
889
890 /**
891  *      ext2_find_shared - find the indirect blocks for partial truncation.
892  *      @inode:   inode in question
893  *      @depth:   depth of the affected branch
894  *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
895  *      @chain:   place to store the pointers to partial indirect blocks
896  *      @top:     place to the (detached) top of branch
897  *
898  *      This is a helper function used by ext2_truncate().
899  *
900  *      When we do truncate() we may have to clean the ends of several indirect
901  *      blocks but leave the blocks themselves alive. Block is partially
902  *      truncated if some data below the new i_size is refered from it (and
903  *      it is on the path to the first completely truncated data block, indeed).
904  *      We have to free the top of that path along with everything to the right
905  *      of the path. Since no allocation past the truncation point is possible
906  *      until ext2_truncate() finishes, we may safely do the latter, but top
907  *      of branch may require special attention - pageout below the truncation
908  *      point might try to populate it.
909  *
910  *      We atomically detach the top of branch from the tree, store the block
911  *      number of its root in *@top, pointers to buffer_heads of partially
912  *      truncated blocks - in @chain[].bh and pointers to their last elements
913  *      that should not be removed - in @chain[].p. Return value is the pointer
914  *      to last filled element of @chain.
915  *
916  *      The work left to caller to do the actual freeing of subtrees:
917  *              a) free the subtree starting from *@top
918  *              b) free the subtrees whose roots are stored in
919  *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
920  *              c) free the subtrees growing from the inode past the @chain[0].p
921  *                      (no partially truncated stuff there).
922  */
923
924 static Indirect *ext2_find_shared(struct inode *inode,
925                                 int depth,
926                                 int offsets[4],
927                                 Indirect chain[4],
928                                 __le32 *top)
929 {
930         Indirect *partial, *p;
931         int k, err;
932
933         *top = 0;
934         for (k = depth; k > 1 && !offsets[k-1]; k--)
935                 ;
936         partial = ext2_get_branch(inode, k, offsets, chain, &err);
937         if (!partial)
938                 partial = chain + k-1;
939         /*
940          * If the branch acquired continuation since we've looked at it -
941          * fine, it should all survive and (new) top doesn't belong to us.
942          */
943         write_lock(&EXT2_I(inode)->i_meta_lock);
944         if (!partial->key && *partial->p) {
945                 write_unlock(&EXT2_I(inode)->i_meta_lock);
946                 goto no_top;
947         }
948         for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
949                 ;
950         /*
951          * OK, we've found the last block that must survive. The rest of our
952          * branch should be detached before unlocking. However, if that rest
953          * of branch is all ours and does not grow immediately from the inode
954          * it's easier to cheat and just decrement partial->p.
955          */
956         if (p == chain + k - 1 && p > chain) {
957                 p->p--;
958         } else {
959                 *top = *p->p;
960                 *p->p = 0;
961         }
962         write_unlock(&EXT2_I(inode)->i_meta_lock);
963
964         while(partial > p)
965         {
966                 brelse(partial->bh);
967                 partial--;
968         }
969 no_top:
970         return partial;
971 }
972
973 /**
974  *      ext2_free_data - free a list of data blocks
975  *      @inode: inode we are dealing with
976  *      @p:     array of block numbers
977  *      @q:     points immediately past the end of array
978  *
979  *      We are freeing all blocks refered from that array (numbers are
980  *      stored as little-endian 32-bit) and updating @inode->i_blocks
981  *      appropriately.
982  */
983 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
984 {
985         unsigned long block_to_free = 0, count = 0;
986         unsigned long nr;
987
988         for ( ; p < q ; p++) {
989                 nr = le32_to_cpu(*p);
990                 if (nr) {
991                         *p = 0;
992                         /* accumulate blocks to free if they're contiguous */
993                         if (count == 0)
994                                 goto free_this;
995                         else if (block_to_free == nr - count)
996                                 count++;
997                         else {
998                                 ext2_free_blocks (inode, block_to_free, count);
999                                 mark_inode_dirty(inode);
1000                         free_this:
1001                                 block_to_free = nr;
1002                                 count = 1;
1003                         }
1004                 }
1005         }
1006         if (count > 0) {
1007                 ext2_free_blocks (inode, block_to_free, count);
1008                 mark_inode_dirty(inode);
1009         }
1010 }
1011
1012 /**
1013  *      ext2_free_branches - free an array of branches
1014  *      @inode: inode we are dealing with
1015  *      @p:     array of block numbers
1016  *      @q:     pointer immediately past the end of array
1017  *      @depth: depth of the branches to free
1018  *
1019  *      We are freeing all blocks refered from these branches (numbers are
1020  *      stored as little-endian 32-bit) and updating @inode->i_blocks
1021  *      appropriately.
1022  */
1023 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1024 {
1025         struct buffer_head * bh;
1026         unsigned long nr;
1027
1028         if (depth--) {
1029                 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1030                 for ( ; p < q ; p++) {
1031                         nr = le32_to_cpu(*p);
1032                         if (!nr)
1033                                 continue;
1034                         *p = 0;
1035                         bh = sb_bread(inode->i_sb, nr);
1036                         /*
1037                          * A read failure? Report error and clear slot
1038                          * (should be rare).
1039                          */ 
1040                         if (!bh) {
1041                                 ext2_error(inode->i_sb, "ext2_free_branches",
1042                                         "Read failure, inode=%ld, block=%ld",
1043                                         inode->i_ino, nr);
1044                                 continue;
1045                         }
1046                         ext2_free_branches(inode,
1047                                            (__le32*)bh->b_data,
1048                                            (__le32*)bh->b_data + addr_per_block,
1049                                            depth);
1050                         bforget(bh);
1051                         ext2_free_blocks(inode, nr, 1);
1052                         mark_inode_dirty(inode);
1053                 }
1054         } else
1055                 ext2_free_data(inode, p, q);
1056 }
1057
1058 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1059 {
1060         __le32 *i_data = EXT2_I(inode)->i_data;
1061         struct ext2_inode_info *ei = EXT2_I(inode);
1062         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1063         int offsets[4];
1064         Indirect chain[4];
1065         Indirect *partial;
1066         __le32 nr = 0;
1067         int n;
1068         long iblock;
1069         unsigned blocksize;
1070         blocksize = inode->i_sb->s_blocksize;
1071         iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1072
1073         n = ext2_block_to_path(inode, iblock, offsets, NULL);
1074         if (n == 0)
1075                 return;
1076
1077         /*
1078          * From here we block out all ext2_get_block() callers who want to
1079          * modify the block allocation tree.
1080          */
1081         mutex_lock(&ei->truncate_mutex);
1082
1083         if (n == 1) {
1084                 ext2_free_data(inode, i_data+offsets[0],
1085                                         i_data + EXT2_NDIR_BLOCKS);
1086                 goto do_indirects;
1087         }
1088
1089         partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1090         /* Kill the top of shared branch (already detached) */
1091         if (nr) {
1092                 if (partial == chain)
1093                         mark_inode_dirty(inode);
1094                 else
1095                         mark_buffer_dirty_inode(partial->bh, inode);
1096                 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1097         }
1098         /* Clear the ends of indirect blocks on the shared branch */
1099         while (partial > chain) {
1100                 ext2_free_branches(inode,
1101                                    partial->p + 1,
1102                                    (__le32*)partial->bh->b_data+addr_per_block,
1103                                    (chain+n-1) - partial);
1104                 mark_buffer_dirty_inode(partial->bh, inode);
1105                 brelse (partial->bh);
1106                 partial--;
1107         }
1108 do_indirects:
1109         /* Kill the remaining (whole) subtrees */
1110         switch (offsets[0]) {
1111                 default:
1112                         nr = i_data[EXT2_IND_BLOCK];
1113                         if (nr) {
1114                                 i_data[EXT2_IND_BLOCK] = 0;
1115                                 mark_inode_dirty(inode);
1116                                 ext2_free_branches(inode, &nr, &nr+1, 1);
1117                         }
1118                 case EXT2_IND_BLOCK:
1119                         nr = i_data[EXT2_DIND_BLOCK];
1120                         if (nr) {
1121                                 i_data[EXT2_DIND_BLOCK] = 0;
1122                                 mark_inode_dirty(inode);
1123                                 ext2_free_branches(inode, &nr, &nr+1, 2);
1124                         }
1125                 case EXT2_DIND_BLOCK:
1126                         nr = i_data[EXT2_TIND_BLOCK];
1127                         if (nr) {
1128                                 i_data[EXT2_TIND_BLOCK] = 0;
1129                                 mark_inode_dirty(inode);
1130                                 ext2_free_branches(inode, &nr, &nr+1, 3);
1131                         }
1132                 case EXT2_TIND_BLOCK:
1133                         ;
1134         }
1135
1136         ext2_discard_reservation(inode);
1137
1138         mutex_unlock(&ei->truncate_mutex);
1139 }
1140
1141 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1142 {
1143         /*
1144          * XXX: it seems like a bug here that we don't allow
1145          * IS_APPEND inode to have blocks-past-i_size trimmed off.
1146          * review and fix this.
1147          *
1148          * Also would be nice to be able to handle IO errors and such,
1149          * but that's probably too much to ask.
1150          */
1151         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1152             S_ISLNK(inode->i_mode)))
1153                 return;
1154         if (ext2_inode_is_fast_symlink(inode))
1155                 return;
1156         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1157                 return;
1158         __ext2_truncate_blocks(inode, offset);
1159 }
1160
1161 static int ext2_setsize(struct inode *inode, loff_t newsize)
1162 {
1163         int error;
1164
1165         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1166             S_ISLNK(inode->i_mode)))
1167                 return -EINVAL;
1168         if (ext2_inode_is_fast_symlink(inode))
1169                 return -EINVAL;
1170         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1171                 return -EPERM;
1172
1173         if (mapping_is_xip(inode->i_mapping))
1174                 error = xip_truncate_page(inode->i_mapping, newsize);
1175         else if (test_opt(inode->i_sb, NOBH))
1176                 error = nobh_truncate_page(inode->i_mapping,
1177                                 newsize, ext2_get_block);
1178         else
1179                 error = block_truncate_page(inode->i_mapping,
1180                                 newsize, ext2_get_block);
1181         if (error)
1182                 return error;
1183
1184         truncate_setsize(inode, newsize);
1185         __ext2_truncate_blocks(inode, newsize);
1186
1187         inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1188         if (inode_needs_sync(inode)) {
1189                 sync_mapping_buffers(inode->i_mapping);
1190                 ext2_sync_inode (inode);
1191         } else {
1192                 mark_inode_dirty(inode);
1193         }
1194
1195         return 0;
1196 }
1197
1198 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1199                                         struct buffer_head **p)
1200 {
1201         struct buffer_head * bh;
1202         unsigned long block_group;
1203         unsigned long block;
1204         unsigned long offset;
1205         struct ext2_group_desc * gdp;
1206
1207         *p = NULL;
1208         if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1209             ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1210                 goto Einval;
1211
1212         block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1213         gdp = ext2_get_group_desc(sb, block_group, NULL);
1214         if (!gdp)
1215                 goto Egdp;
1216         /*
1217          * Figure out the offset within the block group inode table
1218          */
1219         offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1220         block = le32_to_cpu(gdp->bg_inode_table) +
1221                 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1222         if (!(bh = sb_bread(sb, block)))
1223                 goto Eio;
1224
1225         *p = bh;
1226         offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1227         return (struct ext2_inode *) (bh->b_data + offset);
1228
1229 Einval:
1230         ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1231                    (unsigned long) ino);
1232         return ERR_PTR(-EINVAL);
1233 Eio:
1234         ext2_error(sb, "ext2_get_inode",
1235                    "unable to read inode block - inode=%lu, block=%lu",
1236                    (unsigned long) ino, block);
1237 Egdp:
1238         return ERR_PTR(-EIO);
1239 }
1240
1241 void ext2_set_inode_flags(struct inode *inode)
1242 {
1243         unsigned int flags = EXT2_I(inode)->i_flags;
1244
1245         inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1246         if (flags & EXT2_SYNC_FL)
1247                 inode->i_flags |= S_SYNC;
1248         if (flags & EXT2_APPEND_FL)
1249                 inode->i_flags |= S_APPEND;
1250         if (flags & EXT2_IMMUTABLE_FL)
1251                 inode->i_flags |= S_IMMUTABLE;
1252         if (flags & EXT2_NOATIME_FL)
1253                 inode->i_flags |= S_NOATIME;
1254         if (flags & EXT2_DIRSYNC_FL)
1255                 inode->i_flags |= S_DIRSYNC;
1256 }
1257
1258 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1259 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1260 {
1261         unsigned int flags = ei->vfs_inode.i_flags;
1262
1263         ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1264                         EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1265         if (flags & S_SYNC)
1266                 ei->i_flags |= EXT2_SYNC_FL;
1267         if (flags & S_APPEND)
1268                 ei->i_flags |= EXT2_APPEND_FL;
1269         if (flags & S_IMMUTABLE)
1270                 ei->i_flags |= EXT2_IMMUTABLE_FL;
1271         if (flags & S_NOATIME)
1272                 ei->i_flags |= EXT2_NOATIME_FL;
1273         if (flags & S_DIRSYNC)
1274                 ei->i_flags |= EXT2_DIRSYNC_FL;
1275 }
1276
1277 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1278 {
1279         struct ext2_inode_info *ei;
1280         struct buffer_head * bh;
1281         struct ext2_inode *raw_inode;
1282         struct inode *inode;
1283         long ret = -EIO;
1284         int n;
1285
1286         inode = iget_locked(sb, ino);
1287         if (!inode)
1288                 return ERR_PTR(-ENOMEM);
1289         if (!(inode->i_state & I_NEW))
1290                 return inode;
1291
1292         ei = EXT2_I(inode);
1293         ei->i_block_alloc_info = NULL;
1294
1295         raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1296         if (IS_ERR(raw_inode)) {
1297                 ret = PTR_ERR(raw_inode);
1298                 goto bad_inode;
1299         }
1300
1301         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1302         inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1303         inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1304         if (!(test_opt (inode->i_sb, NO_UID32))) {
1305                 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1306                 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1307         }
1308         inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1309         inode->i_size = le32_to_cpu(raw_inode->i_size);
1310         inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1311         inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1312         inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1313         inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1314         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1315         /* We now have enough fields to check if the inode was active or not.
1316          * This is needed because nfsd might try to access dead inodes
1317          * the test is that same one that e2fsck uses
1318          * NeilBrown 1999oct15
1319          */
1320         if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1321                 /* this inode is deleted */
1322                 brelse (bh);
1323                 ret = -ESTALE;
1324                 goto bad_inode;
1325         }
1326         inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1327         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1328         ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1329         ei->i_frag_no = raw_inode->i_frag;
1330         ei->i_frag_size = raw_inode->i_fsize;
1331         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1332         ei->i_dir_acl = 0;
1333         if (S_ISREG(inode->i_mode))
1334                 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1335         else
1336                 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1337         ei->i_dtime = 0;
1338         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1339         ei->i_state = 0;
1340         ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1341         ei->i_dir_start_lookup = 0;
1342
1343         /*
1344          * NOTE! The in-memory inode i_data array is in little-endian order
1345          * even on big-endian machines: we do NOT byteswap the block numbers!
1346          */
1347         for (n = 0; n < EXT2_N_BLOCKS; n++)
1348                 ei->i_data[n] = raw_inode->i_block[n];
1349
1350         if (S_ISREG(inode->i_mode)) {
1351                 inode->i_op = &ext2_file_inode_operations;
1352                 if (ext2_use_xip(inode->i_sb)) {
1353                         inode->i_mapping->a_ops = &ext2_aops_xip;
1354                         inode->i_fop = &ext2_xip_file_operations;
1355                 } else if (test_opt(inode->i_sb, NOBH)) {
1356                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1357                         inode->i_fop = &ext2_file_operations;
1358                 } else {
1359                         inode->i_mapping->a_ops = &ext2_aops;
1360                         inode->i_fop = &ext2_file_operations;
1361                 }
1362         } else if (S_ISDIR(inode->i_mode)) {
1363                 inode->i_op = &ext2_dir_inode_operations;
1364                 inode->i_fop = &ext2_dir_operations;
1365                 if (test_opt(inode->i_sb, NOBH))
1366                         inode->i_mapping->a_ops = &ext2_nobh_aops;
1367                 else
1368                         inode->i_mapping->a_ops = &ext2_aops;
1369         } else if (S_ISLNK(inode->i_mode)) {
1370                 if (ext2_inode_is_fast_symlink(inode)) {
1371                         inode->i_op = &ext2_fast_symlink_inode_operations;
1372                         nd_terminate_link(ei->i_data, inode->i_size,
1373                                 sizeof(ei->i_data) - 1);
1374                 } else {
1375                         inode->i_op = &ext2_symlink_inode_operations;
1376                         if (test_opt(inode->i_sb, NOBH))
1377                                 inode->i_mapping->a_ops = &ext2_nobh_aops;
1378                         else
1379                                 inode->i_mapping->a_ops = &ext2_aops;
1380                 }
1381         } else {
1382                 inode->i_op = &ext2_special_inode_operations;
1383                 if (raw_inode->i_block[0])
1384                         init_special_inode(inode, inode->i_mode,
1385                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1386                 else 
1387                         init_special_inode(inode, inode->i_mode,
1388                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1389         }
1390         brelse (bh);
1391         ext2_set_inode_flags(inode);
1392         unlock_new_inode(inode);
1393         return inode;
1394         
1395 bad_inode:
1396         iget_failed(inode);
1397         return ERR_PTR(ret);
1398 }
1399
1400 static int __ext2_write_inode(struct inode *inode, int do_sync)
1401 {
1402         struct ext2_inode_info *ei = EXT2_I(inode);
1403         struct super_block *sb = inode->i_sb;
1404         ino_t ino = inode->i_ino;
1405         uid_t uid = inode->i_uid;
1406         gid_t gid = inode->i_gid;
1407         struct buffer_head * bh;
1408         struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1409         int n;
1410         int err = 0;
1411
1412         if (IS_ERR(raw_inode))
1413                 return -EIO;
1414
1415         /* For fields not not tracking in the in-memory inode,
1416          * initialise them to zero for new inodes. */
1417         if (ei->i_state & EXT2_STATE_NEW)
1418                 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1419
1420         ext2_get_inode_flags(ei);
1421         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1422         if (!(test_opt(sb, NO_UID32))) {
1423                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1424                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1425 /*
1426  * Fix up interoperability with old kernels. Otherwise, old inodes get
1427  * re-used with the upper 16 bits of the uid/gid intact
1428  */
1429                 if (!ei->i_dtime) {
1430                         raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1431                         raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1432                 } else {
1433                         raw_inode->i_uid_high = 0;
1434                         raw_inode->i_gid_high = 0;
1435                 }
1436         } else {
1437                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1438                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1439                 raw_inode->i_uid_high = 0;
1440                 raw_inode->i_gid_high = 0;
1441         }
1442         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1443         raw_inode->i_size = cpu_to_le32(inode->i_size);
1444         raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1445         raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1446         raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1447
1448         raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1449         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1450         raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1451         raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1452         raw_inode->i_frag = ei->i_frag_no;
1453         raw_inode->i_fsize = ei->i_frag_size;
1454         raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1455         if (!S_ISREG(inode->i_mode))
1456                 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1457         else {
1458                 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1459                 if (inode->i_size > 0x7fffffffULL) {
1460                         if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1461                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1462                             EXT2_SB(sb)->s_es->s_rev_level ==
1463                                         cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1464                                /* If this is the first large file
1465                                 * created, add a flag to the superblock.
1466                                 */
1467                                 spin_lock(&EXT2_SB(sb)->s_lock);
1468                                 ext2_update_dynamic_rev(sb);
1469                                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1470                                         EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1471                                 spin_unlock(&EXT2_SB(sb)->s_lock);
1472                                 ext2_write_super(sb);
1473                         }
1474                 }
1475         }
1476         
1477         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1478         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1479                 if (old_valid_dev(inode->i_rdev)) {
1480                         raw_inode->i_block[0] =
1481                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1482                         raw_inode->i_block[1] = 0;
1483                 } else {
1484                         raw_inode->i_block[0] = 0;
1485                         raw_inode->i_block[1] =
1486                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1487                         raw_inode->i_block[2] = 0;
1488                 }
1489         } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1490                 raw_inode->i_block[n] = ei->i_data[n];
1491         mark_buffer_dirty(bh);
1492         if (do_sync) {
1493                 sync_dirty_buffer(bh);
1494                 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1495                         printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1496                                 sb->s_id, (unsigned long) ino);
1497                         err = -EIO;
1498                 }
1499         }
1500         ei->i_state &= ~EXT2_STATE_NEW;
1501         brelse (bh);
1502         return err;
1503 }
1504
1505 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1506 {
1507         return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1508 }
1509
1510 int ext2_sync_inode(struct inode *inode)
1511 {
1512         struct writeback_control wbc = {
1513                 .sync_mode = WB_SYNC_ALL,
1514                 .nr_to_write = 0,       /* sys_fsync did this */
1515         };
1516         return sync_inode(inode, &wbc);
1517 }
1518
1519 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1520 {
1521         struct inode *inode = dentry->d_inode;
1522         int error;
1523
1524         error = inode_change_ok(inode, iattr);
1525         if (error)
1526                 return error;
1527
1528         if (is_quota_modification(inode, iattr))
1529                 dquot_initialize(inode);
1530         if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1531             (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1532                 error = dquot_transfer(inode, iattr);
1533                 if (error)
1534                         return error;
1535         }
1536         if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1537                 error = ext2_setsize(inode, iattr->ia_size);
1538                 if (error)
1539                         return error;
1540         }
1541         setattr_copy(inode, iattr);
1542         if (iattr->ia_valid & ATTR_MODE)
1543                 error = ext2_acl_chmod(inode);
1544         mark_inode_dirty(inode);
1545
1546         return error;
1547 }