]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/buffer.c
021ec4da993251e919c04de5094384b81b86be81
[net-next-2.6.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52         bh->b_end_io = handler;
53         bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56
57 static int sync_buffer(void *word)
58 {
59         struct block_device *bd;
60         struct buffer_head *bh
61                 = container_of(word, struct buffer_head, b_state);
62
63         smp_mb();
64         bd = bh->b_bdev;
65         if (bd)
66                 blk_run_address_space(bd->bd_inode->i_mapping);
67         io_schedule();
68         return 0;
69 }
70
71 void __lock_buffer(struct buffer_head *bh)
72 {
73         wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74                                                         TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77
78 void unlock_buffer(struct buffer_head *bh)
79 {
80         clear_bit_unlock(BH_Lock, &bh->b_state);
81         smp_mb__after_clear_bit();
82         wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93         wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100         ClearPagePrivate(page);
101         set_page_private(page, 0);
102         page_cache_release(page);
103 }
104
105
106 static int quiet_error(struct buffer_head *bh)
107 {
108         if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109                 return 0;
110         return 1;
111 }
112
113
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116         char b[BDEVNAME_SIZE];
117         printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118                         bdevname(bh->b_bdev, b),
119                         (unsigned long long)bh->b_blocknr);
120 }
121
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132         if (uptodate) {
133                 set_buffer_uptodate(bh);
134         } else {
135                 /* This happens, due to failed READA attempts. */
136                 clear_buffer_uptodate(bh);
137         }
138         unlock_buffer(bh);
139 }
140
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147         __end_buffer_read_notouch(bh, uptodate);
148         put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154         char b[BDEVNAME_SIZE];
155
156         if (uptodate) {
157                 set_buffer_uptodate(bh);
158         } else {
159                 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160                         buffer_io_error(bh);
161                         printk(KERN_WARNING "lost page write due to "
162                                         "I/O error on %s\n",
163                                        bdevname(bh->b_bdev, b));
164                 }
165                 set_buffer_write_io_error(bh);
166                 clear_buffer_uptodate(bh);
167         }
168         unlock_buffer(bh);
169         put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187         struct inode *bd_inode = bdev->bd_inode;
188         struct address_space *bd_mapping = bd_inode->i_mapping;
189         struct buffer_head *ret = NULL;
190         pgoff_t index;
191         struct buffer_head *bh;
192         struct buffer_head *head;
193         struct page *page;
194         int all_mapped = 1;
195
196         index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197         page = find_get_page(bd_mapping, index);
198         if (!page)
199                 goto out;
200
201         spin_lock(&bd_mapping->private_lock);
202         if (!page_has_buffers(page))
203                 goto out_unlock;
204         head = page_buffers(page);
205         bh = head;
206         do {
207                 if (!buffer_mapped(bh))
208                         all_mapped = 0;
209                 else if (bh->b_blocknr == block) {
210                         ret = bh;
211                         get_bh(bh);
212                         goto out_unlock;
213                 }
214                 bh = bh->b_this_page;
215         } while (bh != head);
216
217         /* we might be here because some of the buffers on this page are
218          * not mapped.  This is due to various races between
219          * file io on the block device and getblk.  It gets dealt with
220          * elsewhere, don't buffer_error if we had some unmapped buffers
221          */
222         if (all_mapped) {
223                 printk("__find_get_block_slow() failed. "
224                         "block=%llu, b_blocknr=%llu\n",
225                         (unsigned long long)block,
226                         (unsigned long long)bh->b_blocknr);
227                 printk("b_state=0x%08lx, b_size=%zu\n",
228                         bh->b_state, bh->b_size);
229                 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230         }
231 out_unlock:
232         spin_unlock(&bd_mapping->private_lock);
233         page_cache_release(page);
234 out:
235         return ret;
236 }
237
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246   
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272         struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274         if (mapping->nrpages == 0)
275                 return;
276
277         invalidate_bh_lrus();
278         invalidate_mapping_pages(mapping, 0, -1);
279 }
280 EXPORT_SYMBOL(invalidate_bdev);
281
282 /*
283  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
284  */
285 static void free_more_memory(void)
286 {
287         struct zone *zone;
288         int nid;
289
290         wakeup_flusher_threads(1024);
291         yield();
292
293         for_each_online_node(nid) {
294                 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
295                                                 gfp_zone(GFP_NOFS), NULL,
296                                                 &zone);
297                 if (zone)
298                         try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
299                                                 GFP_NOFS, NULL);
300         }
301 }
302
303 /*
304  * I/O completion handler for block_read_full_page() - pages
305  * which come unlocked at the end of I/O.
306  */
307 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
308 {
309         unsigned long flags;
310         struct buffer_head *first;
311         struct buffer_head *tmp;
312         struct page *page;
313         int page_uptodate = 1;
314
315         BUG_ON(!buffer_async_read(bh));
316
317         page = bh->b_page;
318         if (uptodate) {
319                 set_buffer_uptodate(bh);
320         } else {
321                 clear_buffer_uptodate(bh);
322                 if (!quiet_error(bh))
323                         buffer_io_error(bh);
324                 SetPageError(page);
325         }
326
327         /*
328          * Be _very_ careful from here on. Bad things can happen if
329          * two buffer heads end IO at almost the same time and both
330          * decide that the page is now completely done.
331          */
332         first = page_buffers(page);
333         local_irq_save(flags);
334         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335         clear_buffer_async_read(bh);
336         unlock_buffer(bh);
337         tmp = bh;
338         do {
339                 if (!buffer_uptodate(tmp))
340                         page_uptodate = 0;
341                 if (buffer_async_read(tmp)) {
342                         BUG_ON(!buffer_locked(tmp));
343                         goto still_busy;
344                 }
345                 tmp = tmp->b_this_page;
346         } while (tmp != bh);
347         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
348         local_irq_restore(flags);
349
350         /*
351          * If none of the buffers had errors and they are all
352          * uptodate then we can set the page uptodate.
353          */
354         if (page_uptodate && !PageError(page))
355                 SetPageUptodate(page);
356         unlock_page(page);
357         return;
358
359 still_busy:
360         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
361         local_irq_restore(flags);
362         return;
363 }
364
365 /*
366  * Completion handler for block_write_full_page() - pages which are unlocked
367  * during I/O, and which have PageWriteback cleared upon I/O completion.
368  */
369 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
370 {
371         char b[BDEVNAME_SIZE];
372         unsigned long flags;
373         struct buffer_head *first;
374         struct buffer_head *tmp;
375         struct page *page;
376
377         BUG_ON(!buffer_async_write(bh));
378
379         page = bh->b_page;
380         if (uptodate) {
381                 set_buffer_uptodate(bh);
382         } else {
383                 if (!quiet_error(bh)) {
384                         buffer_io_error(bh);
385                         printk(KERN_WARNING "lost page write due to "
386                                         "I/O error on %s\n",
387                                bdevname(bh->b_bdev, b));
388                 }
389                 set_bit(AS_EIO, &page->mapping->flags);
390                 set_buffer_write_io_error(bh);
391                 clear_buffer_uptodate(bh);
392                 SetPageError(page);
393         }
394
395         first = page_buffers(page);
396         local_irq_save(flags);
397         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
398
399         clear_buffer_async_write(bh);
400         unlock_buffer(bh);
401         tmp = bh->b_this_page;
402         while (tmp != bh) {
403                 if (buffer_async_write(tmp)) {
404                         BUG_ON(!buffer_locked(tmp));
405                         goto still_busy;
406                 }
407                 tmp = tmp->b_this_page;
408         }
409         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
410         local_irq_restore(flags);
411         end_page_writeback(page);
412         return;
413
414 still_busy:
415         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
416         local_irq_restore(flags);
417         return;
418 }
419 EXPORT_SYMBOL(end_buffer_async_write);
420
421 /*
422  * If a page's buffers are under async readin (end_buffer_async_read
423  * completion) then there is a possibility that another thread of
424  * control could lock one of the buffers after it has completed
425  * but while some of the other buffers have not completed.  This
426  * locked buffer would confuse end_buffer_async_read() into not unlocking
427  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
428  * that this buffer is not under async I/O.
429  *
430  * The page comes unlocked when it has no locked buffer_async buffers
431  * left.
432  *
433  * PageLocked prevents anyone starting new async I/O reads any of
434  * the buffers.
435  *
436  * PageWriteback is used to prevent simultaneous writeout of the same
437  * page.
438  *
439  * PageLocked prevents anyone from starting writeback of a page which is
440  * under read I/O (PageWriteback is only ever set against a locked page).
441  */
442 static void mark_buffer_async_read(struct buffer_head *bh)
443 {
444         bh->b_end_io = end_buffer_async_read;
445         set_buffer_async_read(bh);
446 }
447
448 static void mark_buffer_async_write_endio(struct buffer_head *bh,
449                                           bh_end_io_t *handler)
450 {
451         bh->b_end_io = handler;
452         set_buffer_async_write(bh);
453 }
454
455 void mark_buffer_async_write(struct buffer_head *bh)
456 {
457         mark_buffer_async_write_endio(bh, end_buffer_async_write);
458 }
459 EXPORT_SYMBOL(mark_buffer_async_write);
460
461
462 /*
463  * fs/buffer.c contains helper functions for buffer-backed address space's
464  * fsync functions.  A common requirement for buffer-based filesystems is
465  * that certain data from the backing blockdev needs to be written out for
466  * a successful fsync().  For example, ext2 indirect blocks need to be
467  * written back and waited upon before fsync() returns.
468  *
469  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
470  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
471  * management of a list of dependent buffers at ->i_mapping->private_list.
472  *
473  * Locking is a little subtle: try_to_free_buffers() will remove buffers
474  * from their controlling inode's queue when they are being freed.  But
475  * try_to_free_buffers() will be operating against the *blockdev* mapping
476  * at the time, not against the S_ISREG file which depends on those buffers.
477  * So the locking for private_list is via the private_lock in the address_space
478  * which backs the buffers.  Which is different from the address_space 
479  * against which the buffers are listed.  So for a particular address_space,
480  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
481  * mapping->private_list will always be protected by the backing blockdev's
482  * ->private_lock.
483  *
484  * Which introduces a requirement: all buffers on an address_space's
485  * ->private_list must be from the same address_space: the blockdev's.
486  *
487  * address_spaces which do not place buffers at ->private_list via these
488  * utility functions are free to use private_lock and private_list for
489  * whatever they want.  The only requirement is that list_empty(private_list)
490  * be true at clear_inode() time.
491  *
492  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
493  * filesystems should do that.  invalidate_inode_buffers() should just go
494  * BUG_ON(!list_empty).
495  *
496  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
497  * take an address_space, not an inode.  And it should be called
498  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
499  * queued up.
500  *
501  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
502  * list if it is already on a list.  Because if the buffer is on a list,
503  * it *must* already be on the right one.  If not, the filesystem is being
504  * silly.  This will save a ton of locking.  But first we have to ensure
505  * that buffers are taken *off* the old inode's list when they are freed
506  * (presumably in truncate).  That requires careful auditing of all
507  * filesystems (do it inside bforget()).  It could also be done by bringing
508  * b_inode back.
509  */
510
511 /*
512  * The buffer's backing address_space's private_lock must be held
513  */
514 static void __remove_assoc_queue(struct buffer_head *bh)
515 {
516         list_del_init(&bh->b_assoc_buffers);
517         WARN_ON(!bh->b_assoc_map);
518         if (buffer_write_io_error(bh))
519                 set_bit(AS_EIO, &bh->b_assoc_map->flags);
520         bh->b_assoc_map = NULL;
521 }
522
523 int inode_has_buffers(struct inode *inode)
524 {
525         return !list_empty(&inode->i_data.private_list);
526 }
527
528 /*
529  * osync is designed to support O_SYNC io.  It waits synchronously for
530  * all already-submitted IO to complete, but does not queue any new
531  * writes to the disk.
532  *
533  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
534  * you dirty the buffers, and then use osync_inode_buffers to wait for
535  * completion.  Any other dirty buffers which are not yet queued for
536  * write will not be flushed to disk by the osync.
537  */
538 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
539 {
540         struct buffer_head *bh;
541         struct list_head *p;
542         int err = 0;
543
544         spin_lock(lock);
545 repeat:
546         list_for_each_prev(p, list) {
547                 bh = BH_ENTRY(p);
548                 if (buffer_locked(bh)) {
549                         get_bh(bh);
550                         spin_unlock(lock);
551                         wait_on_buffer(bh);
552                         if (!buffer_uptodate(bh))
553                                 err = -EIO;
554                         brelse(bh);
555                         spin_lock(lock);
556                         goto repeat;
557                 }
558         }
559         spin_unlock(lock);
560         return err;
561 }
562
563 static void do_thaw_all(struct work_struct *work)
564 {
565         struct super_block *sb;
566         char b[BDEVNAME_SIZE];
567
568         spin_lock(&sb_lock);
569 restart:
570         list_for_each_entry(sb, &super_blocks, s_list) {
571                 if (list_empty(&sb->s_instances))
572                         continue;
573                 sb->s_count++;
574                 spin_unlock(&sb_lock);
575                 down_read(&sb->s_umount);
576                 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
577                         printk(KERN_WARNING "Emergency Thaw on %s\n",
578                                bdevname(sb->s_bdev, b));
579                 up_read(&sb->s_umount);
580                 spin_lock(&sb_lock);
581                 if (__put_super_and_need_restart(sb))
582                         goto restart;
583         }
584         spin_unlock(&sb_lock);
585         kfree(work);
586         printk(KERN_WARNING "Emergency Thaw complete\n");
587 }
588
589 /**
590  * emergency_thaw_all -- forcibly thaw every frozen filesystem
591  *
592  * Used for emergency unfreeze of all filesystems via SysRq
593  */
594 void emergency_thaw_all(void)
595 {
596         struct work_struct *work;
597
598         work = kmalloc(sizeof(*work), GFP_ATOMIC);
599         if (work) {
600                 INIT_WORK(work, do_thaw_all);
601                 schedule_work(work);
602         }
603 }
604
605 /**
606  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
607  * @mapping: the mapping which wants those buffers written
608  *
609  * Starts I/O against the buffers at mapping->private_list, and waits upon
610  * that I/O.
611  *
612  * Basically, this is a convenience function for fsync().
613  * @mapping is a file or directory which needs those buffers to be written for
614  * a successful fsync().
615  */
616 int sync_mapping_buffers(struct address_space *mapping)
617 {
618         struct address_space *buffer_mapping = mapping->assoc_mapping;
619
620         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
621                 return 0;
622
623         return fsync_buffers_list(&buffer_mapping->private_lock,
624                                         &mapping->private_list);
625 }
626 EXPORT_SYMBOL(sync_mapping_buffers);
627
628 /*
629  * Called when we've recently written block `bblock', and it is known that
630  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
631  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
632  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
633  */
634 void write_boundary_block(struct block_device *bdev,
635                         sector_t bblock, unsigned blocksize)
636 {
637         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
638         if (bh) {
639                 if (buffer_dirty(bh))
640                         ll_rw_block(WRITE, 1, &bh);
641                 put_bh(bh);
642         }
643 }
644
645 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
646 {
647         struct address_space *mapping = inode->i_mapping;
648         struct address_space *buffer_mapping = bh->b_page->mapping;
649
650         mark_buffer_dirty(bh);
651         if (!mapping->assoc_mapping) {
652                 mapping->assoc_mapping = buffer_mapping;
653         } else {
654                 BUG_ON(mapping->assoc_mapping != buffer_mapping);
655         }
656         if (!bh->b_assoc_map) {
657                 spin_lock(&buffer_mapping->private_lock);
658                 list_move_tail(&bh->b_assoc_buffers,
659                                 &mapping->private_list);
660                 bh->b_assoc_map = mapping;
661                 spin_unlock(&buffer_mapping->private_lock);
662         }
663 }
664 EXPORT_SYMBOL(mark_buffer_dirty_inode);
665
666 /*
667  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
668  * dirty.
669  *
670  * If warn is true, then emit a warning if the page is not uptodate and has
671  * not been truncated.
672  */
673 static void __set_page_dirty(struct page *page,
674                 struct address_space *mapping, int warn)
675 {
676         spin_lock_irq(&mapping->tree_lock);
677         if (page->mapping) {    /* Race with truncate? */
678                 WARN_ON_ONCE(warn && !PageUptodate(page));
679                 account_page_dirtied(page, mapping);
680                 radix_tree_tag_set(&mapping->page_tree,
681                                 page_index(page), PAGECACHE_TAG_DIRTY);
682         }
683         spin_unlock_irq(&mapping->tree_lock);
684         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
685 }
686
687 /*
688  * Add a page to the dirty page list.
689  *
690  * It is a sad fact of life that this function is called from several places
691  * deeply under spinlocking.  It may not sleep.
692  *
693  * If the page has buffers, the uptodate buffers are set dirty, to preserve
694  * dirty-state coherency between the page and the buffers.  It the page does
695  * not have buffers then when they are later attached they will all be set
696  * dirty.
697  *
698  * The buffers are dirtied before the page is dirtied.  There's a small race
699  * window in which a writepage caller may see the page cleanness but not the
700  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
701  * before the buffers, a concurrent writepage caller could clear the page dirty
702  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
703  * page on the dirty page list.
704  *
705  * We use private_lock to lock against try_to_free_buffers while using the
706  * page's buffer list.  Also use this to protect against clean buffers being
707  * added to the page after it was set dirty.
708  *
709  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
710  * address_space though.
711  */
712 int __set_page_dirty_buffers(struct page *page)
713 {
714         int newly_dirty;
715         struct address_space *mapping = page_mapping(page);
716
717         if (unlikely(!mapping))
718                 return !TestSetPageDirty(page);
719
720         spin_lock(&mapping->private_lock);
721         if (page_has_buffers(page)) {
722                 struct buffer_head *head = page_buffers(page);
723                 struct buffer_head *bh = head;
724
725                 do {
726                         set_buffer_dirty(bh);
727                         bh = bh->b_this_page;
728                 } while (bh != head);
729         }
730         newly_dirty = !TestSetPageDirty(page);
731         spin_unlock(&mapping->private_lock);
732
733         if (newly_dirty)
734                 __set_page_dirty(page, mapping, 1);
735         return newly_dirty;
736 }
737 EXPORT_SYMBOL(__set_page_dirty_buffers);
738
739 /*
740  * Write out and wait upon a list of buffers.
741  *
742  * We have conflicting pressures: we want to make sure that all
743  * initially dirty buffers get waited on, but that any subsequently
744  * dirtied buffers don't.  After all, we don't want fsync to last
745  * forever if somebody is actively writing to the file.
746  *
747  * Do this in two main stages: first we copy dirty buffers to a
748  * temporary inode list, queueing the writes as we go.  Then we clean
749  * up, waiting for those writes to complete.
750  * 
751  * During this second stage, any subsequent updates to the file may end
752  * up refiling the buffer on the original inode's dirty list again, so
753  * there is a chance we will end up with a buffer queued for write but
754  * not yet completed on that list.  So, as a final cleanup we go through
755  * the osync code to catch these locked, dirty buffers without requeuing
756  * any newly dirty buffers for write.
757  */
758 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
759 {
760         struct buffer_head *bh;
761         struct list_head tmp;
762         struct address_space *mapping, *prev_mapping = NULL;
763         int err = 0, err2;
764
765         INIT_LIST_HEAD(&tmp);
766
767         spin_lock(lock);
768         while (!list_empty(list)) {
769                 bh = BH_ENTRY(list->next);
770                 mapping = bh->b_assoc_map;
771                 __remove_assoc_queue(bh);
772                 /* Avoid race with mark_buffer_dirty_inode() which does
773                  * a lockless check and we rely on seeing the dirty bit */
774                 smp_mb();
775                 if (buffer_dirty(bh) || buffer_locked(bh)) {
776                         list_add(&bh->b_assoc_buffers, &tmp);
777                         bh->b_assoc_map = mapping;
778                         if (buffer_dirty(bh)) {
779                                 get_bh(bh);
780                                 spin_unlock(lock);
781                                 /*
782                                  * Ensure any pending I/O completes so that
783                                  * ll_rw_block() actually writes the current
784                                  * contents - it is a noop if I/O is still in
785                                  * flight on potentially older contents.
786                                  */
787                                 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
788
789                                 /*
790                                  * Kick off IO for the previous mapping. Note
791                                  * that we will not run the very last mapping,
792                                  * wait_on_buffer() will do that for us
793                                  * through sync_buffer().
794                                  */
795                                 if (prev_mapping && prev_mapping != mapping)
796                                         blk_run_address_space(prev_mapping);
797                                 prev_mapping = mapping;
798
799                                 brelse(bh);
800                                 spin_lock(lock);
801                         }
802                 }
803         }
804
805         while (!list_empty(&tmp)) {
806                 bh = BH_ENTRY(tmp.prev);
807                 get_bh(bh);
808                 mapping = bh->b_assoc_map;
809                 __remove_assoc_queue(bh);
810                 /* Avoid race with mark_buffer_dirty_inode() which does
811                  * a lockless check and we rely on seeing the dirty bit */
812                 smp_mb();
813                 if (buffer_dirty(bh)) {
814                         list_add(&bh->b_assoc_buffers,
815                                  &mapping->private_list);
816                         bh->b_assoc_map = mapping;
817                 }
818                 spin_unlock(lock);
819                 wait_on_buffer(bh);
820                 if (!buffer_uptodate(bh))
821                         err = -EIO;
822                 brelse(bh);
823                 spin_lock(lock);
824         }
825         
826         spin_unlock(lock);
827         err2 = osync_buffers_list(lock, list);
828         if (err)
829                 return err;
830         else
831                 return err2;
832 }
833
834 /*
835  * Invalidate any and all dirty buffers on a given inode.  We are
836  * probably unmounting the fs, but that doesn't mean we have already
837  * done a sync().  Just drop the buffers from the inode list.
838  *
839  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
840  * assumes that all the buffers are against the blockdev.  Not true
841  * for reiserfs.
842  */
843 void invalidate_inode_buffers(struct inode *inode)
844 {
845         if (inode_has_buffers(inode)) {
846                 struct address_space *mapping = &inode->i_data;
847                 struct list_head *list = &mapping->private_list;
848                 struct address_space *buffer_mapping = mapping->assoc_mapping;
849
850                 spin_lock(&buffer_mapping->private_lock);
851                 while (!list_empty(list))
852                         __remove_assoc_queue(BH_ENTRY(list->next));
853                 spin_unlock(&buffer_mapping->private_lock);
854         }
855 }
856 EXPORT_SYMBOL(invalidate_inode_buffers);
857
858 /*
859  * Remove any clean buffers from the inode's buffer list.  This is called
860  * when we're trying to free the inode itself.  Those buffers can pin it.
861  *
862  * Returns true if all buffers were removed.
863  */
864 int remove_inode_buffers(struct inode *inode)
865 {
866         int ret = 1;
867
868         if (inode_has_buffers(inode)) {
869                 struct address_space *mapping = &inode->i_data;
870                 struct list_head *list = &mapping->private_list;
871                 struct address_space *buffer_mapping = mapping->assoc_mapping;
872
873                 spin_lock(&buffer_mapping->private_lock);
874                 while (!list_empty(list)) {
875                         struct buffer_head *bh = BH_ENTRY(list->next);
876                         if (buffer_dirty(bh)) {
877                                 ret = 0;
878                                 break;
879                         }
880                         __remove_assoc_queue(bh);
881                 }
882                 spin_unlock(&buffer_mapping->private_lock);
883         }
884         return ret;
885 }
886
887 /*
888  * Create the appropriate buffers when given a page for data area and
889  * the size of each buffer.. Use the bh->b_this_page linked list to
890  * follow the buffers created.  Return NULL if unable to create more
891  * buffers.
892  *
893  * The retry flag is used to differentiate async IO (paging, swapping)
894  * which may not fail from ordinary buffer allocations.
895  */
896 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
897                 int retry)
898 {
899         struct buffer_head *bh, *head;
900         long offset;
901
902 try_again:
903         head = NULL;
904         offset = PAGE_SIZE;
905         while ((offset -= size) >= 0) {
906                 bh = alloc_buffer_head(GFP_NOFS);
907                 if (!bh)
908                         goto no_grow;
909
910                 bh->b_bdev = NULL;
911                 bh->b_this_page = head;
912                 bh->b_blocknr = -1;
913                 head = bh;
914
915                 bh->b_state = 0;
916                 atomic_set(&bh->b_count, 0);
917                 bh->b_private = NULL;
918                 bh->b_size = size;
919
920                 /* Link the buffer to its page */
921                 set_bh_page(bh, page, offset);
922
923                 init_buffer(bh, NULL, NULL);
924         }
925         return head;
926 /*
927  * In case anything failed, we just free everything we got.
928  */
929 no_grow:
930         if (head) {
931                 do {
932                         bh = head;
933                         head = head->b_this_page;
934                         free_buffer_head(bh);
935                 } while (head);
936         }
937
938         /*
939          * Return failure for non-async IO requests.  Async IO requests
940          * are not allowed to fail, so we have to wait until buffer heads
941          * become available.  But we don't want tasks sleeping with 
942          * partially complete buffers, so all were released above.
943          */
944         if (!retry)
945                 return NULL;
946
947         /* We're _really_ low on memory. Now we just
948          * wait for old buffer heads to become free due to
949          * finishing IO.  Since this is an async request and
950          * the reserve list is empty, we're sure there are 
951          * async buffer heads in use.
952          */
953         free_more_memory();
954         goto try_again;
955 }
956 EXPORT_SYMBOL_GPL(alloc_page_buffers);
957
958 static inline void
959 link_dev_buffers(struct page *page, struct buffer_head *head)
960 {
961         struct buffer_head *bh, *tail;
962
963         bh = head;
964         do {
965                 tail = bh;
966                 bh = bh->b_this_page;
967         } while (bh);
968         tail->b_this_page = head;
969         attach_page_buffers(page, head);
970 }
971
972 /*
973  * Initialise the state of a blockdev page's buffers.
974  */ 
975 static void
976 init_page_buffers(struct page *page, struct block_device *bdev,
977                         sector_t block, int size)
978 {
979         struct buffer_head *head = page_buffers(page);
980         struct buffer_head *bh = head;
981         int uptodate = PageUptodate(page);
982
983         do {
984                 if (!buffer_mapped(bh)) {
985                         init_buffer(bh, NULL, NULL);
986                         bh->b_bdev = bdev;
987                         bh->b_blocknr = block;
988                         if (uptodate)
989                                 set_buffer_uptodate(bh);
990                         set_buffer_mapped(bh);
991                 }
992                 block++;
993                 bh = bh->b_this_page;
994         } while (bh != head);
995 }
996
997 /*
998  * Create the page-cache page that contains the requested block.
999  *
1000  * This is user purely for blockdev mappings.
1001  */
1002 static struct page *
1003 grow_dev_page(struct block_device *bdev, sector_t block,
1004                 pgoff_t index, int size)
1005 {
1006         struct inode *inode = bdev->bd_inode;
1007         struct page *page;
1008         struct buffer_head *bh;
1009
1010         page = find_or_create_page(inode->i_mapping, index,
1011                 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1012         if (!page)
1013                 return NULL;
1014
1015         BUG_ON(!PageLocked(page));
1016
1017         if (page_has_buffers(page)) {
1018                 bh = page_buffers(page);
1019                 if (bh->b_size == size) {
1020                         init_page_buffers(page, bdev, block, size);
1021                         return page;
1022                 }
1023                 if (!try_to_free_buffers(page))
1024                         goto failed;
1025         }
1026
1027         /*
1028          * Allocate some buffers for this page
1029          */
1030         bh = alloc_page_buffers(page, size, 0);
1031         if (!bh)
1032                 goto failed;
1033
1034         /*
1035          * Link the page to the buffers and initialise them.  Take the
1036          * lock to be atomic wrt __find_get_block(), which does not
1037          * run under the page lock.
1038          */
1039         spin_lock(&inode->i_mapping->private_lock);
1040         link_dev_buffers(page, bh);
1041         init_page_buffers(page, bdev, block, size);
1042         spin_unlock(&inode->i_mapping->private_lock);
1043         return page;
1044
1045 failed:
1046         BUG();
1047         unlock_page(page);
1048         page_cache_release(page);
1049         return NULL;
1050 }
1051
1052 /*
1053  * Create buffers for the specified block device block's page.  If
1054  * that page was dirty, the buffers are set dirty also.
1055  */
1056 static int
1057 grow_buffers(struct block_device *bdev, sector_t block, int size)
1058 {
1059         struct page *page;
1060         pgoff_t index;
1061         int sizebits;
1062
1063         sizebits = -1;
1064         do {
1065                 sizebits++;
1066         } while ((size << sizebits) < PAGE_SIZE);
1067
1068         index = block >> sizebits;
1069
1070         /*
1071          * Check for a block which wants to lie outside our maximum possible
1072          * pagecache index.  (this comparison is done using sector_t types).
1073          */
1074         if (unlikely(index != block >> sizebits)) {
1075                 char b[BDEVNAME_SIZE];
1076
1077                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1078                         "device %s\n",
1079                         __func__, (unsigned long long)block,
1080                         bdevname(bdev, b));
1081                 return -EIO;
1082         }
1083         block = index << sizebits;
1084         /* Create a page with the proper size buffers.. */
1085         page = grow_dev_page(bdev, block, index, size);
1086         if (!page)
1087                 return 0;
1088         unlock_page(page);
1089         page_cache_release(page);
1090         return 1;
1091 }
1092
1093 static struct buffer_head *
1094 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1095 {
1096         /* Size must be multiple of hard sectorsize */
1097         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1098                         (size < 512 || size > PAGE_SIZE))) {
1099                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1100                                         size);
1101                 printk(KERN_ERR "logical block size: %d\n",
1102                                         bdev_logical_block_size(bdev));
1103
1104                 dump_stack();
1105                 return NULL;
1106         }
1107
1108         for (;;) {
1109                 struct buffer_head * bh;
1110                 int ret;
1111
1112                 bh = __find_get_block(bdev, block, size);
1113                 if (bh)
1114                         return bh;
1115
1116                 ret = grow_buffers(bdev, block, size);
1117                 if (ret < 0)
1118                         return NULL;
1119                 if (ret == 0)
1120                         free_more_memory();
1121         }
1122 }
1123
1124 /*
1125  * The relationship between dirty buffers and dirty pages:
1126  *
1127  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1128  * the page is tagged dirty in its radix tree.
1129  *
1130  * At all times, the dirtiness of the buffers represents the dirtiness of
1131  * subsections of the page.  If the page has buffers, the page dirty bit is
1132  * merely a hint about the true dirty state.
1133  *
1134  * When a page is set dirty in its entirety, all its buffers are marked dirty
1135  * (if the page has buffers).
1136  *
1137  * When a buffer is marked dirty, its page is dirtied, but the page's other
1138  * buffers are not.
1139  *
1140  * Also.  When blockdev buffers are explicitly read with bread(), they
1141  * individually become uptodate.  But their backing page remains not
1142  * uptodate - even if all of its buffers are uptodate.  A subsequent
1143  * block_read_full_page() against that page will discover all the uptodate
1144  * buffers, will set the page uptodate and will perform no I/O.
1145  */
1146
1147 /**
1148  * mark_buffer_dirty - mark a buffer_head as needing writeout
1149  * @bh: the buffer_head to mark dirty
1150  *
1151  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1152  * backing page dirty, then tag the page as dirty in its address_space's radix
1153  * tree and then attach the address_space's inode to its superblock's dirty
1154  * inode list.
1155  *
1156  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1157  * mapping->tree_lock and the global inode_lock.
1158  */
1159 void mark_buffer_dirty(struct buffer_head *bh)
1160 {
1161         WARN_ON_ONCE(!buffer_uptodate(bh));
1162
1163         /*
1164          * Very *carefully* optimize the it-is-already-dirty case.
1165          *
1166          * Don't let the final "is it dirty" escape to before we
1167          * perhaps modified the buffer.
1168          */
1169         if (buffer_dirty(bh)) {
1170                 smp_mb();
1171                 if (buffer_dirty(bh))
1172                         return;
1173         }
1174
1175         if (!test_set_buffer_dirty(bh)) {
1176                 struct page *page = bh->b_page;
1177                 if (!TestSetPageDirty(page)) {
1178                         struct address_space *mapping = page_mapping(page);
1179                         if (mapping)
1180                                 __set_page_dirty(page, mapping, 0);
1181                 }
1182         }
1183 }
1184 EXPORT_SYMBOL(mark_buffer_dirty);
1185
1186 /*
1187  * Decrement a buffer_head's reference count.  If all buffers against a page
1188  * have zero reference count, are clean and unlocked, and if the page is clean
1189  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1190  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1191  * a page but it ends up not being freed, and buffers may later be reattached).
1192  */
1193 void __brelse(struct buffer_head * buf)
1194 {
1195         if (atomic_read(&buf->b_count)) {
1196                 put_bh(buf);
1197                 return;
1198         }
1199         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1200 }
1201 EXPORT_SYMBOL(__brelse);
1202
1203 /*
1204  * bforget() is like brelse(), except it discards any
1205  * potentially dirty data.
1206  */
1207 void __bforget(struct buffer_head *bh)
1208 {
1209         clear_buffer_dirty(bh);
1210         if (bh->b_assoc_map) {
1211                 struct address_space *buffer_mapping = bh->b_page->mapping;
1212
1213                 spin_lock(&buffer_mapping->private_lock);
1214                 list_del_init(&bh->b_assoc_buffers);
1215                 bh->b_assoc_map = NULL;
1216                 spin_unlock(&buffer_mapping->private_lock);
1217         }
1218         __brelse(bh);
1219 }
1220 EXPORT_SYMBOL(__bforget);
1221
1222 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1223 {
1224         lock_buffer(bh);
1225         if (buffer_uptodate(bh)) {
1226                 unlock_buffer(bh);
1227                 return bh;
1228         } else {
1229                 get_bh(bh);
1230                 bh->b_end_io = end_buffer_read_sync;
1231                 submit_bh(READ, bh);
1232                 wait_on_buffer(bh);
1233                 if (buffer_uptodate(bh))
1234                         return bh;
1235         }
1236         brelse(bh);
1237         return NULL;
1238 }
1239
1240 /*
1241  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1242  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1243  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1244  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1245  * CPU's LRUs at the same time.
1246  *
1247  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1248  * sb_find_get_block().
1249  *
1250  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1251  * a local interrupt disable for that.
1252  */
1253
1254 #define BH_LRU_SIZE     8
1255
1256 struct bh_lru {
1257         struct buffer_head *bhs[BH_LRU_SIZE];
1258 };
1259
1260 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1261
1262 #ifdef CONFIG_SMP
1263 #define bh_lru_lock()   local_irq_disable()
1264 #define bh_lru_unlock() local_irq_enable()
1265 #else
1266 #define bh_lru_lock()   preempt_disable()
1267 #define bh_lru_unlock() preempt_enable()
1268 #endif
1269
1270 static inline void check_irqs_on(void)
1271 {
1272 #ifdef irqs_disabled
1273         BUG_ON(irqs_disabled());
1274 #endif
1275 }
1276
1277 /*
1278  * The LRU management algorithm is dopey-but-simple.  Sorry.
1279  */
1280 static void bh_lru_install(struct buffer_head *bh)
1281 {
1282         struct buffer_head *evictee = NULL;
1283         struct bh_lru *lru;
1284
1285         check_irqs_on();
1286         bh_lru_lock();
1287         lru = &__get_cpu_var(bh_lrus);
1288         if (lru->bhs[0] != bh) {
1289                 struct buffer_head *bhs[BH_LRU_SIZE];
1290                 int in;
1291                 int out = 0;
1292
1293                 get_bh(bh);
1294                 bhs[out++] = bh;
1295                 for (in = 0; in < BH_LRU_SIZE; in++) {
1296                         struct buffer_head *bh2 = lru->bhs[in];
1297
1298                         if (bh2 == bh) {
1299                                 __brelse(bh2);
1300                         } else {
1301                                 if (out >= BH_LRU_SIZE) {
1302                                         BUG_ON(evictee != NULL);
1303                                         evictee = bh2;
1304                                 } else {
1305                                         bhs[out++] = bh2;
1306                                 }
1307                         }
1308                 }
1309                 while (out < BH_LRU_SIZE)
1310                         bhs[out++] = NULL;
1311                 memcpy(lru->bhs, bhs, sizeof(bhs));
1312         }
1313         bh_lru_unlock();
1314
1315         if (evictee)
1316                 __brelse(evictee);
1317 }
1318
1319 /*
1320  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1321  */
1322 static struct buffer_head *
1323 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1324 {
1325         struct buffer_head *ret = NULL;
1326         struct bh_lru *lru;
1327         unsigned int i;
1328
1329         check_irqs_on();
1330         bh_lru_lock();
1331         lru = &__get_cpu_var(bh_lrus);
1332         for (i = 0; i < BH_LRU_SIZE; i++) {
1333                 struct buffer_head *bh = lru->bhs[i];
1334
1335                 if (bh && bh->b_bdev == bdev &&
1336                                 bh->b_blocknr == block && bh->b_size == size) {
1337                         if (i) {
1338                                 while (i) {
1339                                         lru->bhs[i] = lru->bhs[i - 1];
1340                                         i--;
1341                                 }
1342                                 lru->bhs[0] = bh;
1343                         }
1344                         get_bh(bh);
1345                         ret = bh;
1346                         break;
1347                 }
1348         }
1349         bh_lru_unlock();
1350         return ret;
1351 }
1352
1353 /*
1354  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1355  * it in the LRU and mark it as accessed.  If it is not present then return
1356  * NULL
1357  */
1358 struct buffer_head *
1359 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1360 {
1361         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1362
1363         if (bh == NULL) {
1364                 bh = __find_get_block_slow(bdev, block);
1365                 if (bh)
1366                         bh_lru_install(bh);
1367         }
1368         if (bh)
1369                 touch_buffer(bh);
1370         return bh;
1371 }
1372 EXPORT_SYMBOL(__find_get_block);
1373
1374 /*
1375  * __getblk will locate (and, if necessary, create) the buffer_head
1376  * which corresponds to the passed block_device, block and size. The
1377  * returned buffer has its reference count incremented.
1378  *
1379  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1380  * illegal block number, __getblk() will happily return a buffer_head
1381  * which represents the non-existent block.  Very weird.
1382  *
1383  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1384  * attempt is failing.  FIXME, perhaps?
1385  */
1386 struct buffer_head *
1387 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1388 {
1389         struct buffer_head *bh = __find_get_block(bdev, block, size);
1390
1391         might_sleep();
1392         if (bh == NULL)
1393                 bh = __getblk_slow(bdev, block, size);
1394         return bh;
1395 }
1396 EXPORT_SYMBOL(__getblk);
1397
1398 /*
1399  * Do async read-ahead on a buffer..
1400  */
1401 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1402 {
1403         struct buffer_head *bh = __getblk(bdev, block, size);
1404         if (likely(bh)) {
1405                 ll_rw_block(READA, 1, &bh);
1406                 brelse(bh);
1407         }
1408 }
1409 EXPORT_SYMBOL(__breadahead);
1410
1411 /**
1412  *  __bread() - reads a specified block and returns the bh
1413  *  @bdev: the block_device to read from
1414  *  @block: number of block
1415  *  @size: size (in bytes) to read
1416  * 
1417  *  Reads a specified block, and returns buffer head that contains it.
1418  *  It returns NULL if the block was unreadable.
1419  */
1420 struct buffer_head *
1421 __bread(struct block_device *bdev, sector_t block, unsigned size)
1422 {
1423         struct buffer_head *bh = __getblk(bdev, block, size);
1424
1425         if (likely(bh) && !buffer_uptodate(bh))
1426                 bh = __bread_slow(bh);
1427         return bh;
1428 }
1429 EXPORT_SYMBOL(__bread);
1430
1431 /*
1432  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1433  * This doesn't race because it runs in each cpu either in irq
1434  * or with preempt disabled.
1435  */
1436 static void invalidate_bh_lru(void *arg)
1437 {
1438         struct bh_lru *b = &get_cpu_var(bh_lrus);
1439         int i;
1440
1441         for (i = 0; i < BH_LRU_SIZE; i++) {
1442                 brelse(b->bhs[i]);
1443                 b->bhs[i] = NULL;
1444         }
1445         put_cpu_var(bh_lrus);
1446 }
1447         
1448 void invalidate_bh_lrus(void)
1449 {
1450         on_each_cpu(invalidate_bh_lru, NULL, 1);
1451 }
1452 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1453
1454 void set_bh_page(struct buffer_head *bh,
1455                 struct page *page, unsigned long offset)
1456 {
1457         bh->b_page = page;
1458         BUG_ON(offset >= PAGE_SIZE);
1459         if (PageHighMem(page))
1460                 /*
1461                  * This catches illegal uses and preserves the offset:
1462                  */
1463                 bh->b_data = (char *)(0 + offset);
1464         else
1465                 bh->b_data = page_address(page) + offset;
1466 }
1467 EXPORT_SYMBOL(set_bh_page);
1468
1469 /*
1470  * Called when truncating a buffer on a page completely.
1471  */
1472 static void discard_buffer(struct buffer_head * bh)
1473 {
1474         lock_buffer(bh);
1475         clear_buffer_dirty(bh);
1476         bh->b_bdev = NULL;
1477         clear_buffer_mapped(bh);
1478         clear_buffer_req(bh);
1479         clear_buffer_new(bh);
1480         clear_buffer_delay(bh);
1481         clear_buffer_unwritten(bh);
1482         unlock_buffer(bh);
1483 }
1484
1485 /**
1486  * block_invalidatepage - invalidate part of all of a buffer-backed page
1487  *
1488  * @page: the page which is affected
1489  * @offset: the index of the truncation point
1490  *
1491  * block_invalidatepage() is called when all or part of the page has become
1492  * invalidatedby a truncate operation.
1493  *
1494  * block_invalidatepage() does not have to release all buffers, but it must
1495  * ensure that no dirty buffer is left outside @offset and that no I/O
1496  * is underway against any of the blocks which are outside the truncation
1497  * point.  Because the caller is about to free (and possibly reuse) those
1498  * blocks on-disk.
1499  */
1500 void block_invalidatepage(struct page *page, unsigned long offset)
1501 {
1502         struct buffer_head *head, *bh, *next;
1503         unsigned int curr_off = 0;
1504
1505         BUG_ON(!PageLocked(page));
1506         if (!page_has_buffers(page))
1507                 goto out;
1508
1509         head = page_buffers(page);
1510         bh = head;
1511         do {
1512                 unsigned int next_off = curr_off + bh->b_size;
1513                 next = bh->b_this_page;
1514
1515                 /*
1516                  * is this block fully invalidated?
1517                  */
1518                 if (offset <= curr_off)
1519                         discard_buffer(bh);
1520                 curr_off = next_off;
1521                 bh = next;
1522         } while (bh != head);
1523
1524         /*
1525          * We release buffers only if the entire page is being invalidated.
1526          * The get_block cached value has been unconditionally invalidated,
1527          * so real IO is not possible anymore.
1528          */
1529         if (offset == 0)
1530                 try_to_release_page(page, 0);
1531 out:
1532         return;
1533 }
1534 EXPORT_SYMBOL(block_invalidatepage);
1535
1536 /*
1537  * We attach and possibly dirty the buffers atomically wrt
1538  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1539  * is already excluded via the page lock.
1540  */
1541 void create_empty_buffers(struct page *page,
1542                         unsigned long blocksize, unsigned long b_state)
1543 {
1544         struct buffer_head *bh, *head, *tail;
1545
1546         head = alloc_page_buffers(page, blocksize, 1);
1547         bh = head;
1548         do {
1549                 bh->b_state |= b_state;
1550                 tail = bh;
1551                 bh = bh->b_this_page;
1552         } while (bh);
1553         tail->b_this_page = head;
1554
1555         spin_lock(&page->mapping->private_lock);
1556         if (PageUptodate(page) || PageDirty(page)) {
1557                 bh = head;
1558                 do {
1559                         if (PageDirty(page))
1560                                 set_buffer_dirty(bh);
1561                         if (PageUptodate(page))
1562                                 set_buffer_uptodate(bh);
1563                         bh = bh->b_this_page;
1564                 } while (bh != head);
1565         }
1566         attach_page_buffers(page, head);
1567         spin_unlock(&page->mapping->private_lock);
1568 }
1569 EXPORT_SYMBOL(create_empty_buffers);
1570
1571 /*
1572  * We are taking a block for data and we don't want any output from any
1573  * buffer-cache aliases starting from return from that function and
1574  * until the moment when something will explicitly mark the buffer
1575  * dirty (hopefully that will not happen until we will free that block ;-)
1576  * We don't even need to mark it not-uptodate - nobody can expect
1577  * anything from a newly allocated buffer anyway. We used to used
1578  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1579  * don't want to mark the alias unmapped, for example - it would confuse
1580  * anyone who might pick it with bread() afterwards...
1581  *
1582  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1583  * be writeout I/O going on against recently-freed buffers.  We don't
1584  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1585  * only if we really need to.  That happens here.
1586  */
1587 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1588 {
1589         struct buffer_head *old_bh;
1590
1591         might_sleep();
1592
1593         old_bh = __find_get_block_slow(bdev, block);
1594         if (old_bh) {
1595                 clear_buffer_dirty(old_bh);
1596                 wait_on_buffer(old_bh);
1597                 clear_buffer_req(old_bh);
1598                 __brelse(old_bh);
1599         }
1600 }
1601 EXPORT_SYMBOL(unmap_underlying_metadata);
1602
1603 /*
1604  * NOTE! All mapped/uptodate combinations are valid:
1605  *
1606  *      Mapped  Uptodate        Meaning
1607  *
1608  *      No      No              "unknown" - must do get_block()
1609  *      No      Yes             "hole" - zero-filled
1610  *      Yes     No              "allocated" - allocated on disk, not read in
1611  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1612  *
1613  * "Dirty" is valid only with the last case (mapped+uptodate).
1614  */
1615
1616 /*
1617  * While block_write_full_page is writing back the dirty buffers under
1618  * the page lock, whoever dirtied the buffers may decide to clean them
1619  * again at any time.  We handle that by only looking at the buffer
1620  * state inside lock_buffer().
1621  *
1622  * If block_write_full_page() is called for regular writeback
1623  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1624  * locked buffer.   This only can happen if someone has written the buffer
1625  * directly, with submit_bh().  At the address_space level PageWriteback
1626  * prevents this contention from occurring.
1627  *
1628  * If block_write_full_page() is called with wbc->sync_mode ==
1629  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1630  * causes the writes to be flagged as synchronous writes, but the
1631  * block device queue will NOT be unplugged, since usually many pages
1632  * will be pushed to the out before the higher-level caller actually
1633  * waits for the writes to be completed.  The various wait functions,
1634  * such as wait_on_writeback_range() will ultimately call sync_page()
1635  * which will ultimately call blk_run_backing_dev(), which will end up
1636  * unplugging the device queue.
1637  */
1638 static int __block_write_full_page(struct inode *inode, struct page *page,
1639                         get_block_t *get_block, struct writeback_control *wbc,
1640                         bh_end_io_t *handler)
1641 {
1642         int err;
1643         sector_t block;
1644         sector_t last_block;
1645         struct buffer_head *bh, *head;
1646         const unsigned blocksize = 1 << inode->i_blkbits;
1647         int nr_underway = 0;
1648         int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1649                         WRITE_SYNC_PLUG : WRITE);
1650
1651         BUG_ON(!PageLocked(page));
1652
1653         last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1654
1655         if (!page_has_buffers(page)) {
1656                 create_empty_buffers(page, blocksize,
1657                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1658         }
1659
1660         /*
1661          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1662          * here, and the (potentially unmapped) buffers may become dirty at
1663          * any time.  If a buffer becomes dirty here after we've inspected it
1664          * then we just miss that fact, and the page stays dirty.
1665          *
1666          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1667          * handle that here by just cleaning them.
1668          */
1669
1670         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1671         head = page_buffers(page);
1672         bh = head;
1673
1674         /*
1675          * Get all the dirty buffers mapped to disk addresses and
1676          * handle any aliases from the underlying blockdev's mapping.
1677          */
1678         do {
1679                 if (block > last_block) {
1680                         /*
1681                          * mapped buffers outside i_size will occur, because
1682                          * this page can be outside i_size when there is a
1683                          * truncate in progress.
1684                          */
1685                         /*
1686                          * The buffer was zeroed by block_write_full_page()
1687                          */
1688                         clear_buffer_dirty(bh);
1689                         set_buffer_uptodate(bh);
1690                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1691                            buffer_dirty(bh)) {
1692                         WARN_ON(bh->b_size != blocksize);
1693                         err = get_block(inode, block, bh, 1);
1694                         if (err)
1695                                 goto recover;
1696                         clear_buffer_delay(bh);
1697                         if (buffer_new(bh)) {
1698                                 /* blockdev mappings never come here */
1699                                 clear_buffer_new(bh);
1700                                 unmap_underlying_metadata(bh->b_bdev,
1701                                                         bh->b_blocknr);
1702                         }
1703                 }
1704                 bh = bh->b_this_page;
1705                 block++;
1706         } while (bh != head);
1707
1708         do {
1709                 if (!buffer_mapped(bh))
1710                         continue;
1711                 /*
1712                  * If it's a fully non-blocking write attempt and we cannot
1713                  * lock the buffer then redirty the page.  Note that this can
1714                  * potentially cause a busy-wait loop from writeback threads
1715                  * and kswapd activity, but those code paths have their own
1716                  * higher-level throttling.
1717                  */
1718                 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1719                         lock_buffer(bh);
1720                 } else if (!trylock_buffer(bh)) {
1721                         redirty_page_for_writepage(wbc, page);
1722                         continue;
1723                 }
1724                 if (test_clear_buffer_dirty(bh)) {
1725                         mark_buffer_async_write_endio(bh, handler);
1726                 } else {
1727                         unlock_buffer(bh);
1728                 }
1729         } while ((bh = bh->b_this_page) != head);
1730
1731         /*
1732          * The page and its buffers are protected by PageWriteback(), so we can
1733          * drop the bh refcounts early.
1734          */
1735         BUG_ON(PageWriteback(page));
1736         set_page_writeback(page);
1737
1738         do {
1739                 struct buffer_head *next = bh->b_this_page;
1740                 if (buffer_async_write(bh)) {
1741                         submit_bh(write_op, bh);
1742                         nr_underway++;
1743                 }
1744                 bh = next;
1745         } while (bh != head);
1746         unlock_page(page);
1747
1748         err = 0;
1749 done:
1750         if (nr_underway == 0) {
1751                 /*
1752                  * The page was marked dirty, but the buffers were
1753                  * clean.  Someone wrote them back by hand with
1754                  * ll_rw_block/submit_bh.  A rare case.
1755                  */
1756                 end_page_writeback(page);
1757
1758                 /*
1759                  * The page and buffer_heads can be released at any time from
1760                  * here on.
1761                  */
1762         }
1763         return err;
1764
1765 recover:
1766         /*
1767          * ENOSPC, or some other error.  We may already have added some
1768          * blocks to the file, so we need to write these out to avoid
1769          * exposing stale data.
1770          * The page is currently locked and not marked for writeback
1771          */
1772         bh = head;
1773         /* Recovery: lock and submit the mapped buffers */
1774         do {
1775                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1776                     !buffer_delay(bh)) {
1777                         lock_buffer(bh);
1778                         mark_buffer_async_write_endio(bh, handler);
1779                 } else {
1780                         /*
1781                          * The buffer may have been set dirty during
1782                          * attachment to a dirty page.
1783                          */
1784                         clear_buffer_dirty(bh);
1785                 }
1786         } while ((bh = bh->b_this_page) != head);
1787         SetPageError(page);
1788         BUG_ON(PageWriteback(page));
1789         mapping_set_error(page->mapping, err);
1790         set_page_writeback(page);
1791         do {
1792                 struct buffer_head *next = bh->b_this_page;
1793                 if (buffer_async_write(bh)) {
1794                         clear_buffer_dirty(bh);
1795                         submit_bh(write_op, bh);
1796                         nr_underway++;
1797                 }
1798                 bh = next;
1799         } while (bh != head);
1800         unlock_page(page);
1801         goto done;
1802 }
1803
1804 /*
1805  * If a page has any new buffers, zero them out here, and mark them uptodate
1806  * and dirty so they'll be written out (in order to prevent uninitialised
1807  * block data from leaking). And clear the new bit.
1808  */
1809 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1810 {
1811         unsigned int block_start, block_end;
1812         struct buffer_head *head, *bh;
1813
1814         BUG_ON(!PageLocked(page));
1815         if (!page_has_buffers(page))
1816                 return;
1817
1818         bh = head = page_buffers(page);
1819         block_start = 0;
1820         do {
1821                 block_end = block_start + bh->b_size;
1822
1823                 if (buffer_new(bh)) {
1824                         if (block_end > from && block_start < to) {
1825                                 if (!PageUptodate(page)) {
1826                                         unsigned start, size;
1827
1828                                         start = max(from, block_start);
1829                                         size = min(to, block_end) - start;
1830
1831                                         zero_user(page, start, size);
1832                                         set_buffer_uptodate(bh);
1833                                 }
1834
1835                                 clear_buffer_new(bh);
1836                                 mark_buffer_dirty(bh);
1837                         }
1838                 }
1839
1840                 block_start = block_end;
1841                 bh = bh->b_this_page;
1842         } while (bh != head);
1843 }
1844 EXPORT_SYMBOL(page_zero_new_buffers);
1845
1846 static int __block_prepare_write(struct inode *inode, struct page *page,
1847                 unsigned from, unsigned to, get_block_t *get_block)
1848 {
1849         unsigned block_start, block_end;
1850         sector_t block;
1851         int err = 0;
1852         unsigned blocksize, bbits;
1853         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1854
1855         BUG_ON(!PageLocked(page));
1856         BUG_ON(from > PAGE_CACHE_SIZE);
1857         BUG_ON(to > PAGE_CACHE_SIZE);
1858         BUG_ON(from > to);
1859
1860         blocksize = 1 << inode->i_blkbits;
1861         if (!page_has_buffers(page))
1862                 create_empty_buffers(page, blocksize, 0);
1863         head = page_buffers(page);
1864
1865         bbits = inode->i_blkbits;
1866         block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1867
1868         for(bh = head, block_start = 0; bh != head || !block_start;
1869             block++, block_start=block_end, bh = bh->b_this_page) {
1870                 block_end = block_start + blocksize;
1871                 if (block_end <= from || block_start >= to) {
1872                         if (PageUptodate(page)) {
1873                                 if (!buffer_uptodate(bh))
1874                                         set_buffer_uptodate(bh);
1875                         }
1876                         continue;
1877                 }
1878                 if (buffer_new(bh))
1879                         clear_buffer_new(bh);
1880                 if (!buffer_mapped(bh)) {
1881                         WARN_ON(bh->b_size != blocksize);
1882                         err = get_block(inode, block, bh, 1);
1883                         if (err)
1884                                 break;
1885                         if (buffer_new(bh)) {
1886                                 unmap_underlying_metadata(bh->b_bdev,
1887                                                         bh->b_blocknr);
1888                                 if (PageUptodate(page)) {
1889                                         clear_buffer_new(bh);
1890                                         set_buffer_uptodate(bh);
1891                                         mark_buffer_dirty(bh);
1892                                         continue;
1893                                 }
1894                                 if (block_end > to || block_start < from)
1895                                         zero_user_segments(page,
1896                                                 to, block_end,
1897                                                 block_start, from);
1898                                 continue;
1899                         }
1900                 }
1901                 if (PageUptodate(page)) {
1902                         if (!buffer_uptodate(bh))
1903                                 set_buffer_uptodate(bh);
1904                         continue; 
1905                 }
1906                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1907                     !buffer_unwritten(bh) &&
1908                      (block_start < from || block_end > to)) {
1909                         ll_rw_block(READ, 1, &bh);
1910                         *wait_bh++=bh;
1911                 }
1912         }
1913         /*
1914          * If we issued read requests - let them complete.
1915          */
1916         while(wait_bh > wait) {
1917                 wait_on_buffer(*--wait_bh);
1918                 if (!buffer_uptodate(*wait_bh))
1919                         err = -EIO;
1920         }
1921         if (unlikely(err))
1922                 page_zero_new_buffers(page, from, to);
1923         return err;
1924 }
1925
1926 static int __block_commit_write(struct inode *inode, struct page *page,
1927                 unsigned from, unsigned to)
1928 {
1929         unsigned block_start, block_end;
1930         int partial = 0;
1931         unsigned blocksize;
1932         struct buffer_head *bh, *head;
1933
1934         blocksize = 1 << inode->i_blkbits;
1935
1936         for(bh = head = page_buffers(page), block_start = 0;
1937             bh != head || !block_start;
1938             block_start=block_end, bh = bh->b_this_page) {
1939                 block_end = block_start + blocksize;
1940                 if (block_end <= from || block_start >= to) {
1941                         if (!buffer_uptodate(bh))
1942                                 partial = 1;
1943                 } else {
1944                         set_buffer_uptodate(bh);
1945                         mark_buffer_dirty(bh);
1946                 }
1947                 clear_buffer_new(bh);
1948         }
1949
1950         /*
1951          * If this is a partial write which happened to make all buffers
1952          * uptodate then we can optimize away a bogus readpage() for
1953          * the next read(). Here we 'discover' whether the page went
1954          * uptodate as a result of this (potentially partial) write.
1955          */
1956         if (!partial)
1957                 SetPageUptodate(page);
1958         return 0;
1959 }
1960
1961 /*
1962  * block_write_begin takes care of the basic task of block allocation and
1963  * bringing partial write blocks uptodate first.
1964  *
1965  * If *pagep is not NULL, then block_write_begin uses the locked page
1966  * at *pagep rather than allocating its own. In this case, the page will
1967  * not be unlocked or deallocated on failure.
1968  */
1969 int block_write_begin(struct file *file, struct address_space *mapping,
1970                         loff_t pos, unsigned len, unsigned flags,
1971                         struct page **pagep, void **fsdata,
1972                         get_block_t *get_block)
1973 {
1974         struct inode *inode = mapping->host;
1975         int status = 0;
1976         struct page *page;
1977         pgoff_t index;
1978         unsigned start, end;
1979         int ownpage = 0;
1980
1981         index = pos >> PAGE_CACHE_SHIFT;
1982         start = pos & (PAGE_CACHE_SIZE - 1);
1983         end = start + len;
1984
1985         page = *pagep;
1986         if (page == NULL) {
1987                 ownpage = 1;
1988                 page = grab_cache_page_write_begin(mapping, index, flags);
1989                 if (!page) {
1990                         status = -ENOMEM;
1991                         goto out;
1992                 }
1993                 *pagep = page;
1994         } else
1995                 BUG_ON(!PageLocked(page));
1996
1997         status = __block_prepare_write(inode, page, start, end, get_block);
1998         if (unlikely(status)) {
1999                 ClearPageUptodate(page);
2000
2001                 if (ownpage) {
2002                         unlock_page(page);
2003                         page_cache_release(page);
2004                         *pagep = NULL;
2005
2006                         /*
2007                          * prepare_write() may have instantiated a few blocks
2008                          * outside i_size.  Trim these off again. Don't need
2009                          * i_size_read because we hold i_mutex.
2010                          */
2011                         if (pos + len > inode->i_size)
2012                                 vmtruncate(inode, inode->i_size);
2013                 }
2014         }
2015
2016 out:
2017         return status;
2018 }
2019 EXPORT_SYMBOL(block_write_begin);
2020
2021 int block_write_end(struct file *file, struct address_space *mapping,
2022                         loff_t pos, unsigned len, unsigned copied,
2023                         struct page *page, void *fsdata)
2024 {
2025         struct inode *inode = mapping->host;
2026         unsigned start;
2027
2028         start = pos & (PAGE_CACHE_SIZE - 1);
2029
2030         if (unlikely(copied < len)) {
2031                 /*
2032                  * The buffers that were written will now be uptodate, so we
2033                  * don't have to worry about a readpage reading them and
2034                  * overwriting a partial write. However if we have encountered
2035                  * a short write and only partially written into a buffer, it
2036                  * will not be marked uptodate, so a readpage might come in and
2037                  * destroy our partial write.
2038                  *
2039                  * Do the simplest thing, and just treat any short write to a
2040                  * non uptodate page as a zero-length write, and force the
2041                  * caller to redo the whole thing.
2042                  */
2043                 if (!PageUptodate(page))
2044                         copied = 0;
2045
2046                 page_zero_new_buffers(page, start+copied, start+len);
2047         }
2048         flush_dcache_page(page);
2049
2050         /* This could be a short (even 0-length) commit */
2051         __block_commit_write(inode, page, start, start+copied);
2052
2053         return copied;
2054 }
2055 EXPORT_SYMBOL(block_write_end);
2056
2057 int generic_write_end(struct file *file, struct address_space *mapping,
2058                         loff_t pos, unsigned len, unsigned copied,
2059                         struct page *page, void *fsdata)
2060 {
2061         struct inode *inode = mapping->host;
2062         int i_size_changed = 0;
2063
2064         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2065
2066         /*
2067          * No need to use i_size_read() here, the i_size
2068          * cannot change under us because we hold i_mutex.
2069          *
2070          * But it's important to update i_size while still holding page lock:
2071          * page writeout could otherwise come in and zero beyond i_size.
2072          */
2073         if (pos+copied > inode->i_size) {
2074                 i_size_write(inode, pos+copied);
2075                 i_size_changed = 1;
2076         }
2077
2078         unlock_page(page);
2079         page_cache_release(page);
2080
2081         /*
2082          * Don't mark the inode dirty under page lock. First, it unnecessarily
2083          * makes the holding time of page lock longer. Second, it forces lock
2084          * ordering of page lock and transaction start for journaling
2085          * filesystems.
2086          */
2087         if (i_size_changed)
2088                 mark_inode_dirty(inode);
2089
2090         return copied;
2091 }
2092 EXPORT_SYMBOL(generic_write_end);
2093
2094 /*
2095  * block_is_partially_uptodate checks whether buffers within a page are
2096  * uptodate or not.
2097  *
2098  * Returns true if all buffers which correspond to a file portion
2099  * we want to read are uptodate.
2100  */
2101 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2102                                         unsigned long from)
2103 {
2104         struct inode *inode = page->mapping->host;
2105         unsigned block_start, block_end, blocksize;
2106         unsigned to;
2107         struct buffer_head *bh, *head;
2108         int ret = 1;
2109
2110         if (!page_has_buffers(page))
2111                 return 0;
2112
2113         blocksize = 1 << inode->i_blkbits;
2114         to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2115         to = from + to;
2116         if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2117                 return 0;
2118
2119         head = page_buffers(page);
2120         bh = head;
2121         block_start = 0;
2122         do {
2123                 block_end = block_start + blocksize;
2124                 if (block_end > from && block_start < to) {
2125                         if (!buffer_uptodate(bh)) {
2126                                 ret = 0;
2127                                 break;
2128                         }
2129                         if (block_end >= to)
2130                                 break;
2131                 }
2132                 block_start = block_end;
2133                 bh = bh->b_this_page;
2134         } while (bh != head);
2135
2136         return ret;
2137 }
2138 EXPORT_SYMBOL(block_is_partially_uptodate);
2139
2140 /*
2141  * Generic "read page" function for block devices that have the normal
2142  * get_block functionality. This is most of the block device filesystems.
2143  * Reads the page asynchronously --- the unlock_buffer() and
2144  * set/clear_buffer_uptodate() functions propagate buffer state into the
2145  * page struct once IO has completed.
2146  */
2147 int block_read_full_page(struct page *page, get_block_t *get_block)
2148 {
2149         struct inode *inode = page->mapping->host;
2150         sector_t iblock, lblock;
2151         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2152         unsigned int blocksize;
2153         int nr, i;
2154         int fully_mapped = 1;
2155
2156         BUG_ON(!PageLocked(page));
2157         blocksize = 1 << inode->i_blkbits;
2158         if (!page_has_buffers(page))
2159                 create_empty_buffers(page, blocksize, 0);
2160         head = page_buffers(page);
2161
2162         iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2163         lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2164         bh = head;
2165         nr = 0;
2166         i = 0;
2167
2168         do {
2169                 if (buffer_uptodate(bh))
2170                         continue;
2171
2172                 if (!buffer_mapped(bh)) {
2173                         int err = 0;
2174
2175                         fully_mapped = 0;
2176                         if (iblock < lblock) {
2177                                 WARN_ON(bh->b_size != blocksize);
2178                                 err = get_block(inode, iblock, bh, 0);
2179                                 if (err)
2180                                         SetPageError(page);
2181                         }
2182                         if (!buffer_mapped(bh)) {
2183                                 zero_user(page, i * blocksize, blocksize);
2184                                 if (!err)
2185                                         set_buffer_uptodate(bh);
2186                                 continue;
2187                         }
2188                         /*
2189                          * get_block() might have updated the buffer
2190                          * synchronously
2191                          */
2192                         if (buffer_uptodate(bh))
2193                                 continue;
2194                 }
2195                 arr[nr++] = bh;
2196         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2197
2198         if (fully_mapped)
2199                 SetPageMappedToDisk(page);
2200
2201         if (!nr) {
2202                 /*
2203                  * All buffers are uptodate - we can set the page uptodate
2204                  * as well. But not if get_block() returned an error.
2205                  */
2206                 if (!PageError(page))
2207                         SetPageUptodate(page);
2208                 unlock_page(page);
2209                 return 0;
2210         }
2211
2212         /* Stage two: lock the buffers */
2213         for (i = 0; i < nr; i++) {
2214                 bh = arr[i];
2215                 lock_buffer(bh);
2216                 mark_buffer_async_read(bh);
2217         }
2218
2219         /*
2220          * Stage 3: start the IO.  Check for uptodateness
2221          * inside the buffer lock in case another process reading
2222          * the underlying blockdev brought it uptodate (the sct fix).
2223          */
2224         for (i = 0; i < nr; i++) {
2225                 bh = arr[i];
2226                 if (buffer_uptodate(bh))
2227                         end_buffer_async_read(bh, 1);
2228                 else
2229                         submit_bh(READ, bh);
2230         }
2231         return 0;
2232 }
2233 EXPORT_SYMBOL(block_read_full_page);
2234
2235 /* utility function for filesystems that need to do work on expanding
2236  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2237  * deal with the hole.  
2238  */
2239 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2240 {
2241         struct address_space *mapping = inode->i_mapping;
2242         struct page *page;
2243         void *fsdata;
2244         int err;
2245
2246         err = inode_newsize_ok(inode, size);
2247         if (err)
2248                 goto out;
2249
2250         err = pagecache_write_begin(NULL, mapping, size, 0,
2251                                 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2252                                 &page, &fsdata);
2253         if (err)
2254                 goto out;
2255
2256         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2257         BUG_ON(err > 0);
2258
2259 out:
2260         return err;
2261 }
2262 EXPORT_SYMBOL(generic_cont_expand_simple);
2263
2264 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2265                             loff_t pos, loff_t *bytes)
2266 {
2267         struct inode *inode = mapping->host;
2268         unsigned blocksize = 1 << inode->i_blkbits;
2269         struct page *page;
2270         void *fsdata;
2271         pgoff_t index, curidx;
2272         loff_t curpos;
2273         unsigned zerofrom, offset, len;
2274         int err = 0;
2275
2276         index = pos >> PAGE_CACHE_SHIFT;
2277         offset = pos & ~PAGE_CACHE_MASK;
2278
2279         while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2280                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2281                 if (zerofrom & (blocksize-1)) {
2282                         *bytes |= (blocksize-1);
2283                         (*bytes)++;
2284                 }
2285                 len = PAGE_CACHE_SIZE - zerofrom;
2286
2287                 err = pagecache_write_begin(file, mapping, curpos, len,
2288                                                 AOP_FLAG_UNINTERRUPTIBLE,
2289                                                 &page, &fsdata);
2290                 if (err)
2291                         goto out;
2292                 zero_user(page, zerofrom, len);
2293                 err = pagecache_write_end(file, mapping, curpos, len, len,
2294                                                 page, fsdata);
2295                 if (err < 0)
2296                         goto out;
2297                 BUG_ON(err != len);
2298                 err = 0;
2299
2300                 balance_dirty_pages_ratelimited(mapping);
2301         }
2302
2303         /* page covers the boundary, find the boundary offset */
2304         if (index == curidx) {
2305                 zerofrom = curpos & ~PAGE_CACHE_MASK;
2306                 /* if we will expand the thing last block will be filled */
2307                 if (offset <= zerofrom) {
2308                         goto out;
2309                 }
2310                 if (zerofrom & (blocksize-1)) {
2311                         *bytes |= (blocksize-1);
2312                         (*bytes)++;
2313                 }
2314                 len = offset - zerofrom;
2315
2316                 err = pagecache_write_begin(file, mapping, curpos, len,
2317                                                 AOP_FLAG_UNINTERRUPTIBLE,
2318                                                 &page, &fsdata);
2319                 if (err)
2320                         goto out;
2321                 zero_user(page, zerofrom, len);
2322                 err = pagecache_write_end(file, mapping, curpos, len, len,
2323                                                 page, fsdata);
2324                 if (err < 0)
2325                         goto out;
2326                 BUG_ON(err != len);
2327                 err = 0;
2328         }
2329 out:
2330         return err;
2331 }
2332
2333 /*
2334  * For moronic filesystems that do not allow holes in file.
2335  * We may have to extend the file.
2336  */
2337 int cont_write_begin(struct file *file, struct address_space *mapping,
2338                         loff_t pos, unsigned len, unsigned flags,
2339                         struct page **pagep, void **fsdata,
2340                         get_block_t *get_block, loff_t *bytes)
2341 {
2342         struct inode *inode = mapping->host;
2343         unsigned blocksize = 1 << inode->i_blkbits;
2344         unsigned zerofrom;
2345         int err;
2346
2347         err = cont_expand_zero(file, mapping, pos, bytes);
2348         if (err)
2349                 goto out;
2350
2351         zerofrom = *bytes & ~PAGE_CACHE_MASK;
2352         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2353                 *bytes |= (blocksize-1);
2354                 (*bytes)++;
2355         }
2356
2357         *pagep = NULL;
2358         err = block_write_begin(file, mapping, pos, len,
2359                                 flags, pagep, fsdata, get_block);
2360 out:
2361         return err;
2362 }
2363 EXPORT_SYMBOL(cont_write_begin);
2364
2365 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2366                         get_block_t *get_block)
2367 {
2368         struct inode *inode = page->mapping->host;
2369         int err = __block_prepare_write(inode, page, from, to, get_block);
2370         if (err)
2371                 ClearPageUptodate(page);
2372         return err;
2373 }
2374 EXPORT_SYMBOL(block_prepare_write);
2375
2376 int block_commit_write(struct page *page, unsigned from, unsigned to)
2377 {
2378         struct inode *inode = page->mapping->host;
2379         __block_commit_write(inode,page,from,to);
2380         return 0;
2381 }
2382 EXPORT_SYMBOL(block_commit_write);
2383
2384 /*
2385  * block_page_mkwrite() is not allowed to change the file size as it gets
2386  * called from a page fault handler when a page is first dirtied. Hence we must
2387  * be careful to check for EOF conditions here. We set the page up correctly
2388  * for a written page which means we get ENOSPC checking when writing into
2389  * holes and correct delalloc and unwritten extent mapping on filesystems that
2390  * support these features.
2391  *
2392  * We are not allowed to take the i_mutex here so we have to play games to
2393  * protect against truncate races as the page could now be beyond EOF.  Because
2394  * vmtruncate() writes the inode size before removing pages, once we have the
2395  * page lock we can determine safely if the page is beyond EOF. If it is not
2396  * beyond EOF, then the page is guaranteed safe against truncation until we
2397  * unlock the page.
2398  */
2399 int
2400 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2401                    get_block_t get_block)
2402 {
2403         struct page *page = vmf->page;
2404         struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2405         unsigned long end;
2406         loff_t size;
2407         int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2408
2409         lock_page(page);
2410         size = i_size_read(inode);
2411         if ((page->mapping != inode->i_mapping) ||
2412             (page_offset(page) > size)) {
2413                 /* page got truncated out from underneath us */
2414                 unlock_page(page);
2415                 goto out;
2416         }
2417
2418         /* page is wholly or partially inside EOF */
2419         if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420                 end = size & ~PAGE_CACHE_MASK;
2421         else
2422                 end = PAGE_CACHE_SIZE;
2423
2424         ret = block_prepare_write(page, 0, end, get_block);
2425         if (!ret)
2426                 ret = block_commit_write(page, 0, end);
2427
2428         if (unlikely(ret)) {
2429                 unlock_page(page);
2430                 if (ret == -ENOMEM)
2431                         ret = VM_FAULT_OOM;
2432                 else /* -ENOSPC, -EIO, etc */
2433                         ret = VM_FAULT_SIGBUS;
2434         } else
2435                 ret = VM_FAULT_LOCKED;
2436
2437 out:
2438         return ret;
2439 }
2440 EXPORT_SYMBOL(block_page_mkwrite);
2441
2442 /*
2443  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2444  * immediately, while under the page lock.  So it needs a special end_io
2445  * handler which does not touch the bh after unlocking it.
2446  */
2447 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2448 {
2449         __end_buffer_read_notouch(bh, uptodate);
2450 }
2451
2452 /*
2453  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2454  * the page (converting it to circular linked list and taking care of page
2455  * dirty races).
2456  */
2457 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2458 {
2459         struct buffer_head *bh;
2460
2461         BUG_ON(!PageLocked(page));
2462
2463         spin_lock(&page->mapping->private_lock);
2464         bh = head;
2465         do {
2466                 if (PageDirty(page))
2467                         set_buffer_dirty(bh);
2468                 if (!bh->b_this_page)
2469                         bh->b_this_page = head;
2470                 bh = bh->b_this_page;
2471         } while (bh != head);
2472         attach_page_buffers(page, head);
2473         spin_unlock(&page->mapping->private_lock);
2474 }
2475
2476 /*
2477  * On entry, the page is fully not uptodate.
2478  * On exit the page is fully uptodate in the areas outside (from,to)
2479  */
2480 int nobh_write_begin(struct file *file, struct address_space *mapping,
2481                         loff_t pos, unsigned len, unsigned flags,
2482                         struct page **pagep, void **fsdata,
2483                         get_block_t *get_block)
2484 {
2485         struct inode *inode = mapping->host;
2486         const unsigned blkbits = inode->i_blkbits;
2487         const unsigned blocksize = 1 << blkbits;
2488         struct buffer_head *head, *bh;
2489         struct page *page;
2490         pgoff_t index;
2491         unsigned from, to;
2492         unsigned block_in_page;
2493         unsigned block_start, block_end;
2494         sector_t block_in_file;
2495         int nr_reads = 0;
2496         int ret = 0;
2497         int is_mapped_to_disk = 1;
2498
2499         index = pos >> PAGE_CACHE_SHIFT;
2500         from = pos & (PAGE_CACHE_SIZE - 1);
2501         to = from + len;
2502
2503         page = grab_cache_page_write_begin(mapping, index, flags);
2504         if (!page)
2505                 return -ENOMEM;
2506         *pagep = page;
2507         *fsdata = NULL;
2508
2509         if (page_has_buffers(page)) {
2510                 unlock_page(page);
2511                 page_cache_release(page);
2512                 *pagep = NULL;
2513                 return block_write_begin(file, mapping, pos, len, flags, pagep,
2514                                         fsdata, get_block);
2515         }
2516
2517         if (PageMappedToDisk(page))
2518                 return 0;
2519
2520         /*
2521          * Allocate buffers so that we can keep track of state, and potentially
2522          * attach them to the page if an error occurs. In the common case of
2523          * no error, they will just be freed again without ever being attached
2524          * to the page (which is all OK, because we're under the page lock).
2525          *
2526          * Be careful: the buffer linked list is a NULL terminated one, rather
2527          * than the circular one we're used to.
2528          */
2529         head = alloc_page_buffers(page, blocksize, 0);
2530         if (!head) {
2531                 ret = -ENOMEM;
2532                 goto out_release;
2533         }
2534
2535         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2536
2537         /*
2538          * We loop across all blocks in the page, whether or not they are
2539          * part of the affected region.  This is so we can discover if the
2540          * page is fully mapped-to-disk.
2541          */
2542         for (block_start = 0, block_in_page = 0, bh = head;
2543                   block_start < PAGE_CACHE_SIZE;
2544                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2545                 int create;
2546
2547                 block_end = block_start + blocksize;
2548                 bh->b_state = 0;
2549                 create = 1;
2550                 if (block_start >= to)
2551                         create = 0;
2552                 ret = get_block(inode, block_in_file + block_in_page,
2553                                         bh, create);
2554                 if (ret)
2555                         goto failed;
2556                 if (!buffer_mapped(bh))
2557                         is_mapped_to_disk = 0;
2558                 if (buffer_new(bh))
2559                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2560                 if (PageUptodate(page)) {
2561                         set_buffer_uptodate(bh);
2562                         continue;
2563                 }
2564                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2565                         zero_user_segments(page, block_start, from,
2566                                                         to, block_end);
2567                         continue;
2568                 }
2569                 if (buffer_uptodate(bh))
2570                         continue;       /* reiserfs does this */
2571                 if (block_start < from || block_end > to) {
2572                         lock_buffer(bh);
2573                         bh->b_end_io = end_buffer_read_nobh;
2574                         submit_bh(READ, bh);
2575                         nr_reads++;
2576                 }
2577         }
2578
2579         if (nr_reads) {
2580                 /*
2581                  * The page is locked, so these buffers are protected from
2582                  * any VM or truncate activity.  Hence we don't need to care
2583                  * for the buffer_head refcounts.
2584                  */
2585                 for (bh = head; bh; bh = bh->b_this_page) {
2586                         wait_on_buffer(bh);
2587                         if (!buffer_uptodate(bh))
2588                                 ret = -EIO;
2589                 }
2590                 if (ret)
2591                         goto failed;
2592         }
2593
2594         if (is_mapped_to_disk)
2595                 SetPageMappedToDisk(page);
2596
2597         *fsdata = head; /* to be released by nobh_write_end */
2598
2599         return 0;
2600
2601 failed:
2602         BUG_ON(!ret);
2603         /*
2604          * Error recovery is a bit difficult. We need to zero out blocks that
2605          * were newly allocated, and dirty them to ensure they get written out.
2606          * Buffers need to be attached to the page at this point, otherwise
2607          * the handling of potential IO errors during writeout would be hard
2608          * (could try doing synchronous writeout, but what if that fails too?)
2609          */
2610         attach_nobh_buffers(page, head);
2611         page_zero_new_buffers(page, from, to);
2612
2613 out_release:
2614         unlock_page(page);
2615         page_cache_release(page);
2616         *pagep = NULL;
2617
2618         if (pos + len > inode->i_size)
2619                 vmtruncate(inode, inode->i_size);
2620
2621         return ret;
2622 }
2623 EXPORT_SYMBOL(nobh_write_begin);
2624
2625 int nobh_write_end(struct file *file, struct address_space *mapping,
2626                         loff_t pos, unsigned len, unsigned copied,
2627                         struct page *page, void *fsdata)
2628 {
2629         struct inode *inode = page->mapping->host;
2630         struct buffer_head *head = fsdata;
2631         struct buffer_head *bh;
2632         BUG_ON(fsdata != NULL && page_has_buffers(page));
2633
2634         if (unlikely(copied < len) && head)
2635                 attach_nobh_buffers(page, head);
2636         if (page_has_buffers(page))
2637                 return generic_write_end(file, mapping, pos, len,
2638                                         copied, page, fsdata);
2639
2640         SetPageUptodate(page);
2641         set_page_dirty(page);
2642         if (pos+copied > inode->i_size) {
2643                 i_size_write(inode, pos+copied);
2644                 mark_inode_dirty(inode);
2645         }
2646
2647         unlock_page(page);
2648         page_cache_release(page);
2649
2650         while (head) {
2651                 bh = head;
2652                 head = head->b_this_page;
2653                 free_buffer_head(bh);
2654         }
2655
2656         return copied;
2657 }
2658 EXPORT_SYMBOL(nobh_write_end);
2659
2660 /*
2661  * nobh_writepage() - based on block_full_write_page() except
2662  * that it tries to operate without attaching bufferheads to
2663  * the page.
2664  */
2665 int nobh_writepage(struct page *page, get_block_t *get_block,
2666                         struct writeback_control *wbc)
2667 {
2668         struct inode * const inode = page->mapping->host;
2669         loff_t i_size = i_size_read(inode);
2670         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2671         unsigned offset;
2672         int ret;
2673
2674         /* Is the page fully inside i_size? */
2675         if (page->index < end_index)
2676                 goto out;
2677
2678         /* Is the page fully outside i_size? (truncate in progress) */
2679         offset = i_size & (PAGE_CACHE_SIZE-1);
2680         if (page->index >= end_index+1 || !offset) {
2681                 /*
2682                  * The page may have dirty, unmapped buffers.  For example,
2683                  * they may have been added in ext3_writepage().  Make them
2684                  * freeable here, so the page does not leak.
2685                  */
2686 #if 0
2687                 /* Not really sure about this  - do we need this ? */
2688                 if (page->mapping->a_ops->invalidatepage)
2689                         page->mapping->a_ops->invalidatepage(page, offset);
2690 #endif
2691                 unlock_page(page);
2692                 return 0; /* don't care */
2693         }
2694
2695         /*
2696          * The page straddles i_size.  It must be zeroed out on each and every
2697          * writepage invocation because it may be mmapped.  "A file is mapped
2698          * in multiples of the page size.  For a file that is not a multiple of
2699          * the  page size, the remaining memory is zeroed when mapped, and
2700          * writes to that region are not written out to the file."
2701          */
2702         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2703 out:
2704         ret = mpage_writepage(page, get_block, wbc);
2705         if (ret == -EAGAIN)
2706                 ret = __block_write_full_page(inode, page, get_block, wbc,
2707                                               end_buffer_async_write);
2708         return ret;
2709 }
2710 EXPORT_SYMBOL(nobh_writepage);
2711
2712 int nobh_truncate_page(struct address_space *mapping,
2713                         loff_t from, get_block_t *get_block)
2714 {
2715         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2716         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2717         unsigned blocksize;
2718         sector_t iblock;
2719         unsigned length, pos;
2720         struct inode *inode = mapping->host;
2721         struct page *page;
2722         struct buffer_head map_bh;
2723         int err;
2724
2725         blocksize = 1 << inode->i_blkbits;
2726         length = offset & (blocksize - 1);
2727
2728         /* Block boundary? Nothing to do */
2729         if (!length)
2730                 return 0;
2731
2732         length = blocksize - length;
2733         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2734
2735         page = grab_cache_page(mapping, index);
2736         err = -ENOMEM;
2737         if (!page)
2738                 goto out;
2739
2740         if (page_has_buffers(page)) {
2741 has_buffers:
2742                 unlock_page(page);
2743                 page_cache_release(page);
2744                 return block_truncate_page(mapping, from, get_block);
2745         }
2746
2747         /* Find the buffer that contains "offset" */
2748         pos = blocksize;
2749         while (offset >= pos) {
2750                 iblock++;
2751                 pos += blocksize;
2752         }
2753
2754         map_bh.b_size = blocksize;
2755         map_bh.b_state = 0;
2756         err = get_block(inode, iblock, &map_bh, 0);
2757         if (err)
2758                 goto unlock;
2759         /* unmapped? It's a hole - nothing to do */
2760         if (!buffer_mapped(&map_bh))
2761                 goto unlock;
2762
2763         /* Ok, it's mapped. Make sure it's up-to-date */
2764         if (!PageUptodate(page)) {
2765                 err = mapping->a_ops->readpage(NULL, page);
2766                 if (err) {
2767                         page_cache_release(page);
2768                         goto out;
2769                 }
2770                 lock_page(page);
2771                 if (!PageUptodate(page)) {
2772                         err = -EIO;
2773                         goto unlock;
2774                 }
2775                 if (page_has_buffers(page))
2776                         goto has_buffers;
2777         }
2778         zero_user(page, offset, length);
2779         set_page_dirty(page);
2780         err = 0;
2781
2782 unlock:
2783         unlock_page(page);
2784         page_cache_release(page);
2785 out:
2786         return err;
2787 }
2788 EXPORT_SYMBOL(nobh_truncate_page);
2789
2790 int block_truncate_page(struct address_space *mapping,
2791                         loff_t from, get_block_t *get_block)
2792 {
2793         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2794         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2795         unsigned blocksize;
2796         sector_t iblock;
2797         unsigned length, pos;
2798         struct inode *inode = mapping->host;
2799         struct page *page;
2800         struct buffer_head *bh;
2801         int err;
2802
2803         blocksize = 1 << inode->i_blkbits;
2804         length = offset & (blocksize - 1);
2805
2806         /* Block boundary? Nothing to do */
2807         if (!length)
2808                 return 0;
2809
2810         length = blocksize - length;
2811         iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2812         
2813         page = grab_cache_page(mapping, index);
2814         err = -ENOMEM;
2815         if (!page)
2816                 goto out;
2817
2818         if (!page_has_buffers(page))
2819                 create_empty_buffers(page, blocksize, 0);
2820
2821         /* Find the buffer that contains "offset" */
2822         bh = page_buffers(page);
2823         pos = blocksize;
2824         while (offset >= pos) {
2825                 bh = bh->b_this_page;
2826                 iblock++;
2827                 pos += blocksize;
2828         }
2829
2830         err = 0;
2831         if (!buffer_mapped(bh)) {
2832                 WARN_ON(bh->b_size != blocksize);
2833                 err = get_block(inode, iblock, bh, 0);
2834                 if (err)
2835                         goto unlock;
2836                 /* unmapped? It's a hole - nothing to do */
2837                 if (!buffer_mapped(bh))
2838                         goto unlock;
2839         }
2840
2841         /* Ok, it's mapped. Make sure it's up-to-date */
2842         if (PageUptodate(page))
2843                 set_buffer_uptodate(bh);
2844
2845         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2846                 err = -EIO;
2847                 ll_rw_block(READ, 1, &bh);
2848                 wait_on_buffer(bh);
2849                 /* Uhhuh. Read error. Complain and punt. */
2850                 if (!buffer_uptodate(bh))
2851                         goto unlock;
2852         }
2853
2854         zero_user(page, offset, length);
2855         mark_buffer_dirty(bh);
2856         err = 0;
2857
2858 unlock:
2859         unlock_page(page);
2860         page_cache_release(page);
2861 out:
2862         return err;
2863 }
2864 EXPORT_SYMBOL(block_truncate_page);
2865
2866 /*
2867  * The generic ->writepage function for buffer-backed address_spaces
2868  * this form passes in the end_io handler used to finish the IO.
2869  */
2870 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2871                         struct writeback_control *wbc, bh_end_io_t *handler)
2872 {
2873         struct inode * const inode = page->mapping->host;
2874         loff_t i_size = i_size_read(inode);
2875         const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2876         unsigned offset;
2877
2878         /* Is the page fully inside i_size? */
2879         if (page->index < end_index)
2880                 return __block_write_full_page(inode, page, get_block, wbc,
2881                                                handler);
2882
2883         /* Is the page fully outside i_size? (truncate in progress) */
2884         offset = i_size & (PAGE_CACHE_SIZE-1);
2885         if (page->index >= end_index+1 || !offset) {
2886                 /*
2887                  * The page may have dirty, unmapped buffers.  For example,
2888                  * they may have been added in ext3_writepage().  Make them
2889                  * freeable here, so the page does not leak.
2890                  */
2891                 do_invalidatepage(page, 0);
2892                 unlock_page(page);
2893                 return 0; /* don't care */
2894         }
2895
2896         /*
2897          * The page straddles i_size.  It must be zeroed out on each and every
2898          * writepage invocation because it may be mmapped.  "A file is mapped
2899          * in multiples of the page size.  For a file that is not a multiple of
2900          * the  page size, the remaining memory is zeroed when mapped, and
2901          * writes to that region are not written out to the file."
2902          */
2903         zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2904         return __block_write_full_page(inode, page, get_block, wbc, handler);
2905 }
2906 EXPORT_SYMBOL(block_write_full_page_endio);
2907
2908 /*
2909  * The generic ->writepage function for buffer-backed address_spaces
2910  */
2911 int block_write_full_page(struct page *page, get_block_t *get_block,
2912                         struct writeback_control *wbc)
2913 {
2914         return block_write_full_page_endio(page, get_block, wbc,
2915                                            end_buffer_async_write);
2916 }
2917 EXPORT_SYMBOL(block_write_full_page);
2918
2919 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2920                             get_block_t *get_block)
2921 {
2922         struct buffer_head tmp;
2923         struct inode *inode = mapping->host;
2924         tmp.b_state = 0;
2925         tmp.b_blocknr = 0;
2926         tmp.b_size = 1 << inode->i_blkbits;
2927         get_block(inode, block, &tmp, 0);
2928         return tmp.b_blocknr;
2929 }
2930 EXPORT_SYMBOL(generic_block_bmap);
2931
2932 static void end_bio_bh_io_sync(struct bio *bio, int err)
2933 {
2934         struct buffer_head *bh = bio->bi_private;
2935
2936         if (err == -EOPNOTSUPP) {
2937                 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2938                 set_bit(BH_Eopnotsupp, &bh->b_state);
2939         }
2940
2941         if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2942                 set_bit(BH_Quiet, &bh->b_state);
2943
2944         bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2945         bio_put(bio);
2946 }
2947
2948 int submit_bh(int rw, struct buffer_head * bh)
2949 {
2950         struct bio *bio;
2951         int ret = 0;
2952
2953         BUG_ON(!buffer_locked(bh));
2954         BUG_ON(!buffer_mapped(bh));
2955         BUG_ON(!bh->b_end_io);
2956         BUG_ON(buffer_delay(bh));
2957         BUG_ON(buffer_unwritten(bh));
2958
2959         /*
2960          * Mask in barrier bit for a write (could be either a WRITE or a
2961          * WRITE_SYNC
2962          */
2963         if (buffer_ordered(bh) && (rw & WRITE))
2964                 rw |= WRITE_BARRIER;
2965
2966         /*
2967          * Only clear out a write error when rewriting
2968          */
2969         if (test_set_buffer_req(bh) && (rw & WRITE))
2970                 clear_buffer_write_io_error(bh);
2971
2972         /*
2973          * from here on down, it's all bio -- do the initial mapping,
2974          * submit_bio -> generic_make_request may further map this bio around
2975          */
2976         bio = bio_alloc(GFP_NOIO, 1);
2977
2978         bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2979         bio->bi_bdev = bh->b_bdev;
2980         bio->bi_io_vec[0].bv_page = bh->b_page;
2981         bio->bi_io_vec[0].bv_len = bh->b_size;
2982         bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2983
2984         bio->bi_vcnt = 1;
2985         bio->bi_idx = 0;
2986         bio->bi_size = bh->b_size;
2987
2988         bio->bi_end_io = end_bio_bh_io_sync;
2989         bio->bi_private = bh;
2990
2991         bio_get(bio);
2992         submit_bio(rw, bio);
2993
2994         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2995                 ret = -EOPNOTSUPP;
2996
2997         bio_put(bio);
2998         return ret;
2999 }
3000 EXPORT_SYMBOL(submit_bh);
3001
3002 /**
3003  * ll_rw_block: low-level access to block devices (DEPRECATED)
3004  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3005  * @nr: number of &struct buffer_heads in the array
3006  * @bhs: array of pointers to &struct buffer_head
3007  *
3008  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3009  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3010  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3011  * are sent to disk. The fourth %READA option is described in the documentation
3012  * for generic_make_request() which ll_rw_block() calls.
3013  *
3014  * This function drops any buffer that it cannot get a lock on (with the
3015  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3016  * clean when doing a write request, and any buffer that appears to be
3017  * up-to-date when doing read request.  Further it marks as clean buffers that
3018  * are processed for writing (the buffer cache won't assume that they are
3019  * actually clean until the buffer gets unlocked).
3020  *
3021  * ll_rw_block sets b_end_io to simple completion handler that marks
3022  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3023  * any waiters. 
3024  *
3025  * All of the buffers must be for the same device, and must also be a
3026  * multiple of the current approved size for the device.
3027  */
3028 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3029 {
3030         int i;
3031
3032         for (i = 0; i < nr; i++) {
3033                 struct buffer_head *bh = bhs[i];
3034
3035                 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3036                         lock_buffer(bh);
3037                 else if (!trylock_buffer(bh))
3038                         continue;
3039
3040                 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3041                     rw == SWRITE_SYNC_PLUG) {
3042                         if (test_clear_buffer_dirty(bh)) {
3043                                 bh->b_end_io = end_buffer_write_sync;
3044                                 get_bh(bh);
3045                                 if (rw == SWRITE_SYNC)
3046                                         submit_bh(WRITE_SYNC, bh);
3047                                 else
3048                                         submit_bh(WRITE, bh);
3049                                 continue;
3050                         }
3051                 } else {
3052                         if (!buffer_uptodate(bh)) {
3053                                 bh->b_end_io = end_buffer_read_sync;
3054                                 get_bh(bh);
3055                                 submit_bh(rw, bh);
3056                                 continue;
3057                         }
3058                 }
3059                 unlock_buffer(bh);
3060         }
3061 }
3062 EXPORT_SYMBOL(ll_rw_block);
3063
3064 /*
3065  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3066  * and then start new I/O and then wait upon it.  The caller must have a ref on
3067  * the buffer_head.
3068  */
3069 int sync_dirty_buffer(struct buffer_head *bh)
3070 {
3071         int ret = 0;
3072
3073         WARN_ON(atomic_read(&bh->b_count) < 1);
3074         lock_buffer(bh);
3075         if (test_clear_buffer_dirty(bh)) {
3076                 get_bh(bh);
3077                 bh->b_end_io = end_buffer_write_sync;
3078                 ret = submit_bh(WRITE_SYNC, bh);
3079                 wait_on_buffer(bh);
3080                 if (buffer_eopnotsupp(bh)) {
3081                         clear_buffer_eopnotsupp(bh);
3082                         ret = -EOPNOTSUPP;
3083                 }
3084                 if (!ret && !buffer_uptodate(bh))
3085                         ret = -EIO;
3086         } else {
3087                 unlock_buffer(bh);
3088         }
3089         return ret;
3090 }
3091 EXPORT_SYMBOL(sync_dirty_buffer);
3092
3093 /*
3094  * try_to_free_buffers() checks if all the buffers on this particular page
3095  * are unused, and releases them if so.
3096  *
3097  * Exclusion against try_to_free_buffers may be obtained by either
3098  * locking the page or by holding its mapping's private_lock.
3099  *
3100  * If the page is dirty but all the buffers are clean then we need to
3101  * be sure to mark the page clean as well.  This is because the page
3102  * may be against a block device, and a later reattachment of buffers
3103  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3104  * filesystem data on the same device.
3105  *
3106  * The same applies to regular filesystem pages: if all the buffers are
3107  * clean then we set the page clean and proceed.  To do that, we require
3108  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3109  * private_lock.
3110  *
3111  * try_to_free_buffers() is non-blocking.
3112  */
3113 static inline int buffer_busy(struct buffer_head *bh)
3114 {
3115         return atomic_read(&bh->b_count) |
3116                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3117 }
3118
3119 static int
3120 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3121 {
3122         struct buffer_head *head = page_buffers(page);
3123         struct buffer_head *bh;
3124
3125         bh = head;
3126         do {
3127                 if (buffer_write_io_error(bh) && page->mapping)
3128                         set_bit(AS_EIO, &page->mapping->flags);
3129                 if (buffer_busy(bh))
3130                         goto failed;
3131                 bh = bh->b_this_page;
3132         } while (bh != head);
3133
3134         do {
3135                 struct buffer_head *next = bh->b_this_page;
3136
3137                 if (bh->b_assoc_map)
3138                         __remove_assoc_queue(bh);
3139                 bh = next;
3140         } while (bh != head);
3141         *buffers_to_free = head;
3142         __clear_page_buffers(page);
3143         return 1;
3144 failed:
3145         return 0;
3146 }
3147
3148 int try_to_free_buffers(struct page *page)
3149 {
3150         struct address_space * const mapping = page->mapping;
3151         struct buffer_head *buffers_to_free = NULL;
3152         int ret = 0;
3153
3154         BUG_ON(!PageLocked(page));
3155         if (PageWriteback(page))
3156                 return 0;
3157
3158         if (mapping == NULL) {          /* can this still happen? */
3159                 ret = drop_buffers(page, &buffers_to_free);
3160                 goto out;
3161         }
3162
3163         spin_lock(&mapping->private_lock);
3164         ret = drop_buffers(page, &buffers_to_free);
3165
3166         /*
3167          * If the filesystem writes its buffers by hand (eg ext3)
3168          * then we can have clean buffers against a dirty page.  We
3169          * clean the page here; otherwise the VM will never notice
3170          * that the filesystem did any IO at all.
3171          *
3172          * Also, during truncate, discard_buffer will have marked all
3173          * the page's buffers clean.  We discover that here and clean
3174          * the page also.
3175          *
3176          * private_lock must be held over this entire operation in order
3177          * to synchronise against __set_page_dirty_buffers and prevent the
3178          * dirty bit from being lost.
3179          */
3180         if (ret)
3181                 cancel_dirty_page(page, PAGE_CACHE_SIZE);
3182         spin_unlock(&mapping->private_lock);
3183 out:
3184         if (buffers_to_free) {
3185                 struct buffer_head *bh = buffers_to_free;
3186
3187                 do {
3188                         struct buffer_head *next = bh->b_this_page;
3189                         free_buffer_head(bh);
3190                         bh = next;
3191                 } while (bh != buffers_to_free);
3192         }
3193         return ret;
3194 }
3195 EXPORT_SYMBOL(try_to_free_buffers);
3196
3197 void block_sync_page(struct page *page)
3198 {
3199         struct address_space *mapping;
3200
3201         smp_mb();
3202         mapping = page_mapping(page);
3203         if (mapping)
3204                 blk_run_backing_dev(mapping->backing_dev_info, page);
3205 }
3206 EXPORT_SYMBOL(block_sync_page);
3207
3208 /*
3209  * There are no bdflush tunables left.  But distributions are
3210  * still running obsolete flush daemons, so we terminate them here.
3211  *
3212  * Use of bdflush() is deprecated and will be removed in a future kernel.
3213  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3214  */
3215 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3216 {
3217         static int msg_count;
3218
3219         if (!capable(CAP_SYS_ADMIN))
3220                 return -EPERM;
3221
3222         if (msg_count < 5) {
3223                 msg_count++;
3224                 printk(KERN_INFO
3225                         "warning: process `%s' used the obsolete bdflush"
3226                         " system call\n", current->comm);
3227                 printk(KERN_INFO "Fix your initscripts?\n");
3228         }
3229
3230         if (func == 1)
3231                 do_exit(0);
3232         return 0;
3233 }
3234
3235 /*
3236  * Buffer-head allocation
3237  */
3238 static struct kmem_cache *bh_cachep;
3239
3240 /*
3241  * Once the number of bh's in the machine exceeds this level, we start
3242  * stripping them in writeback.
3243  */
3244 static int max_buffer_heads;
3245
3246 int buffer_heads_over_limit;
3247
3248 struct bh_accounting {
3249         int nr;                 /* Number of live bh's */
3250         int ratelimit;          /* Limit cacheline bouncing */
3251 };
3252
3253 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3254
3255 static void recalc_bh_state(void)
3256 {
3257         int i;
3258         int tot = 0;
3259
3260         if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3261                 return;
3262         __get_cpu_var(bh_accounting).ratelimit = 0;
3263         for_each_online_cpu(i)
3264                 tot += per_cpu(bh_accounting, i).nr;
3265         buffer_heads_over_limit = (tot > max_buffer_heads);
3266 }
3267         
3268 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3269 {
3270         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3271         if (ret) {
3272                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3273                 get_cpu_var(bh_accounting).nr++;
3274                 recalc_bh_state();
3275                 put_cpu_var(bh_accounting);
3276         }
3277         return ret;
3278 }
3279 EXPORT_SYMBOL(alloc_buffer_head);
3280
3281 void free_buffer_head(struct buffer_head *bh)
3282 {
3283         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3284         kmem_cache_free(bh_cachep, bh);
3285         get_cpu_var(bh_accounting).nr--;
3286         recalc_bh_state();
3287         put_cpu_var(bh_accounting);
3288 }
3289 EXPORT_SYMBOL(free_buffer_head);
3290
3291 static void buffer_exit_cpu(int cpu)
3292 {
3293         int i;
3294         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3295
3296         for (i = 0; i < BH_LRU_SIZE; i++) {
3297                 brelse(b->bhs[i]);
3298                 b->bhs[i] = NULL;
3299         }
3300         get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3301         per_cpu(bh_accounting, cpu).nr = 0;
3302         put_cpu_var(bh_accounting);
3303 }
3304
3305 static int buffer_cpu_notify(struct notifier_block *self,
3306                               unsigned long action, void *hcpu)
3307 {
3308         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3309                 buffer_exit_cpu((unsigned long)hcpu);
3310         return NOTIFY_OK;
3311 }
3312
3313 /**
3314  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3315  * @bh: struct buffer_head
3316  *
3317  * Return true if the buffer is up-to-date and false,
3318  * with the buffer locked, if not.
3319  */
3320 int bh_uptodate_or_lock(struct buffer_head *bh)
3321 {
3322         if (!buffer_uptodate(bh)) {
3323                 lock_buffer(bh);
3324                 if (!buffer_uptodate(bh))
3325                         return 0;
3326                 unlock_buffer(bh);
3327         }
3328         return 1;
3329 }
3330 EXPORT_SYMBOL(bh_uptodate_or_lock);
3331
3332 /**
3333  * bh_submit_read - Submit a locked buffer for reading
3334  * @bh: struct buffer_head
3335  *
3336  * Returns zero on success and -EIO on error.
3337  */
3338 int bh_submit_read(struct buffer_head *bh)
3339 {
3340         BUG_ON(!buffer_locked(bh));
3341
3342         if (buffer_uptodate(bh)) {
3343                 unlock_buffer(bh);
3344                 return 0;
3345         }
3346
3347         get_bh(bh);
3348         bh->b_end_io = end_buffer_read_sync;
3349         submit_bh(READ, bh);
3350         wait_on_buffer(bh);
3351         if (buffer_uptodate(bh))
3352                 return 0;
3353         return -EIO;
3354 }
3355 EXPORT_SYMBOL(bh_submit_read);
3356
3357 void __init buffer_init(void)
3358 {
3359         int nrpages;
3360
3361         bh_cachep = kmem_cache_create("buffer_head",
3362                         sizeof(struct buffer_head), 0,
3363                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3364                                 SLAB_MEM_SPREAD),
3365                                 NULL);
3366
3367         /*
3368          * Limit the bh occupancy to 10% of ZONE_NORMAL
3369          */
3370         nrpages = (nr_free_buffer_pages() * 10) / 100;
3371         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3372         hotcpu_notifier(buffer_cpu_notify, 0);
3373 }