]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/ceph/messenger.c
ceph: specify supported features in super.h
[net-next-2.6.git] / fs / ceph / messenger.c
1 #include "ceph_debug.h"
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <net/tcp.h>
13
14 #include "super.h"
15 #include "messenger.h"
16 #include "decode.h"
17 #include "pagelist.h"
18
19 /*
20  * Ceph uses the messenger to exchange ceph_msg messages with other
21  * hosts in the system.  The messenger provides ordered and reliable
22  * delivery.  We tolerate TCP disconnects by reconnecting (with
23  * exponential backoff) in the case of a fault (disconnection, bad
24  * crc, protocol error).  Acks allow sent messages to be discarded by
25  * the sender.
26  */
27
28 /* static tag bytes (protocol control messages) */
29 static char tag_msg = CEPH_MSGR_TAG_MSG;
30 static char tag_ack = CEPH_MSGR_TAG_ACK;
31 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
32
33 #ifdef CONFIG_LOCKDEP
34 static struct lock_class_key socket_class;
35 #endif
36
37
38 static void queue_con(struct ceph_connection *con);
39 static void con_work(struct work_struct *);
40 static void ceph_fault(struct ceph_connection *con);
41
42 /*
43  * nicely render a sockaddr as a string.
44  */
45 #define MAX_ADDR_STR 20
46 #define MAX_ADDR_STR_LEN 60
47 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
48 static DEFINE_SPINLOCK(addr_str_lock);
49 static int last_addr_str;
50
51 const char *pr_addr(const struct sockaddr_storage *ss)
52 {
53         int i;
54         char *s;
55         struct sockaddr_in *in4 = (void *)ss;
56         struct sockaddr_in6 *in6 = (void *)ss;
57
58         spin_lock(&addr_str_lock);
59         i = last_addr_str++;
60         if (last_addr_str == MAX_ADDR_STR)
61                 last_addr_str = 0;
62         spin_unlock(&addr_str_lock);
63         s = addr_str[i];
64
65         switch (ss->ss_family) {
66         case AF_INET:
67                 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
68                          (unsigned int)ntohs(in4->sin_port));
69                 break;
70
71         case AF_INET6:
72                 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
73                          (unsigned int)ntohs(in6->sin6_port));
74                 break;
75
76         default:
77                 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
78         }
79
80         return s;
81 }
82
83 static void encode_my_addr(struct ceph_messenger *msgr)
84 {
85         memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
86         ceph_encode_addr(&msgr->my_enc_addr);
87 }
88
89 /*
90  * work queue for all reading and writing to/from the socket.
91  */
92 struct workqueue_struct *ceph_msgr_wq;
93
94 int __init ceph_msgr_init(void)
95 {
96         ceph_msgr_wq = create_workqueue("ceph-msgr");
97         if (IS_ERR(ceph_msgr_wq)) {
98                 int ret = PTR_ERR(ceph_msgr_wq);
99                 pr_err("msgr_init failed to create workqueue: %d\n", ret);
100                 ceph_msgr_wq = NULL;
101                 return ret;
102         }
103         return 0;
104 }
105
106 void ceph_msgr_exit(void)
107 {
108         destroy_workqueue(ceph_msgr_wq);
109 }
110
111 void ceph_msgr_flush(void)
112 {
113         flush_workqueue(ceph_msgr_wq);
114 }
115
116
117 /*
118  * socket callback functions
119  */
120
121 /* data available on socket, or listen socket received a connect */
122 static void ceph_data_ready(struct sock *sk, int count_unused)
123 {
124         struct ceph_connection *con =
125                 (struct ceph_connection *)sk->sk_user_data;
126         if (sk->sk_state != TCP_CLOSE_WAIT) {
127                 dout("ceph_data_ready on %p state = %lu, queueing work\n",
128                      con, con->state);
129                 queue_con(con);
130         }
131 }
132
133 /* socket has buffer space for writing */
134 static void ceph_write_space(struct sock *sk)
135 {
136         struct ceph_connection *con =
137                 (struct ceph_connection *)sk->sk_user_data;
138
139         /* only queue to workqueue if there is data we want to write. */
140         if (test_bit(WRITE_PENDING, &con->state)) {
141                 dout("ceph_write_space %p queueing write work\n", con);
142                 queue_con(con);
143         } else {
144                 dout("ceph_write_space %p nothing to write\n", con);
145         }
146
147         /* since we have our own write_space, clear the SOCK_NOSPACE flag */
148         clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
149 }
150
151 /* socket's state has changed */
152 static void ceph_state_change(struct sock *sk)
153 {
154         struct ceph_connection *con =
155                 (struct ceph_connection *)sk->sk_user_data;
156
157         dout("ceph_state_change %p state = %lu sk_state = %u\n",
158              con, con->state, sk->sk_state);
159
160         if (test_bit(CLOSED, &con->state))
161                 return;
162
163         switch (sk->sk_state) {
164         case TCP_CLOSE:
165                 dout("ceph_state_change TCP_CLOSE\n");
166         case TCP_CLOSE_WAIT:
167                 dout("ceph_state_change TCP_CLOSE_WAIT\n");
168                 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
169                         if (test_bit(CONNECTING, &con->state))
170                                 con->error_msg = "connection failed";
171                         else
172                                 con->error_msg = "socket closed";
173                         queue_con(con);
174                 }
175                 break;
176         case TCP_ESTABLISHED:
177                 dout("ceph_state_change TCP_ESTABLISHED\n");
178                 queue_con(con);
179                 break;
180         }
181 }
182
183 /*
184  * set up socket callbacks
185  */
186 static void set_sock_callbacks(struct socket *sock,
187                                struct ceph_connection *con)
188 {
189         struct sock *sk = sock->sk;
190         sk->sk_user_data = (void *)con;
191         sk->sk_data_ready = ceph_data_ready;
192         sk->sk_write_space = ceph_write_space;
193         sk->sk_state_change = ceph_state_change;
194 }
195
196
197 /*
198  * socket helpers
199  */
200
201 /*
202  * initiate connection to a remote socket.
203  */
204 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
205 {
206         struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
207         struct socket *sock;
208         int ret;
209
210         BUG_ON(con->sock);
211         ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
212                                IPPROTO_TCP, &sock);
213         if (ret)
214                 return ERR_PTR(ret);
215         con->sock = sock;
216         sock->sk->sk_allocation = GFP_NOFS;
217
218 #ifdef CONFIG_LOCKDEP
219         lockdep_set_class(&sock->sk->sk_lock, &socket_class);
220 #endif
221
222         set_sock_callbacks(sock, con);
223
224         dout("connect %s\n", pr_addr(&con->peer_addr.in_addr));
225
226         ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
227                                  O_NONBLOCK);
228         if (ret == -EINPROGRESS) {
229                 dout("connect %s EINPROGRESS sk_state = %u\n",
230                      pr_addr(&con->peer_addr.in_addr),
231                      sock->sk->sk_state);
232                 ret = 0;
233         }
234         if (ret < 0) {
235                 pr_err("connect %s error %d\n",
236                        pr_addr(&con->peer_addr.in_addr), ret);
237                 sock_release(sock);
238                 con->sock = NULL;
239                 con->error_msg = "connect error";
240         }
241
242         if (ret < 0)
243                 return ERR_PTR(ret);
244         return sock;
245 }
246
247 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
248 {
249         struct kvec iov = {buf, len};
250         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
251
252         return kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
253 }
254
255 /*
256  * write something.  @more is true if caller will be sending more data
257  * shortly.
258  */
259 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
260                      size_t kvlen, size_t len, int more)
261 {
262         struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
263
264         if (more)
265                 msg.msg_flags |= MSG_MORE;
266         else
267                 msg.msg_flags |= MSG_EOR;  /* superfluous, but what the hell */
268
269         return kernel_sendmsg(sock, &msg, iov, kvlen, len);
270 }
271
272
273 /*
274  * Shutdown/close the socket for the given connection.
275  */
276 static int con_close_socket(struct ceph_connection *con)
277 {
278         int rc;
279
280         dout("con_close_socket on %p sock %p\n", con, con->sock);
281         if (!con->sock)
282                 return 0;
283         set_bit(SOCK_CLOSED, &con->state);
284         rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
285         sock_release(con->sock);
286         con->sock = NULL;
287         clear_bit(SOCK_CLOSED, &con->state);
288         return rc;
289 }
290
291 /*
292  * Reset a connection.  Discard all incoming and outgoing messages
293  * and clear *_seq state.
294  */
295 static void ceph_msg_remove(struct ceph_msg *msg)
296 {
297         list_del_init(&msg->list_head);
298         ceph_msg_put(msg);
299 }
300 static void ceph_msg_remove_list(struct list_head *head)
301 {
302         while (!list_empty(head)) {
303                 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
304                                                         list_head);
305                 ceph_msg_remove(msg);
306         }
307 }
308
309 static void reset_connection(struct ceph_connection *con)
310 {
311         /* reset connection, out_queue, msg_ and connect_seq */
312         /* discard existing out_queue and msg_seq */
313         ceph_msg_remove_list(&con->out_queue);
314         ceph_msg_remove_list(&con->out_sent);
315
316         if (con->in_msg) {
317                 ceph_msg_put(con->in_msg);
318                 con->in_msg = NULL;
319         }
320
321         con->connect_seq = 0;
322         con->out_seq = 0;
323         if (con->out_msg) {
324                 ceph_msg_put(con->out_msg);
325                 con->out_msg = NULL;
326         }
327         con->out_keepalive_pending = false;
328         con->in_seq = 0;
329         con->in_seq_acked = 0;
330 }
331
332 /*
333  * mark a peer down.  drop any open connections.
334  */
335 void ceph_con_close(struct ceph_connection *con)
336 {
337         dout("con_close %p peer %s\n", con, pr_addr(&con->peer_addr.in_addr));
338         set_bit(CLOSED, &con->state);  /* in case there's queued work */
339         clear_bit(STANDBY, &con->state);  /* avoid connect_seq bump */
340         clear_bit(LOSSYTX, &con->state);  /* so we retry next connect */
341         clear_bit(KEEPALIVE_PENDING, &con->state);
342         clear_bit(WRITE_PENDING, &con->state);
343         mutex_lock(&con->mutex);
344         reset_connection(con);
345         con->peer_global_seq = 0;
346         cancel_delayed_work(&con->work);
347         mutex_unlock(&con->mutex);
348         queue_con(con);
349 }
350
351 /*
352  * Reopen a closed connection, with a new peer address.
353  */
354 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
355 {
356         dout("con_open %p %s\n", con, pr_addr(&addr->in_addr));
357         set_bit(OPENING, &con->state);
358         clear_bit(CLOSED, &con->state);
359         memcpy(&con->peer_addr, addr, sizeof(*addr));
360         con->delay = 0;      /* reset backoff memory */
361         queue_con(con);
362 }
363
364 /*
365  * return true if this connection ever successfully opened
366  */
367 bool ceph_con_opened(struct ceph_connection *con)
368 {
369         return con->connect_seq > 0;
370 }
371
372 /*
373  * generic get/put
374  */
375 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
376 {
377         dout("con_get %p nref = %d -> %d\n", con,
378              atomic_read(&con->nref), atomic_read(&con->nref) + 1);
379         if (atomic_inc_not_zero(&con->nref))
380                 return con;
381         return NULL;
382 }
383
384 void ceph_con_put(struct ceph_connection *con)
385 {
386         dout("con_put %p nref = %d -> %d\n", con,
387              atomic_read(&con->nref), atomic_read(&con->nref) - 1);
388         BUG_ON(atomic_read(&con->nref) == 0);
389         if (atomic_dec_and_test(&con->nref)) {
390                 BUG_ON(con->sock);
391                 kfree(con);
392         }
393 }
394
395 /*
396  * initialize a new connection.
397  */
398 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
399 {
400         dout("con_init %p\n", con);
401         memset(con, 0, sizeof(*con));
402         atomic_set(&con->nref, 1);
403         con->msgr = msgr;
404         mutex_init(&con->mutex);
405         INIT_LIST_HEAD(&con->out_queue);
406         INIT_LIST_HEAD(&con->out_sent);
407         INIT_DELAYED_WORK(&con->work, con_work);
408 }
409
410
411 /*
412  * We maintain a global counter to order connection attempts.  Get
413  * a unique seq greater than @gt.
414  */
415 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
416 {
417         u32 ret;
418
419         spin_lock(&msgr->global_seq_lock);
420         if (msgr->global_seq < gt)
421                 msgr->global_seq = gt;
422         ret = ++msgr->global_seq;
423         spin_unlock(&msgr->global_seq_lock);
424         return ret;
425 }
426
427
428 /*
429  * Prepare footer for currently outgoing message, and finish things
430  * off.  Assumes out_kvec* are already valid.. we just add on to the end.
431  */
432 static void prepare_write_message_footer(struct ceph_connection *con, int v)
433 {
434         struct ceph_msg *m = con->out_msg;
435
436         dout("prepare_write_message_footer %p\n", con);
437         con->out_kvec_is_msg = true;
438         con->out_kvec[v].iov_base = &m->footer;
439         con->out_kvec[v].iov_len = sizeof(m->footer);
440         con->out_kvec_bytes += sizeof(m->footer);
441         con->out_kvec_left++;
442         con->out_more = m->more_to_follow;
443         con->out_msg_done = true;
444 }
445
446 /*
447  * Prepare headers for the next outgoing message.
448  */
449 static void prepare_write_message(struct ceph_connection *con)
450 {
451         struct ceph_msg *m;
452         int v = 0;
453
454         con->out_kvec_bytes = 0;
455         con->out_kvec_is_msg = true;
456         con->out_msg_done = false;
457
458         /* Sneak an ack in there first?  If we can get it into the same
459          * TCP packet that's a good thing. */
460         if (con->in_seq > con->in_seq_acked) {
461                 con->in_seq_acked = con->in_seq;
462                 con->out_kvec[v].iov_base = &tag_ack;
463                 con->out_kvec[v++].iov_len = 1;
464                 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
465                 con->out_kvec[v].iov_base = &con->out_temp_ack;
466                 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
467                 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
468         }
469
470         m = list_first_entry(&con->out_queue,
471                        struct ceph_msg, list_head);
472         con->out_msg = m;
473         if (test_bit(LOSSYTX, &con->state)) {
474                 list_del_init(&m->list_head);
475         } else {
476                 /* put message on sent list */
477                 ceph_msg_get(m);
478                 list_move_tail(&m->list_head, &con->out_sent);
479         }
480
481         /*
482          * only assign outgoing seq # if we haven't sent this message
483          * yet.  if it is requeued, resend with it's original seq.
484          */
485         if (m->needs_out_seq) {
486                 m->hdr.seq = cpu_to_le64(++con->out_seq);
487                 m->needs_out_seq = false;
488         }
489
490         dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
491              m, con->out_seq, le16_to_cpu(m->hdr.type),
492              le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
493              le32_to_cpu(m->hdr.data_len),
494              m->nr_pages);
495         BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
496
497         /* tag + hdr + front + middle */
498         con->out_kvec[v].iov_base = &tag_msg;
499         con->out_kvec[v++].iov_len = 1;
500         con->out_kvec[v].iov_base = &m->hdr;
501         con->out_kvec[v++].iov_len = sizeof(m->hdr);
502         con->out_kvec[v++] = m->front;
503         if (m->middle)
504                 con->out_kvec[v++] = m->middle->vec;
505         con->out_kvec_left = v;
506         con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
507                 (m->middle ? m->middle->vec.iov_len : 0);
508         con->out_kvec_cur = con->out_kvec;
509
510         /* fill in crc (except data pages), footer */
511         con->out_msg->hdr.crc =
512                 cpu_to_le32(crc32c(0, (void *)&m->hdr,
513                                       sizeof(m->hdr) - sizeof(m->hdr.crc)));
514         con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
515         con->out_msg->footer.front_crc =
516                 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
517         if (m->middle)
518                 con->out_msg->footer.middle_crc =
519                         cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
520                                            m->middle->vec.iov_len));
521         else
522                 con->out_msg->footer.middle_crc = 0;
523         con->out_msg->footer.data_crc = 0;
524         dout("prepare_write_message front_crc %u data_crc %u\n",
525              le32_to_cpu(con->out_msg->footer.front_crc),
526              le32_to_cpu(con->out_msg->footer.middle_crc));
527
528         /* is there a data payload? */
529         if (le32_to_cpu(m->hdr.data_len) > 0) {
530                 /* initialize page iterator */
531                 con->out_msg_pos.page = 0;
532                 con->out_msg_pos.page_pos =
533                         le16_to_cpu(m->hdr.data_off) & ~PAGE_MASK;
534                 con->out_msg_pos.data_pos = 0;
535                 con->out_msg_pos.did_page_crc = 0;
536                 con->out_more = 1;  /* data + footer will follow */
537         } else {
538                 /* no, queue up footer too and be done */
539                 prepare_write_message_footer(con, v);
540         }
541
542         set_bit(WRITE_PENDING, &con->state);
543 }
544
545 /*
546  * Prepare an ack.
547  */
548 static void prepare_write_ack(struct ceph_connection *con)
549 {
550         dout("prepare_write_ack %p %llu -> %llu\n", con,
551              con->in_seq_acked, con->in_seq);
552         con->in_seq_acked = con->in_seq;
553
554         con->out_kvec[0].iov_base = &tag_ack;
555         con->out_kvec[0].iov_len = 1;
556         con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
557         con->out_kvec[1].iov_base = &con->out_temp_ack;
558         con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
559         con->out_kvec_left = 2;
560         con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
561         con->out_kvec_cur = con->out_kvec;
562         con->out_more = 1;  /* more will follow.. eventually.. */
563         set_bit(WRITE_PENDING, &con->state);
564 }
565
566 /*
567  * Prepare to write keepalive byte.
568  */
569 static void prepare_write_keepalive(struct ceph_connection *con)
570 {
571         dout("prepare_write_keepalive %p\n", con);
572         con->out_kvec[0].iov_base = &tag_keepalive;
573         con->out_kvec[0].iov_len = 1;
574         con->out_kvec_left = 1;
575         con->out_kvec_bytes = 1;
576         con->out_kvec_cur = con->out_kvec;
577         set_bit(WRITE_PENDING, &con->state);
578 }
579
580 /*
581  * Connection negotiation.
582  */
583
584 static void prepare_connect_authorizer(struct ceph_connection *con)
585 {
586         void *auth_buf;
587         int auth_len = 0;
588         int auth_protocol = 0;
589
590         mutex_unlock(&con->mutex);
591         if (con->ops->get_authorizer)
592                 con->ops->get_authorizer(con, &auth_buf, &auth_len,
593                                          &auth_protocol, &con->auth_reply_buf,
594                                          &con->auth_reply_buf_len,
595                                          con->auth_retry);
596         mutex_lock(&con->mutex);
597
598         con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
599         con->out_connect.authorizer_len = cpu_to_le32(auth_len);
600
601         con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
602         con->out_kvec[con->out_kvec_left].iov_len = auth_len;
603         con->out_kvec_left++;
604         con->out_kvec_bytes += auth_len;
605 }
606
607 /*
608  * We connected to a peer and are saying hello.
609  */
610 static void prepare_write_banner(struct ceph_messenger *msgr,
611                                  struct ceph_connection *con)
612 {
613         int len = strlen(CEPH_BANNER);
614
615         con->out_kvec[0].iov_base = CEPH_BANNER;
616         con->out_kvec[0].iov_len = len;
617         con->out_kvec[1].iov_base = &msgr->my_enc_addr;
618         con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
619         con->out_kvec_left = 2;
620         con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
621         con->out_kvec_cur = con->out_kvec;
622         con->out_more = 0;
623         set_bit(WRITE_PENDING, &con->state);
624 }
625
626 static void prepare_write_connect(struct ceph_messenger *msgr,
627                                   struct ceph_connection *con,
628                                   int after_banner)
629 {
630         unsigned global_seq = get_global_seq(con->msgr, 0);
631         int proto;
632
633         switch (con->peer_name.type) {
634         case CEPH_ENTITY_TYPE_MON:
635                 proto = CEPH_MONC_PROTOCOL;
636                 break;
637         case CEPH_ENTITY_TYPE_OSD:
638                 proto = CEPH_OSDC_PROTOCOL;
639                 break;
640         case CEPH_ENTITY_TYPE_MDS:
641                 proto = CEPH_MDSC_PROTOCOL;
642                 break;
643         default:
644                 BUG();
645         }
646
647         dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
648              con->connect_seq, global_seq, proto);
649
650         con->out_connect.features = cpu_to_le64(CEPH_FEATURE_SUPPORTED);
651         con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
652         con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
653         con->out_connect.global_seq = cpu_to_le32(global_seq);
654         con->out_connect.protocol_version = cpu_to_le32(proto);
655         con->out_connect.flags = 0;
656
657         if (!after_banner) {
658                 con->out_kvec_left = 0;
659                 con->out_kvec_bytes = 0;
660         }
661         con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
662         con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
663         con->out_kvec_left++;
664         con->out_kvec_bytes += sizeof(con->out_connect);
665         con->out_kvec_cur = con->out_kvec;
666         con->out_more = 0;
667         set_bit(WRITE_PENDING, &con->state);
668
669         prepare_connect_authorizer(con);
670 }
671
672
673 /*
674  * write as much of pending kvecs to the socket as we can.
675  *  1 -> done
676  *  0 -> socket full, but more to do
677  * <0 -> error
678  */
679 static int write_partial_kvec(struct ceph_connection *con)
680 {
681         int ret;
682
683         dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
684         while (con->out_kvec_bytes > 0) {
685                 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
686                                        con->out_kvec_left, con->out_kvec_bytes,
687                                        con->out_more);
688                 if (ret <= 0)
689                         goto out;
690                 con->out_kvec_bytes -= ret;
691                 if (con->out_kvec_bytes == 0)
692                         break;            /* done */
693                 while (ret > 0) {
694                         if (ret >= con->out_kvec_cur->iov_len) {
695                                 ret -= con->out_kvec_cur->iov_len;
696                                 con->out_kvec_cur++;
697                                 con->out_kvec_left--;
698                         } else {
699                                 con->out_kvec_cur->iov_len -= ret;
700                                 con->out_kvec_cur->iov_base += ret;
701                                 ret = 0;
702                                 break;
703                         }
704                 }
705         }
706         con->out_kvec_left = 0;
707         con->out_kvec_is_msg = false;
708         ret = 1;
709 out:
710         dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
711              con->out_kvec_bytes, con->out_kvec_left, ret);
712         return ret;  /* done! */
713 }
714
715 /*
716  * Write as much message data payload as we can.  If we finish, queue
717  * up the footer.
718  *  1 -> done, footer is now queued in out_kvec[].
719  *  0 -> socket full, but more to do
720  * <0 -> error
721  */
722 static int write_partial_msg_pages(struct ceph_connection *con)
723 {
724         struct ceph_msg *msg = con->out_msg;
725         unsigned data_len = le32_to_cpu(msg->hdr.data_len);
726         size_t len;
727         int crc = con->msgr->nocrc;
728         int ret;
729
730         dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
731              con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
732              con->out_msg_pos.page_pos);
733
734         while (con->out_msg_pos.page < con->out_msg->nr_pages) {
735                 struct page *page = NULL;
736                 void *kaddr = NULL;
737
738                 /*
739                  * if we are calculating the data crc (the default), we need
740                  * to map the page.  if our pages[] has been revoked, use the
741                  * zero page.
742                  */
743                 if (msg->pages) {
744                         page = msg->pages[con->out_msg_pos.page];
745                         if (crc)
746                                 kaddr = kmap(page);
747                 } else if (msg->pagelist) {
748                         page = list_first_entry(&msg->pagelist->head,
749                                                 struct page, lru);
750                         if (crc)
751                                 kaddr = kmap(page);
752                 } else {
753                         page = con->msgr->zero_page;
754                         if (crc)
755                                 kaddr = page_address(con->msgr->zero_page);
756                 }
757                 len = min((int)(PAGE_SIZE - con->out_msg_pos.page_pos),
758                           (int)(data_len - con->out_msg_pos.data_pos));
759                 if (crc && !con->out_msg_pos.did_page_crc) {
760                         void *base = kaddr + con->out_msg_pos.page_pos;
761                         u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
762
763                         BUG_ON(kaddr == NULL);
764                         con->out_msg->footer.data_crc =
765                                 cpu_to_le32(crc32c(tmpcrc, base, len));
766                         con->out_msg_pos.did_page_crc = 1;
767                 }
768
769                 ret = kernel_sendpage(con->sock, page,
770                                       con->out_msg_pos.page_pos, len,
771                                       MSG_DONTWAIT | MSG_NOSIGNAL |
772                                       MSG_MORE);
773
774                 if (crc && (msg->pages || msg->pagelist))
775                         kunmap(page);
776
777                 if (ret <= 0)
778                         goto out;
779
780                 con->out_msg_pos.data_pos += ret;
781                 con->out_msg_pos.page_pos += ret;
782                 if (ret == len) {
783                         con->out_msg_pos.page_pos = 0;
784                         con->out_msg_pos.page++;
785                         con->out_msg_pos.did_page_crc = 0;
786                         if (msg->pagelist)
787                                 list_move_tail(&page->lru,
788                                                &msg->pagelist->head);
789                 }
790         }
791
792         dout("write_partial_msg_pages %p msg %p done\n", con, msg);
793
794         /* prepare and queue up footer, too */
795         if (!crc)
796                 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
797         con->out_kvec_bytes = 0;
798         con->out_kvec_left = 0;
799         con->out_kvec_cur = con->out_kvec;
800         prepare_write_message_footer(con, 0);
801         ret = 1;
802 out:
803         return ret;
804 }
805
806 /*
807  * write some zeros
808  */
809 static int write_partial_skip(struct ceph_connection *con)
810 {
811         int ret;
812
813         while (con->out_skip > 0) {
814                 struct kvec iov = {
815                         .iov_base = page_address(con->msgr->zero_page),
816                         .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
817                 };
818
819                 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
820                 if (ret <= 0)
821                         goto out;
822                 con->out_skip -= ret;
823         }
824         ret = 1;
825 out:
826         return ret;
827 }
828
829 /*
830  * Prepare to read connection handshake, or an ack.
831  */
832 static void prepare_read_banner(struct ceph_connection *con)
833 {
834         dout("prepare_read_banner %p\n", con);
835         con->in_base_pos = 0;
836 }
837
838 static void prepare_read_connect(struct ceph_connection *con)
839 {
840         dout("prepare_read_connect %p\n", con);
841         con->in_base_pos = 0;
842 }
843
844 static void prepare_read_ack(struct ceph_connection *con)
845 {
846         dout("prepare_read_ack %p\n", con);
847         con->in_base_pos = 0;
848 }
849
850 static void prepare_read_tag(struct ceph_connection *con)
851 {
852         dout("prepare_read_tag %p\n", con);
853         con->in_base_pos = 0;
854         con->in_tag = CEPH_MSGR_TAG_READY;
855 }
856
857 /*
858  * Prepare to read a message.
859  */
860 static int prepare_read_message(struct ceph_connection *con)
861 {
862         dout("prepare_read_message %p\n", con);
863         BUG_ON(con->in_msg != NULL);
864         con->in_base_pos = 0;
865         con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
866         return 0;
867 }
868
869
870 static int read_partial(struct ceph_connection *con,
871                         int *to, int size, void *object)
872 {
873         *to += size;
874         while (con->in_base_pos < *to) {
875                 int left = *to - con->in_base_pos;
876                 int have = size - left;
877                 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
878                 if (ret <= 0)
879                         return ret;
880                 con->in_base_pos += ret;
881         }
882         return 1;
883 }
884
885
886 /*
887  * Read all or part of the connect-side handshake on a new connection
888  */
889 static int read_partial_banner(struct ceph_connection *con)
890 {
891         int ret, to = 0;
892
893         dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
894
895         /* peer's banner */
896         ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
897         if (ret <= 0)
898                 goto out;
899         ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
900                            &con->actual_peer_addr);
901         if (ret <= 0)
902                 goto out;
903         ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
904                            &con->peer_addr_for_me);
905         if (ret <= 0)
906                 goto out;
907 out:
908         return ret;
909 }
910
911 static int read_partial_connect(struct ceph_connection *con)
912 {
913         int ret, to = 0;
914
915         dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
916
917         ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
918         if (ret <= 0)
919                 goto out;
920         ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
921                            con->auth_reply_buf);
922         if (ret <= 0)
923                 goto out;
924
925         dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
926              con, (int)con->in_reply.tag,
927              le32_to_cpu(con->in_reply.connect_seq),
928              le32_to_cpu(con->in_reply.global_seq));
929 out:
930         return ret;
931
932 }
933
934 /*
935  * Verify the hello banner looks okay.
936  */
937 static int verify_hello(struct ceph_connection *con)
938 {
939         if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
940                 pr_err("connect to %s got bad banner\n",
941                        pr_addr(&con->peer_addr.in_addr));
942                 con->error_msg = "protocol error, bad banner";
943                 return -1;
944         }
945         return 0;
946 }
947
948 static bool addr_is_blank(struct sockaddr_storage *ss)
949 {
950         switch (ss->ss_family) {
951         case AF_INET:
952                 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
953         case AF_INET6:
954                 return
955                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
956                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
957                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
958                      ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
959         }
960         return false;
961 }
962
963 static int addr_port(struct sockaddr_storage *ss)
964 {
965         switch (ss->ss_family) {
966         case AF_INET:
967                 return ntohs(((struct sockaddr_in *)ss)->sin_port);
968         case AF_INET6:
969                 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
970         }
971         return 0;
972 }
973
974 static void addr_set_port(struct sockaddr_storage *ss, int p)
975 {
976         switch (ss->ss_family) {
977         case AF_INET:
978                 ((struct sockaddr_in *)ss)->sin_port = htons(p);
979         case AF_INET6:
980                 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
981         }
982 }
983
984 /*
985  * Parse an ip[:port] list into an addr array.  Use the default
986  * monitor port if a port isn't specified.
987  */
988 int ceph_parse_ips(const char *c, const char *end,
989                    struct ceph_entity_addr *addr,
990                    int max_count, int *count)
991 {
992         int i;
993         const char *p = c;
994
995         dout("parse_ips on '%.*s'\n", (int)(end-c), c);
996         for (i = 0; i < max_count; i++) {
997                 const char *ipend;
998                 struct sockaddr_storage *ss = &addr[i].in_addr;
999                 struct sockaddr_in *in4 = (void *)ss;
1000                 struct sockaddr_in6 *in6 = (void *)ss;
1001                 int port;
1002                 char delim = ',';
1003
1004                 if (*p == '[') {
1005                         delim = ']';
1006                         p++;
1007                 }
1008
1009                 memset(ss, 0, sizeof(*ss));
1010                 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1011                              delim, &ipend))
1012                         ss->ss_family = AF_INET;
1013                 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1014                                   delim, &ipend))
1015                         ss->ss_family = AF_INET6;
1016                 else
1017                         goto bad;
1018                 p = ipend;
1019
1020                 if (delim == ']') {
1021                         if (*p != ']') {
1022                                 dout("missing matching ']'\n");
1023                                 goto bad;
1024                         }
1025                         p++;
1026                 }
1027
1028                 /* port? */
1029                 if (p < end && *p == ':') {
1030                         port = 0;
1031                         p++;
1032                         while (p < end && *p >= '0' && *p <= '9') {
1033                                 port = (port * 10) + (*p - '0');
1034                                 p++;
1035                         }
1036                         if (port > 65535 || port == 0)
1037                                 goto bad;
1038                 } else {
1039                         port = CEPH_MON_PORT;
1040                 }
1041
1042                 addr_set_port(ss, port);
1043
1044                 dout("parse_ips got %s\n", pr_addr(ss));
1045
1046                 if (p == end)
1047                         break;
1048                 if (*p != ',')
1049                         goto bad;
1050                 p++;
1051         }
1052
1053         if (p != end)
1054                 goto bad;
1055
1056         if (count)
1057                 *count = i + 1;
1058         return 0;
1059
1060 bad:
1061         pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1062         return -EINVAL;
1063 }
1064
1065 static int process_banner(struct ceph_connection *con)
1066 {
1067         dout("process_banner on %p\n", con);
1068
1069         if (verify_hello(con) < 0)
1070                 return -1;
1071
1072         ceph_decode_addr(&con->actual_peer_addr);
1073         ceph_decode_addr(&con->peer_addr_for_me);
1074
1075         /*
1076          * Make sure the other end is who we wanted.  note that the other
1077          * end may not yet know their ip address, so if it's 0.0.0.0, give
1078          * them the benefit of the doubt.
1079          */
1080         if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1081                    sizeof(con->peer_addr)) != 0 &&
1082             !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1083               con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1084                 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1085                            pr_addr(&con->peer_addr.in_addr),
1086                            (int)le32_to_cpu(con->peer_addr.nonce),
1087                            pr_addr(&con->actual_peer_addr.in_addr),
1088                            (int)le32_to_cpu(con->actual_peer_addr.nonce));
1089                 con->error_msg = "wrong peer at address";
1090                 return -1;
1091         }
1092
1093         /*
1094          * did we learn our address?
1095          */
1096         if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1097                 int port = addr_port(&con->msgr->inst.addr.in_addr);
1098
1099                 memcpy(&con->msgr->inst.addr.in_addr,
1100                        &con->peer_addr_for_me.in_addr,
1101                        sizeof(con->peer_addr_for_me.in_addr));
1102                 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1103                 encode_my_addr(con->msgr);
1104                 dout("process_banner learned my addr is %s\n",
1105                      pr_addr(&con->msgr->inst.addr.in_addr));
1106         }
1107
1108         set_bit(NEGOTIATING, &con->state);
1109         prepare_read_connect(con);
1110         return 0;
1111 }
1112
1113 static void fail_protocol(struct ceph_connection *con)
1114 {
1115         reset_connection(con);
1116         set_bit(CLOSED, &con->state);  /* in case there's queued work */
1117
1118         mutex_unlock(&con->mutex);
1119         if (con->ops->bad_proto)
1120                 con->ops->bad_proto(con);
1121         mutex_lock(&con->mutex);
1122 }
1123
1124 static int process_connect(struct ceph_connection *con)
1125 {
1126         u64 sup_feat = CEPH_FEATURE_SUPPORTED;
1127         u64 req_feat = CEPH_FEATURE_REQUIRED;
1128         u64 server_feat = le64_to_cpu(con->in_reply.features);
1129
1130         dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1131
1132         switch (con->in_reply.tag) {
1133         case CEPH_MSGR_TAG_FEATURES:
1134                 pr_err("%s%lld %s feature set mismatch,"
1135                        " my %llx < server's %llx, missing %llx\n",
1136                        ENTITY_NAME(con->peer_name),
1137                        pr_addr(&con->peer_addr.in_addr),
1138                        sup_feat, server_feat, server_feat & ~sup_feat);
1139                 con->error_msg = "missing required protocol features";
1140                 fail_protocol(con);
1141                 return -1;
1142
1143         case CEPH_MSGR_TAG_BADPROTOVER:
1144                 pr_err("%s%lld %s protocol version mismatch,"
1145                        " my %d != server's %d\n",
1146                        ENTITY_NAME(con->peer_name),
1147                        pr_addr(&con->peer_addr.in_addr),
1148                        le32_to_cpu(con->out_connect.protocol_version),
1149                        le32_to_cpu(con->in_reply.protocol_version));
1150                 con->error_msg = "protocol version mismatch";
1151                 fail_protocol(con);
1152                 return -1;
1153
1154         case CEPH_MSGR_TAG_BADAUTHORIZER:
1155                 con->auth_retry++;
1156                 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1157                      con->auth_retry);
1158                 if (con->auth_retry == 2) {
1159                         con->error_msg = "connect authorization failure";
1160                         reset_connection(con);
1161                         set_bit(CLOSED, &con->state);
1162                         return -1;
1163                 }
1164                 con->auth_retry = 1;
1165                 prepare_write_connect(con->msgr, con, 0);
1166                 prepare_read_connect(con);
1167                 break;
1168
1169         case CEPH_MSGR_TAG_RESETSESSION:
1170                 /*
1171                  * If we connected with a large connect_seq but the peer
1172                  * has no record of a session with us (no connection, or
1173                  * connect_seq == 0), they will send RESETSESION to indicate
1174                  * that they must have reset their session, and may have
1175                  * dropped messages.
1176                  */
1177                 dout("process_connect got RESET peer seq %u\n",
1178                      le32_to_cpu(con->in_connect.connect_seq));
1179                 pr_err("%s%lld %s connection reset\n",
1180                        ENTITY_NAME(con->peer_name),
1181                        pr_addr(&con->peer_addr.in_addr));
1182                 reset_connection(con);
1183                 prepare_write_connect(con->msgr, con, 0);
1184                 prepare_read_connect(con);
1185
1186                 /* Tell ceph about it. */
1187                 mutex_unlock(&con->mutex);
1188                 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1189                 if (con->ops->peer_reset)
1190                         con->ops->peer_reset(con);
1191                 mutex_lock(&con->mutex);
1192                 break;
1193
1194         case CEPH_MSGR_TAG_RETRY_SESSION:
1195                 /*
1196                  * If we sent a smaller connect_seq than the peer has, try
1197                  * again with a larger value.
1198                  */
1199                 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1200                      le32_to_cpu(con->out_connect.connect_seq),
1201                      le32_to_cpu(con->in_connect.connect_seq));
1202                 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1203                 prepare_write_connect(con->msgr, con, 0);
1204                 prepare_read_connect(con);
1205                 break;
1206
1207         case CEPH_MSGR_TAG_RETRY_GLOBAL:
1208                 /*
1209                  * If we sent a smaller global_seq than the peer has, try
1210                  * again with a larger value.
1211                  */
1212                 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1213                      con->peer_global_seq,
1214                      le32_to_cpu(con->in_connect.global_seq));
1215                 get_global_seq(con->msgr,
1216                                le32_to_cpu(con->in_connect.global_seq));
1217                 prepare_write_connect(con->msgr, con, 0);
1218                 prepare_read_connect(con);
1219                 break;
1220
1221         case CEPH_MSGR_TAG_READY:
1222                 if (req_feat & ~server_feat) {
1223                         pr_err("%s%lld %s protocol feature mismatch,"
1224                                " my required %llx > server's %llx, need %llx\n",
1225                                ENTITY_NAME(con->peer_name),
1226                                pr_addr(&con->peer_addr.in_addr),
1227                                req_feat, server_feat, req_feat & ~server_feat);
1228                         con->error_msg = "missing required protocol features";
1229                         fail_protocol(con);
1230                         return -1;
1231                 }
1232                 clear_bit(CONNECTING, &con->state);
1233                 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1234                 con->connect_seq++;
1235                 con->peer_features = server_feat;
1236                 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1237                      con->peer_global_seq,
1238                      le32_to_cpu(con->in_reply.connect_seq),
1239                      con->connect_seq);
1240                 WARN_ON(con->connect_seq !=
1241                         le32_to_cpu(con->in_reply.connect_seq));
1242
1243                 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1244                         set_bit(LOSSYTX, &con->state);
1245
1246                 prepare_read_tag(con);
1247                 break;
1248
1249         case CEPH_MSGR_TAG_WAIT:
1250                 /*
1251                  * If there is a connection race (we are opening
1252                  * connections to each other), one of us may just have
1253                  * to WAIT.  This shouldn't happen if we are the
1254                  * client.
1255                  */
1256                 pr_err("process_connect peer connecting WAIT\n");
1257
1258         default:
1259                 pr_err("connect protocol error, will retry\n");
1260                 con->error_msg = "protocol error, garbage tag during connect";
1261                 return -1;
1262         }
1263         return 0;
1264 }
1265
1266
1267 /*
1268  * read (part of) an ack
1269  */
1270 static int read_partial_ack(struct ceph_connection *con)
1271 {
1272         int to = 0;
1273
1274         return read_partial(con, &to, sizeof(con->in_temp_ack),
1275                             &con->in_temp_ack);
1276 }
1277
1278
1279 /*
1280  * We can finally discard anything that's been acked.
1281  */
1282 static void process_ack(struct ceph_connection *con)
1283 {
1284         struct ceph_msg *m;
1285         u64 ack = le64_to_cpu(con->in_temp_ack);
1286         u64 seq;
1287
1288         while (!list_empty(&con->out_sent)) {
1289                 m = list_first_entry(&con->out_sent, struct ceph_msg,
1290                                      list_head);
1291                 seq = le64_to_cpu(m->hdr.seq);
1292                 if (seq > ack)
1293                         break;
1294                 dout("got ack for seq %llu type %d at %p\n", seq,
1295                      le16_to_cpu(m->hdr.type), m);
1296                 ceph_msg_remove(m);
1297         }
1298         prepare_read_tag(con);
1299 }
1300
1301
1302
1303
1304 static int read_partial_message_section(struct ceph_connection *con,
1305                                         struct kvec *section, unsigned int sec_len,
1306                                         u32 *crc)
1307 {
1308         int left;
1309         int ret;
1310
1311         BUG_ON(!section);
1312
1313         while (section->iov_len < sec_len) {
1314                 BUG_ON(section->iov_base == NULL);
1315                 left = sec_len - section->iov_len;
1316                 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1317                                        section->iov_len, left);
1318                 if (ret <= 0)
1319                         return ret;
1320                 section->iov_len += ret;
1321                 if (section->iov_len == sec_len)
1322                         *crc = crc32c(0, section->iov_base,
1323                                       section->iov_len);
1324         }
1325
1326         return 1;
1327 }
1328
1329 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1330                                 struct ceph_msg_header *hdr,
1331                                 int *skip);
1332 /*
1333  * read (part of) a message.
1334  */
1335 static int read_partial_message(struct ceph_connection *con)
1336 {
1337         struct ceph_msg *m = con->in_msg;
1338         void *p;
1339         int ret;
1340         int to, left;
1341         unsigned front_len, middle_len, data_len, data_off;
1342         int datacrc = con->msgr->nocrc;
1343         int skip;
1344         u64 seq;
1345
1346         dout("read_partial_message con %p msg %p\n", con, m);
1347
1348         /* header */
1349         while (con->in_base_pos < sizeof(con->in_hdr)) {
1350                 left = sizeof(con->in_hdr) - con->in_base_pos;
1351                 ret = ceph_tcp_recvmsg(con->sock,
1352                                        (char *)&con->in_hdr + con->in_base_pos,
1353                                        left);
1354                 if (ret <= 0)
1355                         return ret;
1356                 con->in_base_pos += ret;
1357                 if (con->in_base_pos == sizeof(con->in_hdr)) {
1358                         u32 crc = crc32c(0, (void *)&con->in_hdr,
1359                                  sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1360                         if (crc != le32_to_cpu(con->in_hdr.crc)) {
1361                                 pr_err("read_partial_message bad hdr "
1362                                        " crc %u != expected %u\n",
1363                                        crc, con->in_hdr.crc);
1364                                 return -EBADMSG;
1365                         }
1366                 }
1367         }
1368         front_len = le32_to_cpu(con->in_hdr.front_len);
1369         if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1370                 return -EIO;
1371         middle_len = le32_to_cpu(con->in_hdr.middle_len);
1372         if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1373                 return -EIO;
1374         data_len = le32_to_cpu(con->in_hdr.data_len);
1375         if (data_len > CEPH_MSG_MAX_DATA_LEN)
1376                 return -EIO;
1377         data_off = le16_to_cpu(con->in_hdr.data_off);
1378
1379         /* verify seq# */
1380         seq = le64_to_cpu(con->in_hdr.seq);
1381         if ((s64)seq - (s64)con->in_seq < 1) {
1382                 pr_info("skipping %s%lld %s seq %lld, expected %lld\n",
1383                         ENTITY_NAME(con->peer_name),
1384                         pr_addr(&con->peer_addr.in_addr),
1385                         seq, con->in_seq + 1);
1386                 con->in_base_pos = -front_len - middle_len - data_len -
1387                         sizeof(m->footer);
1388                 con->in_tag = CEPH_MSGR_TAG_READY;
1389                 con->in_seq++;
1390                 return 0;
1391         } else if ((s64)seq - (s64)con->in_seq > 1) {
1392                 pr_err("read_partial_message bad seq %lld expected %lld\n",
1393                        seq, con->in_seq + 1);
1394                 con->error_msg = "bad message sequence # for incoming message";
1395                 return -EBADMSG;
1396         }
1397
1398         /* allocate message? */
1399         if (!con->in_msg) {
1400                 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1401                      con->in_hdr.front_len, con->in_hdr.data_len);
1402                 skip = 0;
1403                 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1404                 if (skip) {
1405                         /* skip this message */
1406                         dout("alloc_msg said skip message\n");
1407                         BUG_ON(con->in_msg);
1408                         con->in_base_pos = -front_len - middle_len - data_len -
1409                                 sizeof(m->footer);
1410                         con->in_tag = CEPH_MSGR_TAG_READY;
1411                         con->in_seq++;
1412                         return 0;
1413                 }
1414                 if (!con->in_msg) {
1415                         con->error_msg =
1416                                 "error allocating memory for incoming message";
1417                         return -ENOMEM;
1418                 }
1419                 m = con->in_msg;
1420                 m->front.iov_len = 0;    /* haven't read it yet */
1421                 if (m->middle)
1422                         m->middle->vec.iov_len = 0;
1423
1424                 con->in_msg_pos.page = 0;
1425                 con->in_msg_pos.page_pos = data_off & ~PAGE_MASK;
1426                 con->in_msg_pos.data_pos = 0;
1427         }
1428
1429         /* front */
1430         ret = read_partial_message_section(con, &m->front, front_len,
1431                                            &con->in_front_crc);
1432         if (ret <= 0)
1433                 return ret;
1434
1435         /* middle */
1436         if (m->middle) {
1437                 ret = read_partial_message_section(con, &m->middle->vec, middle_len,
1438                                                    &con->in_middle_crc);
1439                 if (ret <= 0)
1440                         return ret;
1441         }
1442
1443         /* (page) data */
1444         while (con->in_msg_pos.data_pos < data_len) {
1445                 left = min((int)(data_len - con->in_msg_pos.data_pos),
1446                            (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1447                 BUG_ON(m->pages == NULL);
1448                 p = kmap(m->pages[con->in_msg_pos.page]);
1449                 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1450                                        left);
1451                 if (ret > 0 && datacrc)
1452                         con->in_data_crc =
1453                                 crc32c(con->in_data_crc,
1454                                           p + con->in_msg_pos.page_pos, ret);
1455                 kunmap(m->pages[con->in_msg_pos.page]);
1456                 if (ret <= 0)
1457                         return ret;
1458                 con->in_msg_pos.data_pos += ret;
1459                 con->in_msg_pos.page_pos += ret;
1460                 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1461                         con->in_msg_pos.page_pos = 0;
1462                         con->in_msg_pos.page++;
1463                 }
1464         }
1465
1466         /* footer */
1467         to = sizeof(m->hdr) + sizeof(m->footer);
1468         while (con->in_base_pos < to) {
1469                 left = to - con->in_base_pos;
1470                 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1471                                        (con->in_base_pos - sizeof(m->hdr)),
1472                                        left);
1473                 if (ret <= 0)
1474                         return ret;
1475                 con->in_base_pos += ret;
1476         }
1477         dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1478              m, front_len, m->footer.front_crc, middle_len,
1479              m->footer.middle_crc, data_len, m->footer.data_crc);
1480
1481         /* crc ok? */
1482         if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1483                 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1484                        m, con->in_front_crc, m->footer.front_crc);
1485                 return -EBADMSG;
1486         }
1487         if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1488                 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1489                        m, con->in_middle_crc, m->footer.middle_crc);
1490                 return -EBADMSG;
1491         }
1492         if (datacrc &&
1493             (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1494             con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1495                 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1496                        con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1497                 return -EBADMSG;
1498         }
1499
1500         return 1; /* done! */
1501 }
1502
1503 /*
1504  * Process message.  This happens in the worker thread.  The callback should
1505  * be careful not to do anything that waits on other incoming messages or it
1506  * may deadlock.
1507  */
1508 static void process_message(struct ceph_connection *con)
1509 {
1510         struct ceph_msg *msg;
1511
1512         msg = con->in_msg;
1513         con->in_msg = NULL;
1514
1515         /* if first message, set peer_name */
1516         if (con->peer_name.type == 0)
1517                 con->peer_name = msg->hdr.src;
1518
1519         con->in_seq++;
1520         mutex_unlock(&con->mutex);
1521
1522         dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1523              msg, le64_to_cpu(msg->hdr.seq),
1524              ENTITY_NAME(msg->hdr.src),
1525              le16_to_cpu(msg->hdr.type),
1526              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1527              le32_to_cpu(msg->hdr.front_len),
1528              le32_to_cpu(msg->hdr.data_len),
1529              con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1530         con->ops->dispatch(con, msg);
1531
1532         mutex_lock(&con->mutex);
1533         prepare_read_tag(con);
1534 }
1535
1536
1537 /*
1538  * Write something to the socket.  Called in a worker thread when the
1539  * socket appears to be writeable and we have something ready to send.
1540  */
1541 static int try_write(struct ceph_connection *con)
1542 {
1543         struct ceph_messenger *msgr = con->msgr;
1544         int ret = 1;
1545
1546         dout("try_write start %p state %lu nref %d\n", con, con->state,
1547              atomic_read(&con->nref));
1548
1549 more:
1550         dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1551
1552         /* open the socket first? */
1553         if (con->sock == NULL) {
1554                 /*
1555                  * if we were STANDBY and are reconnecting _this_
1556                  * connection, bump connect_seq now.  Always bump
1557                  * global_seq.
1558                  */
1559                 if (test_and_clear_bit(STANDBY, &con->state))
1560                         con->connect_seq++;
1561
1562                 prepare_write_banner(msgr, con);
1563                 prepare_write_connect(msgr, con, 1);
1564                 prepare_read_banner(con);
1565                 set_bit(CONNECTING, &con->state);
1566                 clear_bit(NEGOTIATING, &con->state);
1567
1568                 BUG_ON(con->in_msg);
1569                 con->in_tag = CEPH_MSGR_TAG_READY;
1570                 dout("try_write initiating connect on %p new state %lu\n",
1571                      con, con->state);
1572                 con->sock = ceph_tcp_connect(con);
1573                 if (IS_ERR(con->sock)) {
1574                         con->sock = NULL;
1575                         con->error_msg = "connect error";
1576                         ret = -1;
1577                         goto out;
1578                 }
1579         }
1580
1581 more_kvec:
1582         /* kvec data queued? */
1583         if (con->out_skip) {
1584                 ret = write_partial_skip(con);
1585                 if (ret <= 0)
1586                         goto done;
1587                 if (ret < 0) {
1588                         dout("try_write write_partial_skip err %d\n", ret);
1589                         goto done;
1590                 }
1591         }
1592         if (con->out_kvec_left) {
1593                 ret = write_partial_kvec(con);
1594                 if (ret <= 0)
1595                         goto done;
1596         }
1597
1598         /* msg pages? */
1599         if (con->out_msg) {
1600                 if (con->out_msg_done) {
1601                         ceph_msg_put(con->out_msg);
1602                         con->out_msg = NULL;   /* we're done with this one */
1603                         goto do_next;
1604                 }
1605
1606                 ret = write_partial_msg_pages(con);
1607                 if (ret == 1)
1608                         goto more_kvec;  /* we need to send the footer, too! */
1609                 if (ret == 0)
1610                         goto done;
1611                 if (ret < 0) {
1612                         dout("try_write write_partial_msg_pages err %d\n",
1613                              ret);
1614                         goto done;
1615                 }
1616         }
1617
1618 do_next:
1619         if (!test_bit(CONNECTING, &con->state)) {
1620                 /* is anything else pending? */
1621                 if (!list_empty(&con->out_queue)) {
1622                         prepare_write_message(con);
1623                         goto more;
1624                 }
1625                 if (con->in_seq > con->in_seq_acked) {
1626                         prepare_write_ack(con);
1627                         goto more;
1628                 }
1629                 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1630                         prepare_write_keepalive(con);
1631                         goto more;
1632                 }
1633         }
1634
1635         /* Nothing to do! */
1636         clear_bit(WRITE_PENDING, &con->state);
1637         dout("try_write nothing else to write.\n");
1638 done:
1639         ret = 0;
1640 out:
1641         dout("try_write done on %p\n", con);
1642         return ret;
1643 }
1644
1645
1646
1647 /*
1648  * Read what we can from the socket.
1649  */
1650 static int try_read(struct ceph_connection *con)
1651 {
1652         int ret = -1;
1653
1654         if (!con->sock)
1655                 return 0;
1656
1657         if (test_bit(STANDBY, &con->state))
1658                 return 0;
1659
1660         dout("try_read start on %p\n", con);
1661
1662 more:
1663         dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1664              con->in_base_pos);
1665         if (test_bit(CONNECTING, &con->state)) {
1666                 if (!test_bit(NEGOTIATING, &con->state)) {
1667                         dout("try_read connecting\n");
1668                         ret = read_partial_banner(con);
1669                         if (ret <= 0)
1670                                 goto done;
1671                         if (process_banner(con) < 0) {
1672                                 ret = -1;
1673                                 goto out;
1674                         }
1675                 }
1676                 ret = read_partial_connect(con);
1677                 if (ret <= 0)
1678                         goto done;
1679                 if (process_connect(con) < 0) {
1680                         ret = -1;
1681                         goto out;
1682                 }
1683                 goto more;
1684         }
1685
1686         if (con->in_base_pos < 0) {
1687                 /*
1688                  * skipping + discarding content.
1689                  *
1690                  * FIXME: there must be a better way to do this!
1691                  */
1692                 static char buf[1024];
1693                 int skip = min(1024, -con->in_base_pos);
1694                 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1695                 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1696                 if (ret <= 0)
1697                         goto done;
1698                 con->in_base_pos += ret;
1699                 if (con->in_base_pos)
1700                         goto more;
1701         }
1702         if (con->in_tag == CEPH_MSGR_TAG_READY) {
1703                 /*
1704                  * what's next?
1705                  */
1706                 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1707                 if (ret <= 0)
1708                         goto done;
1709                 dout("try_read got tag %d\n", (int)con->in_tag);
1710                 switch (con->in_tag) {
1711                 case CEPH_MSGR_TAG_MSG:
1712                         prepare_read_message(con);
1713                         break;
1714                 case CEPH_MSGR_TAG_ACK:
1715                         prepare_read_ack(con);
1716                         break;
1717                 case CEPH_MSGR_TAG_CLOSE:
1718                         set_bit(CLOSED, &con->state);   /* fixme */
1719                         goto done;
1720                 default:
1721                         goto bad_tag;
1722                 }
1723         }
1724         if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1725                 ret = read_partial_message(con);
1726                 if (ret <= 0) {
1727                         switch (ret) {
1728                         case -EBADMSG:
1729                                 con->error_msg = "bad crc";
1730                                 ret = -EIO;
1731                                 goto out;
1732                         case -EIO:
1733                                 con->error_msg = "io error";
1734                                 goto out;
1735                         default:
1736                                 goto done;
1737                         }
1738                 }
1739                 if (con->in_tag == CEPH_MSGR_TAG_READY)
1740                         goto more;
1741                 process_message(con);
1742                 goto more;
1743         }
1744         if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1745                 ret = read_partial_ack(con);
1746                 if (ret <= 0)
1747                         goto done;
1748                 process_ack(con);
1749                 goto more;
1750         }
1751
1752 done:
1753         ret = 0;
1754 out:
1755         dout("try_read done on %p\n", con);
1756         return ret;
1757
1758 bad_tag:
1759         pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1760         con->error_msg = "protocol error, garbage tag";
1761         ret = -1;
1762         goto out;
1763 }
1764
1765
1766 /*
1767  * Atomically queue work on a connection.  Bump @con reference to
1768  * avoid races with connection teardown.
1769  *
1770  * There is some trickery going on with QUEUED and BUSY because we
1771  * only want a _single_ thread operating on each connection at any
1772  * point in time, but we want to use all available CPUs.
1773  *
1774  * The worker thread only proceeds if it can atomically set BUSY.  It
1775  * clears QUEUED and does it's thing.  When it thinks it's done, it
1776  * clears BUSY, then rechecks QUEUED.. if it's set again, it loops
1777  * (tries again to set BUSY).
1778  *
1779  * To queue work, we first set QUEUED, _then_ if BUSY isn't set, we
1780  * try to queue work.  If that fails (work is already queued, or BUSY)
1781  * we give up (work also already being done or is queued) but leave QUEUED
1782  * set so that the worker thread will loop if necessary.
1783  */
1784 static void queue_con(struct ceph_connection *con)
1785 {
1786         if (test_bit(DEAD, &con->state)) {
1787                 dout("queue_con %p ignoring: DEAD\n",
1788                      con);
1789                 return;
1790         }
1791
1792         if (!con->ops->get(con)) {
1793                 dout("queue_con %p ref count 0\n", con);
1794                 return;
1795         }
1796
1797         set_bit(QUEUED, &con->state);
1798         if (test_bit(BUSY, &con->state)) {
1799                 dout("queue_con %p - already BUSY\n", con);
1800                 con->ops->put(con);
1801         } else if (!queue_work(ceph_msgr_wq, &con->work.work)) {
1802                 dout("queue_con %p - already queued\n", con);
1803                 con->ops->put(con);
1804         } else {
1805                 dout("queue_con %p\n", con);
1806         }
1807 }
1808
1809 /*
1810  * Do some work on a connection.  Drop a connection ref when we're done.
1811  */
1812 static void con_work(struct work_struct *work)
1813 {
1814         struct ceph_connection *con = container_of(work, struct ceph_connection,
1815                                                    work.work);
1816         int backoff = 0;
1817
1818 more:
1819         if (test_and_set_bit(BUSY, &con->state) != 0) {
1820                 dout("con_work %p BUSY already set\n", con);
1821                 goto out;
1822         }
1823         dout("con_work %p start, clearing QUEUED\n", con);
1824         clear_bit(QUEUED, &con->state);
1825
1826         mutex_lock(&con->mutex);
1827
1828         if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1829                 dout("con_work CLOSED\n");
1830                 con_close_socket(con);
1831                 goto done;
1832         }
1833         if (test_and_clear_bit(OPENING, &con->state)) {
1834                 /* reopen w/ new peer */
1835                 dout("con_work OPENING\n");
1836                 con_close_socket(con);
1837         }
1838
1839         if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1840             try_read(con) < 0 ||
1841             try_write(con) < 0) {
1842                 mutex_unlock(&con->mutex);
1843                 backoff = 1;
1844                 ceph_fault(con);     /* error/fault path */
1845                 goto done_unlocked;
1846         }
1847
1848 done:
1849         mutex_unlock(&con->mutex);
1850
1851 done_unlocked:
1852         clear_bit(BUSY, &con->state);
1853         dout("con->state=%lu\n", con->state);
1854         if (test_bit(QUEUED, &con->state)) {
1855                 if (!backoff || test_bit(OPENING, &con->state)) {
1856                         dout("con_work %p QUEUED reset, looping\n", con);
1857                         goto more;
1858                 }
1859                 dout("con_work %p QUEUED reset, but just faulted\n", con);
1860                 clear_bit(QUEUED, &con->state);
1861         }
1862         dout("con_work %p done\n", con);
1863
1864 out:
1865         con->ops->put(con);
1866 }
1867
1868
1869 /*
1870  * Generic error/fault handler.  A retry mechanism is used with
1871  * exponential backoff
1872  */
1873 static void ceph_fault(struct ceph_connection *con)
1874 {
1875         pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1876                pr_addr(&con->peer_addr.in_addr), con->error_msg);
1877         dout("fault %p state %lu to peer %s\n",
1878              con, con->state, pr_addr(&con->peer_addr.in_addr));
1879
1880         if (test_bit(LOSSYTX, &con->state)) {
1881                 dout("fault on LOSSYTX channel\n");
1882                 goto out;
1883         }
1884
1885         mutex_lock(&con->mutex);
1886         if (test_bit(CLOSED, &con->state))
1887                 goto out_unlock;
1888
1889         con_close_socket(con);
1890
1891         if (con->in_msg) {
1892                 ceph_msg_put(con->in_msg);
1893                 con->in_msg = NULL;
1894         }
1895
1896         /* Requeue anything that hasn't been acked */
1897         list_splice_init(&con->out_sent, &con->out_queue);
1898
1899         /* If there are no messages in the queue, place the connection
1900          * in a STANDBY state (i.e., don't try to reconnect just yet). */
1901         if (list_empty(&con->out_queue) && !con->out_keepalive_pending) {
1902                 dout("fault setting STANDBY\n");
1903                 set_bit(STANDBY, &con->state);
1904         } else {
1905                 /* retry after a delay. */
1906                 if (con->delay == 0)
1907                         con->delay = BASE_DELAY_INTERVAL;
1908                 else if (con->delay < MAX_DELAY_INTERVAL)
1909                         con->delay *= 2;
1910                 dout("fault queueing %p delay %lu\n", con, con->delay);
1911                 con->ops->get(con);
1912                 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1913                                        round_jiffies_relative(con->delay)) == 0)
1914                         con->ops->put(con);
1915         }
1916
1917 out_unlock:
1918         mutex_unlock(&con->mutex);
1919 out:
1920         /*
1921          * in case we faulted due to authentication, invalidate our
1922          * current tickets so that we can get new ones.
1923          */
1924         if (con->auth_retry && con->ops->invalidate_authorizer) {
1925                 dout("calling invalidate_authorizer()\n");
1926                 con->ops->invalidate_authorizer(con);
1927         }
1928
1929         if (con->ops->fault)
1930                 con->ops->fault(con);
1931 }
1932
1933
1934
1935 /*
1936  * create a new messenger instance
1937  */
1938 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr)
1939 {
1940         struct ceph_messenger *msgr;
1941
1942         msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
1943         if (msgr == NULL)
1944                 return ERR_PTR(-ENOMEM);
1945
1946         spin_lock_init(&msgr->global_seq_lock);
1947
1948         /* the zero page is needed if a request is "canceled" while the message
1949          * is being written over the socket */
1950         msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
1951         if (!msgr->zero_page) {
1952                 kfree(msgr);
1953                 return ERR_PTR(-ENOMEM);
1954         }
1955         kmap(msgr->zero_page);
1956
1957         if (myaddr)
1958                 msgr->inst.addr = *myaddr;
1959
1960         /* select a random nonce */
1961         msgr->inst.addr.type = 0;
1962         get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
1963         encode_my_addr(msgr);
1964
1965         dout("messenger_create %p\n", msgr);
1966         return msgr;
1967 }
1968
1969 void ceph_messenger_destroy(struct ceph_messenger *msgr)
1970 {
1971         dout("destroy %p\n", msgr);
1972         kunmap(msgr->zero_page);
1973         __free_page(msgr->zero_page);
1974         kfree(msgr);
1975         dout("destroyed messenger %p\n", msgr);
1976 }
1977
1978 /*
1979  * Queue up an outgoing message on the given connection.
1980  */
1981 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
1982 {
1983         if (test_bit(CLOSED, &con->state)) {
1984                 dout("con_send %p closed, dropping %p\n", con, msg);
1985                 ceph_msg_put(msg);
1986                 return;
1987         }
1988
1989         /* set src+dst */
1990         msg->hdr.src = con->msgr->inst.name;
1991
1992         BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
1993
1994         msg->needs_out_seq = true;
1995
1996         /* queue */
1997         mutex_lock(&con->mutex);
1998         BUG_ON(!list_empty(&msg->list_head));
1999         list_add_tail(&msg->list_head, &con->out_queue);
2000         dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2001              ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2002              ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003              le32_to_cpu(msg->hdr.front_len),
2004              le32_to_cpu(msg->hdr.middle_len),
2005              le32_to_cpu(msg->hdr.data_len));
2006         mutex_unlock(&con->mutex);
2007
2008         /* if there wasn't anything waiting to send before, queue
2009          * new work */
2010         if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2011                 queue_con(con);
2012 }
2013
2014 /*
2015  * Revoke a message that was previously queued for send
2016  */
2017 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2018 {
2019         mutex_lock(&con->mutex);
2020         if (!list_empty(&msg->list_head)) {
2021                 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2022                 list_del_init(&msg->list_head);
2023                 ceph_msg_put(msg);
2024                 msg->hdr.seq = 0;
2025         }
2026         if (con->out_msg == msg) {
2027                 dout("con_revoke %p msg %p - was sending\n", con, msg);
2028                 con->out_msg = NULL;
2029                 if (con->out_kvec_is_msg) {
2030                         con->out_skip = con->out_kvec_bytes;
2031                         con->out_kvec_is_msg = false;
2032                 }
2033                 ceph_msg_put(msg);
2034                 msg->hdr.seq = 0;
2035         }
2036         mutex_unlock(&con->mutex);
2037 }
2038
2039 /*
2040  * Revoke a message that we may be reading data into
2041  */
2042 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2043 {
2044         mutex_lock(&con->mutex);
2045         if (con->in_msg && con->in_msg == msg) {
2046                 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2047                 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2048                 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2049
2050                 /* skip rest of message */
2051                 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2052                         con->in_base_pos = con->in_base_pos -
2053                                 sizeof(struct ceph_msg_header) -
2054                                 front_len -
2055                                 middle_len -
2056                                 data_len -
2057                                 sizeof(struct ceph_msg_footer);
2058                 ceph_msg_put(con->in_msg);
2059                 con->in_msg = NULL;
2060                 con->in_tag = CEPH_MSGR_TAG_READY;
2061                 con->in_seq++;
2062         } else {
2063                 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2064                      con, con->in_msg, msg);
2065         }
2066         mutex_unlock(&con->mutex);
2067 }
2068
2069 /*
2070  * Queue a keepalive byte to ensure the tcp connection is alive.
2071  */
2072 void ceph_con_keepalive(struct ceph_connection *con)
2073 {
2074         if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2075             test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2076                 queue_con(con);
2077 }
2078
2079
2080 /*
2081  * construct a new message with given type, size
2082  * the new msg has a ref count of 1.
2083  */
2084 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2085 {
2086         struct ceph_msg *m;
2087
2088         m = kmalloc(sizeof(*m), flags);
2089         if (m == NULL)
2090                 goto out;
2091         kref_init(&m->kref);
2092         INIT_LIST_HEAD(&m->list_head);
2093
2094         m->hdr.tid = 0;
2095         m->hdr.type = cpu_to_le16(type);
2096         m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2097         m->hdr.version = 0;
2098         m->hdr.front_len = cpu_to_le32(front_len);
2099         m->hdr.middle_len = 0;
2100         m->hdr.data_len = 0;
2101         m->hdr.data_off = 0;
2102         m->hdr.reserved = 0;
2103         m->footer.front_crc = 0;
2104         m->footer.middle_crc = 0;
2105         m->footer.data_crc = 0;
2106         m->footer.flags = 0;
2107         m->front_max = front_len;
2108         m->front_is_vmalloc = false;
2109         m->more_to_follow = false;
2110         m->pool = NULL;
2111
2112         /* front */
2113         if (front_len) {
2114                 if (front_len > PAGE_CACHE_SIZE) {
2115                         m->front.iov_base = __vmalloc(front_len, flags,
2116                                                       PAGE_KERNEL);
2117                         m->front_is_vmalloc = true;
2118                 } else {
2119                         m->front.iov_base = kmalloc(front_len, flags);
2120                 }
2121                 if (m->front.iov_base == NULL) {
2122                         pr_err("msg_new can't allocate %d bytes\n",
2123                              front_len);
2124                         goto out2;
2125                 }
2126         } else {
2127                 m->front.iov_base = NULL;
2128         }
2129         m->front.iov_len = front_len;
2130
2131         /* middle */
2132         m->middle = NULL;
2133
2134         /* data */
2135         m->nr_pages = 0;
2136         m->pages = NULL;
2137         m->pagelist = NULL;
2138
2139         dout("ceph_msg_new %p front %d\n", m, front_len);
2140         return m;
2141
2142 out2:
2143         ceph_msg_put(m);
2144 out:
2145         pr_err("msg_new can't create type %d front %d\n", type, front_len);
2146         return NULL;
2147 }
2148
2149 /*
2150  * Allocate "middle" portion of a message, if it is needed and wasn't
2151  * allocated by alloc_msg.  This allows us to read a small fixed-size
2152  * per-type header in the front and then gracefully fail (i.e.,
2153  * propagate the error to the caller based on info in the front) when
2154  * the middle is too large.
2155  */
2156 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2157 {
2158         int type = le16_to_cpu(msg->hdr.type);
2159         int middle_len = le32_to_cpu(msg->hdr.middle_len);
2160
2161         dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2162              ceph_msg_type_name(type), middle_len);
2163         BUG_ON(!middle_len);
2164         BUG_ON(msg->middle);
2165
2166         msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2167         if (!msg->middle)
2168                 return -ENOMEM;
2169         return 0;
2170 }
2171
2172 /*
2173  * Generic message allocator, for incoming messages.
2174  */
2175 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2176                                 struct ceph_msg_header *hdr,
2177                                 int *skip)
2178 {
2179         int type = le16_to_cpu(hdr->type);
2180         int front_len = le32_to_cpu(hdr->front_len);
2181         int middle_len = le32_to_cpu(hdr->middle_len);
2182         struct ceph_msg *msg = NULL;
2183         int ret;
2184
2185         if (con->ops->alloc_msg) {
2186                 mutex_unlock(&con->mutex);
2187                 msg = con->ops->alloc_msg(con, hdr, skip);
2188                 mutex_lock(&con->mutex);
2189                 if (!msg || *skip)
2190                         return NULL;
2191         }
2192         if (!msg) {
2193                 *skip = 0;
2194                 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2195                 if (!msg) {
2196                         pr_err("unable to allocate msg type %d len %d\n",
2197                                type, front_len);
2198                         return NULL;
2199                 }
2200         }
2201         memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2202
2203         if (middle_len && !msg->middle) {
2204                 ret = ceph_alloc_middle(con, msg);
2205                 if (ret < 0) {
2206                         ceph_msg_put(msg);
2207                         return NULL;
2208                 }
2209         }
2210
2211         return msg;
2212 }
2213
2214
2215 /*
2216  * Free a generically kmalloc'd message.
2217  */
2218 void ceph_msg_kfree(struct ceph_msg *m)
2219 {
2220         dout("msg_kfree %p\n", m);
2221         if (m->front_is_vmalloc)
2222                 vfree(m->front.iov_base);
2223         else
2224                 kfree(m->front.iov_base);
2225         kfree(m);
2226 }
2227
2228 /*
2229  * Drop a msg ref.  Destroy as needed.
2230  */
2231 void ceph_msg_last_put(struct kref *kref)
2232 {
2233         struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2234
2235         dout("ceph_msg_put last one on %p\n", m);
2236         WARN_ON(!list_empty(&m->list_head));
2237
2238         /* drop middle, data, if any */
2239         if (m->middle) {
2240                 ceph_buffer_put(m->middle);
2241                 m->middle = NULL;
2242         }
2243         m->nr_pages = 0;
2244         m->pages = NULL;
2245
2246         if (m->pagelist) {
2247                 ceph_pagelist_release(m->pagelist);
2248                 kfree(m->pagelist);
2249                 m->pagelist = NULL;
2250         }
2251
2252         if (m->pool)
2253                 ceph_msgpool_put(m->pool, m);
2254         else
2255                 ceph_msg_kfree(m);
2256 }
2257
2258 void ceph_msg_dump(struct ceph_msg *msg)
2259 {
2260         pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2261                  msg->front_max, msg->nr_pages);
2262         print_hex_dump(KERN_DEBUG, "header: ",
2263                        DUMP_PREFIX_OFFSET, 16, 1,
2264                        &msg->hdr, sizeof(msg->hdr), true);
2265         print_hex_dump(KERN_DEBUG, " front: ",
2266                        DUMP_PREFIX_OFFSET, 16, 1,
2267                        msg->front.iov_base, msg->front.iov_len, true);
2268         if (msg->middle)
2269                 print_hex_dump(KERN_DEBUG, "middle: ",
2270                                DUMP_PREFIX_OFFSET, 16, 1,
2271                                msg->middle->vec.iov_base,
2272                                msg->middle->vec.iov_len, true);
2273         print_hex_dump(KERN_DEBUG, "footer: ",
2274                        DUMP_PREFIX_OFFSET, 16, 1,
2275                        &msg->footer, sizeof(msg->footer), true);
2276 }